JP3734004B2 - Graphite crucible for pulling silicon single crystal - Google Patents

Graphite crucible for pulling silicon single crystal Download PDF

Info

Publication number
JP3734004B2
JP3734004B2 JP00831099A JP831099A JP3734004B2 JP 3734004 B2 JP3734004 B2 JP 3734004B2 JP 00831099 A JP00831099 A JP 00831099A JP 831099 A JP831099 A JP 831099A JP 3734004 B2 JP3734004 B2 JP 3734004B2
Authority
JP
Japan
Prior art keywords
crucible
graphite crucible
single crystal
graphite
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00831099A
Other languages
Japanese (ja)
Other versions
JP2000203984A (en
Inventor
信 下坂
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP00831099A priority Critical patent/JP3734004B2/en
Publication of JP2000203984A publication Critical patent/JP2000203984A/en
Application granted granted Critical
Publication of JP3734004B2 publication Critical patent/JP3734004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン単結晶引上げに用いられるシリコン単結晶引上げ用黒鉛ルツボに係わり、特に高強度で熱効率がよく、シリコン融液の対流に対する制御性を向上させたシリコン単結晶引上げ用黒鉛ルツボに関する。
【0002】
【従来の技術】
半導体デバイスの基板に用いられるシリコン単結晶は、一般にチョクラルスキー法(CZ法)で製造されており、このCZ法は黒鉛ルツボ内に収納、保持された石英ルツボ内に原料のポリシリコンを装填し、このポリシリコンを周囲から加熱して溶融し、上方から吊り下げたシードをシリコン融液に接触させてから引上げるものである。
【0003】
一般にCZ法の単結晶引上装置は、炉本体と、この炉本体の炉底部から炉本体を貫通しモータ駆動のルツボ回転軸に取付けられた黒鉛製ルツボと、この黒鉛ルツボに収納、支持された石英ルツボを有する。
【0004】
さらに、石英ルツボを加熱し、石英ルツボに装填されたナゲット状のポリシリコンを溶融しシリコン融液にするためのヒータが設けられている。
【0005】
また、石英ルツボの上方には、引上げ用ワイヤーの先端に取り付けられたシードが設けられている。
一方、半導体デバイスの製造コストの低減等からシリコンウェーハの直径が8インチから12インチへと大直径化が要求されており、これに伴いシリコンウェーハの素材となるシリコン単結晶にも大直径化が要求され、石英ルツボに装填されるポリシリコンの重量も増し、石英ルツボが大型になる。これに伴い、黒鉛ルツボの口径も従来の30インチ以下から36インチ以上のものも要求されるようになってきた。
【0006】
この黒鉛ルツボの大型化に伴い、単結晶引上げ中黒鉛ルツボに生じる熱歪みが大きくなり、割損が発生する確立が高くなり黒鉛ルツボの寿命が短くなっている。
【0007】
この問題を解決するため、黒鉛ルツボを分割し、さらに黒鉛ルツボの外周面、内周面に所定深さの溝を形成し、ルツボに生じる歪と熱応力を緩和した黒鉛ルツボが、特開昭64−76993号公報および特開平1−23440号公報に開示されている。しかし、これら黒鉛ルツボはいずれもルツボの周面に溝を形成するためルツボの所定の強度を得るためには、ルツボの肉厚を増加させねばならず消費電力量および重量が増加し、また、ルツボの肉厚を従来通りとすると強度的に弱くなり、また、溝付け加工も複雑で製造上の問題がある。
【0008】
さらに、シリコン単結晶の引上げ速度を上げるため、黒鉛ルツボに放熱部と吸熱部を設け、シリコン融液面より上部においては放熱し下部においては吸熱させる黒鉛ルツボが、特開昭58−140392号公報に開示されている。
【0009】
しかし、この黒鉛ルツボはルツボ外周面に溝を形成するため、上述特開昭64−76993号公報等に開示さた黒鉛ルツボ同様に強度上、消費電力量および製造上の問題がある。
【0010】
またさらに、黒鉛ルツボの大型化に伴い大きな黒鉛材が必要になるが、高品位な等方性黒鉛材を得ることが困難になるため、石英との熱膨張の差が少なく、また高温強度に優れた材料である炭素繊維強化炭素複合材(以下C/Cという。)を持ったルツボが使用されるようになってきた。
【0011】
例えば、特開平9−263482号公報には、ルツボの強度および寿命を向上させるため、ルツボの内側に炭素繊維クロス積層体または炭素繊維フェルト積層体を用いたC/C、外側にフィラメントワインデイング法により成形したC/Cを用いた炭素繊維強化炭素ルツボが開示されている。
【0012】
しかし、この黒鉛ルツボは強度的考慮がなされているが、伝熱的考慮がなされていないため、消費電力量の低減は実現されず、また黒鉛ルツボに収納される石英ルツボ内のシリコン融液の対流に対する制御も困難である。
【0013】
また、黒鉛ルツボの使用強度と寿命の向上を図るため、連続炭素繊維をルツボの直胴部の内周部に水平方向に巻き付け、その他の部分は垂直に対し70°の角度をもって巻き付けた炭素繊維強化炭素ルツボが特開平9−286689号公報に開示されている。しかし、このルツボは使用強度と寿命の向上に対する考慮はなされているが、消費電力量の低減は実現されず、また石英ルツボ内のシリコン融液の対流に対する制御も不十分である。
【0014】
【発明が解決しようとする課題】
このため、軽量で大型化に対応可能で使用強度が強く、かつ消費電力の低減可能で、さらに石英ルツボ内のシリコン融液の対流に対する制御性の向上した炭素繊維強化炭素(黒鉛)ルツボが要望されていた。
【0015】
本発明は上述した事情を考慮してなされたもので、軽量で大型化に対応可能で、使用強度が強く、消費電力の低減可能で、さらに石英ルツボ内のシリコン融液の対流に対する制御性が向上した炭素繊維強化炭素ルツボを提供することを目的とする。
【0016】
【課題を解決するための手段】
上記目的を達成するためになされた本願請求項1の発明は、炭素繊維強化炭素複合材を用いたシリコン単結晶引上げ用黒鉛ルツボにおいて、黒鉛ルツボを軸方向に複数の直胴部位に区画可能な直胴部とルツボ底部とから一体に構成し、このルツボ底部、前記直胴上部および前記直胴下部は炭素繊維が実質的に垂直方向に配列された炭素繊維強化炭素複合材で形成され、黒鉛ルツボの直胴主部は炭素繊維が実質的に水平方向に放射状に配列された炭素繊維強化炭素複合材を用いて黒鉛ルツボの各部位の入熱と放熱の制御を行うことを特徴としたシリコン単結晶引上げ用黒鉛ルツボであることを要旨としている。
【0019】
【発明の実施の形態】
以下、本発明に係わるシリコン単結晶引上げ用黒鉛ルツボの実施の形態およびこの黒鉛ルツボの実施状況について添付図面に基づき説明する。
【0020】
図1に示されるような本発明に係わるシリコン単結晶引上げ用黒鉛ルツボ1は、内径が例えば30インチで、この黒鉛ルツボ1は円弧状の弧部2を周方向に有するルツボ底部3と、このルツボ底部3の弧部2から立ち上がる円筒状の直胴部4とを有し、この直胴部4は、例えば直胴下部5と、この直胴下部5に連なる直胴主部5と、この直胴主部6に連なり直胴主部6と同一形状を有する直胴上部7とより形成され、黒鉛ルツボ1の軸方向に沿って複数の直胴部位に区画される。
【0021】
また、前記直胴主部6は炭素繊維が実質的に水平方向に放射線状に配列された炭素繊維強化炭素複合材(水平配列C/C)で形成されている。
【0022】
一方、前記ルツボ底部3、直胴下部5および直胴上部7は炭素繊維が直胴部の軸方向に実質的に垂直方向に配列された炭素繊維強化炭素複合材(垂直配列C/C)で形成されている。
【0023】
前記垂直配列C/C、水平配列C/Cおよび従来の黒鉛材の諸特性は、表1に示される通りであり、垂直配列C/Cの厚さ方向(繊維に垂直)の熱伝導率は4W/m・Kで、水平配列C/Cの厚さ方向(繊維に水平)の熱伝導率は27W/m・Kよりも著しく小さい。
【0024】
従来の黒鉛材は熱伝導率が95W/m・Kで、垂直配列C/C、および水平配列C/Cの熱伝導率より大きいが、引張強度、曲げ強度など機械的強度が弱く、かさ比重も大きい。
【0025】
【表1】

Figure 0003734004
従って、従来の黒鉛材を用いた黒鉛ルツボは、黒鉛ルツボの肉厚を厚くせざるを得ず、大型で軽量かつ黒鉛ルツボの部位によって熱伝導率を変えられる黒鉛ルツボは容易にできない。
【0026】
前記黒鉛ルツボ1の製造方法は、周知の炭素繊維強化黒鉛ルツボの製造方法を用いればよく、例えば、熱硬化性樹脂を溶剤で溶かした低粘度の結合材に連続炭素繊維を浸漬した後、黒鉛ルツボ1の各部位、すなわち底部あるいは直胴部位に応じた型枠に巻回し、熱硬化させる。
【0027】
次に、この硬化体を部位に応じた形状に切削、成形加工等を行い、しかる後各硬化体を組み合わせて熱硬化性結合材を用い熱硬化させるが、さらに必要な場合には、図2に示すような耐熱性でピン状の結合部材8を併用して結合部9を強固に結合し、しかる後熱硬化させ、ルツボ形状の成形体を作る。この成形体を不活性雰囲気で加熱して炭化させ、さらにタールピッチを含浸させ高温で加熱して全体を黒鉛化させ、次に、この炭化したルツボを高純度処理して黒鉛ルツボができる。
【0028】
本発明に係わるシリコン単結晶引上げ用黒鉛ルツボは以上のようなルツボ構造になっているから、この黒鉛ルツボ1を用いてシリコン単結晶を引上げるには、図3に示されるようなCZ法の単結晶引上装置10を用いる。
【0029】
単結晶引上装置10は、炉本体11と、この炉本体11の炉底部12から炉本体11を貫通しモータ駆動されるルツボ回転軸13と、この回転軸13に取付けられた前記黒鉛ルツボ1と、この黒鉛ルツボ1に収納された石英ルツボ14を有する。
【0030】
さらに、炉本体11には黒鉛ルツボ1に対向し、この黒鉛ルツボ1の周りを覆うように円筒状のヒータ16が設けられている。このヒータ16は黒鉛ルツボ1を介し、石英ルツボ14を加熱し、石英ルツボ14に装填されたナゲット状のポリシリコン15を溶融しシリコン融液15Lにするようになっている。
【0031】
一方、石英ルツボ14の上方には、引上げ用ワイヤー17の先端に取り付けられたシード18が設けられている。
【0032】
本発明に係わる黒鉛ルツボ1が組み込まれた単結晶引上装置10を用いて単結晶を引上げるには、ナゲット状のポリシリコン15を石英ルツボ14に装填する。
【0033】
しかる後、ヒータ16に通電を行い黒鉛ルツボ1を介し石英ルツボ14を加熱してポリシリコン15の溶融を行う。ポリシリコン15が溶融されたシリコン融液15Lのシリコン融液面15sにシード18の先端を接触させ、なじませた後引上げを開始する。
【0034】
ヒータ16による石英ルツボ14のポリシリコン15の加熱、溶融および引上げ過程において、ヒータ16の熱は、主として黒鉛ルツボ1の直胴主部6を通過して石英ルツボ14、ポリシリコン15に伝熱されるが、直胴主部6は熱伝達率の大きい水平配列C/Cで形成されているので、極めて効率よく加熱される。
【0035】
一方、黒鉛ルツボ1の直胴上部7を通過する熱は、熱伝達率の小さい垂直配列C/Cで形成されているので、ヒータ16からポリシリコン15への伝熱量は小さくなる。また、前記シリコン融液面15sは直胴主部6と直胴上部7の結合部9近傍に位置するように調整され、さらに石英ルツボ14、黒鉛ルツボ1を介して、直胴上部7近傍のシリコン融液15cから黒鉛ルツボ1の外方への放熱も抑制されており、上方が開放されたシリコン融液面15s近傍にあっては、石英ルツボ14内周面近傍のシリコン融液15iの温度を単結晶成長領域のシリコン融液15aの温度よりも高く維持することができる。
【0036】
従って、石英ルツボ14の内周面のシリコン融液15iと単結晶成長領域のシリコン融液15aの温度差を大きくすることが可能であり、シリコン単結晶の効率よい引上げが可能になる。
【0037】
また、黒鉛ルツボ1の直胴下部5も熱伝達率の小さい垂直配列C/Cで形成されているので、ヒータ16からポリシリコン15への伝熱量は小さく、この直胴下部5近傍のシリコン融液15uの温度は、直胴主部6近傍のシリコン融液15cの温度よりも低くなる。
【0038】
さらに、黒鉛ルツボ1のルツボ底部3も垂直配列C/Cで形成されているので、このルツボ底部3から放熱が行われる。従って、このルツボ底部3近傍のシリコン融液15bの温度は直胴主部6近傍のシリコン融液15cの温度に対して低く維持できる。
【0039】
以上のように黒鉛ルツボ1の部位によりC/Cの熱伝導率を変えることにより黒鉛ルツボの部位の入熱と放熱の制御を行い、シリコン融液の温度を制御して、シリコン融液の対流の制御性を向上させることができ、単結晶引上げ生産性を向上させることができる。
【0040】
また、直胴下部5近傍のシリコン融液15uないしルツボ底部3近傍のシリコン融液15bの温度が直胴主部6の近傍のシリコン融液15cの温度よりも低くなることにより、引上げられる単結晶は低酸素濃度の高品質のシリコン単結晶を得ることができる。
【0041】
【実施例】
内径が30インチの黒鉛ルツボを用い、シリコン融液温度が安定した引上げ直前のヒータ16の消費電力を比較する試験を行った。
【0042】
実施例:ルツボ底部3、直胴下部5および直胴上部7が垂直配列C/C、直胴主部6が水平配列C/Cで形成された黒鉛ルツボ。
【0043】
比較例1:黒鉛ルツボの部位により炭素繊維の方向を定めることなく、無秩序に配列された炭素繊維で強化された従来の黒鉛ルツボ。
【0044】
比較例2:従来の黒鉛のみの黒鉛ルツボ。
【0045】
次のような試験結果を得た。
【表2】
Figure 0003734004
【0046】
実施例は軽量、高強度の特性を有する黒鉛ルツボでありながら、強度的に難点があるものの消費電力に優れた比較例2並の消費電力であった。
【0047】
また、実施例の消費電力は比較例1より消費電力が4.4%少ない。
【0048】
【発明の効果】
本発明に係わる炭素繊維強化炭素製一体形ルツボは大型化対応が可能であるばかりでなく、軽量かつ機械的強度を増して使用耐久強度も向上し、消費電力の低減可能で、さらに黒鉛ルツボの部位により炭素繊維の繊維方向を定め使用することにより入熱、放熱を制御してシリコン融液の対流の制御性を向上させて単結晶引上げ生産性を向上させることができる。
【0049】
さらに直胴下部ないしルツボ底部近傍のポリシリコンの温度が直胴主部の近傍のシリコン融液の温度よりも低くなることにより、引上げられる単結晶は低酸素濃度の高品質のシリコン単結晶を得ることができる。
【図面の簡単な説明】
【図1】本発明に係わるシリコン単結晶引上げ用黒鉛ルツボの断面図。
【図2】図1のA部を拡大した断面図。
【図3】図1のシリコン単結晶引上げ用黒鉛ルツボを組み込んだ単結晶引上装置の説明図。
【符号の説明】
1 黒鉛ルツボ
2 弧部
3 ルツボ底部
4 直胴部
5 直胴下部
6 直胴主部
7 直胴上部
8 結合部材
9 結合部
10 単結晶引上装置
11 炉本体
12 炉底部
13 ルツボ回転軸
14 石英ルツボ
15 ポリシリコン
15a 単結晶成長領域のシリコン融液
15b 底部近傍のシリコン融液
15c 直胴主部近傍のシリコン融液
15i 内周面近傍のシリコン融液
15L シリコン融液
15s シリコン融液面
15u 直胴下部近傍のシリコン融液
16 ヒータ
17 引上げ用ワイヤー
18 シード[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a graphite crucible for pulling a silicon single crystal used for pulling a silicon single crystal, and particularly relates to a graphite crucible for pulling a silicon single crystal that has high strength, good thermal efficiency, and improved controllability to convection of a silicon melt.
[0002]
[Prior art]
Silicon single crystals used for substrates of semiconductor devices are generally manufactured by the Czochralski method (CZ method). This CZ method is loaded with raw material polysilicon in a quartz crucible housed and held in a graphite crucible. The polysilicon is heated and melted from the surroundings, and the seed suspended from above is brought into contact with the silicon melt and then pulled up.
[0003]
In general, a single crystal pulling apparatus of the CZ method is housed and supported in a furnace body, a graphite crucible passing through the furnace body from the bottom of the furnace body and attached to a motor-driven crucible rotating shaft, and the graphite crucible. A quartz crucible.
[0004]
Furthermore, a heater is provided for heating the quartz crucible to melt the nugget-like polysilicon loaded in the quartz crucible to form a silicon melt.
[0005]
Further, a seed attached to the tip of the pulling wire is provided above the quartz crucible.
On the other hand, the diameter of a silicon wafer is required to be increased from 8 inches to 12 inches due to the reduction of manufacturing cost of semiconductor devices, and accordingly, the diameter of the silicon single crystal that is the material of the silicon wafer is also increased. As required, the weight of polysilicon loaded in the quartz crucible increases, and the quartz crucible becomes large. Along with this, the diameter of the graphite crucible has been required from the conventional 30 inches or less to 36 inches or more.
[0006]
As the size of the graphite crucible increases, the thermal strain generated in the graphite crucible increases during pulling of the single crystal, and the probability of occurrence of breakage increases and the life of the graphite crucible is shortened.
[0007]
In order to solve this problem, a graphite crucible in which a graphite crucible is divided and grooves of a predetermined depth are formed on the outer peripheral surface and inner peripheral surface of the graphite crucible to reduce strain and thermal stress generated in the crucible. No. 64-76993 and Japanese Patent Laid-Open No. 1-234440. However, all of these graphite crucibles form grooves on the circumferential surface of the crucible, so that the crucible wall thickness must be increased to increase the crucible wall thickness, and the power consumption and weight increase. If the thickness of the crucible is the same as before, the strength is weakened, and the grooving process is complicated and there are problems in manufacturing.
[0008]
Further, in order to increase the pulling speed of the silicon single crystal, a graphite crucible is provided with a heat dissipating part and a heat absorbing part in a graphite crucible, and dissipates heat above the silicon melt surface and absorbs heat at the lower part. Is disclosed.
[0009]
However, since this graphite crucible forms a groove on the outer peripheral surface of the crucible, there are problems in strength, power consumption, and manufacturing, similar to the graphite crucible disclosed in JP-A-64-76993.
[0010]
Furthermore, with the increase in the size of the graphite crucible, a large graphite material is required. However, since it becomes difficult to obtain a high-quality isotropic graphite material, there is little difference in thermal expansion from quartz, and high temperature strength is achieved. A crucible having a carbon fiber reinforced carbon composite (hereinafter referred to as C / C), which is an excellent material, has been used.
[0011]
For example, Japanese Patent Laid-Open No. 9-263482 discloses C / C using a carbon fiber cloth laminate or a carbon fiber felt laminate on the inside of the crucible and a filament winding method on the outside in order to improve the strength and life of the crucible. A carbon fiber reinforced carbon crucible using C / C formed by the above is disclosed.
[0012]
However, although this graphite crucible is considered in terms of strength, heat consumption is not considered, so the reduction of power consumption is not realized, and the silicon melt in the quartz crucible stored in the graphite crucible is not realized. Control over convection is also difficult.
[0013]
In order to improve the strength and life of the graphite crucible, continuous carbon fiber is wound around the inner periphery of the straight body of the crucible in the horizontal direction, and the other parts are wound at an angle of 70 ° with respect to the vertical. A reinforced carbon crucible is disclosed in JP-A-9-286689. However, although this crucible has been considered for improving the strength of use and the life, the reduction of the power consumption is not realized, and the control for the convection of the silicon melt in the quartz crucible is insufficient.
[0014]
[Problems to be solved by the invention]
For this reason, a carbon fiber reinforced carbon (graphite) crucible is required that is lightweight, can accommodate large size, has high strength, can reduce power consumption, and has improved controllability to convection of silicon melt in the quartz crucible. It had been.
[0015]
The present invention has been made in consideration of the above-mentioned circumstances, is lightweight, can accommodate a large size, has strong use strength, can reduce power consumption, and has controllability to convection of silicon melt in a quartz crucible. An object is to provide an improved carbon fiber reinforced carbon crucible.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present invention is a graphite crucible for pulling a silicon single crystal using a carbon fiber reinforced carbon composite material, and the graphite crucible can be partitioned into a plurality of straight body portions in the axial direction. The crucible bottom part, the straight cylinder upper part and the straight cylinder lower part are formed of a carbon fiber reinforced carbon composite material in which carbon fibers are arranged in a substantially vertical direction. The main part of the straight body of the crucible is a silicon characterized by controlling the heat input and heat dissipation of each part of the graphite crucible using a carbon fiber reinforced carbon composite material in which carbon fibers are arranged radially in a substantially horizontal direction. The gist is that it is a graphite crucible for pulling a single crystal.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a graphite crucible for pulling up a silicon single crystal according to the present invention and implementation status of the graphite crucible will be described below with reference to the accompanying drawings.
[0020]
A graphite crucible 1 for pulling a silicon single crystal according to the present invention as shown in FIG. 1 has an inner diameter of, for example, 30 inches. The graphite crucible 1 has a crucible bottom 3 having an arcuate arc 2 in the circumferential direction, A cylindrical straight body portion 4 rising from the arc portion 2 of the crucible bottom portion 3 includes, for example, a straight body lower portion 5, a straight body main portion 5 connected to the straight body lower portion 5, and It is formed by a straight body upper part 7 that is connected to the straight body main part 6 and has the same shape as the straight body main part 6, and is divided into a plurality of straight body parts along the axial direction of the graphite crucible 1.
[0021]
The straight body main part 6 is formed of a carbon fiber reinforced carbon composite material (horizontal arrangement C / C) in which carbon fibers are arranged radially in a substantially horizontal direction.
[0022]
On the other hand, the crucible bottom part 3, the straight cylinder lower part 5 and the straight cylinder upper part 7 are carbon fiber reinforced carbon composites (vertical arrangement C / C) in which carbon fibers are arranged in a direction substantially perpendicular to the axial direction of the straight cylinder part. Is formed.
[0023]
Various characteristics of the vertical array C / C, the horizontal array C / C, and the conventional graphite material are as shown in Table 1, and the thermal conductivity in the thickness direction (perpendicular to the fibers) of the vertical array C / C is At 4 W / m · K, the thermal conductivity in the thickness direction (horizontal to the fiber) of the horizontal array C / C is significantly smaller than 27 W / m · K.
[0024]
The conventional graphite material has a thermal conductivity of 95 W / m · K, which is larger than the thermal conductivity of the vertical array C / C and the horizontal array C / C, but has low mechanical strength such as tensile strength and bending strength, and bulk specific gravity. Is also big.
[0025]
[Table 1]
Figure 0003734004
Therefore, the graphite crucible using the conventional graphite material has to increase the thickness of the graphite crucible, and the graphite crucible that is large and light in weight and whose thermal conductivity can be changed depending on the portion of the graphite crucible cannot be easily obtained.
[0026]
The method for producing the graphite crucible 1 may be a known method for producing a carbon fiber reinforced graphite crucible. For example, after immersing continuous carbon fiber in a low-viscosity binder in which a thermosetting resin is dissolved in a solvent, The crucible 1 is wound around a mold according to each part, that is, the bottom part or the straight body part, and is thermoset.
[0027]
Next, the cured body is cut into a shape corresponding to the part, molded, and the like, and then the cured bodies are combined and thermally cured using a thermosetting binder. The joint 9 is firmly bonded using the pin-shaped bonding member 8 having heat resistance as shown in FIG. 6 and then cured by heat to produce a crucible-shaped molded body. This molded body is heated and carbonized in an inert atmosphere, further impregnated with tar pitch and heated at a high temperature to graphitize the whole, and then the carbonized crucible is processed to a high purity to produce a graphite crucible.
[0028]
Since the graphite crucible for pulling up a silicon single crystal according to the present invention has a crucible structure as described above, in order to pull up a silicon single crystal using this graphite crucible 1, a CZ method as shown in FIG. A single crystal pulling apparatus 10 is used.
[0029]
The single crystal pulling apparatus 10 includes a furnace body 11, a crucible rotating shaft 13 that passes through the furnace body 11 from the furnace bottom 12 of the furnace body 11 and is driven by a motor, and the graphite crucible 1 attached to the rotating shaft 13. And a quartz crucible 14 housed in the graphite crucible 1.
[0030]
Further, the furnace body 11 is provided with a cylindrical heater 16 so as to face the graphite crucible 1 and cover the periphery of the graphite crucible 1. The heater 16 heats the quartz crucible 14 through the graphite crucible 1 and melts the nugget-like polysilicon 15 loaded in the quartz crucible 14 into a silicon melt 15L.
[0031]
On the other hand, above the quartz crucible 14, a seed 18 attached to the tip of the pulling wire 17 is provided.
[0032]
In order to pull up a single crystal using the single crystal pulling apparatus 10 incorporating the graphite crucible 1 according to the present invention, a nugget-like polysilicon 15 is loaded into a quartz crucible 14.
[0033]
Thereafter, the heater 16 is energized and the quartz crucible 14 is heated via the graphite crucible 1 to melt the polysilicon 15. The tip of the seed 18 is brought into contact with the silicon melt surface 15s of the silicon melt 15L in which the polysilicon 15 is melted, and then the pulling is started.
[0034]
In the process of heating, melting, and pulling up the polysilicon 15 of the quartz crucible 14 by the heater 16, the heat of the heater 16 is mainly transferred to the quartz crucible 14 and the polysilicon 15 through the straight body portion 6 of the graphite crucible 1. However, since the straight body main part 6 is formed by the horizontal arrangement C / C having a large heat transfer coefficient, it is heated extremely efficiently.
[0035]
On the other hand, since the heat passing through the straight cylinder upper part 7 of the graphite crucible 1 is formed in the vertical array C / C having a small heat transfer coefficient, the heat transfer amount from the heater 16 to the polysilicon 15 is small. Further, the silicon melt surface 15s is adjusted so as to be positioned in the vicinity of the joint portion 9 between the straight body main portion 6 and the straight body upper portion 7, and further, in the vicinity of the straight body upper portion 7 through the quartz crucible 14 and the graphite crucible 1. Heat dissipation from the silicon melt 15c to the outside of the graphite crucible 1 is also suppressed, and in the vicinity of the silicon melt surface 15s where the upper side is open, the temperature of the silicon melt 15i near the inner peripheral surface of the quartz crucible 14 is reduced. Can be maintained higher than the temperature of the silicon melt 15a in the single crystal growth region.
[0036]
Therefore, the temperature difference between the silicon melt 15i on the inner peripheral surface of the quartz crucible 14 and the silicon melt 15a in the single crystal growth region can be increased, and the silicon single crystal can be efficiently pulled up.
[0037]
In addition, since the straight cylinder lower part 5 of the graphite crucible 1 is also formed by a vertical arrangement C / C having a small heat transfer coefficient, the heat transfer amount from the heater 16 to the polysilicon 15 is small, and the silicon melt in the vicinity of the straight cylinder lower part 5 is small. The temperature of the liquid 15 u is lower than the temperature of the silicon melt 15 c in the vicinity of the straight body main part 6.
[0038]
Furthermore, since the crucible bottom 3 of the graphite crucible 1 is also formed in a vertical arrangement C / C, heat is radiated from the crucible bottom 3. Therefore, the temperature of the silicon melt 15b near the crucible bottom 3 can be kept lower than the temperature of the silicon melt 15c near the straight body main portion 6.
[0039]
As described above, by changing the thermal conductivity of the C / C depending on the part of the graphite crucible 1, the heat input and heat release of the part of the graphite crucible are controlled, the temperature of the silicon melt is controlled, and the convection of the silicon melt is performed. The controllability of the single crystal can be improved, and the single crystal pulling productivity can be improved.
[0040]
Further, the temperature of the silicon melt 15u in the vicinity of the straight barrel lower part 5 or the temperature of the silicon melt 15b in the vicinity of the crucible bottom part 3 becomes lower than the temperature of the silicon melt 15c in the vicinity of the straight barrel main part 6, thereby pulling up the single crystal. Can obtain a high-quality silicon single crystal having a low oxygen concentration.
[0041]
【Example】
Using a graphite crucible with an inner diameter of 30 inches, a test was performed to compare the power consumption of the heater 16 immediately before pulling, where the silicon melt temperature was stable.
[0042]
Example: A graphite crucible in which the crucible bottom 3, the straight cylinder lower part 5 and the straight cylinder upper part 7 are formed in a vertical arrangement C / C, and the straight cylinder main part 6 is formed in a horizontal arrangement C / C.
[0043]
Comparative Example 1: A conventional graphite crucible reinforced with randomly arranged carbon fibers without defining the direction of the carbon fibers by the location of the graphite crucible.
[0044]
Comparative Example 2: Conventional graphite-only graphite crucible.
[0045]
The following test results were obtained.
[Table 2]
Figure 0003734004
[0046]
Although the example was a graphite crucible having light weight and high strength characteristics, it had the same power consumption as that of Comparative Example 2 although it was difficult in strength but excellent in power consumption.
[0047]
The power consumption of the example is 4.4% less than that of the comparative example 1.
[0048]
【The invention's effect】
The integrated crucible made of carbon fiber reinforced carbon according to the present invention is not only capable of supporting an increase in size, but also has a light weight, increased mechanical strength, improved durability for use, and reduced power consumption. By determining and using the fiber direction of the carbon fiber according to the site, the heat input and heat release can be controlled to improve the controllability of the convection of the silicon melt and the single crystal pulling productivity can be improved.
[0049]
Furthermore, when the temperature of the polysilicon near the bottom of the straight barrel or the bottom of the crucible becomes lower than the temperature of the silicon melt near the main portion of the straight barrel, the pulled single crystal obtains a high-quality silicon single crystal with a low oxygen concentration. be able to.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a graphite crucible for pulling a silicon single crystal according to the present invention.
FIG. 2 is an enlarged cross-sectional view of a portion A in FIG.
3 is an explanatory view of a single crystal pulling apparatus incorporating the graphite crucible for pulling up a silicon single crystal of FIG. 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Graphite crucible 2 Arc part 3 Crucible bottom part 4 Straight body part 5 Straight body lower part 6 Straight body main part 7 Straight body upper part 8 Connection member 9 Connection part 10 Single crystal pulling apparatus 11 Furnace main body 12 Furnace bottom part 13 Crucible rotating shaft 14 Quartz Crucible 15 Polysilicon 15a Silicon melt 15b in the single crystal growth region Silicon melt 15c in the vicinity of the bottom portion Silicon melt 15i in the vicinity of the main body main portion Silicon melt 15L in the vicinity of the inner peripheral surface Silicon melt 15s Silicon melt surface 15u Silicon melt near the lower part of the body 16 Heater 17 Pull-up wire 18 Seed

Claims (1)

炭素繊維強化炭素複合材を用いたシリコン単結晶引上げ用黒鉛ルツボにおいて、黒鉛ルツボを軸方向に複数の直胴部位に区画可能な直胴部とルツボ底部とから一体に構成し、このルツボ底部、前記直胴上部および前記直胴下部は炭素繊維が実質的に垂直方向に配列された炭素繊維強化炭素複合材で形成され、黒鉛ルツボの直胴主部は炭素繊維が実質的に水平方向に放射状に配列された炭素繊維強化炭素複合材を用いて黒鉛ルツボの各部位の入熱と放熱の制御を行うことを特徴としたシリコン単結晶引上げ用黒鉛ルツボ。In a graphite crucible for pulling up a silicon single crystal using a carbon fiber reinforced carbon composite material, the graphite crucible is integrally formed from a straight body portion and a crucible bottom portion that can be partitioned into a plurality of straight body portions in the axial direction, and this crucible bottom portion, The upper portion of the straight body and the lower portion of the straight body are formed of a carbon fiber reinforced carbon composite material in which carbon fibers are arranged in a substantially vertical direction, and the main portion of the straight body of the graphite crucible is substantially radial in the horizontal direction. A graphite crucible for pulling up a silicon single crystal, wherein the heat input and the heat dissipation of each part of the graphite crucible are controlled by using carbon fiber reinforced carbon composites arranged in the above .
JP00831099A 1999-01-14 1999-01-14 Graphite crucible for pulling silicon single crystal Expired - Fee Related JP3734004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00831099A JP3734004B2 (en) 1999-01-14 1999-01-14 Graphite crucible for pulling silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00831099A JP3734004B2 (en) 1999-01-14 1999-01-14 Graphite crucible for pulling silicon single crystal

Publications (2)

Publication Number Publication Date
JP2000203984A JP2000203984A (en) 2000-07-25
JP3734004B2 true JP3734004B2 (en) 2006-01-11

Family

ID=11689591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00831099A Expired - Fee Related JP3734004B2 (en) 1999-01-14 1999-01-14 Graphite crucible for pulling silicon single crystal

Country Status (1)

Country Link
JP (1) JP3734004B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016037506A1 (en) * 2014-09-09 2016-03-17 湖南南方搏云新材料有限责任公司 Four-section type combined crucible made from carbon material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363266B2 (en) * 2009-10-02 2013-12-11 株式会社Sumco Quartz glass crucible manufacturing apparatus and method for manufacturing quartz glass crucible
JP5870406B2 (en) * 2012-05-29 2016-03-01 東海カーボン株式会社 Crucible holder and method for manufacturing crucible holder
CN112626609B (en) * 2020-12-15 2022-02-01 南京晶能半导体科技有限公司 Thermal field capable of adjusting convection of semiconductor monocrystalline silicon melt and monocrystalline furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016037506A1 (en) * 2014-09-09 2016-03-17 湖南南方搏云新材料有限责任公司 Four-section type combined crucible made from carbon material

Also Published As

Publication number Publication date
JP2000203984A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
KR101114650B1 (en) Crucible holding member and method for producing the same
EP2206810B1 (en) Crucible holding member and method for producing the same
JP2009203093A (en) Crucible holding member
EP1348783B1 (en) a method for regenerating a composite crucible
WO2008086704A1 (en) Crystal producing system used in bridgman-stockbarger method by rotating multiple crucibles
US11371160B2 (en) Seed crystal holder for pulling up single crystal and method of manufacturing silicon single crystal using the same
KR101114604B1 (en) Crucible holding member and method for producing the same
JP2009203091A (en) Crucible holding member
JP3734004B2 (en) Graphite crucible for pulling silicon single crystal
TWI404845B (en) Container holding member and method for producing the same
JP2012254916A (en) Carbon fiber-reinforced carbon composite cylindrical member, method of manufacturing carbon fiber-reinforced carbon composite cylindrical member, carbon fiber-reinforced carbon composite material crucible, and method of manufacturing carbon fiber-reinforced carbon composite material crucible
JP3198914B2 (en) Graphite crucible for pulling single crystal and method for producing the same
JPH11255587A (en) Carbon-fiber reinforced carbonaceous material crucible for pulling single crystal and its production
US9040010B2 (en) Apparatus for manufacturing single crystal silicon ingot having reusable dual crucible for silicon melting
KR20140017507A (en) Single crystal pulling device and low heat conductive member to be used in single crystal pulling device
JPH10101471A (en) Graphite crucible for pulling up monocrystal
JP2000169281A (en) Apparatus for pulling crystal substance
JPH10167879A (en) Crucible for pulling up single crystal
JP2000016895A (en) Graphite crucible
JPH09315883A (en) Seed crystal holder for pulling up single crystal
JP4018503B2 (en) Single crystal pulling crucible
JP3012299U (en) Graphite crucible for pulling silicon single crystal
JP4529158B2 (en) Single crystal pulling crucible
JP2000247780A (en) Single crystal puller
JP2000290093A (en) Carbon crucible for single crystal pulling-up

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees