JP3734561B2 - 波高・潮位センサ、液面計及び波高・潮位測定方法 - Google Patents

波高・潮位センサ、液面計及び波高・潮位測定方法 Download PDF

Info

Publication number
JP3734561B2
JP3734561B2 JP7057396A JP7057396A JP3734561B2 JP 3734561 B2 JP3734561 B2 JP 3734561B2 JP 7057396 A JP7057396 A JP 7057396A JP 7057396 A JP7057396 A JP 7057396A JP 3734561 B2 JP3734561 B2 JP 3734561B2
Authority
JP
Japan
Prior art keywords
wave
light receiving
data
value
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7057396A
Other languages
English (en)
Other versions
JPH0961165A (ja
Inventor
弘 高橋
和晃 尾上
肇 森岡
清志 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Idec Corp
Original Assignee
Osaka Gas Co Ltd
Idec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Idec Corp filed Critical Osaka Gas Co Ltd
Priority to JP7057396A priority Critical patent/JP3734561B2/ja
Publication of JPH0961165A publication Critical patent/JPH0961165A/ja
Application granted granted Critical
Publication of JP3734561B2 publication Critical patent/JP3734561B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、海上において波高または潮位を測定する波高・潮位センサ、タンク等に貯溜された液体の液面位置を測定する液面計、及び、波高・潮位センサ又は液面計における波高・潮位又は液面の計測方法に関し、特に、メンテナンスの容易化、保全費用の削減を実現し、誘爆環境等の危険地域に設置し得る波高・潮位センサ、液面計及び液面計測方法に関する。
【0002】
【従来の技術】
船舶を桟橋等において停泊させる場合、波浪の影響による事故を防止するために海象状態を判断する必要がある。そこで、従来より海面の波高および潮位を測定するセンサが用いられている。
【0003】
従来より、静電容量方式または超音波方式の波高・潮位センサが知られている。静電容量方式の波高・潮位センサは、例えば図13に示すように、絶縁被覆された電極42を海面45下に水没させ、海面水位の変化による静電容量の変動を測定して波高または潮位を検出するようにしている。この波高・潮位センサにおいて、海面水位がWL1からWL2にΔLだけ増加すると、電極における静電容量は、ΔCo=Co・ΔLだけ変動する。従って、ΔCoを測定することにより海面水位の変動量ΔLを求めることができる。
【0004】
また、タンク内に貯溜された液体の液面位置を測定するものとしては、上記静電容量方式やフロート方式の液面計がある。静電容量式のセンサの長さに比較してタンクの高さがきわめて高い場合には、静電容量式のセンサを長手方向に複数連結して設置する。また、フロート方式の液面計では、テープによって吊り下げられたフロートを液面に浮かべ、テープの張力を一定に維持した状態におけるテープの巻取長さによって液面位置を測定する。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の波高・潮位センサでは、検出装置の一部が海水中に水没していたため、海草や貝などの海中生物等が表面に付着し、測定結果に誤差を生じ、正確な波高または潮位を測定することができない問題がある。また、保守・点検作業には港湾管理者の作業許可が必要で、センサ等の表面から付着物を除去するには潜水作業の有資格者が必要であり、作業は気象や海象の影響を受けやすいためにメンテナンスが煩雑になり、また、その頻度も多くなる問題がある。
【0006】
特に、従来の静電容量方式およびフロート方式の液面計においては、液面計がタンク内に貯溜された液体中に浸漬されているため、液面計のメンテナンスを行うためには、液体をタンク内から全て排出して内部を空気置換した後に作業者がタンク内に入らなければならず、液体の取扱いや点検作業が煩雑になる問題があった。
【0007】
また、タンカー等の危険物を積載した船舶が入港する港湾は、誘爆雰囲気状態にある危険地域と見做され、このような港湾における波高または潮位を測定する装置は、電気機器による誘爆や火災を防止するため、波高・潮位センサの設置場所が限定される。このような問題は、例えば、タンク内に貯溜された引火性の液体の液面位置を測定する液面計においても同様に生じる。
【0008】
この発明の目的は、装置の一部を海中や液体中に水没させることなく容易に設置でき、海面水位および液面位置を測定することができ、表面に海中生物等が付着することがなく、定期的なメンテナンスが殆ど不要になるとともに、誘爆環境等の危険地域や引火性の液体等の危険物を貯溜するタンク内においても安全に波高、潮位および液面位置を測定することができる波高・潮位センサおよび液面計を提供することにある。
【0009】
また、制御装置の演算処理の負荷を過大にすることなく、波面の挙動を正確に測定することができ、波高及び潮位の測定精度を向上することができる波高・潮位測定方法及び波高・潮位センサを提供することにある。
【0010】
【課題を解決するための手段】
請求項1に記載した発明の波高・潮位センサは、検出光を照射する照射レンズおよび反射光を受光する受光レンズを備え、照射レンズおよび受光レンズが水面に対向する位置に配置された光学装置と、
光学装置の照射レンズに照射用光ファイバを介して接続された発光手段と、光学装置の受光レンズに受光用光ファイバを介して接続され、受光信号を出力する受光センサと、受光センサの出力信号に基づいて水面までの距離を算出する演算手段と、を備えた回路装置と、
回路装置に信号線を介して接続され、演算手段の算出結果に基づいて波高または潮位を測定する制御装置と、を備え、
前記演算手段が、一定時間間隔における所定数の受光センサの出力信号に基づいて水面までの距離の平均を算出する手段であり、
前記制御装置が、第1の設定時間内に入力された複数の算出結果の平均値、最大値及び最小値を求め、平均値が基準値より高い場合は最大値を波データとするとともに、平均値が基準値より低い場合は最小値を波データとする波データ選択手段と、第2の設定時間において予め設定された有効エリアに含まれない設定個数の波データ以外の波データを測位データとする測位データ選択手段と、を含むことを特徴とする。
【0012】
請求項に記載した発明の波高・潮位測定方法は、一定時間間隔における所定数の受光センサの出力信号に基づいて水面までの距離の平均を回路装置において算出し、この算出結果を制御装置に入力し、制御装置において、第1の設定時間内に入力された複数の算出結果の平均値、最大値及び最小値を求め、平均値が基準値より高い場合は最大値を波データとするとともに、平均値が基準値より低い場合は最小値を波データとして選択し、次いで、第2の設定時間において予め設定された有効エリアに含まれない設定個数の波データ以外の波データを測位データとし、さらに、この測位データに基づいて波高または潮位を測定することを特徴とする。
【0013】
請求項に記載した発明の液面計は、検出光を照射する照射レンズおよび反射光を受光する受光レンズを備え、照射レンズおよび受光レンズが液面に対向する位置に配置された光学装置と、
光学装置の照射レンズに照射用光ファイバを介して接続された発光手段と、光学装置の受光レンズに受光用光ファイバを介して接続され、受光信号を出力する受光センサと、受光センサの出力信号に基づいて液面までの距離を算出する演算手段と、を備えた回路装置と、
回路装置に信号線を介して接続され、前記演算手段の算出結果の平均を液面位置として算出する制御装置と、を備え、
前記演算手段が、一定時間間隔における所定数の受光センサの出力信号に基づいて水面までの距離の平均を算出する手段であり、
前記制御装置が、第1の設定時間内に入力された複数の算出結果の平均値、最大値及び最小値を求め、平均値が基準値より高い場合は最大値を波データとするとともに、平均値が基準値より低い場合は最小値を波データとする波データ選択手段と、第2の設定時間において予め設定された有効エリアに含まれない設定個数の波データ以外の波データを測位データとする測位データ選択手段と、を含み、
前記回路装置を収納する耐圧防爆容器を備えたことを特徴とする。
【0014】
請求項に記載した発明の波高・潮位センサおよび液面計は、検出光を照射する照射レンズおよび反射光を受光する受光レンズを備え、照射レンズおよび受光レンズが水面に対向する位置に配置された光学装置と、
光学装置の照射レンズに照射用光ファイバを介して接続された発光手段と、光学装置の受光レンズに受光用光ファイバを介して接続され、受光信号を出力する受光センサと、受光センサの出力信号に基づいて水面までの距離を算出する演算手段と、を備えた回路装置と、
回路装置に信号線を介して接続され、演算手段の算出結果に基づいて波高または潮位を測定する制御装置と、
前記回路装置を収納する耐圧防爆容器を備えたことを特徴とする。
【0015】
請求項1に記載した発明に係る波高・潮位センサは、光学装置、回路装置および制御装置により構成される。光学装置は、照射レンズおよび受光レンズを備え、照射レンズおよび受光レンズは水面に対向する。照射レンズおよび受光レンズは、それぞれ照射用光ファイバおよび受光用光ファイバを介して回路装置の発光手段および受光センサに接続される。
【0016】
発光手段が駆動されると、発光手段の光が照射用光ファイバを介して照射レンズから水面に照射される。水面における反射光は受光レンズにより受光され、受光用光ファイバを介して受光センサに入光する。受光センサの出力信号は演算手段に入力され、演算手段は水面までの距離を算出する。この算出結果が制御装置に入力され、制御装置は入力された算出結果に基づいて波高または潮位を測定する。
【0017】
図1において、センサ101から水面102に照射された光は水面102で反射し、この反射光がセンサ101に受光される。水面102における反射光のうち入射方向に対して略180度の反射角で反射した反射光のみが受光される。このとき、時間tと水面の高さHとの関係は、
H=F(t)
で表され、この式を時間について微分し、
F’(t)=0
となるような時間tのとき、F(t)が波の峰または波の谷の高さを表す。このとき水面は、光の入射方向に対して垂直となることから反射光は反射角180度で反射する。したがって、受光センサが出力信号を出力するタイミングは、波の峰または波の谷の付近を計測している時である。以上のことから波の峰と谷との位置を欠落することなく的確に測定するためには、波の周期と光の照射間隔との関係が重要となる。そこで、速い周期の波を計測する際には光の照射間隔を短くして計測する。計測位置が波の峰の部分であるか波の谷の部分であるかの区別は、直前に測定したデータとの大小の比較により判断できる。センサ部から波の峰または波の谷までの距離は、光の照射タイミングから受光タイミングまでの時間間隔を計時し、光の飛行時間に基づいて算出する。この算出値をセンサ部の取付位置の高さから差し引くことにより、その時々の水面の高さが求まる。
【0018】
得られた水面の高さから波高および潮位を求める。先ず、波高Hについては、図2に示すように、1周期内での最大距離Smax(波の谷部までの距離)と、最小距離Smin(波の山部までの距離)とから、
H=Smax−Smin
により求まる。ここに、波の1周期とは、図3に示すように、波の峰部が測定されてから次に波の峰部が測定されるまでの間をいう。
【0019】
次に、潮位Lは、基準値からのセンサの設置高さHcおよび測定距離Sから、
Li=Hc−Si (i=1,2,・・・N)
L=(ΣLi)/N
により求まる。
【0020】
また、請求項に記載した発明に係る波高・潮位センサは、回路装置において、一定時間間隔における所定数の受光センサの出力信号に基づいて水面までの距離の平均を算出し、制御装置において、第1の設定時間内に入力された複数の算出結果の平均値、最大値及び最小値を求め、平均値が基準値より高い場合は最大値を波データとするとともに、平均値が基準値より低い場合は最小値を波データとして選択し、第2の設定時間において予め設定された有効エリアに含まれない設定個数の波データ以外の波データを測位データとする。したがって、波高・潮位の測定精度を向上すべく、受光センサの出力信号の読取時間間隔を短くしても、制御装置における演算処理の負荷が過大になることがないとともに、波面以外の測定結果である不良データを除去して波面の測定結果のみに基づいて波高及び潮位を正確に測定することができる。
【0021】
請求項に記載した発明に係る波高・潮位測定方法は、回路装置において、一定時間間隔における所定数の受光センサの出力信号に基づいて水面までの距離の平均を算出し、制御装置において、第1の設定時間内に入力された複数の算出結果の平均値、最大値及び最小値を求め、平均値が基準値より高い場合は最大値を波データとするとともに、平均値が基準値より低い場合は最小値を波データとして選択し、第2の設定時間において予め設定された有効エリアに含まれない設定個数の波データ以外の波データを測位データとする。したがって、波高・潮位の測定精度を向上すべく、受光センサの出力信号の読取時間間隔を短くしても、制御装置における演算処理の負荷が過大になることがないとともに、波面以外の測定結果である不良データを除去して波面の測定結果のみに基づいて波高及び潮位を正確に測定することができる。
【0022】
請求項に記載した発明に係る液面計は、光学装置、回路装置および制御装置により構成される。光学装置は、照射レンズおよび受光レンズを備え、照射レンズおよび受光レンズは液面に対向する。照射レンズおよび受光レンズは、それぞれ照射用光ファイバおよび受光用光ファイバを介して回路装置の発光手段および受光センサに接続される。
【0023】
発光手段が駆動されると、発光手段の光が照射用光ファイバを介して照射レンズから液面に照射される。液面における反射光は受光レンズにより受光され、受光用光ファイバを介して受光センサに入光する。受光センサの出力信号は演算手段に入力され、演算手段は液面までの距離を算出する。この算出結果が制御装置に入力され、制御装置はセンサの設置高さから入力された演算手段の算出結果を差し引いてその平均を求め、液面位置として算出する。したがって、液面計は液体中に浸漬することがなく、また、光学装置のみが液面の上方に配置される。
また、回路装置が耐圧防爆容器に収納され、光学装置は光ファイバのみを介して回路装置に接続されており、光学装置に対して電気信号は入出力されない。したがって、光学装置および回路装置は、制御装置から分離して誘爆雰囲気中に設置することができる。
【0024】
請求項に記載した発明においては、回路装置が耐圧防爆容器に収納され、光学装置は光ファイバのみを介して回路装置に接続されており、光学装置に対して電気信号は入出力されない。したがって、光学装置および回路装置は、制御装置から分離して誘爆雰囲気中に設置することができる。
【0025】
【発明の実施の形態】
図4は、請求項1に記載した発明の実施形態の一例である波高・潮位センサの構成を示すブロック図である。波高・潮位センサ1は、光学装置であるオプティカルヘッド2、回路装置である電子回路ボックス3および制御装置であるコンピュータ4によって構成されている。オプティカルヘッド2は、内部に照射レンズ21および受光レンズ22を備え、海面5に対向する位置に配置されている。電子回路ボックス3は投光素子31、受光素子32、駆動回路33、アンプ34、制御回路35および電源回路36を備え、耐圧防爆型容器6に収納されている。耐圧防爆型容器6は、アルミ合金または鉄を素材として例えば、図5に示す形状に鋳造されたものである。耐圧防爆型容器6は、本体6aと蓋6bとからなり、本体6aと蓋6bとの間に、耐圧防爆型容器6の防水性を向上するOリング6cを備えている。耐圧防爆型容器6は、容器内に外部から爆発性ガスが侵入し、内部で点火爆発した場合にも、外部に影響を与えることのないようにされており、点火源を実質的に容器内に隔離するものである。
【0026】
耐圧防爆型容器6に収納される電子回路ボックス3は、前述のように光ファイバ7,8および信号ライン9によりオプティカルヘッド2およびコンピュータ4に接続され、電源ライン10を介して外部電源11から電源の供給を受ける。このため、耐圧防爆型容器6の容器6aには、耐圧パッキン式または耐圧固着式等の引込器具6d〜6fが設けられている。信号ライン9および電源ライン10は、引込器具6d,6eに貫通し、光ファイバ7,8は1本にされて引込器具6fに貫通する。なお、光ファイバ7,8が個別に貫通する2個の引込器具を設けることもできる。
【0027】
電子回路ボックス3が有する投光素子31は、例えばレーザダイオードにより構成されており、投光素子31の光は照射用光ファイバ7を介してオプティカルヘッド2の照射レンズ21から海面5に照射される。また、オプティカルヘッド2の受光レンズ22は、受光用光ファイバ8を介して受光素子32に接続されている。電子回路ボックス3の制御回路35は、信号ライン9を介してコンピュータ4に接続されている。また、電源回路36は、電源ライン10を介して外部電源11に接続されており、電子回路ボックス3の各電子部品に電源を供給する。以上の構成において、危険物を運搬するタンカーなどの船舶が停泊する港湾における海面の波高または潮位を測定する場合には、オプティカルヘッド2を海面の垂直上方に配置し、耐圧防爆型容器6に収納された電子回路ボックス3を港湾の桟橋近傍の危険地域に設置する。また、コンピュータ4は桟橋から遠く離れた危険地域外に設置する。このように設置することにより、海上には比較的軽量なオプティカルヘッド2のみを設置すればよく、設置作業が容易になる。また、海中に水没していないため、海中生物等が付着することがなく、メンテナンスを簡略化できる。
【0028】
なお、電子回路ボックス3は投光素子31からの光の照射タイミングから受光素子32による反射光の受光タイミングまでの時間を測定し、この間の投光素子のパルス光の飛行時間を測定することにより、オプティカルヘッド2の設置位置から海面5までの距離を測定する。この測定結果を信号線9を介してコンピュータ4に入力する。
【0029】
図6は、上記波高・潮位センサを構成するコンピュータの処理手順を示すフローチャートである。コンピュータ4は、電子回路ボックス3から入力される測定データを例えば20msの周期でサンプリングし(s1)、測定不能のデータを削除する処理を行い(s2)、正常な測定データ潮位の基準値(例えばTP)とオプティカルヘッド2との間の距離に基づく補正データから測定データを差し引く補正処理を行う(s3)。この基準値は、潮位の測定の基準となる値として各港湾において予め定められた値である。コンピュータ4は、補正処理後の測定データを順次記憶する(s4)。この測定データのサンプリングを例えば10分程度の所定のデータ計測時間にわたって継続して実行する(s5)。
【0030】
データ計測時間にわたる測定データの計測が終了すると、コンピュータ4は、記憶している測定データから不良データを削除する処理を行う(s6)この不良データの削除処理においては、例えば、所定個数の測定データのうち、前回の測定に係るデータの最大値+α以上のデータおよび最小値−β以下のデータを不良データとして今回の測定データから削除する。ここで、αおよびβは、予め任意に設定された値である。なお、不良データが所定個数以上存在する場合には、今回の測定データの全てを削除するようにしてもよい。
【0031】
この後、コンピュータ4は、不良データを除く測定データの平均値を潮位データとして算出する(s7)。この潮位データの算出は、例えば、1+m個目〜2400+m個目(m=0,1,2,・・・)の平均値を10分程度の予め定められた処理時間において平均化する移動平均処理によって求めることができる。この移動平均処理の算出結果を以後例えば1時間における潮位データとして用いることにより、信頼性の高い潮位データを得ることができるとともに、常に潮位データを算出する場合に比べて演算処理を簡略化できる。
【0032】
さらに、コンピュータ4は、不良データを削除した測定データおよび潮位データを用いて図7(A)に示すような海面変位線図を作成する(s8)。この海面変位線図から、P−P(Peak to Peak)法およびZ−C(Zero up Cross) 法により波高Hおよび周期Tを読み取る(s9)。P−P法では、図7(A)に示すように、海面変位線図の最初の峰と次の谷との差を波高Hとして読み取り、最初の峰と次の峰との時間間隔を周期Tとする。また、Z−C法では、図7(B)に示すように、平均水面を下から上に横切った後、再び平均水面を下から上に横切るまでの間を1つの波とし、その間にある最も高い峰と最も低い谷との差を波高Hとし、周期Tはその時の高い峰から再び平均水面を下から上に横切った後、最も高い峰までの時間間隔を計測する。このようにして、海面変位線図から一連の波高Hiおよび周期Ti(i=1,2,3,・・・,N)を読み取る。
【0033】
以上のようにしてP−P法およびZ−C法により求めた波高Hおよび周期Tを用いて、最大波高および最大波周期を含む、平均波高Hmおよび平均周期Tm、有義波高Hsおよび有義波周期Ts、1/n最大波高H1/nおよび1/n最大波周期T1/nを、下記第1式〜第3式により、波浪解析に用いる統計量として算出する(s10〜s13)。なお、有義波高Hsおよび有義波周期Tsは、外洋波浪解析等に用いられ、一連の波高Hiおよび周期Tiを波高の大きい順に並べ替え、波高の大きい1/3の波について平均したものである。また、1/n最大波高H1/nおよび1/n最大波周期T1/nは、波高の大きい1/nの波について平均したものである。
【0034】
【数1】
Figure 0003734561
【0035】
図8は、請求項4に記載した発明の実施形態の一例である液面計の使用状態を示す概略図である。液面計51は、図4に示す波高・潮位センサ1と同様に構成されており、一例として、加圧タンク62内に貯溜された液体63の液面位置を測定する。液面計51のオプティカルヘッド52は、加圧タンク62の上面に設置し、電子回路ボックス53は、タンク62の外壁に設置する。オプティカルヘッド52は、加圧タンク62の上面に取り付けられた耐圧レンズ61およびバルブ64を介して液体63の液面に対向する。バルブ64は、開閉自在にされており、このバルブ64を開放した状態で液体63の液面位置を測定する。また、バルブ64を閉鎖した状態で、バルブ64と耐圧レンズ61との間の加圧ガスを空気置換した後に耐圧レンズ61の清掃等を行う。
【0036】
このように、加圧タンク62の上面に、比較的軽量な液面計51のオプティカルヘッド52を設置すればよく、取付作業を極めて容易に行うことができる。また、液面計51は加圧タンク62の外部に設置されているため、液面計51のメンテナンス時に加圧タンク62から液体を排出して空気置換する必要がなく、メンテナンス作業を極めて容易に行うことができる。さらに、電子回路ボックス53を図5に示す耐圧防爆型容器6に収納することにより、一般的に加圧タンク62が設置される危険地域内においても、安全に加圧タンク62内に貯溜された液体63の液面位置を測定できる。
【0037】
図9〜図11は、請求項2に記載した発明の実施形態である波高・潮位センサにおいて実施される請求項3に記載した発明の波高・潮位測定方法を示すフローチャートである。この波高・潮位測定方法では、図6に示したs1〜s6の処理に代えて、センサ取込処理(s20)及び波データ算出処理(s30)を実行する。センサ取込処理は図4に示した電子回路ボックス3内の制御回路35の演算手段において行われ、波データ算出処理は図4に示したコンピュータ4において行われる。即ち、センサ取込処理は、計測精度を向上すべくセンサの計測サンプリング時間を短くした場合に、コンピュータ4における演算処理の負荷が過大になることを防止するために行われる。
【0038】
このセンサ取込処理は図10に示すように、先ず、予め設定された一定時間Tsにおいて、予め設定された一定個数Nsのデータの取込を行う(s21,s22)。このデータの取込は、水面の挙動に対して十分に速い例えば1msec程度のサンプリング時間で、受光素子32の受光信号を読み取ることにより行う。また、一定時間Tsとしては例えば20msec、一定個数Nsとしては例えば10個程度の値が設定される。この場合、図12(A)に示すように、時間Ts20msecが経過するまでの間に1msecの間隔で10個のデータD1 〜D10が読み取られる。
【0039】
一定個数のデータの取込が完了すると、読み取った一定個数のデータのうちで誤差の大きい特異データを削除し(s23)、特異データを除いたデータの平均値を求める(s24)。この処理で削除される特異データとは、波の表面における乱反射光や外部の光の反射光等を測定したデータであり、1msec程度のサンプリング時間において生じるはずのない誤差を有するデータである。例えば、読み取った10個のデータが、10.00m、10.02m、10.06m、10.08m、9.96m 、9.98m 、9.96m 、7.00m 、15.00m、9.94m である場合、7.00m と15.00mとを削除し、それ以外の8個のデータの平均値を算出する。この平均値を測定データDsとしてコンピュータ4に送信する(s25)。
【0040】
波データ算出処理は、前述のようにコンピュータ4において実行され、図11に示すように、まず、制御回路35から送信された測定データDsを受信し(s31)、この測定データDsから基準位置とセンサの設置位置との距離から差し引くことにより、測定データDsの補正を行う(s32)。この後、補正後の測定データDsについて、演算レンジから外れている無効データを削除する(s33)。この演算レンジは、図12(B)に示すように、潮位・波高センサの使用状況に応じて計測する必要のない測定データDsを除くために予め設定された上限値Rmaxと下限値Rminとの間の範囲である。例えば、通常時の潮位・波高のみを測定する使用状況では、台風時等に生じる高低差が極端に大きいデータが無効データとして削除される。このs31〜s33の処理を、予め設定された時間Twにおいて継続して行う(s34)。設定時間Twはこの発明の第1の設定時間であり、例えば、250msec又は500msec等の時間である。
【0041】
この設定時間Twにおいて得られた有効な測定データDsの平均値、最大値及び最小値を算出し(s35)、算出した平均値Dsaと零線ZRとを比較して波データを選択する(s36)。即ち、図12(B)に示す時間Tw1の場合のように、測定データの平均値Dsaが零線ZRより大きい場合は最大の測定データDsmaxを波データDwとし、時間Twnの場合のように、平均値Dsaが零線ZRより小さい場合は最小の測定データDsminを波データDwとする。なお、零線ZRは、過去の複数の平均値Dsaを一定時間間隔で移動平均した値である。
【0042】
次いで、得られた波データDwが有効エリア内に存在するか否かを判断する(s37)。この有効エリアとは、図12(C)に示すように、予め設定された所定時間における最大値+αを上限値Emaxとし、最小値−βを下限値Eminとする範囲である。波データDwが有効エリアに含まれる場合には、正常な測位データDaとして記憶する(s38)。波データDwが有効エリアに含まれない場合には、カウンタCをインクリメントし(s39)、カウンタCの内容が予め設定された値Naを越えるまで不良データとして削除する(s40,s41)。カウンタCの内容が設定値Naを越えた場合は、その波データを正常な測位データDaとして記憶する(s40→s38)。このカウンタCの内容は、この発明の第2の設定時間として予め設定された一定時間Teを経過する毎にクリアする(s42,s43)。即ち、設定値Naとして“5”が設定されている場合、図12(C)に示す時間Teにおいて、6個目の有効エリアを越えるデータDwe6以降のデータは正常な測位データDaとされる。
【0043】
この処理により、センサの下方を通過した鳥や波の飛沫等の測定データを不良データとして排除することができる。また、有効エリア外のデータが予め設定された個数以上連続する場合には、波高が急激に変化したものと判断し、設定個数を越えたデータを正常な測位データとして扱うことができる。
【0044】
このようにして得られた測位データに基づいて図6に示したs7〜s13の処理を行うことにより、より正確な波高及び潮位を測定することができる。また、制御回路35において予めデータDの平均値を求め、この平均値を測定データDsとしてコンピュータ4に供給するため、コンピュータ4に過大な演算処理の負荷が生じることがなく、コンピュータ4として汎用のパーソナルコンピュータ等を用いることができる。
【0045】
【発明の効果】
請求項1およびに記載した発明によれば、光学レンズのみを備えた光学装置を回路装置から分離して水面または液面に対向する位置に設置するようにしているため、設置スペースが小さくなって装置の設置作業が容易であるとともに、海中生物等が付着することがなく、保守、点検時にこれらを除去する必要がなく、メンテナンスを容易化できるとともに、その頻度を減少することができる。
【0046】
また、制御装置に過大な演算処理の負荷を与えることなく、波面の計測精度を向上するとともに、不良データを排除して正確な波高及び潮位を計測することができる。
【0047】
請求項3および4に記載した発明によれば、回路装置は耐圧防爆容器に収納されるとともに、回路装置と光学装置とは光ファイバのみで接続されるため、誘爆環境等の危険地域における安全性を損なうことがなく、波高・潮位センサおよび液面計の設置場所を選ばない。
【図面の簡単な説明】
【図1〜図3】一般的な波高および潮位の測定方法を示す図である。
【図4】請求項1に記載した発明の実施形態の一例である波高・潮位センサの構成を示すブロック図である。
【図5】同波高・潮位センサが有する耐圧防爆容器の構造を示す図である。
【図6】同波高・潮位センサを構成するコンピュータの処理手順を示すフローチャートである。
【図7】同コンピュータにおける処理中に作成される海面変位線図である。
【図8】請求項4に記載した発明の実施形態の一例である液面計の使用状態を示す概略図である。
【図9】請求項2に記載した発明の実施形態の一例である波高・潮位センサにおける処理手順を示すフローチャートである。
【図10】同波高・潮位センサを構成する制御回路の処理手順を示すフローチャートである。
【図11】同波高・潮位センサを構成するコンピュータの処理手順を示すフローチャートである。
【図12】同波高・潮位センサにおけるデータの処理状態を示す図である。
【図13】従来の波高・潮位センサの構成を示すブロック図である。
【符号の説明】
1−波高・潮位センサ
2,52−オプティカルヘッド
3,53−電子回路ボックス
4−コンピュータ
5−海面
6−耐圧防爆容器
7−照射用光ファイバ
8−受光用光ファイバ
21−照射レンズ
22−受光レンズ
31−半導体レーザ
32−受光センサ
51−液面計
62−タンク
63−液体

Claims (4)

  1. 検出光を照射する照射レンズおよび反射光を受光する受光レンズを備え、照射レンズおよび受光レンズが水面に対向する位置に配置された光学装置と、
    光学装置の照射レンズに照射用光ファイバを介して接続された発光手段と、光学装置の受光レンズに受光用光ファイバを介して接続され、受光信号を出力する受光センサと、受光センサの出力信号に基づいて水面までの距離を算出する演算手段と、を備えた回路装置と、
    回路装置に信号線を介して接続され、演算手段の算出結果に基づいて波高または潮位を測定する制御装置と、を備え、
    前記演算手段が、一定時間間隔における所定数の受光センサの出力信号に基づいて水面までの距離の平均を算出する手段であり、
    前記制御装置が、第1の設定時間内に入力された複数の算出結果の平均値、最大値及び最小値を求め、平均値が基準値より高い場合は最大値を波データとするとともに、平均値が基準値より低い場合は最小値を波データとする波データ選択手段と、第2の設定時間において予め設定された有効エリアに含まれない設定個数の波データ以外の波データを測位データとする測位データ選択手段と、を含むことを特徴とする波高・潮位センサ。
  2. 一定時間間隔における所定数の受光センサの出力信号に基づいて水面までの距離の平均を回路装置において算出し、この算出結果を制御装置に入力し、制御装置において、第1の設定時間内に入力された複数の算出結果の平均値、最大値及び最小値を求め、平均値が基準値より高い場合は最大値を波データとするとともに、平均値が基準値より低い場合は最小値を波データとして選択し、次いで、第2の設定時間において予め設定された有効エリアに含まれない設定個数の波データ以外の波データを測位データとし、さらに、この測位データに基づいて波高または潮位を測定することを特徴とする波高・潮位測定方法
  3. 検出光を照射する照射レンズおよび反射光を受光する受光レンズを備え、照射レンズおよび受光レンズが液面に対向する位置に配置された光学装置と、
    光学装置の照射レンズに照射用光ファイバを介して接続された発光手段と、光学装置の受光レンズに受光用光ファイバを介して接続され、受光信号を出力する受光センサと、受光センサの出力信号に基づいて液面までの距離を算出する演算手段と、を備えた回路装置と、
    回路装置に信号線を介して接続され、前記演算手段の算出結果の平均を液面位置として算出する制御装置と、を備え、
    前記演算手段が、一定時間間隔における所定数の受光センサの出力信号に基づいて水面までの距離の平均を算出する手段であり、
    前記制御装置が、第1の設定時間内に入力された複数の算出結果の平均値、最大値及び最小値を求め、平均値が基準値より高い場合は最大値を波データとするとともに、平均値が基準値より低い場合は最小値を波データとする波データ選択手段と、第2の設定時間において予め設定された有効エリアに含まれない設定個数の波データ以外の波データを測位データとする測位データ選択手段と、を含み、
    前記回路装置を収納する耐圧防爆容器を備えたことを特徴とする液面計
  4. 前記回路装置を収納する耐圧防爆容器を備えた請求項1に記載の波高・潮位センサ。
JP7057396A 1995-06-16 1996-03-26 波高・潮位センサ、液面計及び波高・潮位測定方法 Expired - Fee Related JP3734561B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7057396A JP3734561B2 (ja) 1995-06-16 1996-03-26 波高・潮位センサ、液面計及び波高・潮位測定方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15017295 1995-06-16
JP7-150172 1995-06-16
JP7057396A JP3734561B2 (ja) 1995-06-16 1996-03-26 波高・潮位センサ、液面計及び波高・潮位測定方法

Publications (2)

Publication Number Publication Date
JPH0961165A JPH0961165A (ja) 1997-03-07
JP3734561B2 true JP3734561B2 (ja) 2006-01-11

Family

ID=26411708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7057396A Expired - Fee Related JP3734561B2 (ja) 1995-06-16 1996-03-26 波高・潮位センサ、液面計及び波高・潮位測定方法

Country Status (1)

Country Link
JP (1) JP3734561B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438577B1 (ko) * 2014-07-11 2014-09-12 김성환 레이저 조위측정장치 및 레이저를 이용한 조위 측정방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108135A (ja) * 2005-10-17 2007-04-26 Tokyo Sokki Kenkyusho Co Ltd 変位検出装置
JP4755537B2 (ja) * 2006-06-14 2011-08-24 三菱電機株式会社 冷凍冷蔵ショーケースのドレン水検知装置
JP4921048B2 (ja) * 2006-06-15 2012-04-18 Necネットワーク・センサ株式会社 海洋波計測システムおよび海洋波計測方法
CA2975379A1 (en) * 2015-01-09 2016-07-14 J.W. Speaker Corporation Tracking and lighting systems and methods for a vehicle
JP7023494B2 (ja) * 2017-12-28 2022-02-22 シスメット株式会社 波浪観測通知システム
CN113514125A (zh) * 2021-03-12 2021-10-19 中交华南勘察测绘科技有限公司 便携式潮位遥报仪及潮位遥报系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438577B1 (ko) * 2014-07-11 2014-09-12 김성환 레이저 조위측정장치 및 레이저를 이용한 조위 측정방법

Also Published As

Publication number Publication date
JPH0961165A (ja) 1997-03-07

Similar Documents

Publication Publication Date Title
US5408874A (en) Location of fluid boundary interfaces for fluid level measurement
US20100006786A1 (en) Method and apparatus for optical level sensing of agitated fluid surfaces
EP0787307B1 (en) Sludge topography measurement in oil tanks
JP3734561B2 (ja) 波高・潮位センサ、液面計及び波高・潮位測定方法
IE45803B1 (en) Ullage measuring device
CN102616346A (zh) 一种航行船舶超吃水自动检测系统
KR20100067791A (ko) 선박의 액체화물의 슬로싱 감시 및 제어방법
US4855966A (en) Method and apparatus for monitoring bridge structures for scouring
US5347849A (en) Water sensor that detects tank or vessel leakage
CN103963939B (zh) 一种内河港口船舶载重测量系统及方法
BRPI0600797B1 (pt) Sistema de monitoração e registro de ondas e marés
CN202593822U (zh) 一种航行船舶超吃水自动检测系统
Neugebauer et al. Investigation of the motion accuracy influence on sloshing model test results
CN201914428U (zh) 一种新型的船舶智能载重量测量仪
CN2133527Y (zh) 智能检水仪
Prandke et al. Microstructure profiler to study mixing and turbulent transport processes
Piskozub et al. A water Raman extinction lidar system for detecting thin oil spills: preliminary results of field tests
Saleh et al. Dual-Modality Capacitive-Ultrasonic Sensing for Measuring Floating Oil Spill Thickness
Hamblin et al. An evaluation of an unattended current and temperature profiler for deep lakes
AANDERAA Instruments AANDERAA RCM documentation
Beyer et al. Experimental investigation of a moored floating system
Knapp Wave-produced motion of moored ships
Zen et al. Robust Laboratory Scale Seakeeping Test Wave Measurement Method Use Ultrasonic Sensor
Rizal et al. Experimental Seakeeping and Uncertainty Analysis of Benchmark Ship Model in Regular Head and Beam Waves
JPS5782751A (en) Measuring method for manganese content of manganese nodule

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051019

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151028

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees