JP2001222036A - Raman amplification and optical signal transmission method utilizing the same - Google Patents

Raman amplification and optical signal transmission method utilizing the same

Info

Publication number
JP2001222036A
JP2001222036A JP2000161051A JP2000161051A JP2001222036A JP 2001222036 A JP2001222036 A JP 2001222036A JP 2000161051 A JP2000161051 A JP 2000161051A JP 2000161051 A JP2000161051 A JP 2000161051A JP 2001222036 A JP2001222036 A JP 2001222036A
Authority
JP
Japan
Prior art keywords
light
wavelength
raman
signal
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000161051A
Other languages
Japanese (ja)
Other versions
JP3745938B2 (en
Inventor
Yoshihiro Emori
芳博 江森
Shu Namiki
周 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2000161051A priority Critical patent/JP3745938B2/en
Publication of JP2001222036A publication Critical patent/JP2001222036A/en
Application granted granted Critical
Publication of JP3745938B2 publication Critical patent/JP3745938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of being incapable of controlling intensity distribution of exciting light in the longitudinal direction of an optical fiber resulting in no room to improve noise characteristics. SOLUTION: A first exciting light to Raman amplify signal light is made incident from the output terminal of the signal light and the second exciting light, with shorter wavelength than that of the first exciting light, to Raman amplify the first exciting light is made incident from the input terminal of the signal light. A second exciting light is also made incident from the output terminal of the signal light. The first exciting light is also made incident from the input terminal of the signal light. The Raman amplification band of the second exciting light is made not to overlap with the wavelength band of the signal light. The wavelength of the second exciting light is made shorter than the wavelength of the first exciting light by the Raman shift portion of the amplification optical fiber. A multiple light source is used for one or both of the first and the second exciting light. A semiconductor laser is used for the first exciting light. The third exciting light to Raman amplify the second exciting light is guided to the optical transmission line. The signal light is transmitted with the optical transmission line using the Raman amplification.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光通信に利用される
ラマン増幅方式とそれを用いた光信号伝送方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Raman amplification system used for optical communication and an optical signal transmission method using the Raman amplification system.

【0002】[0002]

【従来の技術】現在の光通信に用いられている強度変調
された光信号の周波数成分(波長成分)はある程度の幅
をもっている。一方で、光ファイバには波長によって伝
搬速度が異なるという分散特性がある。この二つの性質
により、強度変調された光信号が光ファイバ中を伝搬す
ると、波長成分ごとの伝搬速度の違いにより信号波形が
歪む。光信号としてパルスを入射した場合、伝搬後のパ
ルス幅が広がることからこの現象は分散によるパルス広
がりと呼ばれている。(例えば、岡本勝就著、光導波路
の基礎、コロナ社)
2. Description of the Related Art The frequency component (wavelength component) of an intensity-modulated optical signal used in current optical communication has a certain width. On the other hand, the optical fiber has a dispersion characteristic that the propagation speed varies depending on the wavelength. Due to these two properties, when an intensity-modulated optical signal propagates through an optical fiber, a signal waveform is distorted due to a difference in propagation speed for each wavelength component. When a pulse is incident as an optical signal, the pulse width after propagation increases, so this phenomenon is called pulse spreading due to dispersion. (Eg, Katsuharu Okamoto, Basics of Optical Waveguides, Corona)

【0003】デジタル通信はアナログ通信に比べれば波
形の変化には強いのだが、前後のビットと重なり合うほ
どにパルス幅が広がれば、当然のことながら、検出時の
誤りは著しく増加する。そこで従来は、分散が小さい
(0に近い)波長を用いてパルスの広がりを小さく抑え
たり、伝送路と逆の分散をもつ媒質に通して先に進んだ
波長成分を遅らせ、遅れた波長成分を進ませて広がった
パルスを元に戻したりしている。
[0003] Digital communication is more resistant to waveform changes than analog communication. However, if the pulse width is widened so as to overlap the preceding and succeeding bits, errors in detection naturally increase remarkably. Therefore, conventionally, the spread of a pulse is suppressed to a small value by using a wavelength having a small dispersion (close to 0), or a wavelength component that has advanced through a medium having dispersion opposite to that of a transmission line is delayed, and a delayed wavelength component is reduced. The pulse that spreads and spreads is restored.

【0004】しかしながら最近の光通信システムでは、
光信号の高出力化と波長多重化によって光ファイバ中の
非線形現象が顕著になり、分散という観点だけでは波形
の歪みに対処しきれなくなっている。主に問題とされて
いる非線形現象として、自己位相変調(SPM)、相互
位相変調(XPM)、四光波混合(FWM)があげられ
る。SPM、XPMは光の強度に応じて光ファイバの屈
折率が僅かに変化することによって光の位相が変化する
ものである。この位相変化が瞬時的な周波数の変化をも
たらすことと、その変化量が一定でないことから、光フ
ァイバの分散特性により非可逆な波形歪が発生する。F
WMは周波数の異なる複数の入射光によって分極場が励
起されると、入射光の周波数とは異なる成分が生じるこ
とにより、新たな周波数の光が発生するという現象であ
る。FWMは分散が0に近い波長において特に顕著とな
る。FWMにより発生した光が、信号として使用してい
る波長と一致すると検出時の誤りを増加させることにな
る。
However, in recent optical communication systems,
Non-linear phenomena in an optical fiber become remarkable due to high output and wavelength multiplexing of an optical signal, and it is no longer possible to cope with waveform distortion only from the viewpoint of dispersion. Non-linear phenomena that are mainly considered include self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM). In SPM and XPM, the phase of light changes when the refractive index of the optical fiber slightly changes according to the light intensity. Since this phase change causes an instantaneous change in frequency and the amount of change is not constant, irreversible waveform distortion occurs due to the dispersion characteristics of the optical fiber. F
WM is a phenomenon in which, when a polarization field is excited by a plurality of incident lights having different frequencies, a component having a frequency different from that of the incident light is generated, so that light of a new frequency is generated. FWM is particularly pronounced at wavelengths where the dispersion is close to zero. If the light generated by the FWM matches the wavelength used as a signal, errors in detection will increase.

【0005】[0005]

【発明が解決しようとする課題】前記のような光ファイ
バの非線形性に起因する伝送特性の劣化を防ぐ手段とし
て、二つのアプローチがある。一つは光ファイバ中の光
強度を下げて、非線形効果を小さくする方法である。他
の一つは非線形効果を利用する伝送方式を用いる方法で
ある。前者の方法は、単純に光ファイバへの入力レベル
を下げたり、モードフィールド径の大きい光ファイバを
利用することによって実現できる。後者の方法は、光ソ
リトン通信を利用することで実現できる。しかし、これ
らの方法を用いたとしてもさらに次のような問題が残
る。
There are two approaches as means for preventing the deterioration of transmission characteristics due to the non-linearity of the optical fiber as described above. One is a method of reducing the nonlinear effect by lowering the light intensity in the optical fiber. The other is a method using a transmission method using a non-linear effect. The former method can be realized by simply lowering the input level to the optical fiber or using an optical fiber having a large mode field diameter. The latter method can be realized by using optical soliton communication. However, even if these methods are used, the following problem still remains.

【0006】光ファイバへの入力レベルを下げると受信
側の信号対雑音比(S/N比)を下げることになるた
め、検出時の誤りが増加する。このことは、伝送可能な
距離が短くなるとも解釈できる。モードフィールド径の
大きい光ファイバは、分散スロープ(分散の波長依存
性)が大きいため、波長多重化された全てのチャンネル
に対して最適な分散を設定するのが難しい。光ソリトン
通信は、実際の光伝送路に存在する摂動(伝搬損失や分
散のゆらぎなど)により、ソリトンの条件から外れた分
散波の成分が生じ、これが伝送特性を劣化させる要因と
なる。以上のように、現在の光通信システムはいくつか
の制限要因に対して注意深く配慮しながら設計しなけれ
ばならないのだが、仮に光伝送路である光ファイバに損
失がないとすると、これらの制限が著しく緩和される。
例えば、無損失伝送路では、伝搬損失によるS/N比の
劣化がなくなるため、光ファイバへの入力レベルを下げ
ることに関する前記制限要因が緩和される。また、光ソ
リトン通信に無損失伝送路を適用した場合、分散波の発
生が著しく減少する。このような無損失伝送路に最も近
い従来の光伝送路として、ラマン増幅によって損失補償
された光伝送路がある。
[0006] If the input level to the optical fiber is reduced, the signal-to-noise ratio (S / N ratio) on the receiving side is reduced, so that errors in detection increase. This can also be interpreted as shortening the transmittable distance. Since an optical fiber having a large mode field diameter has a large dispersion slope (wavelength dependence of dispersion), it is difficult to set an optimum dispersion for all wavelength-multiplexed channels. In optical soliton communication, due to perturbations (such as propagation loss and dispersion fluctuation) existing in an actual optical transmission line, a component of a dispersed wave out of the soliton condition is generated, and this causes deterioration of transmission characteristics. As described above, the current optical communication system must be designed with careful consideration of some limiting factors, but if there is no loss in the optical fiber that is the optical transmission line, these limitations will be reduced. Significantly relaxed.
For example, in the lossless transmission line, since the deterioration of the S / N ratio due to the propagation loss is eliminated, the limiting factor related to lowering the input level to the optical fiber is reduced. Further, when a lossless transmission line is applied to optical soliton communication, the generation of dispersed waves is significantly reduced. As a conventional optical transmission line closest to such a lossless transmission line, there is an optical transmission line whose loss has been compensated by Raman amplification.

【0007】光ファイバのラマン散乱を利用したラマン
増幅方式は、光伝送路自体が増幅用光ファイバになると
いう利点や、任意の波長帯を増幅できるという利点を持
つ。石英系の光ファイバの場合、励起光の波長よりも長
波長側、周波数にして約13THz低い周波数帯に利得
のピークが現れる。例えば、波長1450nmと154
7nmの周波数の差が13THzである。励起光と利得
ピークの波長差もしくは周波数差をラマンシフトと呼
び、光ファイバの組成に応じた値となる。
The Raman amplification system using Raman scattering of an optical fiber has an advantage that an optical transmission line itself becomes an amplification optical fiber and an advantage that an arbitrary wavelength band can be amplified. In the case of a silica-based optical fiber, a gain peak appears in a frequency band that is longer than the wavelength of the pump light and lower in frequency by about 13 THz. For example, wavelengths 1450 nm and 154
The difference between the frequencies of 7 nm is 13 THz. The wavelength difference or frequency difference between the pump light and the gain peak is called Raman shift, and is a value according to the composition of the optical fiber.

【0008】一般に、通信用のラマン増幅方式には、図
21に示すように励起光と信号光が逆方向に伝搬する後
方励起構成が採用される。ラマン利得の発生機構は非常
に高速であるため、励起光と信号光が同方向に伝搬する
前方励起構成では、励起光の強度ゆらぎが信号波形にそ
のまま重畳されてしまい、伝送特性が著しく劣化するか
らである。このことは特開平9−318981号の段落
番号0027〜0030にも開示されている。
In general, a Raman amplification system for communication employs a backward pump configuration in which pump light and signal light propagate in opposite directions as shown in FIG. Since the Raman gain generation mechanism is very fast, in a forward pump configuration in which the pump light and the signal light propagate in the same direction, the fluctuations in the intensity of the pump light are superimposed on the signal waveform as it is, and the transmission characteristics deteriorate significantly. Because. This is also disclosed in paragraphs 0027 to 0030 of JP-A-9-318981.

【0009】従来の後方励起構成を採用したラマン増幅
方式における増幅用光ファイバ中の励起光と信号光の長
手方向における強度分布の一般的な特性を図22〜図2
7に示す。(これらの計算方法はG.P.Agrawal の“Nonl
inear Fiber Optics”,Chap.8,Academic Press、R.G.Sm
ith のApplied Optics,Vol.11,pp.2489-2494,1972 、J.
Auyeung とA.Yariv のJ.Quantum Electron.,Vol.QE-14,
pp.347-352,1978 等を参照)。
The general characteristics of the intensity distribution in the longitudinal direction of the pumping light and the signal light in the amplification optical fiber in the Raman amplification system employing the conventional backward pumping structure are shown in FIGS.
FIG. (These calculations are based on GPAgrawal's “Nonl
inear Fiber Optics ”, Chap. 8, Academic Press, RGSm
ith, Applied Optics, Vol. 11, pp. 2489-2494, 1972, J.
Auyeung and A. Yariv, J. Quantum Electron., Vol.QE-14,
pp. 347-352, 1978).

【0010】ラマン増幅方式を応用したラマン増幅器に
は、光伝送路を増幅用光ファイバとして用いる分布型
と、光伝送路とは別に増幅用光ファイバを用いる集中型
とがある。以下の記述では分布型を想定した例を示す。
ただし、集中型であっても、増幅用光ファイバにおける
信号光及び励起光の振舞いは同じ方程式で記述されるた
め、各種パラメータの値が異なるだけで、同様な効果を
得ることが可能である。
Raman amplifiers to which the Raman amplification method is applied include a distributed type using an optical transmission line as an amplification optical fiber and a centralized type using an amplification optical fiber separately from the optical transmission line. The following description shows an example that assumes a distribution type.
However, even in the case of the centralized type, since the behavior of the signal light and the pumping light in the amplification optical fiber is described by the same equation, the same effect can be obtained only by changing the values of various parameters.

【0011】図22は励起光パワーの変化と信号光パワ
ーの変化を示すグラフである。このグラフ中の曲線aは
励起光の入射パワーが100mW(曲線A)のときの信
号光パワーを示し、曲線bは励起光の入射パワーが20
0mW(曲線B)のときの信号光パワーを示し、曲線c
は励起光の入射パワーが300mW(曲線C)のときの
信号光パワーを示す。グラフ中の直線dは励起光を入射
しない場合の信号光パワーを示す。同グラフ中の直線d
から明らかな様に、信号光パワーは励起光を入射しない
と伝搬距離に比例して減衰する。減衰定数が0.25d
B/kmの励起光を入射するとラマン増幅が起こり、信
号光パワーが増加する。このパワーの増加量がラマン利
得である。図22に示すグラフ中の曲線A〜Cと曲線a
〜cとの関係から明らかな様に、ラマン利得の大きさは
励起光の入射パワーにほぼ比例する。励起光も伝搬距離
に比例して減衰するため、信号入力端付近では励起光強
度が小さくなり、ラマン利得も小さい。従って、信号光
は入力端から近い位置では減衰し、出力端(励起光が入
射される端:この例では入力端から50kmの位置)付
近で大きな利得を受ける。信号光強度が十分小さい場
合、励起光の減衰は伝搬損失によるものであるから、励
起光の長手方向の強度分布は増幅用光ファイバの減衰定
数によって一意に決まる。ラマン利得の長手方向の分布
(信号光の長手方向の強度分布)は励起光の長手方向の
強度分布に応じて決まる。
FIG. 22 is a graph showing a change in pump light power and a change in signal light power. The curve a in this graph indicates the signal light power when the incident power of the pump light is 100 mW (curve A), and the curve b indicates that the incident power of the pump light is 20 mW.
The signal light power at 0 mW (curve B) is shown, and the curve c
Indicates the signal light power when the incident power of the pump light is 300 mW (curve C). The straight line d in the graph indicates the signal light power when the pump light is not incident. Line d in the graph
As is clear from FIG. 7, the signal light power attenuates in proportion to the propagation distance unless pumping light is incident. Damping constant is 0.25d
When the pumping light of B / km is incident, Raman amplification occurs, and the signal light power increases. This increase in power is the Raman gain. Curves A to C and curve a in the graph shown in FIG.
As is clear from the relationship between .gamma.-c, the magnitude of the Raman gain is almost proportional to the incident power of the pump light. Since the pumping light also attenuates in proportion to the propagation distance, the pumping light intensity decreases near the signal input end and the Raman gain also decreases. Therefore, the signal light is attenuated at a position near the input terminal, and receives a large gain near the output terminal (the end where the pump light is incident: 50 km from the input terminal in this example). When the signal light intensity is sufficiently small, the attenuation of the pump light is due to the propagation loss, and therefore the longitudinal intensity distribution of the pump light is uniquely determined by the attenuation constant of the amplification optical fiber. The longitudinal distribution of the Raman gain (the longitudinal intensity distribution of the signal light) is determined according to the longitudinal intensity distribution of the pump light.

【0012】図23は励起光の入射パワーが一定、その
減衰定数αpも0.25dB/kmで一定であるときに、信
号光の減衰定数αsを変化させた場合の信号光パワーを
示すグラフである。このグラフ中の曲線Aは減衰定数α
s=0.3dB/kmの場合、曲線Bは減衰定数αs=0.2
5dB/kmの場合、曲線Cは減衰定数αs=0.2 dB
/kmの場合である。図23に示すグラフから明らかな
様に、光伝送路の長手方向における信号光の強度分布は
信号光の減衰定数αsに応じて変わる。
FIG. 23 is a graph showing the signal light power when the attenuation constant αs of the signal light is changed when the pumping light incident power is constant and its attenuation constant αp is also constant at 0.25 dB / km. . Curve A in this graph is the attenuation constant α
When s = 0.3 dB / km, curve B has a damping constant αs = 0.2
In the case of 5 dB / km, the curve C has an attenuation constant αs = 0.2 dB.
/ Km. As is clear from the graph shown in FIG. 23, the intensity distribution of the signal light in the longitudinal direction of the optical transmission line changes according to the attenuation constant αs of the signal light.

【0013】図24は励起光の入射パワーが一定、信号
光の減衰定数αsが一定であるときに、励起光の減衰定
数αpを変化させた場合の信号光パワーの変化を示すグ
ラフである。このグラフ中の曲線aは、励起光の減衰定
数αp=0.3dB/km(曲線A)のときの信号光パワ
ーを示し、曲線bは減衰定数αp=0.25dB/km(曲
線B)のときの信号光パワーを示し、曲線cは減衰定数
αp=0.2dB/km(曲線C)のときの信号光パワー
を示す。図24に示すグラフから明らかな様に、励起光
の減衰定数αpを変えると光伝送路の長手方向における
励起光の強度分布が異なるため、同方向における信号光
の強度分布が変わる。
FIG. 24 is a graph showing a change in signal light power when the pump light attenuation constant αp is changed when the pump light incident power is constant and the signal light attenuation constant αs is constant. The curve a in this graph shows the signal light power when the pump light attenuation constant αp = 0.3 dB / km (curve A), and the curve b shows the signal light power when the attenuation constant αp = 0.25 dB / km (curve B). The signal light power is shown, and the curve c shows the signal light power when the attenuation constant αp = 0.2 dB / km (curve C). As is clear from the graph shown in FIG. 24, when the attenuation constant αp of the pumping light is changed, the intensity distribution of the pumping light in the longitudinal direction of the optical transmission line is different, so that the intensity distribution of the signal light in the same direction is changed.

【0014】図25は増幅用光ファイバの長さを変えた
ときの励起光パワーと信号光パワーとの関係を示すグラ
フである。この場合、励起光の入射パワーは一定、信号
光と励起光の減衰定数は同じ値としてある。このグラフ
から増幅用光ファイバの長さを変えると、同ファイバの
長手方向における励起光の強度分布が異なるため、同方
向における信号光の強度分布も変わることが分かる。図
25に示すグラフ中の曲線A〜Eは増幅用光ファイバの
長さが10km、20km、30km、40km、50
kmのときの励起光パワーを示し、曲線a〜eは増幅用
光ファイバが前記夫々の長さである場合の信号光パワー
を示す。
FIG. 25 is a graph showing the relationship between the pump light power and the signal light power when the length of the amplification optical fiber is changed. In this case, the incident power of the pump light is constant, and the attenuation constant of the signal light and the pump light is the same value. From this graph, it can be seen that, when the length of the amplification optical fiber is changed, the intensity distribution of the pump light in the longitudinal direction of the fiber is different, so that the intensity distribution of the signal light in the same direction is also changed. Curves A to E in the graph shown in FIG. 25 indicate that the lengths of the amplification optical fibers are 10 km, 20 km, 30 km, 40 km, and 50 km.
km shows the pump light power, and curves a to e show the signal light power when the amplification optical fibers have the respective lengths.

【0015】図26は励起光の入射パワーが一定、信号
光と励起光の減衰定数が同一で、信号光のラマン利得係
数gRが異なる場合の信号光パワーの変化を示すグラフ
である。このグラフ中の曲線aは利得係数gR=1/3
×10-13m/Wのときの信号光パワー、曲線bは利得
係数gR=2/3×10-13m/Wのときの信号光パワ
ー、曲線cは利得係数gR=1×10-13m/Wのときの
信号光パワーを示す。このグラフから明らかな様に、ラ
マン利得係数gRの大きさを変えると発生するラマン利
得の大きさが変わり、光伝送路の長手方向における信号
光の強度分布が変わる。
FIG. 26 is a graph showing a change in signal light power when the pump light incident power is constant, the signal light and the pump light have the same attenuation constant, and the signal light has a different Raman gain coefficient g R. The curve a in this graph is a gain coefficient g R = 1/3.
Signal light power at × 10 −13 m / W, curve b is signal light power at gain coefficient g R = と き × 10 −13 m / W, and curve c is gain coefficient g R = 1 × 10 It shows the signal light power at -13 m / W. As is clear from this graph, when the magnitude of the Raman gain coefficient g R is changed, the magnitude of the generated Raman gain changes, and the intensity distribution of the signal light in the longitudinal direction of the optical transmission line changes.

【0016】図27は入射パワーが一定の励起光により
前方励起したときと、後方励起したときの信号光パワー
の変化を示すグラフである。このグラフ中の曲線aは前
方励起したときの信号光パワーを示し、曲線bは後方励
起したときの信号光パワーを示す。ここで示したgR
値は励起波長が1μmの場合の値である。このグラフか
ら明らかな様に、励起構成が異なると、光伝送路の長手
方向における励起光の強度分布が異なるため、発生する
ラマン利得の分布も変わり、信号光の分布が変わる。
尚、グラフ中の曲線Aは前方励起光のパワーを示し、曲
線Bは後方励起光のパワーを示す。
FIG. 27 is a graph showing a change in signal light power when forward pumping and backward pumping are performed with pump light having a constant incident power. A curve a in this graph shows the signal light power when pumping forward, and a curve b shows the signal light power when pumping backward. The value of g R shown here is a value when the excitation wavelength is 1 μm. As is clear from this graph, when the pumping configuration is different, the intensity distribution of the pumping light in the longitudinal direction of the optical transmission line is different, so that the distribution of the generated Raman gain changes and the distribution of the signal light changes.
The curve A in the graph indicates the power of the forward pumping light, and the curve B indicates the power of the backward pumping light.

【0017】光増幅器を用いた伝送系の雑音特性の一般
的な振舞いとして、光増幅前の信号損失が雑音特性を著
しく劣化させることが知られている。このため、光ファ
イバ増幅器のように増幅効果が光ファイバの長手方向に
分布を持つ場合、増幅器入力端に近い位置での損失が雑
音特性を劣化させる。一方、後方励起構成の場合、増幅
用光ファイバにおける伝搬損失によって信号光入力端で
の励起光強度が小さくなるため、信号光入力端での増幅
作用も小さくなる。従って、後方励起構成では信号光入
力端における損失が比較的大きくなり、増幅器の雑音特
性を劣化させることが問題点となる。このため、雑音特
性の良いラマン増幅器を構成するためには、できるだけ
損失の小さい光ファイバ(信号光と励起光のどちらに対
しても)を用いること、できるだけ短い光ファイバを用
いることが常套手段であった。
As a general behavior of noise characteristics of a transmission system using an optical amplifier, it is known that a signal loss before optical amplification significantly degrades noise characteristics. Therefore, when the amplification effect has a distribution in the longitudinal direction of the optical fiber as in an optical fiber amplifier, a loss at a position near the input end of the amplifier deteriorates noise characteristics. On the other hand, in the case of the backward pumping configuration, the pumping light intensity at the signal light input end is reduced due to the propagation loss in the amplification optical fiber, so that the amplifying action at the signal light input end is also reduced. Therefore, in the backward pumping configuration, the loss at the signal light input terminal becomes relatively large, and there is a problem that the noise characteristic of the amplifier is deteriorated. Therefore, in order to construct a Raman amplifier having good noise characteristics, it is customary to use an optical fiber with the smallest possible loss (for both signal light and pump light) and use an optical fiber as short as possible. there were.

【0018】一方で、光伝送路を増幅用光ファイバとし
て用いる分布型ラマン増幅器の場合は、光伝送路におけ
る非線形効果を抑えつつ高いS/N比を維持する必要が
ある。そこで、光伝送路は同伝送路の長手方向における
信号光のレベルが一定となる無損失伝送路の状態が理想
的であり、この場合、励起光の強度も光伝送路の長手方
向で一定となるのが望ましい。しかし、従来技術でこれ
を実現できる距離は比較的短く、その距離は光伝送路を
構成する光ファイバのパラメータ(ファイバ長、利得係
数、励起光と信号光の減衰定数)によって一意に決まっ
ていた。これは、光伝送路の長手方向における励起光の
分布を制御することができなかったためである。
On the other hand, in the case of a distributed Raman amplifier using an optical transmission line as an amplification optical fiber, it is necessary to maintain a high S / N ratio while suppressing a nonlinear effect in the optical transmission line. Therefore, it is ideal that the optical transmission line has a state of a lossless transmission line where the level of the signal light in the longitudinal direction of the transmission line is constant. In this case, the intensity of the pump light is also constant in the longitudinal direction of the optical transmission line. Is desirable. However, the distance that can be realized by the conventional technology is relatively short, and the distance is uniquely determined by the parameters (fiber length, gain coefficient, attenuation constant of pump light and signal light) of the optical fiber constituting the optical transmission line. . This is because the distribution of the excitation light in the longitudinal direction of the optical transmission line could not be controlled.

【0019】[0019]

【課題を解決するための手段】本発明の目的は、光伝送
路の長手方向における励起光の強度分布を制御すること
により、増幅器の雑音特性を改善可能なラマン増幅方式
を提供すると共に、従来のラマン増幅方式と比較して、
より無損失伝送路に近い状態を実現可能なラマン増幅方
式を提供することにある。本発明の他の目的は、前記ラ
マン増幅方式を用いた光信号伝送方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Raman amplification system capable of improving the noise characteristics of an amplifier by controlling the intensity distribution of pump light in the longitudinal direction of an optical transmission line. Compared to the Raman amplification method
An object of the present invention is to provide a Raman amplification method capable of realizing a state closer to a lossless transmission path. Another object of the present invention is to provide an optical signal transmission method using the Raman amplification method.

【0020】本件出願の第1のラマン増幅方式は、光フ
ァイバ中のラマン散乱を利用したラマン増幅方式であっ
て、信号光をラマン増幅するための第一の励起光を増幅
用光ファイバの信号光出力端から入射し、第一の励起光
の波長よりも短い波長をもち第一の励起光をラマン増幅
するための第二の励起光を光ファイバの信号光入力端か
ら入射するものである。
The first Raman amplification system of the present application is a Raman amplification system utilizing Raman scattering in an optical fiber, and a first pumping light for Raman-amplifying a signal light is supplied to a signal of an amplification optical fiber. A second pump light having a wavelength shorter than the wavelength of the first pump light and a second pump light for Raman-amplifying the first pump light is incident from a signal light input terminal of the optical fiber. .

【0021】本件出願の第2のラマン増幅方式は、第二
の励起光を増幅用光ファイバの信号光出力端からも入射
するものである。
In the second Raman amplification method of the present application, the second pump light is also incident from the signal light output end of the amplification optical fiber.

【0022】本件出願の第3のラマン増幅方式は、第一
の励起光を増幅用光ファイバの信号光入力端からも入射
するものである。
In the third Raman amplification method of the present application, the first pump light is also incident from the signal light input end of the amplification optical fiber.

【0023】本件出願の第4のラマン増幅方式は、第二
の励起光の波長が、第一の励起光の波長よりも増幅用光
ファイバのラマンシフト分だけ短いものである。
In the fourth Raman amplification method of the present application, the wavelength of the second pumping light is shorter than the wavelength of the first pumping light by the Raman shift of the amplification optical fiber.

【0024】本件出願の第5のラマン増幅方式は、第二
の励起光のラマン増幅帯域と信号光の波長帯域とが重複
しないものである。
In the fifth Raman amplification system of the present application, the Raman amplification band of the second pump light and the wavelength band of the signal light do not overlap.

【0025】本件出願の第6のラマン増幅方式は、第二
の励起光の波長を、第一の励起光の波長よりも増幅用光
ファイバのラマンシフト分だけ短い波長から若干ずれた
波長としたものである。
According to the sixth Raman amplification method of the present application, the wavelength of the second pump light is set to a wavelength slightly shifted from the wavelength shorter than the wavelength of the first pump light by the Raman shift of the amplification optical fiber. Things.

【0026】本件出願の第7のラマン増幅方式は、第一
と第二の励起光のいずれか一方又は双方を、複数の波長
で構成される波長多重励起光源としたものである。
In the seventh Raman amplification system of the present application, one or both of the first and second pump lights are used as a wavelength division multiplex pump light source having a plurality of wavelengths.

【0027】本件出願の第8のラマン増幅方式は、第一
の励起光の光源に半導体レーザーを用いたものである。
The eighth Raman amplification method of the present application uses a semiconductor laser as a light source of the first excitation light.

【0028】本件出願の第9のラマン増幅方式は、光伝
送路に第三の励起光を導き、第二の励起光をラマン増幅
するものである。
The ninth Raman amplification method of the present application is to guide third pump light to an optical transmission line and Raman amplify the second pump light.

【0029】本件出願の第1の光信号伝送方法は、前記
第1〜第9のいずれかのラマン増幅方式を用いて、光信
号を光伝送路の長手方向でほぼ一定なレベルで伝播させ
るものである。
The first optical signal transmission method of the present application is to propagate an optical signal at a substantially constant level in the longitudinal direction of an optical transmission line by using any one of the first to ninth Raman amplification methods. It is.

【0030】本件出願の第2の光信号伝送方法は、信号
光として波長多重化されたソリトン信号を用いるもので
ある。
The second optical signal transmission method of the present application uses a wavelength multiplexed soliton signal as signal light.

【0031】[0031]

【発明の実施の形態】(実施形態1)本発明のラマン増
幅方式の第1の実施形態を図1に基づいて詳細に説明す
る。図1の光ファイバ1は光伝送路もしくは集中型光増
幅器を構成する任意のタイプの光ファイバであり、例え
ば光伝送路として用いられるSMF、DSF、NZ−D
SF、LEAF、RDF、分散補償用ファイバ、非線形
デバイス用ファイバ等である。前記光ファイバ1を用い
た光通信システムにおいて、信号光(波長λS)が光フ
ァイバ1を伝搬する際に、第一の励起光(波長λP1)を
信号光の出力端2から入射し、第二の励起光(波長
λP2)を信号光の入力端3から入射する。これにより、
第一の励起光と第二の励起光が共に光ファイバ1中に存
在し、第一の励起光は第二の励起光によるラマン増幅を
受けて増幅され、信号入力端3付近での第一の励起光強
度は第二の励起光が存在しない場合よりも大きくなる。
従って、信号入射端3側での伝搬損失に起因するS/N
比の劣化が軽減され、伝送系の雑音特性が改善される。
また、第二の励起光が信号光の入力端3から入射するこ
とにより、信号光出力端2から入射する場合に比して、
信号光入力端3付近における第二の励起光強度が大きく
なり、信号光入力端3付近において第一の励起光が第二
の励起光から受ける利得を効率的に大きくすることがで
き、ラマン増幅器の雑音特性の改善も効率的になされ
る。
(Embodiment 1) A first embodiment of the Raman amplification system of the present invention will be described in detail with reference to FIG. The optical fiber 1 shown in FIG. 1 is an optical fiber of an arbitrary type constituting an optical transmission line or a centralized optical amplifier, for example, SMF, DSF, NZ-D used as an optical transmission line.
SF, LEAF, RDF, dispersion compensating fiber, non-linear device fiber, and the like. In the optical communication system using the optical fiber 1, when the signal light (wavelength λ S ) propagates through the optical fiber 1, the first pump light (wavelength λ P1 ) enters from the output end 2 of the signal light, The second pumping light (wavelength λ P2 ) enters from the input end 3 of the signal light. This allows
Both the first pumping light and the second pumping light are present in the optical fiber 1, the first pumping light is subjected to Raman amplification by the second pumping light and is amplified, and the first pumping light near the signal input terminal 3 is amplified. Is higher than when no second excitation light is present.
Therefore, S / N due to propagation loss on the signal incident end 3 side
The deterioration of the ratio is reduced, and the noise characteristics of the transmission system are improved.
Further, the second pump light enters from the input end 3 of the signal light, so that the second pump light enters from the output end 2 of the signal light.
The intensity of the second pumping light near the signal light input terminal 3 increases, and the gain of the first pumping light from the second pumping light near the signal light input terminal 3 can be increased efficiently. The noise characteristics of the device are also efficiently improved.

【0032】本実施形態では第二の励起光の波長λP2
第一の励起光の波長λP1よりも光ファイバ1(増幅用光
ファイバ1)のラマンシフト分だけ短い波長としてあ
る。両波長がこの関係にあるときに第一の励起光が第二
の励起光によって最も効率よくラマン増幅される。しか
し、第二の励起光の波長λP2が第一の励起光の波長λP1
よりも短い波長であれば増幅は可能であるため、第二の
励起光の波長λP2を第一の励起光の波長λP1よりも増幅
用光ファイバ1のラマンシフト分だけ短い波長に限定す
る必要はない。例えば、第一の励起光の波長λP1よりも
増幅用光ファイバ1のラマンシフト分だけ短い波長か
ら、更に若干ずれた波長とすることもできる。このよう
に若干ずらすと、第一の励起光が第二の励起光から受け
るラマン利得の利得係数を任意に減少させることができ
る。例えば、ラマンシフト分だけ短い波長から20から30
nm程度ずれると利得係数が約半分になる。これは増幅用
光ファイバ1の長手方向における第一の励起光の強度分
布を制御する手段となり、増幅器の入・出力レベルが規
定されたときに、雑音特性を最適化するために利用する
ことができる。
In the present embodiment, the wavelength λ P2 of the second pump light is shorter than the wavelength λ P1 of the first pump light by the Raman shift of the optical fiber 1 (amplifying optical fiber 1). When both wavelengths have this relationship, the first pump light is most efficiently Raman-amplified by the second pump light. However, the second wavelength wavelength lambda P2 of the excitation light is the first excitation light lambda P1
Since amplification is possible with a shorter wavelength, the wavelength λ P2 of the second pump light is limited to a wavelength shorter than the wavelength λ P1 of the first pump light by the Raman shift of the amplification optical fiber 1. No need. For example, the wavelength may be slightly shifted from the wavelength shorter than the wavelength λ P1 of the first pumping light by the Raman shift of the amplification optical fiber 1. With such a slight shift, the gain coefficient of the Raman gain that the first pumping light receives from the second pumping light can be arbitrarily reduced. For example, from a wavelength shorter by Raman shift to 20 to 30
When shifted by about nm, the gain coefficient becomes about half. This serves as means for controlling the intensity distribution of the first pumping light in the longitudinal direction of the amplification optical fiber 1, and can be used to optimize noise characteristics when the input / output level of the amplifier is specified. it can.

【0033】前記の背景技術の欄に記載した様に、励起
光と信号光が同方向に伝搬する前方励起構成では、励起
光の強度ゆらぎが信号波形にそのまま重畳されてしま
い、伝送特性が著しく劣化するため、ラマン利得を生み
出す励起光は信号光と逆方向に伝搬することが望まし
い。そこで本実施形態では、第一の励起光を信号光の出
力端2から(信号光と逆方向に)入射して、伝送特性の
劣化を抑制してある。
As described in the Background Art section, in the forward pumping configuration in which the pumping light and the signal light propagate in the same direction, the intensity fluctuation of the pumping light is superimposed on the signal waveform as it is, and the transmission characteristics are remarkably reduced. Since the light deteriorates, it is desirable that the pump light that generates the Raman gain propagates in the opposite direction to the signal light. Therefore, in the present embodiment, the first pumping light is made incident from the output end 2 of the signal light (in the opposite direction to the signal light) to suppress the deterioration of the transmission characteristics.

【0034】本実施形態のように第二の励起光を信号光
と同方向に伝搬させる場合、第二の励起光の利得帯域と
信号光の帯域とが重複すると、励起光の強度ゆらぎが信
号波形にそのまま重畳されてしまい、伝送特性が著しく
劣化する。そこで本実施形態では同方向に伝搬する第二
の励起光の利得帯域と信号光の帯域とが重複しないよう
にして伝送特性の劣化を抑制してある。例えば、第二の
励起光の波長と信号光の波長が20THz程度離れていれば
よい。
When the second pumping light propagates in the same direction as the signal light as in the present embodiment, if the gain band of the second pumping light and the signal light band overlap, the intensity fluctuation of the pumping light causes signal fluctuation. It is superimposed on the waveform as it is, and the transmission characteristics are significantly deteriorated. Therefore, in the present embodiment, the deterioration of the transmission characteristics is suppressed by preventing the gain band of the second pump light propagating in the same direction from overlapping with the band of the signal light. For example, the wavelength of the second pump light and the wavelength of the signal light may be separated by about 20 THz.

【0035】光増幅器を用いた伝送系において、光信号
が増幅された後に増幅値以上の損失を受けると、増幅前
に損失を受けた場合と同様に、雑音特性の著しい劣化を
招くことが知られている。(オーム社発行、石尾他、光
増幅器とその応用、P26)。従って、ラマン増幅器の
ように増幅用光ファイバが比較的長い場合には同ファイ
バ中の信号光レべルをできるだけ高く保つことが雑音特
性上の観点からは望ましい。分布型増幅器による多段中
継のように信号光の入・出力レべルが同程度の場合に
は、光伝送路全体にわたる信号光レベルを入・出力レべ
ルと同程度かそれ以上に保つことが望ましい。例えば、
G.P.Agrawalの“NonlinearFiberOptics”,Chap.8,Acad
emicPressに示されるように、信号光強度の伝搬方向の
微分係数は下記数式で表されるので、増幅用ファイバの
利得係数(gR)と損失係数(αS:信号光の減衰定数)
が与えられれば、信号光強度の伝搬方向の微分係数を0
にするための励起光強度がIP=αS/gRと求められ
る。従って、励起光強度がαS/gRよりも小さければ、
信号光は伝搬するにつれて減衰し、αS/gRよりも大き
ければ増加する。よって、光伝送路中の全ての位置にお
いて励起光強度がαS/gRとなっていることが理想的で
あるが、実際にはαS/gR付近である程度の幅に収める
のが現実的である。このようにすることで光伝送路の長
手方向における信号光のレべルを一定に近い状態に保持
することができ、良好な雑音特性を得ることができる。
It is known that in a transmission system using an optical amplifier, if an optical signal undergoes a loss equal to or greater than the amplification value after being amplified, the noise characteristics are significantly degraded, as in the case where the loss occurs before amplification. Have been. (Published by Ohmsha, Ishio et al., Optical Amplifiers and Their Applications, p. 26). Therefore, when the optical fiber for amplification is relatively long like a Raman amplifier, it is desirable from the viewpoint of noise characteristics to keep the signal light level in the fiber as high as possible. When the input and output levels of the signal light are similar, such as in a multistage relay using a distributed amplifier, the signal light level over the entire optical transmission line must be maintained at the same level or higher than the input and output levels. Is desirable. For example,
GPAgrawal's “NonlinearFiberOptics”, Chap. 8, Acad
As shown in emicPress, the differential coefficient of the signal light intensity in the propagation direction is represented by the following equation, so that the gain coefficient (g R ) and the loss coefficient (α S : attenuation coefficient of the signal light) of the amplification fiber.
Is given, the differential coefficient of the signal light intensity in the propagation direction is set to 0.
Is obtained as I P = α S / g R. Therefore, if the excitation light intensity is smaller than α S / g R ,
The signal light attenuates as it propagates and increases if it is greater than α s / g R. Therefore, it is ideal that the pumping light intensity is α S / g R at all positions in the optical transmission line. However, in practice, it is practical to keep the excitation light intensity within a certain range around α S / g R. It is a target. By doing so, the level of the signal light in the longitudinal direction of the optical transmission line can be kept close to a constant state, and good noise characteristics can be obtained.

【0036】[0036]

【数1】 (Equation 1)

【0037】図2は実施形態1に示す本発明のラマン増
幅方式において、第二の励起光を入射した場合と入射し
ない場合とで、光ファイバ1の長手方向における第一の
励起光の強度分布を比較した結果を示すグラフである。
このグラフから第二の励起光を入射しない場合は、第一
の励起光の強度分布が光ファイバの伝搬損失によって指
数関数状に減衰しているが、第二の励起光を入射した場
合は、第一の励起光が増幅されるため、信号光入射端に
おける第一の励起光の強度が増加していることが分か
る。
FIG. 2 shows the intensity distribution of the first excitation light in the longitudinal direction of the optical fiber 1 when the second excitation light is incident and when it is not incident in the Raman amplification method of the present invention shown in the first embodiment. 9 is a graph showing the result of comparing.
When the second pump light is not incident from this graph, the intensity distribution of the first pump light is attenuated exponentially due to the propagation loss of the optical fiber, but when the second pump light is incident, It can be seen that since the first pump light is amplified, the intensity of the first pump light at the signal light incident end is increasing.

【0038】図3は実施形態1に示す本発明のラマン増
幅方式において、第二の励起光を入射した場合と入射し
ない場合とで、光ファイバ1の長手方向における信号光
の強度分布を比較した結果を示すグラフである。このグ
ラフから第二の励起光が存在している方が、第二の励起
光が存在しない場合よりも、信号光入力端付近での信号
光強度が大きくなっており、雑音特性が改善されること
が伺える。
FIG. 3 shows a comparison of the signal light intensity distribution in the longitudinal direction of the optical fiber 1 between the case where the second pumping light is incident and the case where the second pumping light is not incident in the Raman amplification system of the present invention shown in the first embodiment. It is a graph which shows a result. According to this graph, the presence of the second pump light has a higher signal light intensity near the signal light input end than the case where the second pump light does not exist, and the noise characteristics are improved. I can hear that.

【0039】図4は実施形態1に示す本発明のラマン増
幅方式において、第二の励起光を信号光の入力端3(図
1)から入射した場合と、出力端(図1)から入射した
場合とで、光ファイバ1(図1)の長手方向における第
一の励起光の強度分布を比較した結果を示すグラフであ
る。このグラフから第二の励起光を信号光の入力端3か
ら入射した方が出力端2から入射する場合よりも、入力
端3付近における第二の励起光の強度を大きくできるた
め、入力端3付近で第一の励起光が第二の励起光から受
ける利得が大きなり、第一の励起光の強度が大きくなる
ことが分かる。
FIG. 4 shows the case where the second pumping light enters from the input end 3 (FIG. 1) of the signal light and from the output end (FIG. 1) in the Raman amplification system of the present invention shown in the first embodiment. 6 is a graph showing a result of comparing the intensity distribution of the first excitation light in the longitudinal direction of the optical fiber 1 (FIG. 1) with the case. According to this graph, the intensity of the second pumping light near the input end 3 can be larger when the second pumping light enters from the input end 3 of the signal light than when it enters from the output end 2. It can be seen that the gain that the first pumping light receives from the second pumping light is large and the intensity of the first pumping light is large in the vicinity.

【0040】図5は実施形態1に示す本発明のラマン増
幅方式において、第二の励起光を信号光の入力端3(図
1)から入射した場合と、出力端2(図1)から入射し
た場合とで、光ファイバ1(図1)の長手方向における
信号光の強度分布を比較した結果を示すグラフである。
このグラフから第二の励起光を信号光の入力端3から入
射した方が、出力端2から入射するよりも、入力端3付
近における信号光の強度が大きくなっており、雑音特性
が良いことが伺える。
FIG. 5 shows the case where the second pumping light is incident from the input end 3 (FIG. 1) of the signal light and from the output end 2 (FIG. 1) in the Raman amplification system of the present invention shown in the first embodiment. 7 is a graph showing the results of comparing the intensity distribution of signal light in the longitudinal direction of the optical fiber 1 (FIG. 1) with the case where the optical fiber 1 (FIG. 1) is used.
According to this graph, the intensity of the signal light near the input terminal 3 is higher when the second pump light is incident from the input end 3 of the signal light than when the second pump light is incident from the output end 2, and the noise characteristics are better. Can be heard.

【0041】図6は実施形態1に示す本発明のラマン増
幅方式において、信号光の利得が一定になる条件の下
で、第一の励起光と第二の励起光の入射パワーの組み合
わせを変えた場合の信号光パワーの変化を示すグラフで
ある。図6に示すグラフ中の曲線Aは、第一の励起光の
入射パワーが100mW、第二の励起光の入射パワーが
1100mWの場合、曲線Bは第一の励起光の入射パワ
ーが150mW、第二の励起光の入射パワーが370m
Wの場合、曲線Cは第一の励起光の入射パワーが200
mW、第二の励起光の入射パワーが0mWの場合を夫々
示す。このグラフより、第一の励起光と第二の励起光の
両方のパワーを調整することによって光ファイバの途中
における信号光の最小レベルを制御することができ、最
小レベルを高く設定することで、雑音特性の改善が可能
であることが分かる。
FIG. 6 shows that the combination of the incident powers of the first pump light and the second pump light is changed under the condition that the gain of the signal light is constant in the Raman amplification method of the present invention shown in the first embodiment. 6 is a graph showing a change in signal light power in the case of the above. Curve A in the graph shown in FIG. 6 indicates that the incident power of the first pumping light is 100 mW and the incident power of the second pumping light is 1100 mW. Curve B indicates that the incident power of the first pumping light is 150 mW. The incident power of the second pump light is 370 m
In the case of W, the curve C shows that the incident power of the first pump light is 200
mW and the case where the incident power of the second pump light is 0 mW. From this graph, it is possible to control the minimum level of the signal light in the middle of the optical fiber by adjusting the power of both the first pumping light and the second pumping light, and by setting the minimum level higher, It can be seen that noise characteristics can be improved.

【0042】(実施形態2)本発明のラマン増幅方式の
第2の実施形態を図7に基づいて詳細に説明する。本実
施形態の基本的な構成は前記実施形態1と同様である。
異なるのは図7に示す様に第二の励起光(波長λp2)を
信号光の入力端3からだけでなく、出力端2からも入射
していることである。この場合も実施形態1と同様に、
第二の励起光の波長λP2を第一の励起光の波長λP1より
も短い波長としたり、第一の励起光の波長λP1よりも光
ファイバ1(増幅用光ファイバ1)のラマンシフト分だ
け短い波長としたり、第一の励起光の波長λP1よりも増
幅用光ファイバ1のラマンシフト分だけ短い波長から若
干ずれた波長とすることができる。
(Embodiment 2) A Raman amplification system according to a second embodiment of the present invention will be described in detail with reference to FIG. The basic configuration of this embodiment is the same as that of the first embodiment.
The difference is that the second pump light (wavelength λ p2 ) is incident not only from the input end 3 of the signal light but also from the output end 2 as shown in FIG. In this case, similarly to the first embodiment,
The second wavelength lambda P2 of the excitation light or the first wavelength shorter than lambda P1 of the excitation light, the first Raman shift of the optical fiber 1 than the wavelength lambda P1 of the excitation light (the amplification optical fiber 1) The wavelength can be shorter than the wavelength of the first pumping light, or can be a wavelength slightly shifted from the wavelength shorter than the wavelength λ P1 of the first pumping light by the Raman shift of the amplification optical fiber 1.

【0043】第二の励起光(波長λp2)を信号光の出力
端2からも入射すると、光ファイバ1の長手方向におけ
る第一の励起光(波長λp1)の強度分布を制御する際の
自由度が増し、光ファイバ1の長手方向における信号光
の強度分布を制御し易くなる。分布型増幅器による多段
中継のように、信号光の入・出力レべルが規定されてし
まう条件下で雑音特性を最適化する場合はこの方法が効
果を発揮する。
When the second pumping light (wavelength λ p2 ) is also incident from the output end 2 of the signal light, the intensity distribution of the first pumping light (wavelength λ p1 ) in the longitudinal direction of the optical fiber 1 is controlled. The degree of freedom is increased, and the intensity distribution of the signal light in the longitudinal direction of the optical fiber 1 can be easily controlled. This method is effective when optimizing noise characteristics under conditions where the input and output levels of signal light are defined, such as in a multistage relay using a distributed amplifier.

【0044】図8は図7に示す光ファイバ1の長手方向
における信号光の強度分布を示すグラフであり、グラフ
中の曲線aは従来のラマン増幅方式によって光ファイバ
1中の信号光を増幅した場合の同信号光の強度分布を示
し、曲線bは実施形態1に示す本発明のラマン増幅方式
によって信号光を増幅した場合の同信号光の強度分布を
示し、曲線cは実施形態2に示す本発明のラマン増幅方
式によって信号光を増幅した場合の同信号光の強度分布
を示す。このグラフから、実施形態1の示したラマン増
幅方式を用いた方が従来の増幅方式を用いた場合に比べ
て光ファイバ1の途中における信号光の最小レべルが高
いところにあるため、雑音特性が良いことが分かる。ま
た、実施形態2に示したラマン増幅方式を用いた場合
は、実施形態1に示したそれを用いた場合よりも信号光
の最小レべルがさらに高いレべルに保たれており、雑音
特性が更に良くなることが分かる。実施形態1に示した
ラマン増幅方式でも第一と第二の励起光の強度を調整す
ることによって、信号光の最小レべルを実施形態2に示
すラマン増幅方式の場合と同じにすることもできる。但
し、図9に示す例では実施形態2に示すラマン増幅方式
を用いた場合の方がトータルで必要とされる励起パワー
が少なくなっているので効率が良いといえる。図9は実
施形態1に示すラマン増幅方式を用いた場合と、実施形
態2に示すラマン増幅方式を用いた場合との信号光パワ
ーの比較結果を示すグラフである。このグラフ中の曲線
aは実施形態1に示すラマン増幅方式において、第一の
励起光を100mW、第二の励起光を1100mWとし
たときの信号光パワーを示し、曲線bは実施形態2に示
すラマン増幅方式において、第一の励起光を25mW、
第二の励起光を300mW×2としたときの信号光パワ
ーを示す。
FIG. 8 is a graph showing the intensity distribution of the signal light in the longitudinal direction of the optical fiber 1 shown in FIG. 7, and the curve a in the graph represents the signal light in the optical fiber 1 amplified by the conventional Raman amplification method. The curve b shows the intensity distribution of the same signal light when the signal light is amplified by the Raman amplification method of the present invention shown in the first embodiment, and the curve c shows the intensity distribution of the same signal light in the second embodiment. 5 shows an intensity distribution of the signal light when the signal light is amplified by the Raman amplification method of the present invention. From this graph, it can be seen that the use of the Raman amplification method shown in the first embodiment has a higher minimum signal light level in the middle of the optical fiber 1 than the case of using the conventional amplification method, so that the noise is higher. It can be seen that the characteristics are good. In addition, when the Raman amplification method described in the second embodiment is used, the minimum level of the signal light is maintained at a higher level than in the case where the Raman amplification method described in the first embodiment is used. It can be seen that the characteristics are further improved. In the Raman amplification system shown in the first embodiment, the minimum level of the signal light can be made the same as that in the Raman amplification system shown in the second embodiment by adjusting the intensities of the first and second pump lights. it can. However, in the example shown in FIG. 9, it can be said that the case where the Raman amplification method shown in the second embodiment is used is more efficient because the pump power required in total is smaller. FIG. 9 is a graph showing a comparison result of the signal light power between the case where the Raman amplification method according to the first embodiment is used and the case where the Raman amplification method according to the second embodiment is used. A curve a in this graph shows the signal light power when the first pump light is 100 mW and the second pump light is 1100 mW in the Raman amplification method shown in the first embodiment, and a curve b shows the second embodiment. In the Raman amplification method, the first excitation light is 25 mW,
The signal light power when the second pump light is 300 mW × 2 is shown.

【0045】図10は実施形態2に示すラマン増幅方式
において、信号光の入・出力レべル及び最小レべルが同
一となる条件下で、第一の励起光と第二の励起光の波長
間隔を異ならせた場合の光ファイバの長手方向における
信号光の強度分布を比較した結果を示すグラフである。
このグラフ中の曲線aは第一の励起光の波長λp1が14
50nm、第二の励起光の波長λp2が1350nmの場
合(両波長間隔がラマンシフトの場合)、曲線bは第一
の励起光の波長λp1が1450nm、第二の励起光の波
長λp2が1325nmの場合(両波長間隔がラマンシフ
トからずれた場合)を示す。このグラフより第一の励起
光と第二の励起光の波長間隔をラマンシフトからずらす
ことによって信号光の最大レべルを小さくすることがで
き、光ファイバ中の非線形性による伝送特性の劣化を小
さくできることが分かる。この理由は、第一の励起光の
受ける利得係数が小さくなるため光ファイバの長手方向
における第一の励起光の強度分布が緩やかとなり、光フ
ァイバの長手方向における信号光の強度分布も緩やかと
なるからである。図11は、図10の条件下における第
一の励起光の強度分布を示すグラフであり、曲線aは第
一の励起光の波長λ p1が1450nm、第二の励起光の
波長λp2が1350nmの場合における第一の励起光の
強度分布を示し、曲線bは第一の励起光の波長λp1が1
450nm、の第二の励起光の波長λp2が1325nm
の場合における第一の励起光の強度分布を示す。このグ
ラフより第一の励起光と第二の励起光の波長間隔をラマ
ンシフトからずらすことによって、光ファイバの長手方
向における第一の励起光の強度分布が緩やかになること
がわかる。
FIG. 10 shows a Raman amplification method according to the second embodiment.
The input and output levels and the minimum level of the signal light are the same.
Under one condition, the wavelengths of the first excitation light and the second excitation light
In the longitudinal direction of the optical fiber when the spacing is different
9 is a graph showing the result of comparing the intensity distribution of signal light.
The curve a in this graph is the wavelength λ of the first excitation light.p1Is 14
50 nm, wavelength λ of second excitation lightp2Is 1350nm
Curve (when both wavelength intervals are Raman shifts), the curve b is the first
Excitation light wavelength λp1Is 1450 nm, the second excitation light wave
Long λp2Is 1325 nm (both wavelength intervals are Raman shift
(If it deviates from the right). First excitation from this graph
Shift the wavelength interval between light and second pump light from Raman shift
This can reduce the maximum level of signal light.
Minimizes degradation of transmission characteristics due to nonlinearity in optical fiber.
You can see that it can be done. The reason for this is that the first excitation light
The longitudinal direction of the optical fiber because the gain coefficient received is small
The intensity distribution of the first excitation light at
The intensity distribution of signal light in the longitudinal direction of the fiber is also gentle.
Because it becomes. FIG. 11 is a diagram showing a second example under the conditions of FIG.
5 is a graph showing an intensity distribution of one excitation light, and a curve a is
Wavelength of one excitation light λ p1Is 1450 nm and the second excitation light
Wavelength λp2Is 1350 nm, the first excitation light
The curve b shows the wavelength λ of the first excitation light.p1Is 1
450 nm wavelength λ of the second excitation lightp2Is 1325 nm
5 shows the intensity distribution of the first excitation light in the case of FIG. This group
From the rough, the wavelength interval between the first pump light and the second
The optical fiber length
The intensity distribution of the first excitation light in the direction
I understand.

【0046】実施形態2に示すラマン増幅方式では、同
一波長(λp2)の第二の励起光を信号光の入力端3(図
7)及び出力端2(図7)から同一パワーで入射した
が、信号光の入力端3及び出力端2から入射する2つの
第二の励起光は、必ずしも同一波長である必要も同一パ
ワーである必要もない。これらは光ファイバの長手方向
において実現しようとする信号光の強度分布に応じて適
宜調整することができる。
In the Raman amplification method according to the second embodiment, the second pump light having the same wavelength (λ p2 ) is input from the input terminal 3 (FIG. 7) and the output terminal 2 (FIG. 7) of the signal light with the same power. However, the two second pump lights incident from the input end 3 and the output end 2 of the signal light need not necessarily have the same wavelength and the same power. These can be appropriately adjusted according to the intensity distribution of the signal light to be realized in the longitudinal direction of the optical fiber.

【0047】(実施形態3)本発明のラマン増幅方式の
第3の実施形態を図12に基づいて詳細に説明する。本
実施形態の基本的な構成は前記実施形態2と同様であ
る。異なるのは図12に示す様に第一の励起光(波長λ
p1)を信号光の出力端2からだけでなく、入力端3から
も入射していることである。この場合も実施形態1、2
と同様に、第二の励起光の波長λp2を第一の励起光の波
長λp1よりも短い波長としたり、第一の励起光の波長λ
p1よりも光ファイバ1(増幅用光ファイバ1)のラマ
ンシフト分だけ短い波長としたり、第一の励起光の波長
λp1よりも増幅用光ファイバ1のラマンシフト分だけ短
い波長から若干ずれた波長とすることができる。
(Embodiment 3) A third embodiment of the Raman amplification system of the present invention will be described in detail with reference to FIG. The basic configuration of this embodiment is the same as that of the second embodiment. The difference is that the first pump light (wavelength λ
p1 ) is incident not only from the output end 2 of the signal light but also from the input end 3. Also in this case, Embodiments 1 and 2
Similarly, the wavelength λ p2 of the second pump light may be shorter than the wavelength λ p1 of the first pump light, or the wavelength λ p1 of the first pump light.
The wavelength is shorter than p 1 by the Raman shift of the optical fiber 1 (amplifying optical fiber 1), or slightly shifted from the wavelength shorter than the wavelength λ p1 of the first pump light by the Raman shift of the amplifying optical fiber 1. Wavelength.

【0048】第一の励起光(波長λp1)を信号光の入力
端3からも入射すると、光ファイバ1の長手方向におけ
る第一の励起光(波長λp1)及び第二の励起光(波長λ
p2)の強度分布をより一様にすることができるため、無
損失伝送路に近い状態を実現しやすくなる。但し、第一
の励起光が信号光と同じ方向に伝搬するため、入力端3
から入射する第一の励起光の光源には強度雑音が十分小
さい半導体レーザー等を使用する必要がある。
When the first pumping light (wavelength λ p1 ) also enters from the input end 3 of the signal light, the first pumping light (wavelength λ p1 ) and the second pumping light (wavelength λ p1 ) in the longitudinal direction of the optical fiber 1. λ
Since the intensity distribution of p2 ) can be made more uniform, it is easy to realize a state close to a lossless transmission path. However, since the first pump light propagates in the same direction as the signal light, the input end 3
It is necessary to use a semiconductor laser or the like whose intensity noise is sufficiently small as a light source of the first excitation light incident from the light source.

【0049】図13は本実施形態3に示すラマン増幅方
式に最も近い従来技術の構成である。図13に示すラマ
ン増幅方式は、実施形態3に本発明のラマン増幅方式と
同様に第一の励起光が信号光と同方向に伝搬するため、
入力端3から入射する第一の励起光の光源には強度雑音
が十分小さい半導体レーザー等を使用する必要がある。
FIG. 13 shows the configuration of the prior art closest to the Raman amplification method shown in the third embodiment. In the Raman amplification method shown in FIG. 13, since the first pump light propagates in the same direction as the signal light in the third embodiment as in the Raman amplification method of the present invention,
It is necessary to use a semiconductor laser or the like having sufficiently low intensity noise as a light source of the first excitation light incident from the input end 3.

【0050】図14は、従来のラマン増幅方式を用いた
場合、実施形態2に示す本発明のラマン増幅方式を用い
た場合、実施形態3に示す本発明のラマン増幅方式を用
いた場合の光ファイバ1の長手方向における信号光の強
度分布を示すグラフである。尚、いずれの場合も信号光
のレベル変動幅が最も小さくなるように励起光のパワー
を最適化してある。このグラフから明らかなように、実
施形態3に示す本発明のラマン増幅方式を用いることで
光ファイバ1の長手方向における信号光のレベル変動幅
を著しく小さくすることができる。
FIG. 14 shows the light when the conventional Raman amplification method is used, when the Raman amplification method according to the present invention shown in the second embodiment is used, and when the Raman amplification method according to the present invention shown in the third embodiment is used. 3 is a graph showing an intensity distribution of signal light in a longitudinal direction of the fiber 1; In any case, the power of the pump light is optimized so that the level fluctuation width of the signal light is minimized. As is clear from this graph, the level variation width of the signal light in the longitudinal direction of the optical fiber 1 can be significantly reduced by using the Raman amplification method of the present invention shown in the third embodiment.

【0051】図15は、図14の条件下における第一の
励起光の、光ファイバの長手方向における強度分布を示
すグラフである。このグラフより実施形態3に示すラマ
ン増幅方式において信号光のレベル変動が小さいのは、
第一の励起光のレベル変動が小さくなっているからであ
ることが分かる。
FIG. 15 is a graph showing the intensity distribution of the first pump light in the longitudinal direction of the optical fiber under the conditions of FIG. According to the graph, the level fluctuation of the signal light in the Raman amplification method according to the third embodiment is small because
It can be seen that this is because the level fluctuation of the first excitation light is small.

【0052】図16は、信号光のレベル変動幅をほぼ同
じに設定した場合の中継距離の違いを比較したグラフで
ある。このグラフから実施形態3に示す本発明のラマン
増幅方式において実現される信号光のレベル変動幅(図
14)と同一の変動幅を実現するためには、従来のラマ
ン増幅方式では中継距離を20km、実施形態2に示す
本発明のラマン増幅方式でも25kmに縮める必要があ
ることが分かる。
FIG. 16 is a graph comparing the difference in the relay distance when the level fluctuation width of the signal light is set to be substantially the same. From this graph, in order to realize the same fluctuation width as the level fluctuation width of the signal light (FIG. 14) realized in the Raman amplification method of the present invention shown in the third embodiment, the relay distance is set to 20 km in the conventional Raman amplification method. It can be seen that the Raman amplification method of the present invention shown in Embodiment 2 also needs to be reduced to 25 km.

【0053】(実施形態4)雑音特性の最適化のために
はラマン増幅器の励起光が高出力であることが望まし
く、第一と第二の励起光のパワーレンジが大きい方が都
合がよい。この場合、いずれか一方又は双方の励起光を
複数の発振波長を有する励起用半導体レーザーから構成
される波長多重励起光源から得ることができる。(参考
文献:Y.EmoriらのElectronics Letters,vol.34,pp.214
5-2146,1998)。このような励起光源を用いる場合、利
得のピーク波長と増幅される信号光の波長が一致するよ
うに励起光源の波長を選択する必要がある。例えば、14
35nm、1450nm、1465nm、1480nmを多重化した励起光源を用
いた場合、1570nm付近が利得ピーク波長となるので、こ
の波長帯に信号光の波長が含まれるように設定すること
になる。
(Embodiment 4) In order to optimize the noise characteristics, it is desirable that the pump light of the Raman amplifier has a high output, and it is more convenient if the first and second pump lights have a large power range. In this case, one or both of the pump lights can be obtained from a wavelength division multiplex pump light source composed of a pumping semiconductor laser having a plurality of oscillation wavelengths. (Reference: Y. Emori et al., Electronics Letters, vol. 34, pp. 214)
5-2146, 1998). When such a pump light source is used, it is necessary to select the wavelength of the pump light source such that the peak wavelength of the gain and the wavelength of the signal light to be amplified match. For example, 14
When an excitation light source that multiplexes 35 nm, 1450 nm, 1465 nm, and 1480 nm is used, the gain peak wavelength is around 1570 nm. Therefore, the wavelength band is set to include the wavelength of the signal light.

【0054】波長多重励起光源を用いた場合、実効的な
利得係数が光ファイバ長手方向で変化するという現象が
生じる。これは、信号光波長における利得係数は各励起
光に起因する係数の和となるのだが、各励起光の減衰率
が異なるため、その振舞いが多重化していない場合とは
異なったものとなる。減衰率が異なる理由は、損失係数
の波長依存性と、励起光間のラマン増幅効果によるもの
である。従って、多重化する波長を適切に選択すること
によって、光ファイバの長手方向における利得係数の分
布を制御することもできる。
When a wavelength division multiplexing pump light source is used, a phenomenon occurs in which the effective gain coefficient changes in the longitudinal direction of the optical fiber. This is because the gain coefficient at the signal light wavelength is the sum of the coefficients due to the respective pumping lights, but since the respective pumping lights have different attenuation rates, the behavior is different from the case where no multiplexing is performed. The reasons for the different attenuation factors are the wavelength dependence of the loss coefficient and the Raman amplification effect between the pump lights. Therefore, by appropriately selecting the wavelength to be multiplexed, the distribution of the gain coefficient in the longitudinal direction of the optical fiber can be controlled.

【0055】(実施形態5)信号光をラマン増幅するた
めの第一の励起光として波長多重励起光を用いた場合、
各励起光間でラマン効果が発生するため、短波長の励起
光は長波長の励起光よりも減衰率が高くなる(H.Kidorf
et al., Photonics Technology Letters, pp.530-532,
Vol.11, Fig.5参照)。このため、短波長の励起光から
利得を受ける波長帯は、長波長の励起光から利得を受け
る波長帯よりも雑音特性が悪くなる。例えば、Cバンド
(1530nm−1565nm)とLバンド(1570nm−1610nm)を同
時にラマン増幅する場合、波長が1450nm付近の励起光と
1490nm付近の励起光を用いるが、励起光間のラマン効果
のため1450nmの励起光の方が減衰率が高くなり、Cバン
ドの方が雑音特性が悪くなる。このとき、1450nmの励起
光に対する利得が1490nmの励起光に対する利得よりも大
きくなるように、第二の励起光の波長を設定することに
より、Cバンドの雑音特性改善効果をLバンドの雑音特
性改善効果よりも大きくすることができる。その結果、
CバンドとLバンドの間に雑音特性の差が生じないよう
にすることが可能となる。
(Embodiment 5) When wavelength-division multiplexed pump light is used as first pump light for Raman amplification of signal light,
Since the Raman effect occurs between the pump lights, the shorter wavelength pump light has a higher attenuation rate than the longer wavelength pump light (H. Kidorf
et al., Photonics Technology Letters, pp.530-532,
Vol.11, see Fig.5). For this reason, the noise characteristic of the wavelength band receiving the gain from the short-wavelength pump light is worse than that of the wavelength band receiving the gain from the long-wavelength pump light. For example, when Raman-amplifying the C band (1530 nm-1565 nm) and the L band (1570 nm-1610 nm) simultaneously, excitation light having a wavelength of around 1450 nm is used.
Although the pumping light of about 1490 nm is used, the attenuation rate of the pumping light of 1450 nm is higher than that of the pumping light due to the Raman effect between the pumping lights, and the noise characteristic is worse in the C band. At this time, by setting the wavelength of the second pumping light so that the gain for the pumping light of 1450 nm becomes larger than the gain for the pumping light of 1490 nm, the noise characteristic improvement effect of the C band is improved. It can be larger than the effect. as a result,
It is possible to prevent a difference in noise characteristics from occurring between the C band and the L band.

【0056】図17に示すように、第二の励起光の波長
を1450nmよりも増幅用光ファイバのラマンシフト分だけ
短い波長よりも僅かに短い波長とすることにより、1450
nmの励起光が受ける利得よりも1490nmの励起光が受ける
利得が小さくなる(図18参照)。また、波長多重励起
光源を用いたラマン増幅器は波長間隔や波長配置を適切
に設定することにより、任意の利得形状を実現すること
が可能である。従って、第二の励起光として波長多重励
起光源を用いることにより、第一の励起光の波長帯に対
する利得形状が自由に設定できるようになり、その結果
として、第一の励起光が増幅する信号帯の雑音特性の波
長依存性を制御することが可能となる。図19に第二の
励起光として波長多重励起光源を用いた場合における第
一の励起光の波長帯に対する利得形状の一例を示す。図
19では、1450nmの励起光と1490nm励起光の利得差が図
18の場合よりもさらに小さくなっている。特に、第一
の励起光が比較的狭い波長間隔(例えば、15nm程度)で
多重化されている場合、第二の励起光によって利得形状
を調整できると、信号帯の雑音特性の波長依存性をより
細かく制御することができる。これは、信号帯の利得プ
ロファイルが複数の励起光から得られる利得プロファイ
ルの足し合わせによって成り立っているからである。
As shown in FIG. 17, the wavelength of the second pumping light is set to be slightly shorter than the wavelength shorter than the wavelength of 1450 nm by the Raman shift of the amplification optical fiber.
The gain received by the pump light of 1490 nm is smaller than the gain received by the pump light of nm (see FIG. 18). Further, a Raman amplifier using a wavelength division multiplexing pump light source can realize an arbitrary gain shape by appropriately setting the wavelength interval and the wavelength arrangement. Therefore, by using the wavelength multiplexed pump light source as the second pump light, the gain shape for the wavelength band of the first pump light can be freely set, and as a result, the signal amplified by the first pump light It is possible to control the wavelength dependence of the band noise characteristics. FIG. 19 shows an example of the gain shape with respect to the wavelength band of the first pumping light when a wavelength multiplexing pumping light source is used as the second pumping light. In FIG. 19, the gain difference between the 1450 nm pump light and the 1490 nm pump light is smaller than in FIG. In particular, when the first pumping light is multiplexed at a relatively narrow wavelength interval (for example, about 15 nm), if the gain shape can be adjusted by the second pumping light, the wavelength dependence of the noise characteristics of the signal band is reduced. More fine control is possible. This is because the gain profile of the signal band is formed by adding gain profiles obtained from a plurality of pump lights.

【0057】(実施形態6)信号光のレベル変動を小さ
く抑えるためには、第一の励起光のレベル変動をなるべ
く小さくすればよい。従来のラマン増幅方式では、第一
の励起光のレベル変動は伝搬損失によるものであり、そ
れを制御することができなかった。これまで示してきた
本発明のラマン増幅方式の実施形態では、第二の励起光
が第一の励起光に与えるラマン利得を用いて、第一の励
起光の実効的な損失が光ファイバの長手方向で変化する
ようにして、第一の励起光のレベル変動を従来方式の場
合よりも小さくした。しかし、第二の励起光のレベル変
動はやはり伝搬損失によるものであって、これは制御さ
れていない。そこで、第二の励起光をラマン増幅するた
めの第三の励起光を導入すれば、第二の励起光のレベル
変動をより小さくすることができ、それは第一の励起
光、信号光のレベル変動をもより小さくする効果が期待
される。
(Embodiment 6) In order to suppress the level fluctuation of the signal light, the level fluctuation of the first pumping light may be reduced as much as possible. In the conventional Raman amplification method, the level fluctuation of the first pump light is caused by the propagation loss, and cannot be controlled. In the embodiment of the Raman amplification method of the present invention described so far, the effective loss of the first pump light is reduced by using the Raman gain given to the first pump light by the second pump light. Thus, the level fluctuation of the first excitation light is made smaller than that of the conventional method. However, the level fluctuation of the second pump light is still due to the propagation loss, which is not controlled. Therefore, if a third pumping light for Raman amplification of the second pumping light is introduced, the level fluctuation of the second pumping light can be further reduced. The effect of reducing the fluctuation is expected.

【0058】(実施形態7)これまでの公知事実とし
て、無損失な光伝送路におけるソリトンは、信号光波長
が単一である場合はもとより、波長多重システムの場合
でも、その波形を維持することが知られている。(参考
文献:例えば、L.F.Mollenauerら、Soliton propagatio
n in long fibers with periodically compensated los
s, Journal ofQuantum Electronics, Vol.QE-22, No.1,
1986)また、単一波長のソリトンの場合、損失のある
伝送路でも、光直接増幅によって損失補償をすればソリ
トンとして伝送されることが理論的にも実験的にも証明
されている。(参考文献:A.Hasegawa, Numerical stud
y of optical solution transmission amplified perio
dically by the stimulated Raman process, Applied O
ptics, Vol.23, No.19, pp.3302-3309,1984、L.F.Molle
nauerら,Experimental demonstration of solutionprop
agation in long fibers:loss compensated by Raman
gain, Optics Letters, Vol.10, No.5, pp229-231, 198
5、米国特許第4558921号)かつては、波長多重システム
でもこれが可能であるとされていたが(参考文献:特許
第2688350号、L.F.Mollenauerら、Wavelength division
multiplexing with solutions inultra-long distance
transmission using lumped amplifiers, Journal of
Lightwave Technology, Vol.9, No.3, 1991)、その後
に、波長多重システムでは適切な設定をしなければソリ
トン通信が実現されないことが明らかとなった。(参考
文献:P.V.Mamyshevら, Pseudo-phase-matched four-wa
ve mixing in solution wavelength-division multiple
xing transmission, Optics Letters, Vol.21, No.6, 1
996)また、ソリトンの一種に分散補償ソリトンと呼ば
れる技術があり、この技術は実用的な波長多重伝送が可
能であるため広く普及している。しかしながら、純粋な
ソリトンと異なり、伝播途中ではパルス広がりを伴うた
め、前後のビットの重なりによって生じた非線形効果が
非可逆な波形歪みをもたらす。
(Embodiment 7) It is well known that soliton in a lossless optical transmission line maintains its waveform not only in the case of a single signal light wavelength but also in the case of a wavelength multiplex system. It has been known. (References: For example, LFMollenauer et al., Soliton propagatio
n in long fibers with periodically compensated los
s, Journal of Quantum Electronics, Vol.QE-22, No. 1,
1986) In addition, it has been proved theoretically and experimentally that a soliton of a single wavelength is transmitted as a soliton even if a lossy transmission line is subjected to loss compensation by direct optical amplification. (Reference: A. Hasegawa, Numerical stud
y of optical solution transmission amplified perio
dically by the stimulated Raman process, Applied O
ptics, Vol.23, No.19, pp.3302-3309,1984, LFMolle
nauer et al., Experimental demonstration of solutionprop
agation in long fibers: loss compensated by Raman
gain, Optics Letters, Vol.10, No.5, pp229-231, 198
5, U.S. Pat. No. 4,558,921) It was once believed that this was also possible with wavelength multiplex systems (references: Patent No. 2688350, LFMollenauer et al., Wavelength division).
multiplexing with solutions inultra-long distance
transmission using lumped amplifiers, Journal of
Lightwave Technology, Vol. 9, No. 3, 1991), and later it became clear that soliton communication would not be realized without proper settings in a wavelength division multiplexing system. (Reference: PVMamyshev et al., Pseudo-phase-matched four-wa
ve mixing in solution wavelength-division multiple
xing transmission, Optics Letters, Vol.21, No.6, 1
996) Further, there is a technique called dispersion compensation soliton as a kind of soliton, and this technique is widely used because practical wavelength multiplex transmission is possible. However, unlike a pure soliton, a pulse spreads in the middle of propagation, so that a non-linear effect caused by the overlap of preceding and following bits causes irreversible waveform distortion.

【0059】公知文献には、光伝送路の損失に応じて分
散を減少させた光伝送路を用いることで純粋な波長多重
ソリトン通信が可能であることが示されている。しかし
ながら、このような手法は既設の光伝送路を用いること
ができない上に、光伝送路の分散の制御が複雑で難しい
ため、実用性に乏しい。
Known documents indicate that pure wavelength-division multiplexed soliton communication is possible by using an optical transmission line whose dispersion is reduced according to the loss of the optical transmission line. However, such a technique is not practical because existing optical transmission lines cannot be used, and dispersion control of the optical transmission lines is complicated and difficult.

【0060】一方で、ラマン増幅のような分布的な増幅
を用いて、無損失伝送路に極めて近い状態の光伝送路を
実現することで、純粋な波長多重ソリトンが伝搬可能と
なると予想される。しかし、従来の技術レベルでこのよ
うな光伝送路を実現するには、比較的短い距離間隔で励
起光源を配置する必要があるため実用的ではなかった。
これまでに述べてきたように、本発明のラマン増幅方式
を用いることで、従来と比較してより無損失伝送路に近
い状態の光伝送路をより長距離にわたって実現できる。
従って、この光伝送路を用いた波長多重ソリトン通信は
従来のものと比較して、伝送特性が著しく改善されると
予想される。図20は実施形態3に示す本発明のラマン
増幅方式を適用した光伝送路を用いた波長多重ソリトン
通信システムの実施例である。このシステムでは、光伝
送路を無損失伝送路にどれだけ近くする必要があるか、
即ち、信号光のレベル変動の許容値をどれだけ与えるか
で伝送路区間の最大距離が決まるので、それよりも短い
距離で一区間を構成し、それを接続して全体のシステム
を構築する。
On the other hand, it is expected that pure wavelength-division multiplexed solitons can be propagated by realizing an optical transmission line very close to a lossless transmission line by using distributed amplification such as Raman amplification. . However, in order to realize such an optical transmission line at a conventional technical level, it is not practical because pumping light sources must be arranged at relatively short distances.
As described above, by using the Raman amplification method of the present invention, an optical transmission line closer to a lossless transmission line can be realized over a longer distance than in the related art.
Therefore, it is expected that the wavelength multiplexing soliton communication using this optical transmission line will have significantly improved transmission characteristics as compared with the conventional one. FIG. 20 is an example of a wavelength division multiplexing soliton communication system using an optical transmission line to which the Raman amplification method of the present invention is applied according to the third embodiment. In this system, how close the optical transmission line must be to the lossless transmission line,
That is, since the maximum distance of the transmission path section is determined by how much the allowable value of the level fluctuation of the signal light is given, one section is configured with a shorter distance, and the sections are connected to construct the entire system.

【0061】[0061]

【発明の効果】本発明の第1のラマン増幅方式には次の
ような効果がある。 (1)第一の励起光と第二の励起光が増幅用光ファイバ
中に同時に存在することで、第一の励起光が第二の励起
光によるラマン増幅を受け、第二の励起光が存在しない
場合よりも、信号入力端付近での第一の励起光強度が大
きくなり、信号入力側でのS/Nの劣化が改善され、伝
送系と増幅器の雑音特性が改善される。 (2)増幅用光ファイバの長さや信号光と各励起光の減
衰定数に応じて、第一の励起光と第二の励起光のパワー
配分、波長間隔、励起構成を適切に選択し、信号光をラ
マン増幅するための第一の励起光の長手方向の強度分布
を任意に制御することによって、雑音特性の最適化が可
能となる。 (3)第二の励起光を信号光の入力端から入射するの
で、第二の励起光を信号光の出力端から入射する場合と
比較して信号入力端付近における第二の励起光強度を大
きくできる。従って、信号入力端付近で第一の励起光が
第二の励起光から受ける利得を効率的に大きくすること
ができ、ラマン増幅器の雑音特性の改善も効率的になさ
れる。
The first Raman amplification method according to the present invention has the following effects. (1) Since the first pumping light and the second pumping light are present simultaneously in the amplification optical fiber, the first pumping light is subjected to Raman amplification by the second pumping light, and the second pumping light is The intensity of the first pumping light near the signal input end is larger than in the case where no signal is present, the deterioration of S / N on the signal input side is improved, and the noise characteristics of the transmission system and the amplifier are improved. (2) The power distribution of the first pump light and the second pump light, the wavelength interval, and the pump configuration are appropriately selected according to the length of the amplification optical fiber and the attenuation constant of the signal light and each pump light, and By arbitrarily controlling the longitudinal intensity distribution of the first excitation light for Raman-amplifying the light, the noise characteristics can be optimized. (3) Since the second pumping light enters from the input end of the signal light, the second pumping light intensity near the signal input end is reduced as compared with the case where the second pumping light enters from the output end of the signal light. Can be larger. Therefore, the gain of the first pumping light received from the second pumping light near the signal input terminal can be efficiently increased, and the noise characteristic of the Raman amplifier can be efficiently improved.

【0062】本発明の第2のラマン増幅方式には、前記
効果の他に次の効果もある。即ち、第二の励起光を信号
光の出力側からも入射するので、光ファイバの長手方向
における第一の励起光の強度分布を制御する際の自由度
が増し、光ファイバの長手方向における信号光の強度分
布を制御し易くなる。分布型増幅器による多段中継のよ
うに、信号光の入・出力レべルが規定されてしまう条件
下で雑音特性を最適化するのに有効である。
The second Raman amplification method according to the present invention has the following effects in addition to the above effects. That is, since the second pumping light is also incident from the output side of the signal light, the degree of freedom in controlling the intensity distribution of the first pumping light in the longitudinal direction of the optical fiber is increased, and the signal in the longitudinal direction of the optical fiber is increased. It becomes easier to control the light intensity distribution. This is effective for optimizing noise characteristics under conditions where the input and output levels of signal light are defined, such as in a multistage relay using a distributed amplifier.

【0063】本発明の第3のラマン増幅方式には、前記
効果の他に次の効果もある。 (1)信号光をラマン増幅するための第一の励起光を増
幅用光ファイバの信号光入力端からも入射するので、第
1、第2のラマン増幅方式と比べて、信号光入力端付近
の第一の励起光の強度を容易に大きくすることができる
ため、ラマン増幅器の雑音特性の改善がより効率的にな
される。 (2)第一、第二の励起光を信号光の入力端及び出力端
の両方から入射するので、第1、第2のラマン増幅方式
と比べて、光ファイバの長手方向における第一の励起光
強度分布をより一様にすることができるため、無損失伝
送路に近い状態を実現し易くなる。
The third Raman amplification method according to the present invention has the following effects in addition to the above effects. (1) Since the first pumping light for Raman-amplifying the signal light also enters from the signal-light input end of the amplifying optical fiber, the vicinity of the signal-light input end is lower than in the first and second Raman amplification systems. Since the intensity of the first pumping light can be easily increased, the noise characteristics of the Raman amplifier can be more efficiently improved. (2) Since the first and second pumping lights are incident from both the input end and the output end of the signal light, the first pumping light in the longitudinal direction of the optical fiber is different from the first and second Raman amplification systems. Since the light intensity distribution can be made more uniform, it is easy to realize a state close to a lossless transmission path.

【0064】本発明の第4のラマン増幅方式には、前記
効果の他に次の効果もある。即ち、第二の励起光の波長
を第一の励起光の波長よりも増幅用光ファイバのラマン
シフト分だけ短い波長にするので、第一の励起光が第二
の励起光から受けるラマン利得が最大となり、効率良く
雑音特性が改善される。
The fourth Raman amplification method according to the present invention has the following effects in addition to the above effects. That is, since the wavelength of the second pumping light is shorter than the wavelength of the first pumping light by the Raman shift of the amplification optical fiber, the Raman gain that the first pumping light receives from the second pumping light is reduced. It becomes maximum, and the noise characteristic is improved efficiently.

【0065】本発明の第5のラマン増幅方式には、前記
効果の他に次の効果もある。即ち、第二の励起光のラマ
ン増幅帯域と信号光の波長帯域とが重複しないようにし
たので、信号光と同方向に伝搬する第二の励起光の強度
揺らぎが信号波形に重畳されることがなく、雑音が発生
しにくくなり、伝送特性が向上する。
The fifth Raman amplification method of the present invention has the following effects in addition to the above effects. That is, since the Raman amplification band of the second pump light and the wavelength band of the signal light do not overlap, the intensity fluctuation of the second pump light propagating in the same direction as the signal light is superimposed on the signal waveform. , Noise is less likely to occur, and transmission characteristics are improved.

【0066】本発明の第6のラマン増幅方式には、前記
効果の他に次の効果もある。即ち、第二の励起光の波長
を、第一の励起光の波長よりも増幅用光ファイバのラマ
ンシフト分だけ短い波長から若干ずれた波長にするの
で、第一の励起光が第二の励起光から受けるラマン利得
の利得係数を任意に減少させることができる。この手段
を利用することにより、第一の励起光の長手方向の強度
分布を制御する際の自由度が増すため、増幅器の入出力
レべルが規定されたときの雑音特性の最適化が容易にな
る。
The sixth Raman amplification method of the present invention has the following effects in addition to the above effects. That is, the wavelength of the second pumping light is slightly shifted from the wavelength shorter than the wavelength of the first pumping light by the Raman shift of the amplification optical fiber, so that the first pumping light is The gain coefficient of Raman gain received from light can be arbitrarily reduced. By using this means, the degree of freedom in controlling the longitudinal intensity distribution of the first pump light increases, so that it is easy to optimize the noise characteristics when the input / output level of the amplifier is specified. become.

【0067】本発明の第7のラマン増幅方式には、前記
効果の他に次の効果もある。即ち、第一又は第二、又は
両方の励起光に多重光源を使用するので高出力の励起光
が得られ、雑音特性の最適化を図るのに都合が良い。特
に、第一の励起光に複数の波長からなる波長多重励起光
源を用いる場合には、第二の励起光の波長を適切に選択
することによって、信号光の雑音特性の波長依存性さえ
も制御することが可能となる。さらに、第二の励起光が
波長多重励起光源である場合には、信号光の雑音特性の
波長依存性を一層自由に制御することが可能となる。
The seventh Raman amplification method according to the present invention has the following effects in addition to the above effects. That is, since multiple light sources are used for the first, second, or both pump lights, high-output pump light can be obtained, which is convenient for optimizing noise characteristics. In particular, when a wavelength-division multiplexed pump light source having a plurality of wavelengths is used for the first pump light, the wavelength dependence of signal light noise characteristics can be controlled by appropriately selecting the wavelength of the second pump light. It is possible to do. Further, when the second pumping light is a wavelength division multiplexing pumping light source, the wavelength dependence of the noise characteristic of the signal light can be controlled more freely.

【0068】本発明の第8のラマン増幅方式には、前記
効果の他に次の効果もある。即ち、第一の励起光と信号
光が同方向に伝搬する場合、励起光の強度揺らぎが利得
の揺らぎとなって信号光に重畳され、これが信号光の強
度雑音となって伝送特性を劣化させるのだが、第一の励
起光に一般に強度揺らぎが小さい半導体レーザを用いる
ため、この種の強度雑音を小さくすることができる。
The eighth Raman amplification method according to the present invention has the following effects in addition to the above effects. That is, when the first pump light and the signal light propagate in the same direction, the intensity fluctuation of the pump light becomes a fluctuation of the gain and is superimposed on the signal light, and this becomes intensity noise of the signal light and deteriorates transmission characteristics. However, since a semiconductor laser having a small intensity fluctuation is generally used for the first excitation light, this kind of intensity noise can be reduced.

【0069】本発明の第9のラマン増幅方式には、前記
効果の他に次の効果もある。即ち、伝送路に第三の励起
光を導き、第二の励起光をラマン増幅することにより、
第二の励起光の実効的な伝搬損失を小さくすることがで
きるため、第三の励起光を入射しない場合と比較して、
第二の励起光の長手方向のレベル変動が小さくなり、第
一の励起光、信号光の長手方向のレベル変動も小さくす
ることができる。従って、信号光の強度が伝搬方向に一
様であるような無損失伝送路により近い状態が実現でき
る。
The ninth Raman amplification method according to the present invention has the following effects in addition to the above effects. That is, by guiding the third pump light to the transmission line and Raman-amplifying the second pump light,
Since the effective propagation loss of the second pump light can be reduced, compared with the case where the third pump light is not incident,
The level fluctuation in the longitudinal direction of the second pumping light is reduced, and the level fluctuation in the longitudinal direction of the first pumping light and the signal light can also be reduced. Therefore, a state closer to a lossless transmission path in which the intensity of the signal light is uniform in the propagation direction can be realized.

【0070】本発明の第1の光信号伝送方法は、第1乃
至第9のラマン増幅方式を用いて、光信号を光伝送路の
長手方向でほぼ一定なレベルで伝搬させることにより、
S/N比の劣化と非線形効果による波形劣化の両方を同
時に緩和することができるため、従来よりも優れた伝送
特性を持つ光通信システムが実現可能となる。
According to the first optical signal transmission method of the present invention, an optical signal is propagated at a substantially constant level in the longitudinal direction of an optical transmission line by using the first to ninth Raman amplification methods.
Since both the degradation of the S / N ratio and the waveform degradation due to the non-linear effect can be mitigated at the same time, an optical communication system having better transmission characteristics than before can be realized.

【0071】本発明の第2の光信号伝送方法は、第1の
光信号伝送方法の効果の他に次のような効果もある。 (1)純粋なソリトンを用いて波長多重伝送を可能にす
るためには、伝送路の損失に応じて分散を減少させた伝
送路を用いる必要がある。これは、ソリトン波形を維持
するためには、伝送路の分散がソリトンパルスのピーク
パワーに応じた値である必要があるためである。一方、
本発明の光信号伝送方法は、第1乃至第9のラマン増幅
方式を用いて、光信号を光伝送路の長手方向でほぼ一定
なレベルで伝搬させるため、伝送路の分散を変える必要
がない。これは、従来不可能とされていた既設の伝送路
を用いた純粋な波長多重ソリトン通信が可能となること
を意味する。 (2)ソリトンの一種に、実用的な波長多重伝送が可能
な分散補償ソリトンと呼ばれる技術がある。この技術は
純粋なソリトンと比較すると、ソリトンパルスのピーク
パワーの変化に強いのだが、この技術に対しても、信号
光が光伝送路の長手方向でほぼ一定なレベルであること
は望ましいことである。従って、本発明の光信号伝送方
法はこの技術に対しても有効に作用する。
The second optical signal transmission method of the present invention has the following effects in addition to the effects of the first optical signal transmission method. (1) In order to enable wavelength multiplex transmission using pure solitons, it is necessary to use a transmission line whose dispersion is reduced according to the loss of the transmission line. This is because the dispersion of the transmission line needs to be a value corresponding to the peak power of the soliton pulse in order to maintain the soliton waveform. on the other hand,
According to the optical signal transmission method of the present invention, since the optical signal is propagated at a substantially constant level in the longitudinal direction of the optical transmission line by using the first to ninth Raman amplification methods, it is not necessary to change the dispersion of the transmission line. . This means that pure wavelength-division multiplexing soliton communication using an existing transmission line, which has been impossible in the past, becomes possible. (2) As one kind of soliton, there is a technique called dispersion-compensated soliton capable of practical wavelength multiplex transmission. Although this technique is more resistant to changes in soliton pulse peak power than pure soliton, it is desirable for this technique that the signal light be at a substantially constant level in the longitudinal direction of the optical transmission line. is there. Therefore, the optical signal transmission method of the present invention works effectively for this technology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のラマン増幅方式の第1の実施形態を示
す説明図。
FIG. 1 is an explanatory diagram showing a first embodiment of the Raman amplification system of the present invention.

【図2】図1に示すラマン増幅方式において第二の励起
光を入射した場合と入射しない場合とで、光ファイバの
長手方向における第一の励起光の強度分布を比較した結
果を示す図。
FIG. 2 is a diagram showing a result of comparing the intensity distribution of the first pump light in the longitudinal direction of the optical fiber when the second pump light is incident and when it is not incident in the Raman amplification method shown in FIG.

【図3】図1に示すラマン増幅方式において、第二の励
起光を入射した場合と入射しない場合とで、光ファイバ
の長手方向における信号光の強度分布を比較した結果を
示す図。
FIG. 3 is a diagram showing a result of comparing the intensity distribution of signal light in the longitudinal direction of the optical fiber when the second pump light is incident and when it is not incident in the Raman amplification method shown in FIG.

【図4】図1に示すラマン増幅方式において、第二の励
起光を信号光の入力端から入射した場合と出力端から入
射した場合とで、光ファイバの長手方向における第一の
励起光の強度分布を比較した結果を示す図。
FIG. 4 is a diagram illustrating the Raman amplification method shown in FIG. 1, in which the second pump light is incident from the input end of the signal light and the incident light from the output end of the first pump light in the longitudinal direction of the optical fiber; The figure which shows the result of having compared intensity distribution.

【図5】図1に示すラマン増幅方式において、第二の励
起光を信号光の入力端から入射した場合と出力端から入
射した場合とで、光ファイバの長手方向における信号光
の強度分布を比較した結果を示す図。
FIG. 5 shows the intensity distribution of the signal light in the longitudinal direction of the optical fiber when the second pumping light enters from the input end of the signal light and when the second pumping light enters from the output end in the Raman amplification method shown in FIG. The figure which shows the result of comparison.

【図6】図1に示すラマン増幅方式において、信号の利
得が一定となる条件下で第一の励起光と第二の励起光の
組合わせを変えた場合の信号光の変化を示す図。
FIG. 6 is a diagram showing a change in signal light when the combination of the first pumping light and the second pumping light is changed under the condition that the signal gain is constant in the Raman amplification method shown in FIG. 1;

【図7】本発明のラマン増幅方式の第2の実施形態を示
す説明図。
FIG. 7 is an explanatory diagram showing a Raman amplification system according to a second embodiment of the present invention.

【図8】図1に示すラマン増幅方式、図7に示すラマン
増幅方式、従来のラマン増幅方式の夫々における信号光
の強度分布を示す図。
8 is a diagram showing the intensity distribution of signal light in each of the Raman amplification system shown in FIG. 1, the Raman amplification system shown in FIG. 7, and the conventional Raman amplification system.

【図9】図1に示すラマン増幅方式と図7に示すラマン
増幅方式とで、信号光の最小レベルを同じくするために
必要とされる励起パワーを示す図。
9 is a diagram showing pump power required for equalizing the minimum level of the signal light in the Raman amplification system shown in FIG. 1 and the Raman amplification system shown in FIG. 7;

【図10】図1に示すラマン増幅方式において、信号光
の入・出力レべル及び最小レべルが同一となる条件下、
第一の励起光と第二の励起光の波長間隔を異ならせた場
合の信号光の強度分布を示す図。
FIG. 10 shows the Raman amplification method shown in FIG. 1 under the condition that the input / output level and the minimum level of the signal light are the same.
The figure which shows the intensity distribution of the signal light at the time of making the wavelength interval of a 1st pumping light and a 2nd pumping light different.

【図11】図10における条件と同じ条件での、光ファ
イバの長手方向における第一の励起光の強度分布の比較
図。
FIG. 11 is a comparison diagram of the intensity distribution of the first pumping light in the longitudinal direction of the optical fiber under the same conditions as those in FIG.

【図12】本発明のラマン増幅方式の第3の実施形態を
示す説明図。
FIG. 12 is an explanatory diagram showing a third embodiment of the Raman amplification system of the present invention.

【図13】図12に示すラマン増幅方式に最も近い従来
のラマン増幅方式を示す図。
FIG. 13 is a diagram showing a conventional Raman amplification method closest to the Raman amplification method shown in FIG.

【図14】光ファイバの長手方向における信号光の強度
分布を示す図。
FIG. 14 is a diagram showing an intensity distribution of signal light in a longitudinal direction of the optical fiber.

【図15】図14に示す条件における第一の励起光の光
ファイバの長手方向における強度分布を示す図。
FIG. 15 is a diagram showing an intensity distribution of the first pump light in the longitudinal direction of the optical fiber under the conditions shown in FIG.

【図16】信号光のレベル変動幅をほぼ同じく設定した
場合の中継距離の違いを示す図。
FIG. 16 is a diagram illustrating a difference in a relay distance when the level fluctuation width of the signal light is set substantially the same.

【図17】本発明のラマン増幅方式の第5の実施形態を
示す説明図。
FIG. 17 is an explanatory diagram showing a fifth embodiment of the Raman amplification method of the present invention.

【図18】第二の励起光の波長を適切に選択することに
よって、波長多重化された第一の励起光のうちの一方の
励起光が受ける利得を他方の励起光が受ける利得よりも
大きくすることが可能であることを示す図。
FIG. 18 shows that the gain of one of the wavelength-multiplexed first pump lights is larger than the gain of the other pump light by appropriately selecting the wavelength of the second pump light. The figure which shows that it is possible.

【図19】第二の励起光として波長多重励起光源を用い
た場合における第一の励起光の波長帯に対する利得形状
の一例を示す図。
FIG. 19 is a diagram showing an example of a gain shape with respect to a wavelength band of the first pumping light when a wavelength multiplexing pumping light source is used as the second pumping light.

【図20】図12に示すラマン増幅方法を適用した光伝
送路を用いた波長多重ソリトン通信システムの概略図。
20 is a schematic diagram of a wavelength division multiplexed soliton communication system using an optical transmission line to which the Raman amplification method shown in FIG. 12 is applied.

【図21】従来のラマン増幅方式を示す説明図。FIG. 21 is an explanatory diagram showing a conventional Raman amplification method.

【図22】従来のラマン増幅方式において励起光を入射
しない場合と入射した場合、及び励起光の入射パワーを
変化させた場合の信号光パワーの変化を示す図。
FIG. 22 is a diagram showing a change in signal light power when a pump light is not incident, when it is incident, and when the incident power of the pump light is changed in the conventional Raman amplification method.

【図23】従来のラマン増幅方式において、信号光の減
衰定数の変化に伴う信号光パワーの変化を示す図。
FIG. 23 is a diagram showing a change in signal light power accompanying a change in the attenuation constant of signal light in a conventional Raman amplification method.

【図24】従来のラマン増幅方式において、励起光の減
衰定数の変化に伴う励起光及び信号光の変化を示す図。
FIG. 24 is a diagram showing changes in pump light and signal light accompanying a change in the attenuation constant of pump light in a conventional Raman amplification method.

【図25】従来のラマン増幅方式において、増幅用光フ
ァイバの長さを変えた場合の励起光及び信号光の強度分
布を示す図。
FIG. 25 is a diagram showing an intensity distribution of pump light and signal light when the length of an amplification optical fiber is changed in a conventional Raman amplification method.

【図26】従来のラマン増幅方式において、ラマン利得
係数を変えた場合の信号光の変化を示す図。
FIG. 26 is a diagram showing a change in signal light when a Raman gain coefficient is changed in a conventional Raman amplification method.

【図27】従来のラマン増幅方式において、前方励起と
後方励起の場合の励起光及び信号光の強度分布を示す説
明図。
FIG. 27 is an explanatory diagram showing the intensity distribution of pump light and signal light in the case of forward pumping and backward pumping in a conventional Raman amplification method.

【符号の説明】[Explanation of symbols]

1 光ファイバ 2 信号光の出力端 3 信号光の入力端 DESCRIPTION OF SYMBOLS 1 Optical fiber 2 Output end of signal light 3 Input end of signal light

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04J 14/02 H04B 10/00 Fターム(参考) 2K002 AA02 AB30 BA01 DA10 GA10 HA23 5F072 AK06 JJ20 MM20 QQ07 YY17 5K002 BA05 BA13 CA02 CA13 DA02 DA05 FA01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H04J 14/02 H04B 10/00 F term (Reference) 2K002 AA02 AB30 BA01 DA10 GA10 HA23 5F072 AK06 JJ20 MM20 QQ07 YY17 5K002 BA05 BA13 CA02 CA13 DA02 DA05 FA01

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】光ファイバ中のラマン散乱を利用したラマ
ン増幅方式であって、信号光をラマン増幅するための第
一の励起光を増幅用光ファイバの信号光出力端から入射
し、第一の励起光の波長よりも短い波長をもち第一の励
起光をラマン増幅するための第二の励起光を光ファイバ
の信号光入力端から入射することを特徴とするラマン増
幅方式。
1. A Raman amplification system using Raman scattering in an optical fiber, wherein a first pump light for Raman-amplifying a signal light is incident from a signal light output end of an amplification optical fiber, and And a second pumping light having a wavelength shorter than the wavelength of the pumping light and a second pumping light for Raman-amplifying the first pumping light is input from a signal light input end of the optical fiber.
【請求項2】第二の励起光を増幅用光ファイバの信号光
出力端からも入射することを特徴とする請求項1記載の
ラマン増幅方式。
2. The Raman amplification method according to claim 1, wherein the second pumping light is also incident from a signal light output end of the amplification optical fiber.
【請求項3】第一の励起光を増幅用光ファイバの信号光
入力端からも入射することを特徴とする請求項2記載の
ラマン増幅方式。
3. The Raman amplification method according to claim 2, wherein the first pumping light is also incident from a signal light input end of the amplification optical fiber.
【請求項4】第二の励起光の波長が、第一の励起光の波
長よりも増幅用光ファイバのラマンシフト分だけ短いこ
とを特徴とする請求項1乃至請求項3のいずれかに記載
のラマン増幅方式。
4. The apparatus according to claim 1, wherein the wavelength of the second pumping light is shorter than the wavelength of the first pumping light by the Raman shift of the amplification optical fiber. Raman amplification method.
【請求項5】第二の励起光のラマン増幅帯域と信号光の
波長帯域とが重複しないことを特徴とする請求項1乃至
請求項3のいずれかに記載のラマン増幅方式。
5. The Raman amplification method according to claim 1, wherein the Raman amplification band of the second pump light does not overlap with the wavelength band of the signal light.
【請求項6】第二の励起光の波長を、第一の励起光の波
長よりも増幅用光ファイバのラマンシフト分だけ短い波
長から若干ずれた波長としたことを特徴とする請求項1
乃至請求項3のいずれかに記載のラマン増幅方式。
6. The method according to claim 1, wherein the wavelength of the second pumping light is a wavelength slightly shifted from a wavelength shorter than the wavelength of the first pumping light by the Raman shift of the amplification optical fiber.
A Raman amplification method according to claim 3.
【請求項7】第一と第二の励起光のいずれか一方又は双
方を、複数の波長で構成される波長多重励起光源とした
ことを特徴とする請求項1乃至請求項6のいずれかに記
載のラマン増幅方式。
7. A light source according to claim 1, wherein one or both of the first and second pumping light is a wavelength-division multiplexing pumping light source having a plurality of wavelengths. The Raman amplification method described.
【請求項8】第一の励起光の光源に半導体レーザーを用
いた請求項1乃至請求項7のいずれかに記載のラマン増
幅方式。
8. The Raman amplification method according to claim 1, wherein a semiconductor laser is used as a light source of the first excitation light.
【請求項9】光伝送路に第三の励起光を導き、第二の励
起光をラマン増幅する請求項1乃至請求項8のいずれか
に記載のラマン増幅方式。
9. The Raman amplification method according to claim 1, wherein the third pump light is guided to the optical transmission line, and the second pump light is Raman-amplified.
【請求項10】請求項1乃至請求項9のいずれかに記載
のラマン増幅方式を用いて、光信号を光伝送路の長手方
向でほぼ一定なレベルで伝播させることを特徴とする光
信号伝送方法。
10. An optical signal transmission using the Raman amplification method according to claim 1 to propagate an optical signal at a substantially constant level in the longitudinal direction of an optical transmission line. Method.
【請求項11】信号光として波長多重化されたソリトン
信号を用いることを特徴とする請求項10記載の光信号
伝送方法。
11. The optical signal transmission method according to claim 10, wherein wavelength-multiplexed soliton signals are used as signal light.
JP2000161051A 1999-05-31 2000-05-30 Raman amplification method and optical signal transmission method using the same Expired - Lifetime JP3745938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000161051A JP3745938B2 (en) 1999-05-31 2000-05-30 Raman amplification method and optical signal transmission method using the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP15172399 1999-05-31
JP11-151723 1999-05-31
JP33863999 1999-11-29
JP11-338639 1999-11-29
JP2000161051A JP3745938B2 (en) 1999-05-31 2000-05-30 Raman amplification method and optical signal transmission method using the same

Publications (2)

Publication Number Publication Date
JP2001222036A true JP2001222036A (en) 2001-08-17
JP3745938B2 JP3745938B2 (en) 2006-02-15

Family

ID=27320162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000161051A Expired - Lifetime JP3745938B2 (en) 1999-05-31 2000-05-30 Raman amplification method and optical signal transmission method using the same

Country Status (1)

Country Link
JP (1) JP3745938B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131273A (en) * 2001-10-26 2003-05-08 Nec Corp Raman amplification control method, optical communication system, optical amplifier, and program therefor
JP2003224521A (en) * 2002-01-29 2003-08-08 Mitsubishi Electric Corp Wavelength multiplex optical transmission system
JP2004502983A (en) * 2000-07-10 2004-01-29 エムピービー テクノロジーズ インコーポレイテッド Cascaded pump system for generating distributed Raman amplification in optical fiber communication systems
JP2005134628A (en) * 2003-10-30 2005-05-26 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system and raman amplifier
JP2009500661A (en) * 2005-06-30 2009-01-08 エックステラ コミュニケーションズ,インコーポレイテッド System and method for performing fractional Raman order pumps in an optical communication system
WO2016182068A1 (en) * 2015-05-13 2016-11-17 古河電気工業株式会社 Light source for raman amplification, light source system for raman amplification, raman amplifier, raman amplifying system
JP2016212370A (en) * 2015-05-13 2016-12-15 古河電気工業株式会社 Light source for raman amplification, raman source system for raman amplification, raman amplifier, raman amplifier system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502983A (en) * 2000-07-10 2004-01-29 エムピービー テクノロジーズ インコーポレイテッド Cascaded pump system for generating distributed Raman amplification in optical fiber communication systems
JP4717321B2 (en) * 2000-07-10 2011-07-06 エムピービー テクノロジーズ インコーポレイテッド Cascaded pumping system for generating distributed Raman amplification in optical fiber communication systems
JP2003131273A (en) * 2001-10-26 2003-05-08 Nec Corp Raman amplification control method, optical communication system, optical amplifier, and program therefor
JP2003224521A (en) * 2002-01-29 2003-08-08 Mitsubishi Electric Corp Wavelength multiplex optical transmission system
JP2005134628A (en) * 2003-10-30 2005-05-26 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system and raman amplifier
JP2009500661A (en) * 2005-06-30 2009-01-08 エックステラ コミュニケーションズ,インコーポレイテッド System and method for performing fractional Raman order pumps in an optical communication system
WO2016182068A1 (en) * 2015-05-13 2016-11-17 古河電気工業株式会社 Light source for raman amplification, light source system for raman amplification, raman amplifier, raman amplifying system
JP2016212370A (en) * 2015-05-13 2016-12-15 古河電気工業株式会社 Light source for raman amplification, raman source system for raman amplification, raman amplifier, raman amplifier system
JP2020129143A (en) * 2015-05-13 2020-08-27 古河電気工業株式会社 Light source for raman amplification, raman source system for raman amplification, raman amplifier, raman amplifier system
US10938175B2 (en) 2015-05-13 2021-03-02 Furukawa Electric Co., Ltd. Light source for Raman amplification, light source system for Raman amplification, Raman amplifier, and Raman amplifying system
JP7060648B2 (en) 2015-05-13 2022-04-26 古河電気工業株式会社 Raman amplification light source, Raman amplification light source system, Raman amplifier, Raman amplification system
US11652329B2 (en) 2015-05-13 2023-05-16 Furukawa Electric Co., Ltd. Light source for Raman amplification, light source system for Raman amplification, Raman amplifier, and Raman amplifying system

Also Published As

Publication number Publication date
JP3745938B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
EP1102114B1 (en) Raman amplification method
EP1088375B1 (en) Dispersion compensating and amplifying optical element
AU2002252194C1 (en) Method and system for dispersion maps and enhanced distributed gain effect in long haul telecommunications
US6574037B2 (en) All band amplifier
JP4115027B2 (en) Excitation light generation means, Raman amplifier and optical repeater using the same
US6191854B1 (en) Optical telecommunications system
US20030053199A1 (en) Raman amplifier, optical repeater, and Raman amplification method
EP0767395B1 (en) Device and method for modifying the spectral characteristics of optical signals
US20030099030A1 (en) Optical transmission system and optical transmission method utilizing Raman amplification
US6529315B2 (en) Optical amplifier providing dispersion compensation
US20030076577A1 (en) Lossless optical transmission link
US7038842B2 (en) Reduced four-wave mixing and Raman amplification architecture
US7231108B2 (en) Lumped raman amplifier for adaptive dispersion compensation
JP3745938B2 (en) Raman amplification method and optical signal transmission method using the same
KR20050106073A (en) Optical transmission system
Miyamoto et al. Highly-nonlinear-fiber-based discrete Raman amplifier for CWDM transmission systems
EP1509976A1 (en) Cascaded raman pump for raman amplification in optical systems
JP4205651B2 (en) Optical repeater
Ajiya et al. Directivity influence of signals propagation through EDFA gain medium of Brillouin–erbium fiber laser
US20040032640A1 (en) Optical transmission system and optical amplification method
WO2001047152A2 (en) A lossless optical transmission link with raman gain
EP0887956B1 (en) Optical telecommunications system with chromatic dispersion compensator
JP2002207228A (en) Optical transmission line
JP2004078176A (en) Optical transmission system and optical amplification method
JP2010146011A (en) Optical transmission line

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051118

R151 Written notification of patent or utility model registration

Ref document number: 3745938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term