JP3734542B2 - Solid acid catalyst and method for producing the same - Google Patents

Solid acid catalyst and method for producing the same Download PDF

Info

Publication number
JP3734542B2
JP3734542B2 JP29064995A JP29064995A JP3734542B2 JP 3734542 B2 JP3734542 B2 JP 3734542B2 JP 29064995 A JP29064995 A JP 29064995A JP 29064995 A JP29064995 A JP 29064995A JP 3734542 B2 JP3734542 B2 JP 3734542B2
Authority
JP
Japan
Prior art keywords
catalyst
sulfuric acid
solid acid
acid
acid catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29064995A
Other languages
Japanese (ja)
Other versions
JPH09103681A (en
Inventor
一志 荒田
誠 日野
憲治 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP29064995A priority Critical patent/JP3734542B2/en
Publication of JPH09103681A publication Critical patent/JPH09103681A/en
Application granted granted Critical
Publication of JP3734542B2 publication Critical patent/JP3734542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体酸触媒及びその製造方法に関し、異性化反応など様々な酸触媒反応に高い活性を有し、かつ劣化の少ない固体酸触媒及びその製造方法に関する。
【0002】
【従来の技術】
化学工業においては、アルキル化反応、アシル化反応、エステル化反応、異性化反応等の酸触媒を必要とする反応が多数知られている。従来この種の反応には、硫酸、塩化アルミニウム、フッ化水素、リン酸、p-トルエンスルホン酸等の酸触媒が使用されている。しかしこれらの酸触媒は金属を腐食させる性質があり、高価な耐食材料の使用あるいは耐食処理を施す必要があった。また通常、反応後の反応物質との分離が困難な上に廃酸処理が必要であり、アルカリ洗浄等の繁雑な工程を経なければならず、環境面にも大きな問題があった。さらに触媒を再利用することも非常に困難であった。
【0003】
かかる状況に鑑み、本発明者等は周期律表第IV族金属水酸化物もしくは水和酸化物を硫酸分含有溶液と接触させた後、350〜800℃で焼成した硫酸分含有金属酸化物が100質量%硫酸(H0(ハメットの酸度関数)は−11.93)より高い酸強度を示すことを見出し、硫酸分含有固体酸触媒の製造方法を提案した(特公昭59−6181号公報)。これらの固体酸触媒は、その高い酸強度ゆえにアルキル化、アシル化、エステル化、異性化等各種の酸触媒反応に対し高い触媒性能を有し、しかも腐食性が低く、反応物質との分離が容易で廃酸処理が不要、触媒の再利用も可能といった長所を有しており、様々な工業的反応において、従来の酸触媒の代替が期待されている。
【0004】
また、このような硫酸分含有固体酸触媒にさらに第VIII族金属を担持することにより、直鎖炭化水素の異性化反応において触媒寿命に優れた触媒が提案されている(特開昭61−263932号公報、特開昭61−153140号公報等)。さらに硫酸分含有ジルコニア触媒に鉄とマンガンの酸化物を含有させることにより、直鎖炭化水素の異性化反応において触媒活性に優れた触媒が提案されている(米国特許第4918041号公報)。
【0005】
【発明が解決しようとする課題】
しかし、上記の製造方法による硫酸分含有固体酸触媒は、容易に脱離可能な硫酸分が多いために、触媒活性の変化が大きかった。また、触媒としての活性も必ずしも十分といえるものではなかった。さらに、脱離した硫酸量が多い場合は、装置の腐食等の問題が発生する懸念があった。
【0006】
本発明者等は硫酸分を含まない触媒として、水酸化ジルコニウムまたは非晶質の酸化ジルコニウムに、タングステンまたはモリブデン化合物の1種以上を当該金属量として1〜40質量%添加または担持し、500〜1000℃の温度で焼成することにより、高い酸強度を有する固体酸触媒を提案した(特開平1−288339号公報)。しかしこれらの触媒は、金属酸化物からなるために反応中の触媒の安定性は高いものの、その触媒としての活性は硫酸分含有触媒に比較して、必ずしも十分と言えるものではなかった。
【0007】
これらの理由から、脱離する硫酸分が少なく、触媒活性の高い固体酸触媒が求められていた。
【0008】
【課題を解決するための手段】
本発明者等は、上記現状に鑑み鋭意研究を進めた結果、水酸化ジルコニウムに鉄を担持して仮焼し、これに硫酸を担持して700℃、24時間焼成した固体酸触媒が、脱離する硫酸が少ないばかりでなく、高い触媒活性を示すことを見出した。さらに検討を進めた結果、周期律表第IV族金属水酸化物もしくは水和酸化物に、周期律表元素から選ばれる1種或いは2種以上の金属塩を担持した後100〜500℃の温度範囲で焼成し、さらに硫酸分を含有させた後650〜800℃の温度範囲で、触媒中の硫黄分が0.2〜0.7質量%になるまで焼成した固体酸触媒が、様々な触媒反応に高い活性を有し、反応中の触媒の安定性に優れていることを見出した。
【0009】
本発明はこれらの知見に基づいてなされたもので、本発明の目的は、異性化などの酸触媒反応に高い活性を示し、反応中の安定性に優れている固体酸触媒を提供することにある。
【0010】
【発明の実施の形態】
本発明は、周期律表第IV族から選ばれる1種或いは2種以上の金属水酸化物もしくは水和酸化物に、周期律表元素から選ばれる1種或いは2種以上の金属塩を担持あるいは混合した後100〜500℃の温度範囲で焼成し、さらに硫酸分を含有させた後650〜800℃の温度範囲で、触媒中の硫黄分が0.2〜0.7質量%になるまで焼成する固体酸触媒及びその製造方法であり、様々な触媒反応に高い活性を有し、反応中の触媒の安定性に優れた固体酸触媒及びその製造方法である。
【0011】
上記第IV族金属としては、チタン、ジルコニウム、ハフニウムが挙げられる。これらの金属は、単独で用いても、2種以上を混合して用いても良い。本発明においては、特にチタン、ジルコニウムが好適に用いられるが、1種のみを選択する場合はジルコニウムが最も好ましい。
【0012】
第IV族金属水酸化物もしくは水和酸化物は、一般には上記第IV族金属の塩や有機金属化合物、例えば、これらの金属のオキシ塩化物、硫酸塩、塩化物、オキシ硫酸塩、アルコラート等を中和もしくは加水分解することにより得ることができる。これらの金属を2種以上混合する場合は、水酸化物、水和酸化物もしくはアルコラート等の状態で混合しても良いし、それぞれを仮焼して含水量の少ない酸化物とした後混合しても良い。複合酸化物を主成分としたい場合は、前者の方法が好適に使用できる。
【0013】
これらの第IV族金属水酸化物もしくは水和酸化物に担持あるいは混合する族金属塩の金属としては、鉄、コバルト、ニッケルが挙げられる。本発明においては、コストと触媒性能の点から鉄が最も好ましい。これらの金属は、金属塩の状態で用いることが好ましく、塩の種類としては特に制限はないが、硝酸塩、硫酸塩、フッ化物、塩化物、臭化物、ヨウ化物、アンモニウム塩等が挙げられる。これらの金属塩は、単独で用いても、2種以上を混合して用いても良い。担持あるいは混合の方法としては特に制限はないが、通常の含浸法や固相での混合法等が好適に用いられる。
【0014】
周期律表第第IV族からから選ばれる1種或いは2種以上の水酸化物もしくは水和酸化物に、周期律表元素からから選ばれる1種或いは2種以上の金属塩を担持あるいは混合した化合物は、焼成により酸化物の状態にして担体とする必要がある。焼成は空気または窒素などのガス雰囲気中で100〜500℃、好ましくは100〜400℃、さらに好ましくは100〜350℃の温度範囲で行う。100℃未満では乾燥が不十分となり、金属塩が均一に分散しなくなることがある。また、500℃を超えると、触媒活性が低下する。
【0015】
このようにして得られた担体に硫酸分を含有させる方法としては、硫酸水溶液あるいは硫安水溶液を含浸する方法、硫安を固相で混合する方法等が挙げられる。この中でも特に、硫酸水溶液に含浸する方法が好適に用いられる。
【0016】
最後に硫酸分を含有させた担体を、必要に応じて乾燥等を行った後、さらに活性化処理を行う。活性化処理は空気または窒素などのガス雰囲気中において、600〜900℃の温度で、特に好ましくは650〜800℃で焼成する。この時、触媒中の硫黄分は1.0質量%以下としなければならない。さもないと、活性の高い触媒が得られない。触媒中の硫黄分は、焼成時間を長くするほど、また焼成温度を高くするほど低くなる。従って、予め試験サンプルを用いて焼成時間と焼成温度を決めておく必要がある。
【0017】
得られた固体酸触媒中の硫黄量は0.2〜0.7質量%である。硫黄量が1.0質量%以上であると反応中での触媒の安定性が必ずしも高くなく、硫酸分の脱離などが起こる恐れがある。
【0018】
さらに、得られた固体酸触媒はゼオライトや粘土化合物、活性炭等といった多孔質物質と混合して用いることもできる。
【0019】
【実施例】
触媒の調製例
(触媒1〜4)
市販のオキシ塩化ジルコニウム100gを蒸留水2lに溶解し、この溶液を室温で撹拌しながら28%アンモニア水を、最終的にpHが8になるまで加えて沈殿を生ぜしめた。生成した水和ジルコニアを濾過し、蒸留水で洗浄し、100℃で24時間乾燥した。この乾燥水和ジルコニアに硝酸鉄(III)水溶液を乾燥水和ジルコニアに対し鉄量が2質量%になるように含浸した。これを100℃で乾燥した後、空気気流中300℃で3時間焼成し、酸化鉄−ジルコニア担体を得た。この酸化鉄−ジルコニア担体2gを0.5M硫酸30mlに浸漬し、過剰の硫酸を濾過により除去した後、室温で乾燥した。乾燥した硫酸処理物を空気気流中700℃で24時間焼成し、触媒1を得た。触媒1中の硫黄量は0.52質量%であった。また同様にして得られた乾燥硫酸処理物の焼成温度及び焼成時間を変えて、触媒2(焼成温度700℃、焼成時間48時間、硫黄量0.39質量%)、触媒3(焼成温度700℃、焼成時間72時間、硫黄量0.31質量%)、触媒4(焼成温度725℃、焼成時間6時間、硫黄量0.61質量%)を得た。
【0020】
(触媒5、6;比較触媒)
触媒1〜4の調製例と同様の方法で、酸化鉄−ジルコニア担体を得た。この酸化鉄−ジルコニア担体2gを0.5M硫酸30mlに浸漬し、過剰の硫酸を濾過により除去した後、室温で乾燥した。乾燥した硫酸処理物を空気気流中650℃で24時間焼成し、触媒5を得た。触媒5中の硫黄量は1.07質量%であった。また同様にして得られた乾燥硫酸処理物の焼成温度及び焼成時間を変えて、触媒6(焼成温度700℃、焼成時間1時間、硫黄量1.82質量%)を得た。
【0021】
(触媒7、8;比較触媒)
市販のオキシ塩化ジルコニウム100gを蒸留水2lに溶解し、この溶液を室温で撹拌しながら28%アンモニア水を、最終的にpHが8になるまで加えて沈殿を生ぜしめた。生成した水和ジルコニアを濾過し、蒸留水で洗浄し、100℃で24時間乾燥した。この乾燥水和ジルコニア2gを0.5M硫酸30mlに浸漬し、過剰の硫酸を濾過により除去した後、室温で乾燥した。乾燥した硫酸処理物を空気気流中650℃で24時間焼成し、触媒7を得た。触媒7中の硫黄量は1.27質量%であった。また同様にして得られた乾燥硫酸処理物を空気中700℃で24時間焼成し、触媒8を得た。触媒8中の硫黄量は0.44質量%であった。
【0022】
(触媒9;比較触媒)
市販のオキシ塩化ジルコニウム100gを蒸留水2lに溶解し、この溶液を室温で撹拌しながら28%アンモニア水を、最終的にpHが8になるまで加えて沈殿を生ぜしめた。生成した水和ジルコニアを濾過し、蒸留水で洗浄し、100℃で24時間乾燥した。この乾燥水和ジルコニアに硝酸鉄(III)水溶液を乾燥水和ジルコニアに対し鉄量が2質量%になるように含浸した。これを100℃で乾燥した後、空気気流中700℃で24時間焼成し、触媒9を得た。
【0023】
(触媒10;比較触媒)
市販のオキシ塩化ジルコニウム100gを蒸留水2lに溶解し、この溶液を室温で撹拌しながら28%アンモニア水を、最終的にpHが8になるまで加えて沈殿を生ぜしめた。生成した水和ジルコニアを濾過し、蒸留水で洗浄し、100℃で24時間乾燥した。この乾燥水和ジルコニアに硝酸鉄(III)水溶液及び硝酸マンガン(II)水溶液を乾燥水和ジルコニアに対し鉄量が1.5質量%、マンガン量が0.5質量%になるように含浸し、さらに硫酸アンモニウム水溶液を乾燥水和ジルコニアに対し硫黄量が4質量%になるように含浸した。生成物を空気気流中725℃で1時間焼成し、触媒10を得た。触媒10中の硫黄量は1.80質量%であった。
【0024】
活性試験
上記により調製した触媒についてブタンの骨格異性化の転化率、選択率を測定することにより触媒活性の比較を行った。
【0025】
触媒活性は、固定床のパルス反応装置(Heキャリアーガス流量;20ml/min、触媒量;0.2g、パルスサイズ0.05ml、反応温度60℃)を用い、反応ガスを直接ガスクロマトグラフィー(カラム;VZ−7、6m、30℃)に導入し、10パルス目の生成ガスを分析することにより行った。触媒は、反応開始前にHe流通下に300℃で1時間加熱処理して用いた。
各触媒を用いた場合の反応の転化率を以下に示す。
触媒1 11.8%
触媒2 14.1%
触媒3 13.9%
触媒4 10.7%
触媒5(比較例) 0.3%
触媒6(比較例) 0.6%
触媒7(比較例) 0.0%
触媒8(比較例) 0.0%
触媒9(比較例) 0.0%
触媒10(比較例)0.9%
なお、触媒1〜6及び触媒10を用いた場合の反応生成物中に占めるイソブタンの選択率はいずれも90%以上であった。
【0026】
【発明の効果】
本発明は、特に異性化などの酸触媒反応に対し高い触媒機能を示し、反応中の触媒の安定性に優れており、腐食性が少なく、反応物質との分離が容易で廃酸処理が不要、また触媒の再利用も可能といった多くの効果を奏するものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid acid catalyst and a method for producing the same, and more particularly to a solid acid catalyst having high activity in various acid catalyzed reactions such as an isomerization reaction and little deterioration, and a method for producing the same.
[0002]
[Prior art]
In the chemical industry, many reactions that require an acid catalyst such as alkylation reaction, acylation reaction, esterification reaction, and isomerization reaction are known. Conventionally, acid catalysts such as sulfuric acid, aluminum chloride, hydrogen fluoride, phosphoric acid, and p-toluenesulfonic acid are used for this type of reaction. However, these acid catalysts have the property of corroding metals, and it was necessary to use expensive corrosion resistant materials or to perform corrosion resistance treatment. In addition, it is usually difficult to separate the reactants after the reaction, and a waste acid treatment is required, which requires a complicated process such as alkali washing, and has a serious environmental problem. Furthermore, it was very difficult to reuse the catalyst.
[0003]
In view of such a situation, the present inventors made contact with a sulfuric acid-containing metal oxide calcined at 350 to 800 ° C. after contacting a Group IV metal hydroxide or hydrated oxide with a sulfuric acid-containing solution. It was found that the acid strength was higher than 100% by mass sulfuric acid (H 0 (Hammett acidity function) was −11.93), and a method for producing a sulfuric acid-containing solid acid catalyst was proposed (Japanese Patent Publication No. 59-6181). . Because of their high acid strength, these solid acid catalysts have high catalytic performance for various acid catalytic reactions such as alkylation, acylation, esterification, and isomerization, and are low in corrosiveness and can be separated from reactants. It has the advantages that it is easy and does not require waste acid treatment, and that the catalyst can be reused, and is expected to replace conventional acid catalysts in various industrial reactions.
[0004]
Further, a catalyst having an excellent catalyst life in the isomerization reaction of a linear hydrocarbon has been proposed by further supporting a Group VIII metal on such a sulfuric acid-containing solid acid catalyst (Japanese Patent Laid-Open No. 61-263932). No., JP 61-153140, etc.). Furthermore, a catalyst having excellent catalytic activity in the isomerization reaction of linear hydrocarbons has been proposed by containing an oxide of iron and manganese in a sulfuric acid-containing zirconia catalyst (US Pat. No. 4,918,041).
[0005]
[Problems to be solved by the invention]
However, since the sulfuric acid-containing solid acid catalyst produced by the above-described production method has a large amount of sulfuric acid that can be easily removed, the catalyst activity greatly changes. Further, the activity as a catalyst is not always sufficient. Furthermore, when the amount of sulfuric acid released is large, there is a concern that problems such as corrosion of the apparatus may occur.
[0006]
The present inventors added or supported 1 to 40% by mass of one or more tungsten or molybdenum compounds as the metal amount on zirconium hydroxide or amorphous zirconium oxide as a catalyst containing no sulfuric acid, A solid acid catalyst having high acid strength was proposed by firing at a temperature of 1000 ° C. (Japanese Patent Laid-Open No. 1-288339). However, since these catalysts are composed of metal oxides, the stability of the catalyst during the reaction is high, but the activity as a catalyst is not necessarily sufficient as compared with the catalyst containing sulfuric acid.
[0007]
For these reasons, there has been a demand for a solid acid catalyst with a small amount of sulfuric acid to be eliminated and a high catalytic activity.
[0008]
[Means for Solving the Problems]
As a result of the diligent research in view of the above situation, the present inventors have found that a solid acid catalyst obtained by calcining iron on zirconium hydroxide and calcining it and carrying sulfuric acid thereon and calcining at 700 ° C. for 24 hours is removed. It has been found that not only is sulfuric acid released, but also shows high catalytic activity. As a result of further investigation, after supporting one or more metal salts selected from iron group elements in the periodic table on Group IV A metal hydroxides or hydrated oxides of the periodic table, 100 to 500 A solid acid catalyst calcined in a temperature range of ℃, further containing a sulfuric acid content and calcined in a temperature range of 650 to 800 ° C. until the sulfur content in the catalyst becomes 0.2 to 0.7 mass%, It has been found that it has high activity in various catalytic reactions and is excellent in the stability of the catalyst during the reaction.
[0009]
The present invention has been made based on these findings, and an object of the present invention is to provide a solid acid catalyst that exhibits high activity in acid-catalyzed reactions such as isomerization and is excellent in stability during the reaction. is there.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention may comprise one or more metal hydroxide or hydrated oxide, one or more metal salts selected from the periodic table iron group element selected from the IV A periodic table Is then calcined in a temperature range of 100 to 500 ° C., and further contains a sulfuric acid content, and then the sulfur content in the catalyst is 0.2 to 0.7 mass% in a temperature range of 650 to 800 ° C. A solid acid catalyst and a method for producing the solid acid catalyst that are calcined to the extent that they have high activity in various catalytic reactions and are excellent in the stability of the catalyst during the reaction.
[0011]
Examples of the first IV A metals, titanium, zirconium or hafnium. These metals may be used alone or in combination of two or more. In the present invention, titanium and zirconium are particularly preferably used, but zirconium is most preferable when only one kind is selected.
[0012]
Group IV A metal hydroxides or hydrated oxides generally include the above Group IV A metal salts and organometallic compounds, such as oxychlorides, sulfates, chlorides, oxysulfates of these metals, It can be obtained by neutralizing or hydrolyzing alcoholate or the like. When two or more of these metals are mixed, they may be mixed in the state of hydroxide, hydrated oxide, alcoholate or the like, or calcined to form an oxide having a low water content and then mixed. May be. When it is desired to use a composite oxide as a main component, the former method can be suitably used.
[0013]
Examples of the metal of the iron group metal salt supported on or mixed with the Group IV A metal hydroxide or hydrated oxide include iron, cobalt, and nickel. In the present invention, iron is most preferable from the viewpoint of cost and catalyst performance. These metals are preferably used in the form of a metal salt, and the type of salt is not particularly limited, and examples thereof include nitrates, sulfates, fluorides, chlorides, bromides, iodides, ammonium salts and the like. These metal salts may be used alone or in combination of two or more. There are no particular restrictions on the loading or mixing method, but a normal impregnation method, a solid phase mixing method, or the like is preferably used.
[0014]
To one or more of the hydroxide or hydrated oxide selected from the periodic table the IV A group, carries one or more metal salts selected Karakara periodic table iron group element Alternatively, the mixed compound needs to be converted into an oxide state by firing and used as a carrier. Firing is performed in a temperature range of 100 to 500 ° C, preferably 100 to 400 ° C, and more preferably 100 to 350 ° C in a gas atmosphere such as air or nitrogen. If it is less than 100 degreeC, drying may become inadequate and a metal salt may not disperse | distribute uniformly. Moreover, when it exceeds 500 degreeC, catalyst activity will fall.
[0015]
Examples of the method for allowing the carrier thus obtained to contain a sulfuric acid content include a method of impregnating a sulfuric acid aqueous solution or an ammonium sulfate aqueous solution, a method of mixing ammonium sulfate in a solid phase, and the like. Of these, the method of impregnating with an aqueous sulfuric acid solution is particularly preferred.
[0016]
Finally, the support containing the sulfuric acid content is dried as necessary, and then further activated. The activation treatment is performed in a gas atmosphere such as air or nitrogen at a temperature of 600 to 900 ° C, particularly preferably 650 to 800 ° C. At this time, the sulfur content in the catalyst must be 1.0% by mass or less. Otherwise, a highly active catalyst cannot be obtained. The sulfur content in the catalyst decreases as the calcination time is increased and the calcination temperature is increased. Therefore, it is necessary to determine the firing time and firing temperature in advance using a test sample.
[0017]
Sulfur content of the obtained solid acid catalyst is 0.2 to 0.7 mass%. If the amount of sulfur is 1.0% by mass or more, the stability of the catalyst during the reaction is not necessarily high, and there is a possibility that the sulfuric acid will be eliminated.
[0018]
Further, the obtained solid acid catalyst can be used by mixing with a porous material such as zeolite, clay compound, activated carbon and the like.
[0019]
【Example】
Catalyst preparation examples (catalysts 1 to 4)
100 g of commercially available zirconium oxychloride was dissolved in 2 liters of distilled water, and 28% aqueous ammonia was added until the pH finally reached 8 while stirring the solution at room temperature to cause precipitation. The produced hydrated zirconia was filtered, washed with distilled water, and dried at 100 ° C. for 24 hours. The dried hydrated zirconia was impregnated with an aqueous iron (III) nitrate solution so that the amount of iron was 2% by mass relative to the dried hydrated zirconia. This was dried at 100 ° C. and then calcined at 300 ° C. for 3 hours in an air stream to obtain an iron oxide-zirconia carrier. 2 g of this iron oxide-zirconia support was immersed in 30 ml of 0.5 M sulfuric acid, excess sulfuric acid was removed by filtration, and then dried at room temperature. The dried sulfuric acid-treated product was calcined at 700 ° C. for 24 hours in an air stream to obtain Catalyst 1. The amount of sulfur in the catalyst 1 was 0.52% by mass. In addition, by changing the calcination temperature and calcination time of the dried sulfuric acid treatment product obtained in the same manner, catalyst 2 (calcination temperature 700 ° C., calcination time 48 hours, sulfur amount 0.39 mass%), catalyst 3 (calcination temperature 700 ° C.) , Calcination time 72 hours, sulfur amount 0.31% by mass) and catalyst 4 (calcination temperature 725 ° C., calcination time 6 hours, sulfur amount 0.61% by mass) were obtained.
[0020]
(Catalyst 5, 6; Comparative catalyst)
An iron oxide-zirconia support was obtained in the same manner as in the preparation examples of catalysts 1 to 4. 2 g of this iron oxide-zirconia carrier was immersed in 30 ml of 0.5 M sulfuric acid, excess sulfuric acid was removed by filtration, and then dried at room temperature. The dried sulfuric acid-treated product was calcined at 650 ° C. for 24 hours in an air stream to obtain catalyst 5. The amount of sulfur in the catalyst 5 was 1.07% by mass. Moreover, the calcination temperature and calcination time of the dried sulfuric acid treatment product obtained similarly were changed, and the catalyst 6 (calcination temperature 700 degreeC, calcination time 1 hour, sulfur amount 1.82 mass%) was obtained.
[0021]
(Catalysts 7 and 8; comparative catalysts)
100 g of commercially available zirconium oxychloride was dissolved in 2 liters of distilled water, and 28% aqueous ammonia was added until the pH finally reached 8 while stirring the solution at room temperature to cause precipitation. The produced hydrated zirconia was filtered, washed with distilled water, and dried at 100 ° C. for 24 hours. 2 g of this dried hydrated zirconia was immersed in 30 ml of 0.5 M sulfuric acid, and excess sulfuric acid was removed by filtration, followed by drying at room temperature. The dried sulfuric acid-treated product was calcined at 650 ° C. for 24 hours in an air stream to obtain catalyst 7. The amount of sulfur in the catalyst 7 was 1.27% by mass. Similarly, the obtained dried sulfuric acid-treated product was calcined at 700 ° C. for 24 hours in the air to obtain catalyst 8. The amount of sulfur in the catalyst 8 was 0.44% by mass.
[0022]
(Catalyst 9; Comparative catalyst)
100 g of commercially available zirconium oxychloride was dissolved in 2 liters of distilled water, and 28% aqueous ammonia was added until the pH finally reached 8 while stirring the solution at room temperature to cause precipitation. The produced hydrated zirconia was filtered, washed with distilled water, and dried at 100 ° C. for 24 hours. The dried hydrated zirconia was impregnated with an aqueous iron (III) nitrate solution so that the amount of iron was 2% by mass relative to the dried hydrated zirconia. This was dried at 100 ° C. and then calcined in an air stream at 700 ° C. for 24 hours to obtain catalyst 9.
[0023]
(Catalyst 10; Comparative catalyst)
Commercially available zirconium oxychloride (100 g) was dissolved in 2 l of distilled water, and 28% aqueous ammonia was added until the pH finally reached 8 while stirring the solution at room temperature to cause precipitation. The produced hydrated zirconia was filtered, washed with distilled water, and dried at 100 ° C. for 24 hours. This dry hydrated zirconia was impregnated with an aqueous iron (III) nitrate solution and an aqueous manganese (II) nitrate solution so that the iron content was 1.5 mass% and the manganese content was 0.5 mass% with respect to the dry hydrated zirconia, Further, an aqueous ammonium sulfate solution was impregnated so that the amount of sulfur was 4% by mass with respect to dry hydrated zirconia. The product was calcined in an air stream at 725 ° C. for 1 hour to obtain catalyst 10. The amount of sulfur in the catalyst 10 was 1.80% by mass.
[0024]
Activity test The catalyst activity was compared by measuring the conversion and selectivity of butane skeletal isomerization of the catalysts prepared as described above.
[0025]
For the catalytic activity, a fixed bed pulse reactor (He carrier gas flow rate: 20 ml / min, catalyst amount: 0.2 g, pulse size 0.05 ml, reaction temperature 60 ° C.) was used, and the reaction gas was directly subjected to gas chromatography (column VZ-7, 6 m, 30 ° C.), and the generated gas at the 10th pulse was analyzed. The catalyst was used after heat treatment at 300 ° C. for 1 hour under He flow before the start of the reaction.
The conversion rate of the reaction when each catalyst is used is shown below.
Catalyst 1 11.8%
Catalyst 2 14.1%
Catalyst 3 13.9%
Catalyst 4 10.7%
Catalyst 5 (comparative example) 0.3%
Catalyst 6 (comparative example) 0.6%
Catalyst 7 (comparative example) 0.0%
Catalyst 8 (comparative example) 0.0%
Catalyst 9 (comparative example) 0.0%
Catalyst 10 (comparative example) 0.9%
Note that the selectivity of isobutane in the reaction product in the case of using the catalysts 1 to 6 and the catalyst 10 was 90% or more.
[0026]
【The invention's effect】
The present invention shows a high catalytic function especially for acid-catalyzed reactions such as isomerization, is excellent in the stability of the catalyst during the reaction, is less corrosive, is easily separated from the reactants, and does not require waste acid treatment In addition, there are many effects that the catalyst can be reused.

Claims (4)

周期律表第IV族から選ばれる1種或いは2種以上の金属水酸化物もしくは水和酸化物に、周期律表元素から選ばれる1種或いは2種以上の金属塩を担持した後100〜500℃の温度範囲で焼成し、さらに硫酸分を含有させた後650〜800℃の温度範囲で、触媒中の硫黄含有量が0.2〜0.7質量%になるまで焼成することを特徴とする固体酸触媒の製造方法。After supporting one or more metal salts selected from iron group elements of the periodic table on one or more metal hydroxides or hydrated oxides selected from group A of the periodic table IV Firing in a temperature range of 100 to 500 ° C., and further containing a sulfuric acid content, followed by firing in a temperature range of 650 to 800 ° C. until the sulfur content in the catalyst becomes 0.2 to 0.7 mass%. A process for producing a solid acid catalyst, characterized in that 請求項1の製造方法により得られる固体酸触媒。  The solid acid catalyst obtained by the manufacturing method of Claim 1. 請求項1記載の第IVA族金属がチタン及びジルコニウムであることを特徴とする請求項1記載の固体酸触媒の製造方法2. The process for producing a solid acid catalyst according to claim 1, wherein the Group IVA metal according to claim 1 is titanium and zirconium. 請求項1記載の族金属が鉄であることを特徴とする請求項1記載の固体酸触媒の製造方法。The method for producing a solid acid catalyst according to claim 1, wherein the iron group metal according to claim 1 is iron.
JP29064995A 1995-10-13 1995-10-13 Solid acid catalyst and method for producing the same Expired - Fee Related JP3734542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29064995A JP3734542B2 (en) 1995-10-13 1995-10-13 Solid acid catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29064995A JP3734542B2 (en) 1995-10-13 1995-10-13 Solid acid catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09103681A JPH09103681A (en) 1997-04-22
JP3734542B2 true JP3734542B2 (en) 2006-01-11

Family

ID=17758708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29064995A Expired - Fee Related JP3734542B2 (en) 1995-10-13 1995-10-13 Solid acid catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP3734542B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035581A1 (en) * 1998-12-17 2000-06-22 Petroleum Energy Center Catalyst for hydrodesulfurization isomerization of light hydrocarbon oil, method for preparation thereof, and method for hydrodesulfurization isomerization of light hydrocarbon oil using the catalyst
US8168562B2 (en) * 2006-02-02 2012-05-01 Lyondell Chemical Technology, L.P. Preparation of palladium-gold catalysts
KR101044393B1 (en) * 2007-12-27 2011-06-27 주식회사 엘지화학 Catalyst composition comprising zirconium compounds for esterfication reaction and method for preparing ester compounds
TW201347845A (en) 2012-03-13 2013-12-01 Daiki Axis Co Ltd Solid acid catalyst, method for manufacturing same, and method for manufacturing a fatty acid alkyl ester using same

Also Published As

Publication number Publication date
JPH09103681A (en) 1997-04-22

Similar Documents

Publication Publication Date Title
EP0174836B1 (en) Solid strong acid catalyst
US5175136A (en) Monolithic catalysts for conversion of sulfur dioxide to sulfur trioxide
JPH02115042A (en) Hydrocarbon converting catalyst and conversion method using the same
CA2062699A1 (en) Isomerization of paraffins with strong solid acid catalyst and adamantane
US5264200A (en) Monolithic catalysts for conversion of sulfur dioxide to sulfur trioxide
JPH0629199B2 (en) Method for isomerizing hydrocarbons
WO2019095985A1 (en) Catalyst for synthesis of aromatic hydrocarbons and preparation method therefor
JP3734542B2 (en) Solid acid catalyst and method for producing the same
JP3989078B2 (en) Method for producing solid acid catalyst
JPH0529504B2 (en)
JP2610490B2 (en) Solid acid catalyst for alkylation reaction
US5705723A (en) Hydrogenation catalyst composition and a hydrogenation process
US5773383A (en) Method of making solid acid catalysts with metal cores
JPH0529506B2 (en)
JPH0529503B2 (en)
JP3568372B2 (en) Method for producing solid acid catalyst
JPH0529505B2 (en)
EP0616847B1 (en) Solid acid catalyst for paraffin conversion and process for paraffin conversion using the same
JPH06134305A (en) Heat resistant catalyst and method for using the same
JPH0975735A (en) Production of solid acid catalyst
JP2992972B2 (en) Method for producing solid acid catalyst
JPH09290160A (en) Catalyst for isomerizing soft paraffin and its usage
JP3517696B2 (en) Solid acid catalyst and method for producing the same
JP7060994B2 (en) Manufacturing method of p-xylene
JPH11114425A (en) Catalyst for paraffin isomerization and isomerization method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees