JP3568372B2 - Method for producing solid acid catalyst - Google Patents

Method for producing solid acid catalyst Download PDF

Info

Publication number
JP3568372B2
JP3568372B2 JP24352897A JP24352897A JP3568372B2 JP 3568372 B2 JP3568372 B2 JP 3568372B2 JP 24352897 A JP24352897 A JP 24352897A JP 24352897 A JP24352897 A JP 24352897A JP 3568372 B2 JP3568372 B2 JP 3568372B2
Authority
JP
Japan
Prior art keywords
catalyst
zirconia
group
acid
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24352897A
Other languages
Japanese (ja)
Other versions
JPH1157478A (en
Inventor
憲治 松沢
和弘 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP24352897A priority Critical patent/JP3568372B2/en
Publication of JPH1157478A publication Critical patent/JPH1157478A/en
Application granted granted Critical
Publication of JP3568372B2 publication Critical patent/JP3568372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、酸触媒を必要とする反応に有用な固体酸触媒、特に、炭化水素の異性化反応に高い活性を有し、取り扱いが容易でかつ反応中の触媒の安定性に優れた固体酸触媒の製造方法に関する。
【0002】
【従来の技術】
化学工業においては、アルキル化反応、エステル化反応、異性化反応等の酸触媒を必要とする反応が多数知られている。従来この種の反応には、硫酸、塩化アルミニウム、フッ化水素、リン酸、パラトルエンスルホン酸等の酸触媒が使用されている。しかしこれらの酸触媒は金属を腐食させる性質があり、高価な耐食材料を使用するかあるいは耐食処理を施す必要があった。また通常、反応後の反応物質との分離が困難な上に廃酸処理が必要であり、アルカリ洗浄などの煩雑な工程を経なければならず、環境面にも大きな問題があった。さらに触媒を再利用することも非常に困難であった。
【0003】
このような問題に対して、周期律表第IV族金属水酸化物もしくは水和酸化物を硫酸分含有溶液と接触させた後、350〜800℃で焼成した硫酸根含有固体酸触媒が提案された(特公昭59−6181号公報)。この固体酸触媒は、100%硫酸(ハメットの酸度関数H0は−11.93)より強い酸強度を示す。これらの固体酸触媒は、その強い酸強度故に様々な酸触媒反応に対し高い触媒性能を有し、しかも腐食性が低く、反応物質との分離が容易で廃酸処理も不要で、触媒の再利用も可能といった長所を有しており、様々な工業的反応において、従来の酸触媒の代替が期待されている。
【0004】
また、周期律表第IV族以外の元素でも、硫酸分を含有させた酸化物が100%硫酸よりも強い酸強度を示すことは知られている。例えば、アルミニウムの水酸化物もしくは酸化物に硫酸分含有化合物を添加し、それを焼成して得られる固体酸触媒は、100%硫酸よりも強い酸強度を示す(特開平5−96171号報、荒田、Trends in Physical Chemistry 2巻、1項(1991年))。アルミナの場合は、一旦700℃程度でか焼し結晶化させたものを硫酸処理する方法が最も活性が高いと報告されている。また、これらの固体酸触媒に水素化能を有する金属を添加した触媒も、良好な炭化水素異性化活性を示すことは自明である。しかしこれらの酸強度は硫酸ジルコニア系固体酸触媒に比べて弱いことも明らかになっている。
【0005】
上記の触媒に白金族金属を担持させ、異性化を主な目的とした触媒の製造法が特公平5−29503号公報、特公平5−29504号公報、特公平5−29505号公報及び特公平5−29506号公報に開示されている。これらは、IV族金属又はIII族金属の水酸化物、硫酸根を含有する処理剤、VIII族金属を主な原料とする硫酸根含有固体酸触媒の製造方法である。得られる触媒は、直鎖炭化水素の異性化反応、炭化水素のアルキル化反応等において触媒安定性に優れ、それまでの固体酸触媒よりも分解反応が少ない触媒であるとされている。しかしながらこれら硫酸分含有固体酸触媒は粉体で製造されており、通常の工業的反応装置、たとえば固定床流通式反応器に充填して使用する場合適当な大きさに成形する必要がある。
【0006】
特開平9−38494号公報には硫酸根処理金属酸化物触媒成形体の製造法が開示されている。これは、金属水酸化物とベーマイトを用いて成形し、成形体を300℃以上500℃以下の温度で前焼成した後、硫酸根処理を行うことを特徴とするアルミナを結合剤とする触媒成形方法である。しかしながらその触媒活性はベーマイトを加えて成形したために、ベーマイトを加えない粉体触媒に比べて活性が低下している。このように、アルミナを加えた触媒は加えないものに比べて活性が低下するとされている。また、白金担持硫酸ジルコニア触媒粉末をベーマイト粉末と混合し、水を添加して練った後成形し、焼成した触媒は、さらに大幅に触媒活性が低下することも開示されている。
【0007】
【発明が解決しようとする課題】
本発明は上記問題点を解決するためになされたもので、硫酸分含有する固体酸触媒の成形物でありながら、粉体触媒と同等以上の高い活性を有する成形された固体酸触媒の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者が鋭意検討した結果、水酸化ジルコニウムとアルミナ水和物(擬ベーマイト)を混練して成形し、600℃で焼成した場合、触媒の活性発現に好ましい正方晶のジルコニアが容易に生成し、この焼成された成形体に硫酸分などを担持することにより粉末状ジルコニアの固体酸触媒と同等以上の炭化水素異性化活性を有することを見出し、本発明を完成させた。
【0009】
すなわち、本発明による固体酸触媒の製造方法は、(a)ジルコニウムの水酸化物及び/又は水和酸化物とベーマイト構造を有するアルミニウムの水和酸化物を混練して成形体に成形し、(b) その成形体を正方晶ジルコニアが得られる温度で焼成し、その後、(c) 成形体に硫酸分含有化合物を担持して、300℃より高く700℃より低い温度で焼成するものであって、(c) 成形体に硫酸分含有化合物を担持する際に、第8族、第9族、第10族から選ばれる1種以上の金属化合物を担持すること、または、(a) ジルコニウムの水酸化物及び/又は水和酸化物とベーマイト構造を有するアルミニウムの水和酸化物を混練する際に、第8族、第9族、第10族から選ばれる1種以上の金属化合物を混練するものである
【0011】
【発明の作用・効果】
本発明によれば、高い触媒活性が得られる正方晶ジルコニアの生成と、焼成された成形体への硫酸分による強い酸点の形成を別個に行うことができる。これが、本発明の硫酸分含有固体酸触媒の高い活性の発現をもたらしていると考えられる。同時に、ベーマイト構造を有するアルミニウムの水和酸化物の添加により、触媒として取り扱いが容易な成形体が得られる。
【0012】
本発明の触媒は、特に炭化水素異性化反応用成形固体酸触媒として高い触媒活性を有するばかりでなく、成形触媒の機械的強度も強い。また、成形品のため、反応物質との分離が容易で触媒の再利用も可能といった格別の効果を奏するものである。また、工業的に適応が容易な混練法による製造であるため、工業上の利用価値が高い。
【0013】
【発明の実施の形態】
ベーマイト構造を有するアルミニウムの水和酸化物が、いわゆる擬ベーマイトであることが、高い触媒活性と十分な圧壊強度を得るために好ましい。これが、例えばα−アルミナやγ−アルミナを用いると圧壊強度が低くなる上に触媒に単斜晶ジルコニアが混入するようになり、触媒活性が低下する。触媒中のジルコニアとアルミナの合計量に占めるアルミナの含有量は、10〜90質量%、特には20〜80質量%が好ましい。10質量%を切ると、アルミニウムの水和酸化物の添加によるジルコニアの正方晶安定化効果が弱まるばかりでなく、成形触媒の圧壊強度が弱まる。また、90質量%を超えると、活性が低下することがある。アルミニウム水和酸化物は、通常粉体、好ましくは、平均粒径0.5〜50μm、特には0.5〜20μmの形状を用いることが、触媒の圧壊強度や比表面積の向上のために好ましい。
【0014】
ジルコニウムの水酸化物もしくは水和酸化物はどのように製造しても構わないが、一般にはこれらの塩や有機金属化合物、例えばオキシ塩化物、アルコラート、塩化物、硫酸塩、硝酸塩、オキシ硫酸塩等を中和もしくは加水分解することにより得ることができる。さらにこれらの水酸化物及び/又は水和酸化物は、複合金属水酸化物及び/又は複合金属水和酸化物として用いても良い。ジルコニウムの水酸化物及び/又は水和酸化物及び/又は塩には、他の金属の水酸化物及び/又は水和酸化物及び/又は塩を加えても構わない。他の金属としては、チタン、ハフニウム、バナジウム、クロム、マンガン、鉄、ケイ素、錫、アルミニウム、ガリウム、ホウ素が好適に用いられる。これら他の金属の化合物は複合金属化合物でも構わない。触媒中のジルコニアとアルミナの合計量に占めるジルコニア含有量は、10〜90質量%、特には20〜80質量%が好まい。10質量%を切ると活性が低下してしまう。また、90質量%を超えるとアルミニウムの水和酸化物の添加による活性向上効果が弱まり、ジルコニアに単斜晶が混入してくることがあるばかりでなく、成形触媒の圧壊強度が弱まる。ジルコニウムの水酸化物もしくは水和酸化物をX線、電子線の回折により明確な結晶構造を持たない無定形とすることが、触媒の圧壊強度が向上し、また、ジルコニアが安定化しやすいことから好ましい。ジルコニウムの水酸化物もしくは水和酸化物は、通常粉体、好ましくは、平均粒径0.5〜50μm、特には0.5〜20μmの形状を用いことが、触媒の圧壊強度や比表面積の向上のために好ましい。
【0015】
次に混練であるが、これは一般に触媒調製に用いられている混練機であればどのようなものを用いても構わないが、通常は原料に水を加え投入し、攪拌羽根で混合するような方法が好適に用いられる。混練の際には通常水を加えるが、加える液体としては、エタノール、イソプロパノール等のアルコール、アセトン、メチルエチルケトン、メチルイソプチルケトン等のケトンでも良い。
【0016】
また、同様に本発明の触媒性状が維持される範囲内であれば、硝酸などの酸やアンモニアなどの塩基、有機化合物、バインダー、セラミックス繊維、界面活性剤、ゼオライト等を加えて混練しても構わない。しかし、本発明の触媒は混練時に特にこのような添加物を加えなくても十分な強度と高い触媒活性を有する。
【0017】
混練後の成形は、スクリュー式押出機等公知の装置を用いることができる。特に、ペレット状、ハニカム状等の任意の形状に効率よく成形できるので、スクリュー式押出機等を用いた押し出し成形が好ましく用いられる。成形物のサイズには特に制限はないが、通常、その断面の長さが0.5mm以上の大きさに成形される。例えば円柱状のペレットであれば、通常直径0.5〜10mm、長さ0.5〜15mm程度のものを容易に得ることができる。焼成後の圧壊強度は混練による影響が大きいため、上記混練時の水分、混練時間、電力量などを予め決定しておくことが望ましい。
【0018】
このようにしてジルコニウムの水酸化物及び/又は水和酸化物、ベーマイト構造を有するアルミニウムの水和酸化物などを混練し成形を行った後、空気又は窒素等のガス雰囲気中において焼成し、ジルコニアを結晶化させる。通常、焼成温度を500℃より高く800℃より低い温度、焼成時間を0.5〜10時間とすることが、単斜晶ジルコニアの発生が少なく、ほとんどが正方晶ジルコニアとなるので好ましい。一部に単斜晶構造が存在してもよい。この結晶構造は、X線回折により確認できる。具体的には、CuKα線による、2θ=28.2°と2θ=30.2°のX線回折ピーク面積比(以下S28.2/S30.2比と略記する。S28.2は2θ=28.2°における単斜晶ジルコニアのピークの面積、S30.2は2θ=30.2°における正方晶ジルコニアのピークの面積)が、1.0以下、好ましくは、0.05以下である。単斜晶構造がほとんど存在していない方が、高い触媒活性が得られる。焼成温度が高すぎると、酸化ジルコニウムの結晶構造中の単斜晶の割合が増え、2θ=28.2゜と2θ=30.2゜のピーク面積比が1を越えてしまう場合があり、触媒活性も低下するため好ましくない。また、焼成温度が低すぎると酸化ジルコニウムが結晶化せず、触媒活性も低下するため好ましくない。通常、成形後、焼成前に、80℃〜200℃の温度での乾燥を行う。
【0019】
硫酸分含有化合物としては硫酸、硫酸アンモニウム、亜硫酸、亜硫酸アンモニウム、塩化チオニル等が挙げられるが、硫酸アンモニウム、亜硫酸アンモニウムが製造装置の腐食性も低く好ましい。硫酸分含有化合物はそのままでも、又は水溶液のような溶液として用いても構わない。さらに溶液の濃度に関しても特に限定はない。硫酸分含有化合物の添加量は、最終的に得られる固体酸触媒中に占める硫黄量が0.5〜10%となるように添加することが好ましい。添加方法にも特に限定はないが、スプレー、浸漬等による含浸法が好適に用いられる。
【0020】
固体酸触媒の用途によっては、第8族、第9族、第10族から選ばれる1種以上の金属化合物を触媒に加えることが好ましい。第8族、第9族、第10族から選ばれる元素としては、特に白金、パラジウム、ルテニウム等が異性化反応用の触媒として好適に用いられる。第8族、第9族、第10族から選ばれる1種以上の金属は、金属そのものよりも化合物の形態になっているものを用いる方が好ましい。これらの金属化合物は、無水物としても、水和物としても用いることができる。さらにこれらの金属化合物は1種でも、2種以上を混合したものでも良い。これらの金属化合物は、(c) 成形体に硫酸分含有化合物を担持する際に担持すること、または、(a) 原料を混練する際に金属化合物を混練することで触媒に好ましく加えることができる。
【0021】
これらの金属化合物の担持法には特に制限はないが、スプレー、浸漬等による含浸法や、イオン交換法等が好適に用いられる。第8族、第9族、第10族から選ばれる1種以上の金属化合物と硫酸分含有化合物の担持は、どちらを先に行っても構わない。また混合溶液を用いて同時に行う方法も好適に用いられる。また、これら化合物の担持と担持の間、或いは担持後には、80℃〜200℃の温度での乾燥や、300℃より高く700℃より低い温度での0.5〜10時間の焼成を行っても差し支えない。さらに水素による還元処理を行っても構わない。これら金属成分の添加量は、最終的に得られる固体酸触媒中に占める第8族、第9族、第10族元素の合計量が、0.05〜10重量%となるように添加することが好ましい。
【0022】
最後に300℃より高く700℃より低い温度で焼成して目的の固体酸触媒を得る。焼成時間は通常0.5〜10時間である。
【0023】
また、第8族、第9族、第10族から選ばれる1種以上の金属化合物の担持は、前記製造法中の混練の際に金属化合物を混合して行うこともできる。この場合には混練し成形を行った後、空気又は窒素等のガス雰囲気中において焼成し、ジルコニアを結晶化させた後、硫酸分含有化合物を加えて乾燥後、300℃より高く700℃より低い温度で焼成して、目的の固体酸触媒を得る。
【0024】
このようにして得られた固体酸触媒は、ジルコニアとアルミナを主成分としている。この触媒中に占めるジルコニアとアルミナの合計量は、触媒活性、成形物の強度の点等から70質量%以上、より好ましくは80質量%以上になるようにすることが好ましい。またその成形強度は直径1.5mmの円柱ペレットの側面圧壊強度として3kg以上であることが実用上好ましい。圧壊強度は混練による影響が大きいため、上記混練時の水分、混練時間、電力量などを予め決定しておくことが望ましい。
【0025】
本発明で得られた固体酸触媒は100%硫酸より高い酸強度、酸強度Ho(ハメットの酸度関数)が−11.93より強い酸性を示す固体超強酸である。異性化、アルキル化、アシル化、エステル化、エーテル化、アセタール化、水和、脱水、重合、分解、ニトロ化等様々な酸触媒反応用触媒として利用できるが、特には、炭化水素の異性化に好ましく用いられる。また、この触媒の製造方法の大きな特徴は、ジルコニアの結晶化をもたらす焼成と、硫酸分による強い酸点の形成をもたらす焼成を別個にした点にある。すなわち、その高い酸強度と擬ベーマイトの添加効果により、特に炭化水素の異性化反応に優れた触媒性能を示す。特に成形品として使用できる十分な強度を有するため、触媒の取り扱いが容易で固定床の反応にも使用できる。
【0026】
本発明の触媒は、炭化水素化合物の異性化に好ましく用いられる。特に、炭化水素化合物として沸点範囲−20℃〜110℃程度の石油留分にある直鎖炭化水素を、水素の存在下で分岐炭化水素に異性化する触媒に好ましく用いられる。この場合の異性化条件としては、反応温度:140〜240℃、反応圧力:1〜50kgf/cm、LHSV:0.2〜10hr−1、水素/原料比:0.2〜10mol/molの範囲が好ましい。
【実施例】
【0027】
以下、実施例により詳細に説明する。まず、評価方法を説明する。
【0028】
[X線回折による結晶種比の算出方法]
X線回折チャートからジルコニアの正方晶と単斜晶のピーク分離を行い、2θ=28.2°における単斜晶ジルコニアのピークの面積と、2θ=30.2°における正方晶ジルコニアのピークの面積の比(S28.2/S30.2比)を算出した。なお、S28.2/S30.2比が0.02以下では、単斜晶ピークが不明瞭となり検出不能であった。

Figure 0003568372
【0029】
[平均粒径の測定方法]
日機装(株) MICROTRAC粒度分析計を用い、湿式測定法で測定した。これは、流れる粉体群にレーザ光を照射し、その前方散乱光により粒度分析を行うものである。
【0030】
(実施例1) 触媒の調製例
MEL社製水酸化ジルコニウムXZO631/01を乾燥させ、平均粒径1.2μmの乾燥水和ジルコニアを得た。この乾燥水和ジルコニア粉300gに平均粒径10μmの水和アルミナ(擬ベーマイト)粉300gを加え、攪拌羽根のついた混練機で水を加えながら2時間混練を行った。得られた混練物を直径1.6mmの円形の穴の開いた押出機より押し出し、乾燥後600℃で2時間焼成してジルコニアアルミナ担体を得た。この担体中のジルコニアの結晶種は正方晶で、単斜晶は全く認められなかった。この担体50gに白金0.25gを含有する塩化白金酸水溶液125mlを添加した。これを乾燥後、0.5mol/l硫酸水溶液125mlを添加し、乾燥後、600℃で2時間焼成し、白金含有硫酸ジルコニアアルミナ触媒(触媒A)を得た。
【0031】
(実施例2) 触媒の調製例
実施例1と同様にして得たジルコニアアルミナ担体50gに白金0.25gと硫酸6.13gを含有する塩化白金酸と硫酸の混合水溶液125mlを添加した。これを乾燥後、0.5mol/l硫酸水溶液125mlを添加し、乾燥後、600℃で2時間焼成し、白金含有硫酸ジルコニアアルミナ触媒(触媒B)を得た。
【0032】
(実施例3) 触媒の調製例
実施例1と同様にして得たジルコニアアルミナ担体50gに白金0.25gを含有する塩化白金酸水溶液125mlを添加した。これを乾燥後、0.5mol/l硫酸水溶液125mlを添加し、乾燥後、550℃で2時間焼成し、白金含有硫酸ジルコニアアルミナ触媒(触媒C)を得た。
【0033】
(実施例4) 触媒の調製例
実施例1と同様にして得たジルコニアアルミナ担体50gに白金0.25gを含有する塩化白金酸と塩酸の混合水溶液を添加した。これを乾燥後、500℃で2時間焼成して白金含有ジルコニアアルミナ担体を得た。この担体に0.5mol/l硫酸水溶液750mlを加えて接触させた後過剰硫酸を濾過により除去し、乾燥後、600℃で2時間焼成し、白金含有硫酸ジルコニアアルミナ触媒(触媒D)を得た。
【0034】
(実施例5) 触媒の調製例
実施例4と同様にして得た白金含有ジルコニアアルミナ担体50gに0.5mol/l硫酸水溶液750mlを加えて接触させた後過剰硫酸を濾過により除去し、乾燥後、500℃で2時間焼成し、白金含有硫酸ジルコニアアルミナ触媒(触媒E)を得た。
【0035】
(比較例1) 触媒の調製例
実施例1と同じ乾燥水和ジルコニア粉300gに水和アルミナ(擬ベーマイト)粉300gを加え、攪拌羽根のついた混練機で水を加えながら2時間混練を行った。得られた混練物を直径1.6mmの円形の穴の開いた押出機より押し出し、乾燥後400℃で2時間焼成してジルコニアアルミナ担体を得た。この担体は非晶質であり、正方晶、単斜晶のジルコニアは認められなかった。この担体50gに白金0.25gを含有する塩化白金酸水溶液125mlを添加した。これを乾燥後、0.5mol/l硫酸水溶液125mlを添加し、乾燥後、600℃で2時間焼成し、白金含有硫酸ジルコニアアルミナ触媒(触媒F)を得た。
【0036】
(比較例2) 触媒の調製例
比較例1と同様の方法で調製したジルコニアアルミナ担体50gに白金0.25gを含有する塩化白金酸水溶液125mlを添加した。これを乾燥後、0.5mol/l硫酸水溶液125mlを添加し、乾燥後、500℃で2時間焼成し、白金含有硫酸ジルコニアアルミナ触媒(触媒G)を得た。
【0037】
(比較例3) 触媒の調製例
実施例1と同様の方法で調製した乾燥水和ジルコニア粉50gに、白金0.25gを含有する塩化白金酸水溶液125mlを添加した。これを乾燥後、0.5mol/l硫酸水溶液125mlを添加し、乾燥後、600℃で2時間焼成して白金含有硫酸ジルコニア触媒(触媒H)を得た。
【0038】
異性化反応例(1)
16〜24meshの粒に成形した白金含有触媒4ccを、長さ50cm、内径1cmの固定床流通式反応器中でn−ヘキサンの異性化反応を行った。反応条件は次の通りである。
水素還元(触媒前処理)条件:300℃、1時間
反応温度:200℃、反応圧力(ゲージ圧):10kgf/cm
LHSV=1.5hr−11、H/Oil:5(mol/mol)
【0039】
通油開始1.5時間後の反応管出口組成をガスクロマトグラフィーにより分析した結果を以下に示す。
n−ヘキサン転化率
触媒A(実施例):82%
触媒B(実施例):82%
触媒C(実施例):85%
触媒D(実施例):80%
触媒F(比較例):65%
触媒H(比較例):76%
【0040】
異性化反応例(2)
16〜24meshの粒に成形した白金含有触媒4ccを、長さ50cm、内径1cmの固定床流通式反応器中でパラフィン混合溶液(n−ヘキサン70質量%、n−ヘプタン15質量%、シクロヘキサン15質量%)の異性化反応を行った。反応条件は次の通りである。
水素還元(触媒前処理)条件:300℃、1時間
反応温度:220℃、反応圧力(ゲージ圧):4.8kgf/cm
LHSV=5.0hr−1、H/Oil:5(mol/mol)
【0041】
通油開始1.5時間後の反応管出口組成をガスクロマトグラフィーにより分析した結果を以下に示す。
n−ヘキサン転化率
触媒E(実施例):55%
触媒G(比較例):33%
触媒H(比較例):50%
n−ヘキサン転化率=[1−(生成油中に占めるn−ヘキサンの質量%/原料油中に占めるn−ヘキサンの重量%)]×100(%)
【0042】
本発明の触媒は、ジルコニアとアルミナを組み合わせることにより、驚くべきことに粉体の白金含有硫酸ジルコニア固体酸触媒(触媒H)と同等以上の活性を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid acid catalyst useful for a reaction requiring an acid catalyst, particularly a solid acid having high activity in the isomerization reaction of hydrocarbons, easy handling, and excellent stability of the catalyst during the reaction. The present invention relates to a method for producing a catalyst.
[0002]
[Prior art]
In the chemical industry, many reactions requiring an acid catalyst such as an alkylation reaction, an esterification reaction, and an isomerization reaction are known. Conventionally, acid catalysts such as sulfuric acid, aluminum chloride, hydrogen fluoride, phosphoric acid, and paratoluenesulfonic acid have been used in this type of reaction. However, these acid catalysts have a property of corroding metals, so that it is necessary to use expensive corrosion-resistant materials or to perform a corrosion-resistant treatment. In addition, it is usually difficult to separate the reactants from the reactants after the reaction, and it is necessary to perform a waste acid treatment, which requires a complicated process such as alkali washing, which has a serious environmental problem. It was also very difficult to reuse the catalyst.
[0003]
In order to solve such a problem, a sulfate group-containing solid acid catalyst has been proposed in which a Group IV metal hydroxide or hydrated oxide is brought into contact with a sulfuric acid-containing solution and then calcined at 350 to 800 ° C. (Japanese Patent Publication No. 59-6181). This solid acid catalyst has a higher acid strength than 100% sulfuric acid (Hammet's acidity function H0 is -11.93). These solid acid catalysts have high catalytic performance for various acid catalyzed reactions due to their strong acid strength, are low in corrosiveness, can be easily separated from reactants, do not require waste acid treatment, and can be used for catalyst regeneration. It has the advantage that it can be used, and is expected to replace conventional acid catalysts in various industrial reactions.
[0004]
It is also known that, even for elements other than Group IV of the periodic table, oxides containing sulfuric acid show an acid strength stronger than 100% sulfuric acid. For example, a solid acid catalyst obtained by adding a sulfuric acid-containing compound to an aluminum hydroxide or oxide and calcining the compound shows a stronger acid strength than 100% sulfuric acid (JP-A-5-96171, Arata, Trends in Physical Chemistry Volume 2, Item 1, (1991)). In the case of alumina, it is reported that a method of once calcining and crystallizing at about 700 ° C. and treating with sulfuric acid has the highest activity. It is obvious that catalysts obtained by adding a metal having hydrogenation ability to these solid acid catalysts also exhibit good hydrocarbon isomerization activity. However, it has also been found that the acid strength of these is weaker than that of the zirconia sulfate solid acid catalyst.
[0005]
Japanese Patent Publication Nos. 5-29503, 5-29504, 5-29505 and 5-29505 disclose a method for producing a catalyst mainly supporting isomerization by carrying a platinum group metal on the above catalyst. It is disclosed in JP-A-5-29506. These are a method for producing a group IV metal or group III metal hydroxide, a treating agent containing a sulfate group, and a sulfate group-containing solid acid catalyst using a group VIII metal as a main raw material. The resulting catalyst is said to be a catalyst having excellent catalyst stability in isomerization reactions of linear hydrocarbons, alkylation reactions of hydrocarbons, and the like, and having less decomposition reaction than conventional solid acid catalysts. However, these sulfuric acid-containing solid acid catalysts are produced in powder form and need to be formed into a suitable size when used in a conventional industrial reactor, for example, a fixed bed flow reactor.
[0006]
Japanese Patent Application Laid-Open No. Hei 9-38494 discloses a method for producing a sulfated metal oxide catalyst molded article. This is a catalyst molding using alumina as a binder, which is performed by molding using a metal hydroxide and boehmite, pre-firing the molded body at a temperature of 300 ° C. or more and 500 ° C. or less, and then performing a sulfate treatment. Is the way. However, since the catalyst activity was formed by adding boehmite, the activity was lower than that of the powder catalyst without adding boehmite. Thus, the activity is said to be lower than that of the catalyst without alumina. It is also disclosed that a catalyst obtained by mixing a platinum-supported zirconia sulfate catalyst powder with a boehmite powder, adding water, kneading the mixture, and then molding and calcining the mixture further greatly reduces the catalytic activity.
[0007]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above problems, and is a method for producing a molded solid acid catalyst having a high activity equivalent to or higher than that of a powder catalyst while being a molded product of a solid acid catalyst containing sulfuric acid. Is to provide.
[0008]
[Means for Solving the Problems]
As a result of the inventor's intensive studies, it was found that when zirconium hydroxide and alumina hydrate (pseudo-boehmite) were kneaded and molded, and calcined at 600 ° C., tetragonal zirconia, which is preferable for exhibiting the activity of the catalyst, was easily formed. The inventors have found that, by supporting a sulfuric acid component or the like on the calcined molded body, the molded body has a hydrocarbon isomerization activity equal to or higher than that of a solid acid catalyst of powdered zirconia, and completed the present invention.
[0009]
That is, the method for producing a solid acid catalyst according to the present invention comprises (a) kneading a hydroxide and / or a hydrated oxide of zirconium and a hydrated oxide of aluminum having a boehmite structure to form a molded body, b) firing the molded article thereof at a temperature tetragonal zirconia is obtained, then there is then burned in (c) carrying a sulfureous component-containing compound in the molded body, a temperature lower than 700 ° C. higher than 300 ° C. (C) supporting at least one metal compound selected from Group 8, Group 9, and Group 10 when supporting a sulfuric acid-containing compound on the molded body; or (a) water of zirconium; When kneading an oxide and / or a hydrated oxide and a hydrated oxide of aluminum having a boehmite structure, kneading at least one metal compound selected from Group 8, Group 9, and Group 10 It is .
[0011]
[Action and Effect of the Invention]
ADVANTAGE OF THE INVENTION According to this invention, the production | generation of the tetragonal zirconia which can obtain high catalytic activity, and the formation of the strong acid point by the sulfuric acid content in the sintered compact can be performed separately. This is considered to have resulted in the expression of high activity of the sulfuric acid-containing solid acid catalyst of the present invention. At the same time, by adding a hydrated aluminum oxide having a boehmite structure, a molded body that can be easily handled as a catalyst is obtained.
[0012]
The catalyst of the present invention not only has high catalytic activity as a molded solid acid catalyst particularly for a hydrocarbon isomerization reaction, but also has a high mechanical strength of the molded catalyst. Further, since the molded article is used, it has a special effect that the separation from the reactants is easy and the catalyst can be reused. Further, since the production is carried out by a kneading method which is industrially easy to adapt, it has high industrial utility value.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
It is preferable that the aluminum hydrated oxide having a boehmite structure is so-called pseudo-boehmite in order to obtain high catalytic activity and sufficient crushing strength. However, when α-alumina or γ-alumina is used, for example, the crushing strength is lowered and monoclinic zirconia is mixed into the catalyst, so that the catalytic activity is reduced. The content of alumina in the total amount of zirconia and alumina in the catalyst is preferably from 10 to 90% by mass, particularly preferably from 20 to 80% by mass. If the content is less than 10% by mass, not only the effect of adding the hydrated oxide of aluminum on the tetragonal crystal of zirconia is reduced, but also the crushing strength of the molded catalyst is reduced. On the other hand, if it exceeds 90% by mass, the activity may decrease. Aluminum hydrated oxide is usually a powder, preferably having a mean particle size of 0.5 to 50 μm, particularly preferably 0.5 to 20 μm, in order to improve the crushing strength and specific surface area of the catalyst. .
[0014]
The hydroxide or hydrated oxide of zirconium may be produced in any manner, but in general, these salts and organic metal compounds such as oxychloride, alcoholate, chloride, sulfate, nitrate, oxysulfate And the like can be obtained by neutralizing or hydrolyzing them. Further, these hydroxides and / or hydrated oxides may be used as composite metal hydroxides and / or composite metal hydrated oxides. A hydroxide and / or hydrated oxide and / or salt of another metal may be added to the hydroxide and / or hydrated oxide and / or salt of zirconium. As other metals, titanium, hafnium, vanadium, chromium, manganese, iron, silicon, tin, aluminum, gallium, and boron are preferably used. These other metal compounds may be complex metal compounds. The zirconia content in the total amount of zirconia and alumina in the catalyst is preferably 10 to 90% by mass, particularly preferably 20 to 80% by mass. If the amount is less than 10% by mass, the activity decreases. On the other hand, if the content exceeds 90% by mass, the effect of improving the activity by the addition of the hydrated aluminum oxide is weakened, and not only monoclinic crystals may be mixed into zirconia, but also the crushing strength of the formed catalyst is weakened. The zirconium hydroxide or hydrated oxide can be made amorphous without a clear crystal structure by X-ray and electron beam diffraction, because the crushing strength of the catalyst is improved and zirconia is easily stabilized. preferable. The hydroxide or hydrated oxide of zirconium is usually a powder, preferably having a shape having an average particle size of 0.5 to 50 μm, particularly 0.5 to 20 μm. Preferred for improvement.
[0015]
Next is kneading, which may be any kneading machine that is generally used for catalyst preparation, but usually, water is added to the raw materials, and the mixture is mixed with a stirring blade. A suitable method is suitably used. Water is usually added during kneading, but the liquid to be added may be an alcohol such as ethanol or isopropanol, or a ketone such as acetone, methyl ethyl ketone or methyl isobutyl ketone.
[0016]
Similarly, as long as the catalytic properties of the present invention are maintained, an acid such as nitric acid or a base such as ammonia, an organic compound, a binder, a ceramic fiber, a surfactant, a zeolite or the like may be added and kneaded. I do not care. However, the catalyst of the present invention has sufficient strength and high catalytic activity even when such additives are not added during kneading.
[0017]
For molding after kneading, a known device such as a screw type extruder can be used. In particular, extrusion molding using a screw type extruder or the like is preferably used because it can be efficiently formed into an arbitrary shape such as a pellet shape or a honeycomb shape. Although the size of the molded product is not particularly limited, it is usually molded to have a cross-sectional length of 0.5 mm or more. For example, if it is a columnar pellet, a pellet having a diameter of about 0.5 to 10 mm and a length of about 0.5 to 15 mm can be easily obtained. Since the crushing strength after firing is greatly affected by kneading, it is desirable to previously determine the water content, kneading time, electric energy, and the like during the kneading.
[0018]
After kneading and molding the hydroxide and / or hydrated oxide of zirconium, the hydrated oxide of aluminum having a boehmite structure, and firing in a gas atmosphere such as air or nitrogen, zirconia Is crystallized. Normally, it is preferable to set the firing temperature to a temperature higher than 500 ° C. and lower than 800 ° C., and to set the firing time to 0.5 to 10 hours, since monoclinic zirconia is less likely to occur and most of the zirconia is tetragonal zirconia. A monoclinic structure may partially exist. This crystal structure can be confirmed by X-ray diffraction. Specifically, the X-ray diffraction peak area ratio of 2θ = 28.2 ° and 2θ = 30.2 ° by CuKα ray (hereinafter abbreviated as S28.2 / S30.2 ratio. S28.2 is 2θ = 28) (The area of the peak of monoclinic zirconia at 0.2 °, S30.2 is the area of the peak of tetragonal zirconia at 2θ = 30.2 °) is 1.0 or less, preferably 0.05 or less. Higher catalytic activity is obtained when almost no monoclinic structure is present. If the firing temperature is too high, the proportion of monoclinic crystals in the crystal structure of zirconium oxide increases, and the peak area ratio of 2θ = 28.2 ° and 2θ = 30.2 ° may exceed 1, resulting in a catalyst. It is not preferable because the activity also decreases. On the other hand, if the firing temperature is too low, zirconium oxide does not crystallize, and the catalytic activity decreases, which is not preferable. Usually, after forming and before firing, drying is performed at a temperature of 80C to 200C.
[0019]
Examples of the sulfuric acid-containing compound include sulfuric acid, ammonium sulfate, sulfurous acid, ammonium sulfite, thionyl chloride, and the like. However, ammonium sulfate and ammonium sulfite are preferable because of low corrosiveness of the production apparatus. The sulfuric acid-containing compound may be used as it is or as a solution such as an aqueous solution. Further, there is no particular limitation on the concentration of the solution. The amount of the sulfuric acid-containing compound to be added is preferably such that the sulfur content in the finally obtained solid acid catalyst is 0.5 to 10%. The method of addition is not particularly limited, but an impregnation method such as spraying or dipping is preferably used.
[0020]
Depending on the use of the solid acid catalyst, it is preferable to add one or more metal compounds selected from Group 8, Group 9, and Group 10 to the catalyst. As an element selected from Group 8, Group 9, and Group 10, platinum, palladium, ruthenium, and the like are particularly preferably used as a catalyst for the isomerization reaction. It is preferable that one or more metals selected from Group 8, Group 9, and Group 10 be in the form of a compound rather than the metal itself. These metal compounds can be used both as anhydrides and hydrates. Further, these metal compounds may be one kind or a mixture of two or more kinds. These metal compounds can be preferably added to the catalyst by (c) supporting the compound containing sulfuric acid on the molded body, or (a) kneading the metal compound when kneading the raw materials. .
[0021]
The method of supporting these metal compounds is not particularly limited, but an impregnation method such as spraying or immersion, or an ion exchange method is preferably used. Either one or more of the metal compounds selected from Group 8, Group 9, and Group 10 and the sulfuric acid-containing compound may be carried first. In addition, a method of simultaneously using a mixed solution is also suitably used. Further, between or after loading of these compounds, after loading, drying at a temperature of 80 ° C to 200 ° C or firing at a temperature higher than 300 ° C and lower than 700 ° C for 0.5 to 10 hours is performed. No problem. Further, a reduction treatment with hydrogen may be performed. These metal components should be added so that the total amount of the Group VIII, Group IX, and Group X elements in the finally obtained solid acid catalyst is 0.05 to 10% by weight. Is preferred.
[0022]
Finally, it is calcined at a temperature higher than 300 ° C. and lower than 700 ° C. to obtain a target solid acid catalyst. The firing time is usually 0.5 to 10 hours.
[0023]
In addition, the loading of one or more metal compounds selected from Group VIII, Group IX, and Group X may be carried out by mixing the metal compounds at the time of kneading during the production method. In this case, after kneading and molding, firing in a gas atmosphere such as air or nitrogen, crystallizing zirconia, adding a sulfuric acid-containing compound and drying, and then higher than 300 ° C and lower than 700 ° C Calcination at a temperature gives the desired solid acid catalyst.
[0024]
The solid acid catalyst thus obtained contains zirconia and alumina as main components. The total amount of zirconia and alumina in the catalyst is preferably 70% by mass or more, and more preferably 80% by mass or more, from the viewpoints of catalytic activity and strength of the molded product. It is practically preferable that the molding strength is 3 kg or more as the side crushing strength of a cylindrical pellet having a diameter of 1.5 mm. Since the crushing strength is greatly affected by the kneading, it is desirable to previously determine the water content, the kneading time, the electric energy, and the like during the kneading.
[0025]
The solid acid catalyst obtained in the present invention is a solid superacid having an acid strength higher than 100% sulfuric acid and an acid strength Ho (Hammet acidity function) higher than -11.93. It can be used as a catalyst for various acid-catalyzed reactions such as isomerization, alkylation, acylation, esterification, etherification, acetalization, hydration, dehydration, polymerization, decomposition, nitration, etc. Preferably used. A major feature of this method for producing a catalyst is that calcination for crystallization of zirconia and calcination for formation of strong acid sites by sulfuric acid are separated. That is, due to its high acid strength and the effect of adding pseudo-boehmite, the catalyst exhibits excellent catalytic performance particularly in the isomerization reaction of hydrocarbons. In particular, the catalyst has sufficient strength to be used as a molded article, so that it is easy to handle the catalyst and can be used for a reaction in a fixed bed.
[0026]
The catalyst of the present invention is preferably used for isomerizing a hydrocarbon compound. In particular, it is preferably used as a catalyst for isomerizing a linear hydrocarbon in a petroleum fraction having a boiling point of about -20 ° C to 110 ° C as a hydrocarbon compound into a branched hydrocarbon in the presence of hydrogen. The isomerization conditions in this case are as follows: reaction temperature: 140 to 240 ° C., reaction pressure: 1 to 50 kgf / cm 2 , LHSV: 0.2 to 10 hr −1 , hydrogen / raw material ratio: 0.2 to 10 mol / mol. A range is preferred.
【Example】
[0027]
Hereinafter, an embodiment will be described in detail. First, an evaluation method will be described.
[0028]
[Method of calculating crystal seed ratio by X-ray diffraction]
The tetragonal and monoclinic zirconia peaks were separated from the X-ray diffraction chart, and the area of the monoclinic zirconia peak at 2θ = 28.2 ° and the area of the tetragonal zirconia peak at 2θ = 30.2 °. (S28.2 / S30.2 ratio) was calculated. When the S28.2 / S30.2 ratio was 0.02 or less, the monoclinic peak was unclear and could not be detected.
Figure 0003568372
[0029]
[Measurement method of average particle size]
It was measured by a wet measurement method using a Nikkiso Co., Ltd. MICROTRAC particle size analyzer. In this technique, a flowing powder group is irradiated with a laser beam, and the particle size is analyzed by forward scattered light.
[0030]
(Example 1) Preparation example of catalyst Zirconium hydroxide XZO631 / 01 manufactured by MEL was dried to obtain dried hydrated zirconia having an average particle diameter of 1.2 µm. 300 g of hydrated alumina (pseudo-boehmite) powder having an average particle size of 10 μm was added to 300 g of the dried hydrated zirconia powder, and the mixture was kneaded for 2 hours while adding water using a kneader equipped with stirring blades. The obtained kneaded material was extruded from an extruder having a circular hole with a diameter of 1.6 mm, dried and fired at 600 ° C. for 2 hours to obtain a zirconia alumina carrier. The crystal seed of zirconia in this carrier was tetragonal, and no monoclinic crystal was observed. To 50 g of the carrier, 125 ml of an aqueous solution of chloroplatinic acid containing 0.25 g of platinum was added. After drying, 125 ml of a 0.5 mol / l sulfuric acid aqueous solution was added. After drying, the mixture was calcined at 600 ° C. for 2 hours to obtain a platinum-containing zirconia alumina sulfate catalyst (catalyst A).
[0031]
(Example 2) Preparation example of catalyst To 50 g of a zirconia alumina carrier obtained in the same manner as in Example 1, 125 ml of a mixed aqueous solution of chloroplatinic acid and sulfuric acid containing 0.25 g of platinum and 6.13 g of sulfuric acid was added. After drying, 125 ml of a 0.5 mol / l sulfuric acid aqueous solution was added. After drying, the mixture was calcined at 600 ° C. for 2 hours to obtain a platinum-containing zirconia alumina sulfate catalyst (catalyst B).
[0032]
Example 3 Catalyst Preparation Example 125 ml of a chloroplatinic acid aqueous solution containing 0.25 g of platinum was added to 50 g of a zirconia alumina carrier obtained in the same manner as in Example 1. After drying, 125 ml of a 0.5 mol / l sulfuric acid aqueous solution was added. After drying, the mixture was calcined at 550 ° C. for 2 hours to obtain a platinum-containing zirconia alumina sulfate catalyst (catalyst C).
[0033]
Example 4 Catalyst Preparation Example A mixed aqueous solution of chloroplatinic acid and hydrochloric acid containing 0.25 g of platinum was added to 50 g of a zirconia alumina carrier obtained in the same manner as in Example 1. After drying, this was fired at 500 ° C. for 2 hours to obtain a platinum-containing zirconia alumina support. After adding 750 ml of a 0.5 mol / l sulfuric acid aqueous solution to the carrier and bringing it into contact, excess sulfuric acid was removed by filtration, dried, and calcined at 600 ° C. for 2 hours to obtain a platinum-containing zirconia alumina sulfate catalyst (catalyst D). .
[0034]
(Example 5) Catalyst Preparation Example 0.5 mol / l sulfuric acid aqueous solution (750 ml) was added to 50 g of a platinum-containing zirconia alumina carrier obtained in the same manner as in Example 4, and the mixture was contacted. At 500 ° C. for 2 hours to obtain a platinum-containing zirconia alumina sulfate catalyst (Catalyst E).
[0035]
(Comparative Example 1) Catalyst Preparation Example 300 g of hydrated alumina (pseudo-boehmite) powder was added to 300 g of dry hydrated zirconia powder as in Example 1, and kneading was performed for 2 hours while adding water using a kneader equipped with stirring blades. Was. The obtained kneaded material was extruded from an extruder having a circular hole having a diameter of 1.6 mm, dried and calcined at 400 ° C. for 2 hours to obtain a zirconia alumina carrier. This support was amorphous, and no tetragonal or monoclinic zirconia was observed. To 50 g of the carrier, 125 ml of an aqueous solution of chloroplatinic acid containing 0.25 g of platinum was added. After drying, 125 ml of a 0.5 mol / l sulfuric acid aqueous solution was added, followed by drying and calcining at 600 ° C. for 2 hours to obtain a platinum-containing zirconia alumina sulfate catalyst (catalyst F).
[0036]
Comparative Example 2 Catalyst Preparation Example 125 ml of an aqueous chloroplatinic acid solution containing 0.25 g of platinum was added to 50 g of a zirconia alumina carrier prepared in the same manner as in Comparative Example 1. After drying, 125 ml of a 0.5 mol / l sulfuric acid aqueous solution was added, followed by drying and calcining at 500 ° C. for 2 hours to obtain a platinum-containing zirconia alumina sulfate catalyst (catalyst G).
[0037]
Comparative Example 3 Catalyst Preparation Example To 50 g of dry hydrated zirconia powder prepared in the same manner as in Example 1, 125 ml of an aqueous chloroplatinic acid solution containing 0.25 g of platinum was added. After drying, 125 ml of a 0.5 mol / l sulfuric acid aqueous solution was added, followed by drying and calcining at 600 ° C. for 2 hours to obtain a platinum-containing zirconia sulfate catalyst (catalyst H).
[0038]
Example of isomerization reaction (1)
4 cc of the platinum-containing catalyst formed into particles of 16 to 24 mesh was subjected to n-hexane isomerization reaction in a fixed bed flow reactor having a length of 50 cm and an inner diameter of 1 cm. The reaction conditions are as follows.
Hydrogen reduction (catalyst pretreatment) conditions: 300 ° C., 1 hour Reaction temperature: 200 ° C., reaction pressure (gauge pressure): 10 kgf / cm 2
LHSV = 1.5hr -1 1, H 2 / Oil: 5 (mol / mol)
[0039]
The result of analyzing the composition of the reaction tube outlet 1.5 hours after the start of oil passage by gas chromatography is shown below.
n-Hexane conversion catalyst A (Example): 82%
Catalyst B (Example): 82%
Catalyst C (Example): 85%
Catalyst D (Example): 80%
Catalyst F (comparative example): 65%
Catalyst H (comparative example): 76%
[0040]
Example of isomerization reaction (2)
In a fixed bed flow reactor having a length of 50 cm and an inner diameter of 1 cm, a paraffin mixed solution (70% by mass of n-hexane, 15% by mass of n-heptane, 15% by mass of cyclohexane) was placed in a fixed bed flow reactor having a length of 50 cm and an inner diameter of 1 cm. %). The reaction conditions are as follows.
Hydrogen reduction (catalyst pretreatment) conditions: 300 ° C., 1 hour Reaction temperature: 220 ° C., reaction pressure (gauge pressure): 4.8 kgf / cm 2
LHSV = 5.0 hr −1 , H 2 / Oil: 5 (mol / mol)
[0041]
The result of analyzing the composition of the reaction tube outlet 1.5 hours after the start of oil passage by gas chromatography is shown below.
n-hexane conversion catalyst E (Example): 55%
Catalyst G (comparative example): 33%
Catalyst H (comparative example): 50%
n-hexane conversion rate = [1- (mass% of n-hexane in product oil / weight% of n-hexane in feed oil)] × 100 (%)
[0042]
By combining zirconia and alumina, the catalyst of the present invention surprisingly exhibits activity equal to or higher than that of the powdered platinum-containing zirconia sulfate solid acid catalyst (catalyst H).

Claims (2)

ジルコニウムの水酸化物及び / 又は水和酸化物とベーマイト構造を有するアルミニウムの
水和酸化物を混練して成形体に成形し、その成形体を正方晶ジルコニアが得られる温度で
焼成し、その後、成形体に硫酸分含有化合物を担持し、その際に、第8族、第9族、第1
0族から選ばれる1種以上の金属化合物を担持して、300℃より高く700℃より低い
温度で焼成することを特徴とする固体酸触媒の製造方法。
Of zirconium hydroxide and / or hydrated oxide with aluminum having boehmite structure
The hydrated oxide is kneaded and formed into a compact, and the compact is heated at a temperature at which tetragonal zirconia is obtained.
After sintering, the molded product is loaded with a sulfuric acid-containing compound.
Supports one or more metal compounds selected from Group 0 and is higher than 300 ° C and lower than 700 ° C
A method for producing a solid acid catalyst , comprising calcination at a temperature .
ジルコニウムの水酸化物及び / 又は水和酸化物とベーマイト構造を有するアルミニウムの
水和酸化物を混練し、その際に、第8族、第9族、第10族から選ばれる1種以上の金属
化合物を混練して成形体に成形し、その成形体を正方晶ジルコニアが得られる温度で焼成
し、その後、成形体に硫酸分含有化合物を担持して、300℃より高く700℃より低い
温度で焼成することを特徴とする固体酸触媒の製造方法。
Of zirconium hydroxide and / or hydrated oxide with aluminum having boehmite structure
The hydrated oxide is kneaded, and at that time, one or more metal compounds selected from Group VIII, Group 9 and Group 10 are kneaded and formed into a molded body, and the molded body is made of tetragonal zirconia. Firing at the resulting temperature
Then, a sulfuric acid-containing compound is supported on the molded body, and is higher than 300 ° C. and lower than 700 ° C.
A method for producing a solid acid catalyst , comprising calcination at a temperature .
JP24352897A 1997-08-26 1997-08-26 Method for producing solid acid catalyst Expired - Fee Related JP3568372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24352897A JP3568372B2 (en) 1997-08-26 1997-08-26 Method for producing solid acid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24352897A JP3568372B2 (en) 1997-08-26 1997-08-26 Method for producing solid acid catalyst

Publications (2)

Publication Number Publication Date
JPH1157478A JPH1157478A (en) 1999-03-02
JP3568372B2 true JP3568372B2 (en) 2004-09-22

Family

ID=17105252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24352897A Expired - Fee Related JP3568372B2 (en) 1997-08-26 1997-08-26 Method for producing solid acid catalyst

Country Status (1)

Country Link
JP (1) JP3568372B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2793706B1 (en) * 1999-05-18 2001-08-03 Total Raffinage Distribution OXIDE-BASED CATALYTIC SUPPORT OF A METAL FROM GROUP IVB OF THE PERIODIC CLASSIFICATION OF ELEMENTS, ITS PREPARATION AND USES
JP4815809B2 (en) * 2005-01-24 2011-11-16 東ソー株式会社 Novel structure containing sulfated zirconia and method for producing the same
CN100463718C (en) * 2005-10-21 2009-02-25 哈尔滨工业大学 Process of preparing magnetic solid acid catalyst in binary catalyst system for promoting esterification of ammonium lactate
TW201347845A (en) 2012-03-13 2013-12-01 Daiki Axis Co Ltd Solid acid catalyst, method for manufacturing same, and method for manufacturing a fatty acid alkyl ester using same

Also Published As

Publication number Publication date
JPH1157478A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
KR100327891B1 (en) Solid acid catalyst and process for preparing the same
US7989386B2 (en) Multi-layer catalyst made from niobium for the catalytic conversion of hydrocarbons
JP3553878B2 (en) Solid acid catalyst, method for producing the same, and reaction method using the same
RU2595341C1 (en) Catalyst for isomerisation of paraffin hydrocarbons and preparation method thereof
JP3989078B2 (en) Method for producing solid acid catalyst
JP3568372B2 (en) Method for producing solid acid catalyst
JP3995241B2 (en) Solid acid catalyst containing platinum group metal component and method for producing the same
CN102441420A (en) C8 aromatic hydrocarbon isomerization catalyst, preparation method and application thereof
JP3730792B2 (en) Hydrocarbon isomerization process
CN102441417A (en) Paraffin hydrocarbon shape selective isomerization catalyst, preparation method and application thereof
WO2006048180A1 (en) Porous niobic acid catalyst
JP3922681B2 (en) Hydrocarbon isomerization process and solid acid catalyst for isomerization
JP3432694B2 (en) Method for producing solid acid catalyst for hydrocarbon conversion
JP3973176B2 (en) Acid-catalyzed reaction method
JP4191059B2 (en) Hydrocarbon isomerization process
CN102441419A (en) C8 aromatic hydrocarbon isomerization catalyst and preparation method and application thereof
JP2001070795A (en) Solid acid catalyst, preparation thereof and method for isomerizing hydrocarbon using the catalyst
JP3220680B2 (en) Method for producing solid acid catalyst and method for isomerizing paraffinic hydrocarbon using this catalyst
WO2000056447A1 (en) Solid acid catalyst, method for preparing the same and reaction using the same
JP2001070794A (en) Solid acid catalyst containing platinum group metal component
EP4135891A1 (en) Method for catalyst production for c5-c12 paraffin's isomerization

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees