JP2012254916A - Carbon fiber-reinforced carbon composite cylindrical member, method of manufacturing carbon fiber-reinforced carbon composite cylindrical member, carbon fiber-reinforced carbon composite material crucible, and method of manufacturing carbon fiber-reinforced carbon composite material crucible - Google Patents

Carbon fiber-reinforced carbon composite cylindrical member, method of manufacturing carbon fiber-reinforced carbon composite cylindrical member, carbon fiber-reinforced carbon composite material crucible, and method of manufacturing carbon fiber-reinforced carbon composite material crucible Download PDF

Info

Publication number
JP2012254916A
JP2012254916A JP2012088496A JP2012088496A JP2012254916A JP 2012254916 A JP2012254916 A JP 2012254916A JP 2012088496 A JP2012088496 A JP 2012088496A JP 2012088496 A JP2012088496 A JP 2012088496A JP 2012254916 A JP2012254916 A JP 2012254916A
Authority
JP
Japan
Prior art keywords
carbon fiber
crucible
carbon
fiber reinforced
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012088496A
Other languages
Japanese (ja)
Inventor
Eiki Tsushima
栄樹 津島
Daishi Yoshimitsu
大志 吉光
Takakazu Mori
隆員 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2012088496A priority Critical patent/JP2012254916A/en
Priority to CN 201220224890 priority patent/CN202830218U/en
Publication of JP2012254916A publication Critical patent/JP2012254916A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber-reinforced carbon composite cylindrical member, a method of manufacturing a carbon fiber-reinforced carbon composite cylindrical member, a carbon fiber-reinforced carbon composite material crucible, and a method of manufacturing a carbon fiber-reinforced composite material crucible, the carbon fiber-reinforced carbon composite cylindrical member being composed of a carbon fiber-reinforced carbon composite material having certain physical properties and capable of suppressing wedging of a silica glass crucible during cooling, capable of being easily removed without damage to the silica glass crucible, and also capable of suppressing silicification.SOLUTION: A carbon fiber-reinforced carbon composite material crucible 20 used to support and hold a silica glass crucible that houses a molten material includes a bottom section 22 and a straight body section (cylindrical member) 21 provided above the bottom section. At least the straight body section (cylindrical member) is composed of a carbon fiber-reinforced carbon composite material containing a carbon-fiber woven fabric made using pitch-based carbon fibers having a tensile modulus of 400 GPa or more and 900 GPa or less. The average coefficient of linear thermal expansion in a circumferential direction of the straight body section within a temperature range of room temperature to 800°C is equal to or less than the average coefficient of linear thermal expansion of silica glass or less.

Description

本発明は、炭素繊維強化炭素複合円筒部材及び炭素繊維強化炭素複合円筒部材の製造方法、並びに炭素繊維強化炭素複合材ルツボ及びこのルツボの製造方法に関し、例えば、半導体材料等の単結晶を引上げる装置または太陽電池材料等の多結晶を製造する装置において溶融材料を収容するルツボを支持、保持するために用いられる、炭素繊維強化炭素複合円筒部材及び炭素繊維強化炭素複合円筒部材の製造方法、並びに炭素繊維強化炭素複合材ルツボ及びこのルツボの製造方法に関する。   The present invention relates to a carbon fiber reinforced carbon composite cylindrical member, a method for manufacturing a carbon fiber reinforced carbon composite cylindrical member, a carbon fiber reinforced carbon composite material crucible, and a method for manufacturing the crucible, for example, pulling up a single crystal such as a semiconductor material. Carbon fiber reinforced carbon composite cylindrical member and carbon fiber reinforced carbon composite cylindrical member used for supporting and holding a crucible containing molten material in an apparatus or an apparatus for producing a polycrystal such as a solar cell material, and The present invention relates to a carbon fiber reinforced carbon composite material crucible and a method for producing the crucible.

例えば、半導体材料等の単結晶を製造する場合、CZ法(チョクラルスキー法)が広く用いられている。
このCZ方法は、図9に示すように石英ガラスルツボ50内に収容されたシリコンの溶融液Mの表面に種結晶Pを接触させ、石英ガラスルツボ50を回転させるとともに、この種結晶Pを反対方向に回転させながら上方へ引上げることによって、種結晶Pの下端に単結晶Cを形成していくものである。
For example, when producing a single crystal such as a semiconductor material, the CZ method (Czochralski method) is widely used.
In this CZ method, as shown in FIG. 9, the seed crystal P is brought into contact with the surface of the silicon melt M accommodated in the quartz glass crucible 50, the quartz glass crucible 50 is rotated, and the seed crystal P is opposed. The single crystal C is formed at the lower end of the seed crystal P by pulling upward while rotating in the direction.

この石英ガラスルツボ50はシリコン単結晶Cの育成にともない、周りを取り囲むヒータ52の熱、シリコン溶融液Mの熱によって軟化する。このため、石英ガラスルツボ50は黒鉛ルツボ51内に収容され、支持されている。
そして、シリコン単結晶引上げが終了すると、石英ガラスルツボ50及び黒鉛ルツボ51は冷却される。このとき、前記黒鉛ルツボ51の熱膨張係数が石英ガラスルツボ50よりも大きいため、両者が密着した状態で冷却されると、黒鉛ルツボ51に亀裂が生じ、最終的には割れが生じるという課題があった。
As the silicon single crystal C is grown, the quartz glass crucible 50 is softened by the heat of the heater 52 surrounding it and the heat of the silicon melt M. For this reason, the quartz glass crucible 50 is accommodated and supported in the graphite crucible 51.
When the pulling of the silicon single crystal is completed, the quartz glass crucible 50 and the graphite crucible 51 are cooled. At this time, since the coefficient of thermal expansion of the graphite crucible 51 is larger than that of the quartz glass crucible 50, there is a problem that when the both are cooled in close contact with each other, the graphite crucible 51 is cracked and finally cracked. there were.

そのような課題に対し、例えば特許文献1には、従来の黒鉛ルツボ51に代えて、炭素繊維強化炭素複合材(C/C材とも呼ぶ)からなるルツボ(以下、炭素繊維ルツボという)を用いることが提案されている。   For such a problem, for example, Patent Document 1 uses a crucible (hereinafter referred to as a carbon fiber crucible) made of a carbon fiber reinforced carbon composite material (also referred to as a C / C material) instead of the conventional graphite crucible 51. It has been proposed.

特開平11−60373号公報Japanese Patent Laid-Open No. 11-60373

前記ルツボのC/C材の炭素繊維としては、値段が安く、しかも柔軟性を有し、取扱いの容易なPAN系の炭素繊維が用いられている。このPAN系の炭素繊維からなるC/C材の線熱膨張係数は、黒鉛材に比べて石英ガラスルツボの線熱膨張係数に近く、また機械的強度が黒鉛材よりも高いため、冷却時の割れの発生を抑制することができる。   As the carbon fiber of the C / C material of the crucible, a PAN-based carbon fiber that is inexpensive, flexible, and easy to handle is used. The linear thermal expansion coefficient of the C / C material made of this PAN-based carbon fiber is close to the linear thermal expansion coefficient of the quartz glass crucible compared to the graphite material, and the mechanical strength is higher than that of the graphite material. Generation of cracks can be suppressed.

しかしながら、このPAN系の炭素繊維からなるC/C材の線熱膨張係数は、前記したように黒鉛材に比べて石英ガラスルツボの線熱膨張係数に近いが、一般的に高温域において石英ガラスルツボの線熱膨張係数よりも大きく、常温から1000℃に昇温した際の線熱膨張係数は石英ガラスの2倍程度となる。
そのため、シリコン単結晶引上げが終了し、石英ガラスルツボ及び炭素繊維ルツボが冷却される際、両者が密着した状態で冷却されると、石英ガラスルツボが炭素繊維ルツボに食い込み(強固に嵌合し)、石英ルツボを炭素繊維ルツボから取り外すことができないという課題があった。
However, the linear thermal expansion coefficient of the C / C material made of the PAN-based carbon fiber is closer to the linear thermal expansion coefficient of the quartz glass crucible than the graphite material as described above. It is larger than the linear thermal expansion coefficient of the crucible, and the linear thermal expansion coefficient when the temperature is raised from room temperature to 1000 ° C. is about twice that of quartz glass.
Therefore, when the pulling of the silicon single crystal is completed and the quartz glass crucible and the carbon fiber crucible are cooled, the quartz glass crucible bites into the carbon fiber crucible (tightly fits) when both are in close contact with each other. There was a problem that the quartz crucible could not be removed from the carbon fiber crucible.

また、前記炭素繊維ルツボを再利用するために、石英ガラスルツボを炭素繊維ルツボから取り外す必要があるが、前記したように石英ガラスルツボが炭素繊維ルツボに食い込む(強固に嵌合する)ため、石英ルツボを破壊して前記石英ガラスルツボを取り出さなければならず、前記炭素繊維ルツボを再利用に手間がかかるという課題があった。
更に、C/C材の炭素繊維は、シリコン単結晶引上げ工程において酸化珪素ガスに接触すると珪化が進み、かかる珪化部分の熱膨張がより大きくなる。その結果、石英ガラスルツボ及び炭素繊維ルツボが冷却される際、石英ガラスルツボと珪化部分の熱膨張の差によって炭素繊維ルツボに亀裂、割れが生じるという課題があった。
Further, in order to reuse the carbon fiber crucible, it is necessary to remove the quartz glass crucible from the carbon fiber crucible. However, as described above, the quartz glass crucible bites into the carbon fiber crucible (tightly fits). The crucible must be broken and the quartz glass crucible must be taken out, and there is a problem that it takes time to reuse the carbon fiber crucible.
Furthermore, when the carbon fiber of the C / C material comes into contact with the silicon oxide gas in the silicon single crystal pulling step, silicification proceeds, and the thermal expansion of the silicified portion becomes larger. As a result, when the quartz glass crucible and the carbon fiber crucible were cooled, there was a problem that the carbon fiber crucible was cracked and cracked due to the difference in thermal expansion between the quartz glass crucible and the silicified portion.

本出願人は、石英ガラスルツボ及び炭素繊維ルツボが冷却された際、石英ガラスルツボが炭素繊維ルツボに食い込むことなく、また石英ガラスルツボを炭素繊維ルツボから容易に取外すことができる、更には珪化を抑制することができ炭素繊維ルツボについて鋭意研究した。
そして、特定の物性を有する炭素繊維強化炭素複合材からなるルツボが、石英ガラスルツボの食い込みを抑制でき、石英ガラスルツボを破壊することなく、石英ガラスルツボを炭素繊維ルツボから容易に取出せ、更には珪化を抑制できることを知見し、本発明を完成するに至った。
When the quartz glass crucible and the carbon fiber crucible are cooled, the present applicant can easily remove the quartz glass crucible from the carbon fiber crucible without biting into the carbon fiber crucible. Research on carbon fiber crucible that can be suppressed.
And the crucible made of carbon fiber reinforced carbon composite material having specific physical properties can suppress the biting of the quartz glass crucible, and the quartz glass crucible can be easily taken out from the carbon fiber crucible without destroying the quartz glass crucible, The inventors have found that silicification can be suppressed and have completed the present invention.

本発明は、前記したような事情の下になされたものであり、冷却時における石英ガラスルツボの食い込みを抑制でき、石英ガラスルツボを破壊することなく、石英ガラスルツボを容易に取り外すことができ、更には珪化を抑制できる、特定の物性を有する炭素繊維強化炭素複合材からなる炭素繊維強化炭素複合円筒部材及び炭素繊維強化炭素複合円筒部材の製造方法、並びに炭素繊維強化炭素複合材ルツボ及びこのルツボの製造方法を提供することを目的とする。   The present invention has been made under the circumstances as described above, can suppress the biting of the quartz glass crucible during cooling, can easily remove the quartz glass crucible without destroying the quartz glass crucible, Furthermore, a carbon fiber reinforced carbon composite cylindrical member made of a carbon fiber reinforced carbon composite material having specific physical properties capable of suppressing silicidation, a method for producing the carbon fiber reinforced carbon composite cylindrical member, a carbon fiber reinforced carbon composite crucible, and the crucible It aims at providing the manufacturing method of.

前記した課題を解決するためになされた本発明にかかる炭素繊維強化炭素複合円筒部材は、溶融材料を収容する石英ガラスルツボを支持、保持するルツボに用いられる、炭素繊維強化炭素複合材で形成された炭素繊維強化炭素複合円筒部材において、前記炭素繊維強化炭素複合材が、引張弾性率400GPa以上900GPa以下のピッチ系炭素繊維を用いた炭素繊維織布を含む炭素繊維強化炭素複合材であって、かつ、常温から800℃に昇温した際の周方向の平均線熱膨張係数が、石英ガラスの平均線熱膨張係数以下であることを特徴としている。   The carbon fiber reinforced carbon composite cylindrical member according to the present invention made to solve the above-described problems is formed of a carbon fiber reinforced carbon composite material used for a crucible for supporting and holding a quartz glass crucible containing a molten material. In the carbon fiber reinforced carbon composite cylindrical member, the carbon fiber reinforced carbon composite material is a carbon fiber reinforced carbon composite material including a carbon fiber woven fabric using pitch-based carbon fibers having a tensile modulus of elasticity of 400 GPa to 900 GPa, And the average linear thermal expansion coefficient of the circumferential direction at the time of heating up from normal temperature to 800 degreeC is below the average linear thermal expansion coefficient of quartz glass, It is characterized by the above-mentioned.

本発明にかかる炭素繊維強化炭素複合円筒部材にあっては、引張弾性率400GPa以上900GPa以下のピッチ系炭素繊維を用いた繊維織布を含む炭素繊維強化炭素複合材から形成されている。
このように、前記炭素繊維強化炭素複合円筒部材を特定のピッチ系炭素繊維織布を含む炭素繊維強化炭素複合材で形成したのは、常温から800℃に昇温した際の平均線熱膨張係数を石英ガラスの平均線熱膨張係数以下とするためである。
尚、前記炭素繊維強化炭素複合円筒部材を、PAN系炭素繊維織布を含む炭素繊維強化炭素複合材で形成し、ルツボの直胴部に用いた場合には、石英ガラスの平均線熱膨張係数とほぼ同じ、もしくはより小さな平均線熱膨張係数になすことが困難であり、好ましくない。
The carbon fiber reinforced carbon composite cylindrical member according to the present invention is formed from a carbon fiber reinforced carbon composite material including a fiber woven fabric using pitch-based carbon fibers having a tensile elastic modulus of 400 GPa to 900 GPa.
As described above, the carbon fiber reinforced carbon composite cylindrical member is formed of a carbon fiber reinforced carbon composite material including a specific pitch-based carbon fiber woven fabric. The average linear thermal expansion coefficient when the temperature is raised from room temperature to 800 ° C. Is set to be equal to or less than the average linear thermal expansion coefficient of quartz glass.
In addition, when the carbon fiber reinforced carbon composite cylindrical member is formed of a carbon fiber reinforced carbon composite material including a PAN-based carbon fiber woven fabric and is used for a straight body portion of a crucible, an average linear thermal expansion coefficient of quartz glass is used. It is difficult to achieve an average linear thermal expansion coefficient that is approximately the same as or smaller than that, which is not preferable.

上記したように、炭素繊維強化炭素複合円筒部材を、石英ガラスルツボを保持するカーボンルツボの直胴部に用いた場合には、炭素繊維強化炭素複合円筒部材の平均線熱膨張係数が、常温から800℃に昇温した際の石英ガラスの平均線熱膨張係数以下であるため、石英ガラスルツボ及び炭素繊維強化炭素複合円筒部材が密着した状態で冷却されても、石英ガラスルツボが前記円筒部材(直胴部)に食い込む(強固に嵌合する)ことなく、石英ガラスルツボをルツボから容易に取り出すことができる。
ここで、前記円筒部材(直胴部)の周方向における平均線熱膨張係数が、常温から800℃に昇温した際の0.5×10−6/℃以下であることがより望ましい。
As described above, when the carbon fiber reinforced carbon composite cylindrical member is used for the straight body portion of the carbon crucible holding the quartz glass crucible, the average linear thermal expansion coefficient of the carbon fiber reinforced carbon composite cylindrical member is from room temperature. Since it is below the average linear thermal expansion coefficient of quartz glass when the temperature is raised to 800 ° C., even if the quartz glass crucible and the carbon fiber reinforced carbon composite cylindrical member are cooled in close contact, the quartz glass crucible remains in the cylindrical member ( The quartz glass crucible can be easily taken out from the crucible without biting into (straight fitting part).
Here, the average linear thermal expansion coefficient in the circumferential direction of the cylindrical member (straight body portion) is more preferably 0.5 × 10 −6 / ° C. or less when the temperature is raised from normal temperature to 800 ° C.

また、この円筒部材(直胴部)の引張弾性率は400〜900GPaになるように構成されている。この円筒部材(直胴部)の引張弾性率が400GPa未満の場合には、炭素繊維内のグラファイト配向が発達しておらず、常温から800℃に昇温した際のルツボ周方向の平均線熱膨張係数を石英ガラスの平均線熱膨張係数とほぼ同じ、もしくはより小さくすることが困難であるため好ましくない。一方、円筒部材(直胴部)の引張弾性率が900GPaを超えると、炭素繊維が脆くなり、成形時に組織内部で炭素繊維が折れ、組織破壊に伴う機械的強度が低下するため好ましくない。   In addition, the cylindrical member (straight body portion) is configured to have a tensile elastic modulus of 400 to 900 GPa. When the tensile elastic modulus of this cylindrical member (straight barrel portion) is less than 400 GPa, the graphite orientation in the carbon fiber is not developed, and the average linear heat in the crucible circumferential direction when the temperature is raised from room temperature to 800 ° C. Since it is difficult to make the expansion coefficient substantially the same as or smaller than the average linear thermal expansion coefficient of quartz glass, it is not preferable. On the other hand, when the tensile modulus of elasticity of the cylindrical member (straight body portion) exceeds 900 GPa, the carbon fiber becomes brittle, the carbon fiber is broken inside the structure at the time of molding, and the mechanical strength accompanying the tissue destruction is lowered, which is not preferable.

また、前記円筒部材の平均線熱膨張係数が、室温から400℃の範囲において負の係数であって、室温から400℃の範囲において熱収縮すること(400℃から室温までの冷却過程において熱膨張すること)が望ましい。
このように、前記円筒部材の平均線熱膨張係数が、室温から400℃の範囲において負の係数であれば、室温から400℃の範囲において熱収縮するため前記円筒部材(直胴部)の内表面と石英ガラスルツボ外表面との間にすき間が生じ、石英ガラスルツボをより簡単に取り外すことができる。
The average linear thermal expansion coefficient of the cylindrical member is a negative coefficient in a range from room temperature to 400 ° C., and heat shrinks in a range from room temperature to 400 ° C. (thermal expansion in a cooling process from 400 ° C. to room temperature). Is desirable).
Thus, if the average linear thermal expansion coefficient of the cylindrical member is a negative coefficient in the range of room temperature to 400 ° C., the cylindrical member (straight body portion) is thermally contracted in the range of room temperature to 400 ° C. A gap is generated between the surface and the outer surface of the quartz glass crucible, and the quartz glass crucible can be removed more easily.

また、前記ピッチ系炭素繊維織布の目付が200〜600g/mであることが望ましい。このようにピッチ系炭素繊維織布の目付が200g/m未満の場合には、繊維間の隙間が大きくなり、マトリックス部の珪化が促進されるため、好ましくない。
一方、ピッチ系炭素繊維織布の目付が600g/mを超える場合には、炭素繊維織布が厚くなるため所定厚さに対する積層枚数が減り、積層した炭素繊維織布間のマトリックス部への応力集中が生じることにより強度が低下するため、好ましくない。また、厚い織布となった場合、繊維の曲率が大きくなり、製造時もしくは使用時に繊維が折れ易く、機械的強度が低下するため、好ましくない。
The basis weight of the pitch-based carbon fiber woven fabric is preferably 200 to 600 g / m 2 . Thus, when the basis weight of the pitch-based carbon fiber woven fabric is less than 200 g / m 2 , the gap between the fibers becomes large and the silicidation of the matrix portion is promoted, which is not preferable.
On the other hand, when the basis weight of the pitch-based carbon fiber woven fabric exceeds 600 g / m 2 , the carbon fiber woven fabric becomes thick, so the number of laminated layers with respect to the predetermined thickness is reduced, and the matrix portion between the laminated carbon fiber woven fabrics is reduced Since the strength decreases due to the stress concentration, it is not preferable. Moreover, when it becomes a thick woven fabric, since the curvature of a fiber becomes large, a fiber is easy to break at the time of manufacture or use, and a mechanical strength falls, it is not preferable.

また、単結晶引き上げ炉内では、発生した酸化珪素ガスが前記円筒部材(直胴部)と化学反応して直胴部を消耗させる。同時にPAN系炭素繊維を用いた炭素繊維強化炭素複合材料は、ピッチ系炭素繊維を用いた炭素繊維強化炭素複合材料に比べて酸化珪素ガスと反応しやすい傾向があり、この点でも好ましくない。
ここで、前記円筒部材(直胴部)を形成する炭素繊維強化炭素複合材料はかさ密度が1.3g/cm〜1.8g/cmであることが望ましい。
かさ密度が1.3g/cm以下である場合には、組織が疎であるため、酸化珪素ガスが組織内部に侵入し、消耗を促進するため好ましくない。
一方、かさ密度が1.8g/cm以上である場合には、組織が緻密なため熱膨張係数が高くなり、室温から800℃に昇温した際の平均線熱膨張係数を、石英ガラスの平均線熱膨張係数以下とすることが困難であるため好ましくない。
Further, in the single crystal pulling furnace, the generated silicon oxide gas chemically reacts with the cylindrical member (straight barrel portion) and consumes the straight barrel portion. At the same time, carbon fiber reinforced carbon composite materials using PAN-based carbon fibers tend to react more easily with silicon oxide gas than carbon fiber reinforced carbon composite materials using pitch-based carbon fibers, and this is not preferable.
Here, carbon fiber reinforced carbon composite material forming the cylindrical member (cylindrical body portion) is preferably a bulk density of 1.3g / cm 3 ~1.8g / cm 3 .
When the bulk density is 1.3 g / cm 3 or less, the structure is sparse, so that silicon oxide gas penetrates into the structure and promotes wear, which is not preferable.
On the other hand, when the bulk density is 1.8 g / cm 3 or more, the thermal expansion coefficient increases because the structure is dense, and the average linear thermal expansion coefficient when the temperature is raised from room temperature to 800 ° C. is Since it is difficult to make it below the average linear thermal expansion coefficient, it is not preferable.

また、上記炭素繊維強化炭素複合円筒部材は、前記炭素繊維織布が熱硬化性樹脂と炭素粉との混合接着剤を用いて貼り合わされ、その後、熱硬化処理、炭素化処理、黒鉛化処理および高純度化処理を施して形成されることが望ましい。   In the carbon fiber reinforced carbon composite cylindrical member, the carbon fiber woven fabric is bonded using a mixed adhesive of a thermosetting resin and carbon powder, and thereafter, a thermosetting treatment, a carbonization treatment, a graphitization treatment, and It is desirable to form by performing a high-purification treatment.

また、前記した課題を解決するためになされた本発明にかかる炭素繊維強化炭素複合材ルツボは、溶融材料を収容する石英ガラスルツボを支持、保持するために用いられ、底部と、前記底部の上方に設けられた直胴部とを有し、少なくとも前記直胴部が炭素繊維強化炭素複合材で形成された炭素繊維強化炭素複合ルツボであって、前記直胴部が、引張弾性率400GPa以上900GPa以下のピッチ系炭素繊維を用いた炭素繊維織布を含む炭素繊維強化炭素複合材から形成され、かつ常温から800℃に昇温した際の直胴部の周方向の平均線熱膨張係数が、石英ガラスの平均線熱膨張係数以下であることを特徴としている。   A carbon fiber reinforced carbon composite crucible according to the present invention made to solve the above-described problems is used to support and hold a quartz glass crucible containing a molten material, and includes a bottom portion and an upper portion of the bottom portion. A carbon fiber reinforced carbon composite crucible in which at least the straight body portion is formed of a carbon fiber reinforced carbon composite material, and the straight body portion has a tensile modulus of 400 GPa or more and 900 GPa. The average linear thermal expansion coefficient in the circumferential direction of the straight body portion when formed from a carbon fiber reinforced carbon composite material including a carbon fiber woven fabric using the following pitch-based carbon fiber and heated from room temperature to 800 ° C, It is characterized by being below the average linear thermal expansion coefficient of quartz glass.

本発明にかかる炭素繊維強化炭素複合材ルツボにあっては、少なくとも直胴部が、引張弾性率400GPa以上900GPa以下のピッチ系炭素繊維を用いた繊維織布を含む炭素繊維強化炭素複合材から形成されている。
このように、少なくとも直胴部を特定のピッチ系炭素繊維織布を含む炭素繊維強化炭素複合材で形成したのは、常温から800℃に昇温した際の平均線熱膨張係数を石英ガラスの平均線熱膨張係数以下とするためである。
尚、前記直胴部を、PAN系炭素繊維織布を含む炭素繊維強化炭素複合材で形成した場合には、石英ガラスの平均線熱膨張係数とほぼ同じ、もしくはより小さな平均線熱膨張係数になすことが困難であり、好ましくない。
In the carbon fiber reinforced carbon composite material crucible according to the present invention, at least the straight body portion is formed from a carbon fiber reinforced carbon composite material including a fiber woven fabric using pitch-based carbon fibers having a tensile elastic modulus of 400 GPa to 900 GPa. Has been.
As described above, at least the straight body portion is formed of a carbon fiber reinforced carbon composite material including a specific pitch-based carbon fiber woven fabric. The average linear thermal expansion coefficient when the temperature is raised from room temperature to 800 ° C. This is because the coefficient of thermal expansion is not more than the average linear thermal expansion coefficient.
When the straight body portion is formed of a carbon fiber reinforced carbon composite material including a PAN-based carbon fiber woven fabric, the average linear thermal expansion coefficient is approximately the same as or smaller than the average linear thermal expansion coefficient of quartz glass. It is difficult to do and is not preferable.

上記したように、炭素繊維強化炭素複合材ルツボの直胴部が、常温から800℃に昇温した際の石英ガラスの平均線熱膨張係数以下であるため、石英ガラスルツボ及び炭素繊維ルツボが密着した状態で冷却されても、石英ガラスルツボが前記直胴部に食い込む(強固に嵌合する)ことなく、石英ガラスルツボを炭素繊維強化炭素複合材ルツボから容易に取り出すことができる。
ここで、前記炭素繊維強化炭素複合材ルツボの直胴部の周方向における平均線熱膨張係数が、常温から800℃に昇温した際の0.5×10−6/℃以下であることがより望ましい。
As described above, since the straight body portion of the carbon fiber reinforced carbon composite crucible is below the average linear thermal expansion coefficient of the quartz glass when the temperature is raised from room temperature to 800 ° C., the quartz glass crucible and the carbon fiber crucible are in close contact with each other. Even if cooled in this state, the quartz glass crucible can be easily taken out from the carbon fiber reinforced carbon composite crucible without the quartz glass crucible biting into the straight body portion (tightly fitting).
Here, the average linear thermal expansion coefficient in the circumferential direction of the straight body portion of the carbon fiber reinforced carbon composite material crucible is 0.5 × 10 −6 / ° C. or less when the temperature is raised from normal temperature to 800 ° C. More desirable.

また、この直胴部の引張弾性率は400〜900GPaになるように構成されている。この直胴部の引張弾性率が400GPa未満の場合には、炭素繊維内のグラファイト配向が発達しておらず、常温から800℃に昇温した際のルツボ周方向の平均線熱膨張係数を石英ガラスの平均線熱膨張係数とほぼ同じ、もしくはより小さくすることが困難であるため好ましくない。一方、直胴部の引張弾性率が900GPaを超えると、炭素繊維が脆くなり、成形時に組織内部で炭素繊維が折れ、組織破壊に伴う機械的強度が低下するため好ましくない。   In addition, the straight body portion is configured to have a tensile elastic modulus of 400 to 900 GPa. When the tensile modulus of the straight body is less than 400 GPa, the graphite orientation in the carbon fiber is not developed, and the average linear thermal expansion coefficient in the circumferential direction of the crucible when the temperature is raised from room temperature to 800 ° C. It is not preferable because it is difficult to make it approximately the same or smaller than the average linear thermal expansion coefficient of glass. On the other hand, when the tensile elastic modulus of the straight body part exceeds 900 GPa, the carbon fiber becomes brittle, the carbon fiber breaks inside the structure at the time of molding, and the mechanical strength accompanying the structure destruction is lowered, which is not preferable.

ここで、前記底部が、ピッチ系炭素繊維布を含む炭素繊維強化炭素複合材によって直胴部と一体的に形成され、かつ、前記底部及び直胴部の常温から800℃に昇温した際の平均線熱膨張係数が、石英ガラスの平均線熱膨張係数以下であり、引張弾性率が400〜900GPaであることが望ましい。
即ち、前記直胴部のみならず前記底部も同様に形成し、炭素繊維強化炭素複合材から形成された一体形状の炭素繊維強化炭素複合材ルツボであることが望ましい。
Here, the bottom portion is integrally formed with the straight body portion by a carbon fiber reinforced carbon composite material including a pitch-based carbon fiber cloth, and when the temperature of the bottom portion and the straight body portion is raised from room temperature to 800 ° C. It is desirable that the average linear thermal expansion coefficient is equal to or less than the average linear thermal expansion coefficient of quartz glass and the tensile elastic modulus is 400 to 900 GPa.
That is, it is desirable that not only the straight body portion but also the bottom portion be formed in the same manner, and that the carbon fiber reinforced carbon composite material crucible be formed from a carbon fiber reinforced carbon composite material.

また、前記直胴部、前記底部の平均線熱膨張係数が、室温から400℃の範囲において負の係数であって、室温から400℃の範囲において熱収縮すること(400℃から室温までの冷却過程において熱膨張すること)が望ましい。
このように、前記直胴部、前記底部の平均線熱膨張係数が、室温から400℃の範囲において負の係数であれば、室温から400℃の範囲において熱収縮するため、前記ルツボの内表面と石英ガラスルツボ外表面との間にすき間が生じ、石英ガラスルツボをより簡単に取り外すことができる。
Further, the average linear thermal expansion coefficient of the straight body part and the bottom part is a negative coefficient in a range from room temperature to 400 ° C., and heat shrinks in a range from room temperature to 400 ° C. (cooling from 400 ° C. to room temperature) Thermal expansion in the process) is desirable.
Thus, if the average linear thermal expansion coefficient of the straight body part and the bottom part is a negative coefficient in the range of room temperature to 400 ° C., the inner surface of the crucible is thermally shrunk in the range of room temperature to 400 ° C. And a gap between the outer surface of the quartz glass crucible and the quartz glass crucible can be removed more easily.

また、前記ピッチ系炭素繊維織布の目付が200〜600g/mであることが望ましい。このようにピッチ系炭素繊維織布の目付が200g/m未満の場合には、繊維間の隙間が大きくなり、マトリックス部の珪化が促進されるため、好ましくない。
一方、ピッチ系炭素繊維織布の目付が600g/mを超える場合には、炭素繊維織布が厚くなるため所定厚さに対する積層枚数が減り、積層した炭素繊維織布間のマトリックス部への応力集中が生じることにより強度が低下するため、好ましくない。また、厚い織布となった場合、繊維の曲率が大きくなり、製造時もしくは使用時に繊維が折れ易く、機械的強度が低下するため、好ましくない。
The basis weight of the pitch-based carbon fiber woven fabric is preferably 200 to 600 g / m 2 . Thus, when the basis weight of the pitch-based carbon fiber woven fabric is less than 200 g / m 2 , the gap between the fibers becomes large and the silicidation of the matrix portion is promoted, which is not preferable.
On the other hand, when the basis weight of the pitch-based carbon fiber woven fabric exceeds 600 g / m 2 , the carbon fiber woven fabric becomes thick, so the number of laminated layers with respect to the predetermined thickness is reduced, and the matrix portion between the laminated carbon fiber woven fabrics is reduced Since the strength decreases due to the stress concentration, it is not preferable. Moreover, when it becomes a thick woven fabric, since the curvature of a fiber becomes large, a fiber is easy to break at the time of manufacture or use, and a mechanical strength falls, it is not preferable.

また、単結晶引き上げ炉内では、発生した酸化珪素ガスが前記ルツボと化学反応してルツボを消耗させる。同時にPAN系炭素繊維を用いた炭素繊維強化炭素複合材料は、ピッチ系炭素繊維を用いた炭素繊維強化炭素複合材料に比べて酸化珪素ガスと反応しやすい傾向があり、この点でも好ましくない。
ここで、前記ルツボを形成する炭素繊維強化炭素複合材料はかさ密度が1.3g/cm〜1.8g/cmであることが望ましい。
かさ密度が1.3g/cm以下である場合には、組織が疎であるため、酸化珪素ガスが組織内部に侵入し、消耗を促進するため好ましくない。
一方、かさ密度が1.8g/cm以上である場合には、組織が緻密なため熱膨張係数が高くなり、室温から800℃に昇温した際の平均線熱膨張係数を、石英ガラスの平均線熱膨張係数以下とすることが困難であるため好ましくない。
Further, in the single crystal pulling furnace, the generated silicon oxide gas chemically reacts with the crucible and consumes the crucible. At the same time, carbon fiber reinforced carbon composite materials using PAN-based carbon fibers tend to react more easily with silicon oxide gas than carbon fiber reinforced carbon composite materials using pitch-based carbon fibers, and this is not preferable.
Here, carbon fiber reinforced carbon composite material forming the crucible is preferably a bulk density of 1.3g / cm 3 ~1.8g / cm 3 .
When the bulk density is 1.3 g / cm 3 or less, the structure is sparse, so that silicon oxide gas penetrates into the structure and promotes wear, which is not preferable.
On the other hand, when the bulk density is 1.8 g / cm 3 or more, the thermal expansion coefficient increases because the structure is dense, and the average linear thermal expansion coefficient when the temperature is raised from room temperature to 800 ° C. is Since it is difficult to make it below the average linear thermal expansion coefficient, it is not preferable.

また、上記炭素繊維強化炭素複合材ルツボは、前記炭素繊維織布が熱硬化性樹脂と炭素粉との混合接着剤を用いて貼り合わされ、その後、熱硬化処理、炭素化処理、黒鉛化処理および高純度化処理を施して形成されることが望ましい。   Also, the carbon fiber reinforced carbon composite crucible is bonded to the carbon fiber woven fabric using a mixed adhesive of a thermosetting resin and carbon powder, and then a thermosetting treatment, a carbonization treatment, a graphitization treatment, and It is desirable to form by performing a high-purification treatment.

本発明によれば、冷却時における石英ガラスルツボの食い込みが抑制され、石英ガラスルツボを破壊することなく、石英ガラスルツボを容易に取り外すことができ、更には、更には珪化を抑制できる、炭素繊維強化炭素複合円筒部材及び炭素繊維強化炭素複合円筒部材の製造方法、並びに炭素繊維強化炭素複合材ルツボ及びこのルツボの製造方法を得ることができる。   According to the present invention, the biting of the quartz glass crucible during cooling is suppressed, the quartz glass crucible can be easily removed without destroying the quartz glass crucible, and further, the carbon fiber can suppress silicification. A method for producing a reinforced carbon composite cylindrical member and a carbon fiber reinforced carbon composite cylindrical member, a carbon fiber reinforced carbon composite crucible, and a method for producing the crucible can be obtained.

図1は、本発明にかかる炭素繊維強化炭素複合材ルツボに用いられる炭素繊維織布の平面図である。FIG. 1 is a plan view of a carbon fiber woven fabric used in a carbon fiber reinforced carbon composite crucible according to the present invention. 図2は、本発明にかかる炭素繊維強化炭素複合材ルツボを示す第1の実施形態を示す断面図である。FIG. 2 is a cross-sectional view showing a first embodiment of a carbon fiber reinforced carbon composite crucible according to the present invention. 図3は、前記第1の実施形態の変形例を示す断面図である。FIG. 3 is a cross-sectional view showing a modification of the first embodiment. 図4は、図2、図3に示された炭素繊維強化炭素複合材ルツボの直胴部に用いられる炭素繊維織布の概念図である。FIG. 4 is a conceptual diagram of a carbon fiber woven fabric used in the straight body portion of the carbon fiber reinforced carbon composite material crucible shown in FIGS. 2 and 3. 図5は、図2、図3に示した炭素繊維強化炭素複合材ルツボの直胴部の製造工程を説明するための図である。FIG. 5 is a diagram for explaining a manufacturing process of the straight body portion of the carbon fiber reinforced carbon composite material crucible shown in FIGS. 2 and 3. 図6は、本発明にかかる炭素繊維強化炭素複合材ルツボを示す第2の実施形態を示す図であって、底部を上方に表わした斜視図である。FIG. 6 is a view showing a second embodiment of the carbon fiber-reinforced carbon composite crucible according to the present invention, and is a perspective view showing the bottom part upward. 図7は、図6に示した炭素繊維強化炭素複合材ルツボ(成形用金型を含む)の概略断面図である。FIG. 7 is a schematic cross-sectional view of the carbon fiber reinforced carbon composite crucible (including a molding die) shown in FIG. 図7は、図6に示した炭素繊維強化炭素複合材ルツボの製造工程を説明するための図である。FIG. 7 is a diagram for explaining a manufacturing process of the carbon fiber-reinforced carbon composite material crucible shown in FIG. 6. 図9は、シリコン単結晶引上装置において用いるルツボの説明をするための図である。FIG. 9 is a diagram for explaining a crucible used in a silicon single crystal pulling apparatus.

以下、本発明に係る炭素繊維強化炭素複合材ルツボの実施の形態について図面に基づき説明する。
まず、図1に基づいて、この炭素繊維強化炭素複合材ルツボに用いられる炭素繊維織布について説明する。
この炭素繊維織布1はピッチ系の炭素繊維織布であって、直径5μm〜20μmのピッチ系の炭素繊維1000本〜36000本を縦糸1aとし、直径5μm〜20μmのピッチ系の炭素繊維1000本〜36000本を横糸1bとして、交互に織り上げた炭素繊維織布であって、その目付け量は200g/m〜600g/m、厚さは0.1mm〜0.6mmに形成されている。
Hereinafter, embodiments of a carbon fiber reinforced carbon composite crucible according to the present invention will be described with reference to the drawings.
First, based on FIG. 1, the carbon fiber woven fabric used for this carbon fiber reinforced carbon composite material crucible will be described.
The carbon fiber woven fabric 1 is a pitch-based carbon fiber woven fabric, and 1000 to 36000 pitch-based carbon fibers having a diameter of 5 μm to 20 μm are used as warps 1a, and 1000 pitch-based carbon fibers having a diameter of 5 to 20 μm. It is a carbon fiber woven fabric that is woven alternately with ˜36,000 wefts 1b, and has a basis weight of 200 g / m 2 to 600 g / m 2 and a thickness of 0.1 mm to 0.6 mm.

このピッチ系の炭素繊維織布は、一般的な製法で作成される。先ず、精製した原料のピッチを加熱して紡糸できるように粘度や分子量を調整し、その後、加熱し流動性を与え、ノズルを通して所定の直径(例えば、10μm)の繊維を成形する。
この状態で,酸素を付加する不融化処理を施し,不活性雰囲気の中で炭素化処理をすることによりピッチ系炭素繊維を製造することができる。
そして、前記したように縦糸及び横糸を編み、図1に示すようなピッチ系の炭素繊維織布を形成する。このピッチ系の炭素繊維としては、例えば、日本グラファイトファイバー社製の商品名XN−80を用いることができる。一般的にこのピッチ系の炭素繊維織布の線熱膨張係数は、常温において−1.5×10−6/℃であり、また引張弾性率は、780GPaである。
This pitch-based carbon fiber woven fabric is produced by a general manufacturing method. First, the viscosity and molecular weight are adjusted so that the pitch of the purified raw material can be heated and spun, and then heated to give fluidity, and a fiber having a predetermined diameter (for example, 10 μm) is formed through a nozzle.
In this state, pitch-based carbon fibers can be produced by performing an infusibilization treatment for adding oxygen and performing a carbonization treatment in an inert atmosphere.
Then, as described above, warp yarns and weft yarns are knitted to form a pitch-based carbon fiber woven fabric as shown in FIG. As this pitch-based carbon fiber, for example, trade name XN-80 manufactured by Nippon Graphite Fiber Co., Ltd. can be used. Generally, the linear thermal expansion coefficient of this pitch-based carbon fiber woven fabric is −1.5 × 10 −6 / ° C. at room temperature, and the tensile elastic modulus is 780 GPa.

次に、図2に基づいて、本発明に係る炭素繊維強化炭素複合材ルツボ10(以下、炭素繊維ルツボと呼ぶ)の第1の実施形態について説明する。
この炭素繊維ルツボ10は、例えば、半導体材料等の単結晶を引上げる単結晶引上装置(図示せず)において、シリコン溶融液を収容する石英ガラスルツボを支持、保持するために使用されるルツボである。
Next, a first embodiment of a carbon fiber reinforced carbon composite crucible 10 (hereinafter referred to as a carbon fiber crucible) according to the present invention will be described with reference to FIG.
The carbon fiber crucible 10 is a crucible used to support and hold a quartz glass crucible containing a silicon melt, for example, in a single crystal pulling apparatus (not shown) for pulling a single crystal such as a semiconductor material. It is.

この炭素繊維ルツボ10は直胴部(円筒部材)11と底部12とを有し、前記直胴部(円筒部材)11は前記底部12の上面に取り付けられている。また、前記直胴部(円筒部材)11の下部内周面と前記底部12の内周縁に接して、リング状のスペーサ13が設けられている。
この底部12及びスペーサ13は従来と同様に黒鉛材から形成され、直胴部11はピッチ系の炭素繊維織布から形成されている。
このようにこの底部12及びスペーサ13は従来と同様に黒鉛材から形成されている場合には、炭素繊維強化炭素材料よりも熱膨張係数が大きいため、冷却時に直胴部端部に食い込むことなく、取り外すことができ、好ましい。
The carbon fiber crucible 10 has a straight body portion (cylindrical member) 11 and a bottom portion 12, and the straight body portion (cylindrical member) 11 is attached to the upper surface of the bottom portion 12. Further, a ring-shaped spacer 13 is provided in contact with the lower inner peripheral surface of the straight body portion (cylindrical member) 11 and the inner peripheral edge of the bottom portion 12.
The bottom portion 12 and the spacer 13 are formed of a graphite material as in the conventional case, and the straight body portion 11 is formed of a pitch-based carbon fiber woven fabric.
As described above, when the bottom 12 and the spacer 13 are formed of a graphite material as in the prior art, the coefficient of thermal expansion is larger than that of the carbon fiber reinforced carbon material, so that the bottom 12 and the spacer 13 do not bite into the end of the straight body portion during cooling. Can be removed and is preferred.

尚、図3に示すように、底部12及びスペーサ13を黒鉛材によって一体に形成しても良い。また、後述する第2の実施形態のように、底部12およびスペーサ13を炭素繊維強化炭素材料、特に、ピッチ系の炭素繊維強化炭素材料によって形成しても良い。また底部12およびスペーサ13を炭素繊維強化炭素材料によって一体に形成しても良い。
また、図2に示す炭素繊維強化炭素複合材ルツボ10の直胴部11の下部外周面は、前記底部12の立上がり部12aの内周に嵌合し、前記直胴部11は前記底部12に固定される。これに対して、図3に示すように炭素繊維強化炭素複合材ルツボ10の直胴部11の下部内周面は、前記底部12の立上がり部12aの外周に嵌合し、前記直胴部11が前記底部12に固定されるようになしても良い。
In addition, as shown in FIG. 3, you may integrally form the bottom part 12 and the spacer 13 with a graphite material. Further, as in a second embodiment to be described later, the bottom 12 and the spacer 13 may be formed of a carbon fiber reinforced carbon material, particularly a pitch-based carbon fiber reinforced carbon material. Moreover, you may integrally form the bottom part 12 and the spacer 13 with a carbon fiber reinforced carbon material.
Further, the lower outer peripheral surface of the straight body portion 11 of the carbon fiber reinforced carbon composite crucible 10 shown in FIG. 2 is fitted to the inner periphery of the rising portion 12 a of the bottom portion 12, and the straight body portion 11 is connected to the bottom portion 12. Fixed. On the other hand, as shown in FIG. 3, the lower inner peripheral surface of the straight body portion 11 of the carbon fiber reinforced carbon composite crucible 10 is fitted to the outer periphery of the rising portion 12 a of the bottom portion 12. May be fixed to the bottom 12.

また、前記直胴部11の上部端部の内周側は、R面取り(曲面形状に面取り)、あるいはC面取り(角取り)を行うのが望ましい。
このように、前記直胴部11の上部端部の内周側が、R面取り(曲面形状に面取り)、あるいはC面取り(角取り)されている場合には、万一、石英ガラスルツボが直胴部11の上部端部に食い込んでしまい、石英ガラスルツボを破壊して取り外さなければならない場合にも、直胴部11の上部端部の内周側におけるクラックあるいは欠け等を抑制でき、直胴部11を再利用に供することができる。
Further, it is desirable that the inner peripheral side of the upper end portion of the straight body portion 11 is R-chamfered (chamfered to a curved surface shape) or C-chamfered (chamfered).
Thus, when the inner peripheral side of the upper end portion of the straight body portion 11 is R-chamfered (chamfered into a curved surface shape) or C-chamfered (chamfered), the quartz glass crucible should be Even when the quartz glass crucible needs to be broken and removed, the crack or chipping on the inner peripheral side of the upper end portion of the straight barrel portion 11 can be suppressed, and the straight barrel portion can be suppressed. 11 can be used for reuse.

この炭素繊維強化炭素複合材ルツボ10は、前記した炭素繊維織布1を複数枚、熱硬化性樹脂と炭素粉(例えば黒鉛粉)との混合接着剤(図示せず)を担持して貼り合わせ、その後、熱硬化、炭素化、黒鉛化および高純度化処理を施すことによって形成される。
具体的には、図4に示すシート状の炭素繊維織布1が、図5に示すようなルツボ成型用金型14上で複数層に貼り合わせられ、熱硬化、炭素化、黒鉛化および高純度化処理を施されて形成される。具体的な製造方法については、後述する。
This carbon fiber reinforced carbon composite crucible 10 carries a plurality of the above-mentioned carbon fiber woven fabrics 1 and carries a mixed adhesive (not shown) of a thermosetting resin and carbon powder (for example, graphite powder) and bonded together. Then, it is formed by subjecting to thermosetting, carbonization, graphitization and purification treatment.
Specifically, the sheet-like carbon fiber woven fabric 1 shown in FIG. 4 is bonded to a plurality of layers on a crucible molding die 14 as shown in FIG. 5, and is thermoset, carbonized, graphitized, and high. It is formed by a purification treatment. A specific manufacturing method will be described later.

この炭素繊維強化炭素複合材ルツボ10の直胴部(円筒部材)11の引張弾性率は400〜900GPaになるように構成されている。この直胴部(円筒部材)11の引張弾性率が400GPa未満の場合には、炭素繊維内のグラファイト配向が発達しておらず、常温から800℃に昇温した際のルツボ周方向の線熱膨張係数を石英ガラスの線熱膨張係数より小さくすることが困難であるため好ましくない。
石英ガラスルツボが昇温する際には、石英ガラスの軟化により炭素繊維強化炭素複合材ルツボ10の内径に沿って変形が生じるため、炭素繊維強化炭素複合材ルツボ10の周方向へ生じる引張り応力を考慮すると、この直胴部(円筒部材)11の引張弾性率が400GPa以上であることが好ましい。
一方、前記直胴部の引張弾性率が900GPaを超えると、炭素繊維が脆くなり、成形時に組織内部で炭素繊維が折れ、組織破壊に伴う機械的強度が低下するため好ましくない。
The tensile elastic modulus of the straight body part (cylindrical member) 11 of the carbon fiber reinforced carbon composite crucible 10 is configured to be 400 to 900 GPa. When the tensile elastic modulus of the straight body portion (cylindrical member) 11 is less than 400 GPa, the graphite orientation in the carbon fiber is not developed, and the linear heat in the crucible circumferential direction when the temperature is raised from room temperature to 800 ° C. Since it is difficult to make the expansion coefficient smaller than the linear thermal expansion coefficient of quartz glass, it is not preferable.
When the temperature of the quartz glass crucible rises, deformation occurs along the inner diameter of the carbon fiber reinforced carbon composite material crucible 10 due to the softening of the silica glass, so that the tensile stress generated in the circumferential direction of the carbon fiber reinforced carbon composite material crucible 10 is increased. Considering this, it is preferable that the tensile elastic modulus of the straight body portion (cylindrical member) 11 is 400 GPa or more.
On the other hand, when the tensile elastic modulus of the straight body part exceeds 900 GPa, the carbon fiber becomes brittle, the carbon fiber breaks inside the structure at the time of molding, and the mechanical strength accompanying the destruction of the structure decreases, which is not preferable.

次に、炭素繊維強化炭素複合材ルツボの第2の実施形態を図6に基づいて説明する。
この第2の実施形態は、第1の実施形態と同じピッチ系の炭素繊維織布を用い、直胴部21と底部22とを一体化したルツボ20として形成したものである。尚、第2の実施形態にあっては、第1の実施形態におけるスペーサ13は省略される。
Next, a second embodiment of the carbon fiber reinforced carbon composite material crucible will be described with reference to FIG.
In the second embodiment, the same pitch-based carbon fiber woven fabric as that of the first embodiment is used, and the straight body portion 21 and the bottom portion 22 are integrated as a crucible 20. In the second embodiment, the spacer 13 in the first embodiment is omitted.

図6に示した炭素繊維ルツボ20について、図5乃至図8に基づいて製造工程について説明する。尚、第2の実施形態における炭素繊維ルツボ20と、第1の実施形態における炭素繊維強化炭素複合材ルツボ10とは基本的に同じ製造工程により製造されるため、第2の実施形態の場合について説明し、必要に応じて第1の実施形態の場合に説明する。   The manufacturing process of the carbon fiber crucible 20 shown in FIG. 6 will be described with reference to FIGS. In addition, since the carbon fiber crucible 20 in the second embodiment and the carbon fiber reinforced carbon composite material crucible 10 in the first embodiment are basically manufactured by the same manufacturing process, the case of the second embodiment A description will be given and the case of the first embodiment will be described as necessary.

先ず、図5に示すようにルツボ成型用金型14を用意し、その金型直胴部14aに熱硬化性樹脂(例えば、フェノール樹脂)と炭素粉(例えば、黒鉛粉)との混合接着剤(図示せず)を担持した炭素繊維織布1を巻き付ける(図8のステップS1)。
また、炭素繊維織布1の炭素繊維の軸線方向(縦糸1a、横糸1bの軸線方向)は、ルツボ周方向Tに対して平行方向と直交方向(ルツボの軸線方向)となされている。
このとき、炭素繊維織布1は、図5に矢印で示すルツボ周方向Tと平行方向に伸長せず、またルツボ周方向Tと直交方向(ルツボの軸線方向)にも伸長しないが、この金型直胴部14aの径が変化しないため、金型直胴部14aに炭素繊維織布1を皺なく貼り付けることができる。
First, as shown in FIG. 5, a crucible molding die 14 is prepared, and a mixed adhesive of a thermosetting resin (for example, phenol resin) and carbon powder (for example, graphite powder) is provided on the die straight body portion 14a. A carbon fiber woven fabric 1 carrying (not shown) is wound (step S1 in FIG. 8).
Further, the axial direction of the carbon fibers of the carbon fiber woven fabric 1 (the axial direction of the warp 1a and the weft 1b) is a direction orthogonal to the circumferential direction T of the crucible (the axial direction of the crucible).
At this time, the carbon fiber woven fabric 1 does not extend in a direction parallel to the crucible circumferential direction T indicated by an arrow in FIG. 5 and does not extend in the direction orthogonal to the crucible circumferential direction T (the crucible axial direction). Since the diameter of the mold straight body portion 14a does not change, the carbon fiber woven fabric 1 can be adhered to the mold straight body portion 14a without any defects.

尚、第1の実施形態にあっては、図8のステップS2、S3が省略され、炭素繊維織布1の貼り付け工程を複数回繰り返して行い、所定の厚さに積層されていく(図8のステップS4)。このとき、短尺の炭素繊維織布1を複数枚用いて金型直胴部14aに複数回、巻回して形成しても良いし、あるいは一枚の長尺の炭素繊維織布1を金型直胴部14aに複数回、巻回して形成しても良い。
そして、炭素繊維織布の貼り付け(積層)が全て終了すると、熱硬化、炭素化、黒鉛化および高純度化処理を施されて、炭素繊維からなる円筒状の直胴部11が製造される(図8のステップS6〜S10)。
この円筒状の直胴部11は、黒鉛からなる底部に取付けられ、ピッチ系の炭素繊維織布を含む炭素繊維強化炭素複合材ルツボ10とされる。尚、底部12、スペーサ13は従来の製法により黒鉛材によって形成されてもよいし、炭素繊維強化炭素複合材によって形成されてもよい。
In the first embodiment, steps S2 and S3 in FIG. 8 are omitted, and the carbon fiber woven fabric 1 is affixed a plurality of times and laminated to a predetermined thickness (see FIG. 8). 8 step S4). At this time, a plurality of short carbon fiber woven fabrics 1 may be used by being wound around the die straight body portion 14a a plurality of times, or a single long carbon fiber woven fabric 1 may be formed as a mold. The straight body portion 14a may be wound a plurality of times.
When all the carbon fiber woven fabrics are pasted (laminated), thermosetting, carbonization, graphitization, and high-purification treatment are performed, and a cylindrical straight body portion 11 made of carbon fiber is manufactured. (Steps S6 to S10 in FIG. 8).
The cylindrical straight body portion 11 is attached to a bottom portion made of graphite and serves as a carbon fiber reinforced carbon composite crucible 10 including a pitch-based carbon fiber woven fabric. In addition, the bottom part 12 and the spacer 13 may be formed with a graphite material by a conventional manufacturing method, and may be formed with a carbon fiber reinforced carbon composite material.

第2の実施形態にあっては、図7に示すようにルツボ成型用金型14の底部14bに前記混合接着剤を担持し、円形の炭素繊維織布2を貼り付けて覆い、底部を形成する(図8のステップS2)。この円形の炭素繊維織布2は、炭素繊維織布1の外形を円形形状にしたものである。そして、炭素繊維ルツボ20の直胴部21を形成する炭素繊維織布1と、底部22を形成する炭素繊維織布2との境界部分は、重ねられることなく、また隙間が生じないよう貼り付けが行われる。   In the second embodiment, as shown in FIG. 7, the mixed adhesive is supported on the bottom 14b of the crucible molding die 14, and the circular carbon fiber woven fabric 2 is attached and covered to form the bottom. (Step S2 in FIG. 8). This circular carbon fiber woven fabric 2 is obtained by making the outer shape of the carbon fiber woven fabric 1 into a circular shape. And the boundary part of the carbon fiber woven fabric 1 that forms the straight body portion 21 of the carbon fiber crucible 20 and the carbon fiber woven fabric 2 that forms the bottom portion 22 is affixed so as not to overlap and to create a gap. Is done.

この円形の炭素繊維織布2の貼り付けにあっては、炭素繊維織布2を炭素繊維の軸線方向等とは異なる方向に引き伸ばしながら、貼り付けることができる。これにより、湾曲した部分も皺なく、貼り付けられる。
そして、貼り付けられた炭素繊維織布1、2の上から、前記混合接着剤を担持し、図7に示すように炭素繊維織布1により形成された直胴部21(成形型14の直胴部14a)と、炭素繊維織布2により形成された湾曲部とを覆うように炭素繊維織布3を貼り付ける(図8のステップS3)。このとき、炭素繊維織布3の炭素繊維の軸線方向は、ルツボ周方向Tに対して斜めになされている。
In attaching the circular carbon fiber woven fabric 2, the carbon fiber woven fabric 2 can be attached while being stretched in a direction different from the axial direction of the carbon fibers. Thereby, even the curved part is stuck without a wrinkle.
Then, the above-mentioned mixed adhesive is carried on the bonded carbon fiber woven fabrics 1 and 2, and the straight body portion 21 (the straight portion of the molding die 14) formed by the carbon fiber woven fabric 1 as shown in FIG. The carbon fiber woven fabric 3 is attached so as to cover the trunk portion 14a) and the curved portion formed by the carbon fiber woven fabric 2 (step S3 in FIG. 8). At this time, the axial direction of the carbon fiber of the carbon fiber woven fabric 3 is inclined with respect to the circumferential direction T of the crucible.

このような炭素繊維織布1,2,3の貼り付け工程は、図7の断面図に示すように複数回繰り返して行われ(図7では3回)、所定の厚さに積層されていく(図8のステップS4)。炭素繊維織布1,2,3の貼り付け(積層)が全て終了すると、最内層の炭素繊維織布1の下端部1A(ルツボ使用時において上端部)を、図7に示す矢印方向に折曲げ、ルツボ端部を覆うように貼り付けし、端部成形処理を行う(図8のステップS5)。   Such a carbon fiber woven fabric 1, 2, and 3 affixing step is repeated a plurality of times as shown in the cross-sectional view of FIG. 7 (three times in FIG. 7), and laminated to a predetermined thickness. (Step S4 in FIG. 8). When all the carbon fiber woven fabrics 1, 2 and 3 are attached (laminated), the lower end portion 1A (the upper end portion when the crucible is used) of the innermost carbon fiber woven fabric 1 is folded in the direction of the arrow shown in FIG. Bending and pasting so as to cover the end of the crucible, an end molding process is performed (step S5 in FIG. 8).

このようにして、ルツボ型のプリフォームが得られると、ルツボ成型用金型14の周りに貼り付けられた状態で真空炉内に配置し、100℃〜300℃の温度で熱硬化を行う(図8のステップS6)。
次いで、ルツボ成型用金型14を取り外し(図8のステップS7)、得られる成型体を不活性雰囲気中で約1000℃の温度で炭素化処理を行い(図8のステップS8)、その後、必要に応じてフェノール樹脂やタールピッチ等を含浸し、再度、炭素化処理を行う。
炭素化処理の後、2000℃以上の温度で加熱し、黒鉛化処理を行う(図8のステップS9)。
そして、黒鉛化により得られたルツボを、通常1500℃から2500℃の温度に加熱して、高純度化処理を施し、ピッチ系の炭素繊維織布を含む炭素繊維ルツボ20を得る(図8のステップS10)。
Thus, when a crucible-type preform is obtained, it is placed in a vacuum furnace in a state of being attached around the crucible molding die 14 and is thermally cured at a temperature of 100 ° C. to 300 ° C. ( Step S6 in FIG.
Next, the crucible molding die 14 is removed (step S7 in FIG. 8), and the resulting molded body is carbonized at a temperature of about 1000 ° C. in an inert atmosphere (step S8 in FIG. 8). Depending on the condition, the resin is impregnated with phenol resin, tar pitch or the like, and carbonized again.
After the carbonization treatment, heating is performed at a temperature of 2000 ° C. or higher to perform graphitization treatment (step S9 in FIG. 8).
Then, the crucible obtained by graphitization is usually heated to a temperature of 1500 ° C. to 2500 ° C. and subjected to a high purification treatment to obtain a carbon fiber crucible 20 including a pitch-based carbon fiber woven fabric (FIG. 8). Step S10).

このようにして形成された前記直胴部の周方向の平均線熱膨張係数、前記底部の周方向、径方向の平均線熱膨張係数が、室温から800℃に昇温した際に0.5×10−6/℃以下である。特に、室温から400℃の範囲において、0.0×10−6/℃以下であり、室温から400℃の範囲において熱収縮する。すなわち、400℃から室温に冷却する際には膨張する。
一方、前記石英ガラスルツボを構成する石英ガラスは、常温から800℃における平均線熱膨張係数が0.5×10−6/℃〜0.6×10−6/℃で、前記温度域においてほぼ一定であり、前記直胴部、前記底部の平均線熱膨張係数が、石英ガラスの平均線熱膨張係数と近似かそれ以下の値を有している。
When the average linear thermal expansion coefficient in the circumferential direction of the straight body portion thus formed and the average linear thermal expansion coefficient in the circumferential direction and radial direction of the bottom portion are raised from room temperature to 800 ° C., 0.5% × 10 −6 / ° C. or less. In particular, it is 0.0 × 10 −6 / ° C. or less in the range from room temperature to 400 ° C., and heat shrinks in the range from room temperature to 400 ° C. That is, it expands when it is cooled from 400 ° C. to room temperature.
On the other hand, quartz glass constituting the quartz glass crucible has an average linear thermal expansion coefficient at 800 ° C. from room temperature is 0.5 × 10 -6 /℃~0.6×10 -6 / ℃ , approximately in the temperature range The average linear thermal expansion coefficient of the straight body portion and the bottom portion is a value close to or less than the average linear thermal expansion coefficient of quartz glass.

このように、ルツボの直胴部が、石英ガラスの平均線熱膨張係数と近似かそれ以下の小さな熱膨張係数を有する材料で構成されているため、石英ガラスルツボ及び炭素繊維ルツボが冷却される際、両者が密着した状態で冷却された場合であっても、石英ガラスルツボが前記直胴部に食い込む(強固に嵌合する)ことなく、石英ガラスルツボを炭素繊維強化炭素複合材ルツボから容易に取り出すことができる。
特に、前記直胴部、前記底部の平均線熱膨張係数が室温から400℃の範囲において負の値、すなわち0.0×10−6/℃未満であれば、400℃から室温までの冷却過程において、炭素繊維強化炭素複合材ルツボが膨張するため、石英ガラスルツボとの間にすき間が生じ、より簡単に取り外すことができる。
In this way, the quartz glass crucible and the carbon fiber crucible are cooled because the straight body portion of the crucible is made of a material having a small thermal expansion coefficient that is close to or less than the average linear thermal expansion coefficient of quartz glass. At this time, the quartz glass crucible can be easily removed from the carbon fiber reinforced carbon composite crucible without the quartz glass crucible biting into the straight body part (even if it is cooled in a state where both are in close contact). Can be taken out.
In particular, if the average linear thermal expansion coefficient of the straight body part and the bottom part is a negative value in the range of room temperature to 400 ° C., that is, less than 0.0 × 10 −6 / ° C., the cooling process from 400 ° C. to room temperature Since the carbon fiber reinforced carbon composite material crucible expands, a gap is formed between the carbon glass crucible and the quartz glass crucible, and can be removed more easily.

[実施例1]
市販の引張弾性率780GPaのピッチ系炭素繊維から目付け量400g/mの炭素繊維織布を製織し、これに黒鉛粉とフェノール樹脂との混合接着剤を担持してプリプレグを得た。これをφ500mmの円筒形状の金型に貼り付けて積層し、150℃で硬化させ、円筒形状の成型体を得た。これを炭素粉内に埋めて約1000℃で焼成した後、2100℃で2次焼成および高純度化処理をおこなった。得られた炭素繊維強化炭素複合材円筒のかさ密度は1.55g/cm、室温から800℃に昇温した際の平均線熱膨張係数は0.31×10−6/℃であった。
得られた炭素繊維強化炭素複合材円筒を、黒鉛材から成る受け皿に取り付けルツボとした。これらの炭素繊維強化炭素複合材ルツボに多結晶シリコンを満たした石英ガラスルツボを入れ、1550℃で5時間熱処理をおこない徐冷して石英ガラスルツボとの嵌め合わせの状態を確認した。その結果、石英ガラスルツボを比較的容易に取り外すことができた。
[Example 1]
A carbon fiber woven fabric having a basis weight of 400 g / m 2 was woven from commercially available pitch-based carbon fibers having a tensile modulus of 780 GPa, and a mixed adhesive of graphite powder and phenol resin was supported on the woven fabric to obtain a prepreg. This was attached to a cylindrical mold having a diameter of 500 mm and laminated and cured at 150 ° C. to obtain a cylindrical molded body. This was embedded in carbon powder and fired at about 1000 ° C., followed by secondary firing and purification at 2100 ° C. The bulk density of the obtained carbon fiber reinforced carbon composite cylinder was 1.55 g / cm 3 , and the average linear thermal expansion coefficient when the temperature was raised from room temperature to 800 ° C. was 0.31 × 10 −6 / ° C.
The obtained carbon fiber reinforced carbon composite cylinder was attached to a receiving tray made of a graphite material to form a crucible. A quartz glass crucible filled with polycrystalline silicon was put into these carbon fiber reinforced carbon composite crucibles, heat-treated at 1550 ° C. for 5 hours and gradually cooled to confirm the state of fitting with the quartz glass crucible. As a result, the quartz glass crucible could be removed relatively easily.

[実施例2]
市販の引張弾性率780GPaのピッチ系炭素繊維から目付け量400g/mの炭素繊維織布を製織し、これに黒鉛粉とフェノール樹脂との混合接着剤を担持してプリプレグを得た。これをφ500mmの円筒形状の金型に貼り付けて積層し、150℃で硬化させ、円筒形状の成型体を得た。これを炭素粉内に埋めて約1000℃で焼成し、フェノール樹脂を含浸させて再度焼成した後、2100℃で2次焼成および高純度化処理をおこなった。得られた炭素繊維強化炭素複合材円筒のかさ密度は1.55g/cm、室温から800℃に昇温した際の平均線熱膨張係数は0.49×10−6/℃であった。
得られた炭素繊維強化炭素複合材円筒を、黒鉛材から成る受け皿に取り付けルツボとした。これらの炭素繊維強化炭素複合材ルツボに多結晶シリコンを満たした石英ガラスルツボを入れ、1550℃で5時間熱処理をおこない徐冷して石英ガラスルツボとの嵌め合わせの状態を確認した。その結果、石英ガラスルツボを比較的容易に取り外すことができた。
[Example 2]
A carbon fiber woven fabric having a basis weight of 400 g / m 2 was woven from commercially available pitch-based carbon fibers having a tensile modulus of 780 GPa, and a mixed adhesive of graphite powder and phenol resin was supported on the woven fabric to obtain a prepreg. This was attached to a cylindrical mold having a diameter of 500 mm and laminated and cured at 150 ° C. to obtain a cylindrical molded body. This was embedded in carbon powder, baked at about 1000 ° C., impregnated with a phenol resin and baked again, and then subjected to secondary baking and purification treatment at 2100 ° C. The bulk density of the obtained carbon fiber reinforced carbon composite cylinder was 1.55 g / cm 3 , and the average linear thermal expansion coefficient when the temperature was raised from room temperature to 800 ° C. was 0.49 × 10 −6 / ° C.
The obtained carbon fiber reinforced carbon composite cylinder was attached to a receiving tray made of a graphite material to form a crucible. A quartz glass crucible filled with polycrystalline silicon was put into these carbon fiber reinforced carbon composite crucibles, heat-treated at 1550 ° C. for 5 hours and gradually cooled to confirm the state of fitting with the quartz glass crucible. As a result, the quartz glass crucible could be removed relatively easily.

[比較例1]
用いた炭素繊維が市販の引張弾性率240GPaのPAN系炭素繊維であること以外は、すべて実施例1と同様にして炭素繊維強化炭素複合材円筒を得た。かさ密度は1.44g/cm、室温から800℃に昇温した際の平均線熱膨張係数は0.81×10−6/℃であった。
実施例1と同様に、得られた炭素繊維強化炭素複合材円筒を、黒鉛材から成る受け皿に取り付けルツボとした。これらの炭素繊維強化炭素複合材ルツボに多結晶シリコンを満たした石英ガラスルツボを入れ、1550℃で5時間熱処理をおこない徐冷して石英ガラスルツボとの嵌め合わせの状態を確認した。
その結果、前記円筒では石英ルツボが食い込み取り外しが困難で、取り外すそうとすると炭素繊維強化炭素複合材円筒にカケやクラックが生じ、破損した。
[Comparative Example 1]
A carbon fiber reinforced carbon composite cylinder was obtained in the same manner as in Example 1 except that the carbon fiber used was a commercially available PAN-based carbon fiber having a tensile modulus of 240 GPa. The bulk density was 1.44 g / cm 3 , and the average linear thermal expansion coefficient when the temperature was raised from room temperature to 800 ° C. was 0.81 × 10 −6 / ° C.
In the same manner as in Example 1, the obtained carbon fiber reinforced carbon composite cylinder was attached to a tray made of a graphite material to form a crucible. A quartz glass crucible filled with polycrystalline silicon was put into these carbon fiber reinforced carbon composite crucibles, heat-treated at 1550 ° C. for 5 hours and gradually cooled to confirm the state of fitting with the quartz glass crucible.
As a result, it was difficult to remove the quartz crucible from the cylinder, and when it was to be removed, the carbon fiber reinforced carbon composite cylinder was broken and cracked.

1 (ピッチ系)炭素繊維織布
2 (ピッチ系)炭素繊維織布(円形炭素繊維織布)
3 (ピッチ系)炭素繊維織布
10 ピッチ系炭素繊維強化炭素複合材ルツボ(炭素繊維ルツボ)
11 直胴部(円筒部材)
14 ルツボ成型用金型
20 ピッチ系炭素繊維強化炭素複合材ルツボ(炭素繊維ルツボ)
21 直胴部
22 底部
1 (pitch-based) carbon fiber woven fabric 2 (pitch-based) carbon fiber woven fabric (circular carbon fiber woven fabric)
3 (pitch-based) carbon fiber woven fabric 10 pitch-based carbon fiber reinforced carbon composite crucible (carbon fiber crucible)
11 Straight body (cylindrical member)
14 Mold for crucible molding 20 Pitch-based carbon fiber reinforced carbon composite crucible (carbon fiber crucible)
21 Straight body part 22 Bottom part

Claims (13)

溶融材料を収容する石英ガラスルツボを支持、保持するルツボに用いられる、炭素繊維強化炭素複合材で形成された炭素繊維強化炭素複合円筒部材において、
前記炭素繊維強化炭素複合材が、引張弾性率400GPa以上900GPa以下のピッチ系炭素繊維を用いた炭素繊維織布を含む炭素繊維強化炭素複合材であって、
かつ、常温から800℃に昇温した際の周方向の平均線熱膨張係数が、石英ガラスの平均線熱膨張係数以下であることを特徴とする炭素繊維強化炭素複合円筒部材。
In a carbon fiber reinforced carbon composite cylindrical member formed of a carbon fiber reinforced carbon composite material used for a crucible for supporting and holding a quartz glass crucible containing a molten material,
The carbon fiber reinforced carbon composite material is a carbon fiber reinforced carbon composite material including a carbon fiber woven fabric using pitch-based carbon fibers having a tensile modulus of 400 GPa or more and 900 GPa or less,
And the average linear thermal expansion coefficient of the circumferential direction at the time of heating up from normal temperature to 800 degreeC is below the average linear thermal expansion coefficient of quartz glass, The carbon fiber reinforced carbon composite cylindrical member characterized by the above-mentioned.
前記炭素繊維強化炭素複合材の常温から800℃に昇温した際の平均線熱膨張係数が0.5×10−6/℃以下であることを特徴とする請求項1に記載された炭素繊維強化炭素複合円筒部材。 2. The carbon fiber according to claim 1, wherein the carbon fiber reinforced carbon composite material has an average linear thermal expansion coefficient of 0.5 × 10 −6 / ° C. or less when the temperature is raised from normal temperature to 800 ° C. 3. Reinforced carbon composite cylindrical member. 前記平均線熱膨張係数が、室温から400℃の範囲において負の係数であって、400℃から室温までの冷却過程において熱膨張することを特徴とする請求項1または請求項2に記載の炭素繊維強化炭素複合円筒部材。   3. The carbon according to claim 1, wherein the average linear thermal expansion coefficient is a negative coefficient in a range from room temperature to 400 ° C., and is thermally expanded in a cooling process from 400 ° C. to room temperature. Fiber reinforced carbon composite cylindrical member. 前記ピッチ系炭素繊維織布の目付が200〜600g/mであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の炭素繊維強化炭素複合円筒部材。 Carbon fiber reinforced carbon composite cylindrical member according to any one of claims 1 to 3 weight per unit area of the pitch-based carbon fiber woven fabric is characterized in that it is a 200 to 600 g / m 2. 炭素繊維強化炭素複合材料が、かさ密度1.3g/cm以上1.8g/cm以下であることを特徴とする請求項1及至請求項4のいずれか1項に記載の炭素繊維強化炭素複合円筒部材。 5. The carbon fiber reinforced carbon according to claim 1, wherein the carbon fiber reinforced carbon composite material has a bulk density of 1.3 g / cm 3 or more and 1.8 g / cm 3 or less. Composite cylindrical member. 前記請求項1乃至請求項5のいずれかに記載された炭素繊維強化炭素複合材円筒部材の製造方法であって、
前記炭素繊維織布が熱硬化性樹脂と炭素粉との混合接着剤を用いて貼り合わされ、その後、熱硬化処理、炭素化処理、黒鉛化処理および高純度化処理を施して形成されることを特徴とする炭素繊維強化炭素複合円筒部材の製造方法。
A method for producing a carbon fiber reinforced carbon composite cylindrical member according to any one of claims 1 to 5,
The carbon fiber woven fabric is bonded using a mixed adhesive of a thermosetting resin and carbon powder, and then formed by performing a thermosetting treatment, a carbonization treatment, a graphitization treatment and a high purification treatment. A method for producing a carbon fiber reinforced carbon composite cylindrical member.
溶融材料を収容する石英ガラスルツボを支持、保持するために用いられ、底部と、前記底部の上方に設けられた直胴部とを有し、少なくとも前記直胴部が炭素繊維強化炭素複合材で形成された炭素繊維強化炭素複合ルツボであって、
前記直胴部が、引張弾性率400GPa以上900GPa以下のピッチ系炭素繊維を用いた炭素繊維織布を含む炭素繊維強化炭素複合材から形成され、かつ常温から800℃に昇温した際の直胴部の周方向の平均線熱膨張係数が、石英ガラスの平均線熱膨張係数以下であることを特徴とする炭素繊維強化炭素複合材ルツボ。
Used to support and hold a quartz glass crucible containing molten material, and has a bottom portion and a straight body portion provided above the bottom portion, at least the straight body portion being a carbon fiber reinforced carbon composite material. Formed carbon fiber reinforced carbon composite crucible,
The straight body when the straight body is formed from a carbon fiber reinforced carbon composite material including a carbon fiber woven fabric using pitch-based carbon fibers having a tensile modulus of 400 GPa or more and 900 GPa or less, and the temperature is raised from room temperature to 800 ° C. The carbon fiber-reinforced carbon composite crucible, wherein the average linear thermal expansion coefficient in the circumferential direction of the portion is equal to or less than the average linear thermal expansion coefficient of quartz glass.
前記底部及び前記直胴部が炭素繊維強化炭素複合材で形成された炭素繊維強化炭素複合ルツボであって、
前記底部が、引張弾性率400GPa以上900GPa以下のピッチ系炭素繊維を用いた炭素繊維織布を含む炭素繊維強化炭素複合材によって直胴部と一体的に形成され、かつ、常温から800℃に昇温した際の前記底部及び直胴部の周方向の平均線熱膨張係数が、石英ガラスの平均線熱膨張係数以下であることを特徴とする請求項7に記載された炭素繊維強化炭素複合材ルツボ。
The bottom part and the straight body part are carbon fiber reinforced carbon composite crucibles formed of a carbon fiber reinforced carbon composite material,
The bottom portion is integrally formed with the straight body portion by a carbon fiber reinforced carbon composite material including a carbon fiber woven fabric using pitch-based carbon fibers having a tensile modulus of 400 GPa or more and 900 GPa or less, and the temperature rises from room temperature to 800 ° C. The carbon fiber-reinforced carbon composite material according to claim 7, wherein an average linear thermal expansion coefficient in the circumferential direction of the bottom part and the straight body part when heated is equal to or less than an average linear thermal expansion coefficient of quartz glass. Crucible.
前記炭素繊維強化炭素複合材の常温から800℃に昇温した際の平均線熱膨張係数が0.5×10−6/℃以下であることを特徴とする請求項7または請求項8に記載された炭素繊維強化炭素複合材ルツボ。 The average linear thermal expansion coefficient when the temperature of the carbon fiber reinforced carbon composite material is raised from normal temperature to 800 ° C is 0.5 × 10 -6 / ° C or less. Carbon fiber reinforced carbon composite crucible. 前記直胴部、前記底部の平均線熱膨張係数が、室温から400℃の範囲において負の係数であって、400℃から室温までの冷却過程において熱膨張することを特徴とする請求項7及至請求項9いずれか1項に記載の炭素繊維強化炭素複合材ルツボ。   The average linear thermal expansion coefficient of the straight body part and the bottom part is a negative coefficient in a range from room temperature to 400 ° C, and thermally expands in the cooling process from 400 ° C to room temperature. The carbon fiber reinforced carbon composite crucible according to claim 9. 前記ピッチ系炭素繊維織布の目付が200〜600g/mであることを特徴とする請求項7乃至請求項10のいずれか1項に記載の炭素繊維強化炭素複合材ルツボ。 11. The carbon fiber-reinforced carbon composite crucible according to claim 7, wherein the pitch-based carbon fiber woven fabric has a basis weight of 200 to 600 g / m 2 . 炭素繊維強化炭素複合材料が、かさ密度1.3g/cm以上1.8g/cm以下であることを特徴とする請求項7及至請求項11のいずれか1項に記載の炭素繊維強化炭素複合材ルツボ。 12. The carbon fiber reinforced carbon according to claim 7, wherein the carbon fiber reinforced carbon composite material has a bulk density of 1.3 g / cm 3 or more and 1.8 g / cm 3 or less. Composite crucible. 前記請求項7乃至請求項12のいずれかに記載された炭素繊維強化炭素複合材ルツボの製造方法であって、
前記炭素繊維織布が熱硬化性樹脂と炭素粉との混合接着剤を用いて貼り合わされ、その後、熱硬化処理、炭素化処理、黒鉛化処理および高純度化処理を施して形成されることを特徴とする炭素繊維強化炭素複合材ルツボの製造方法。
A method for producing a carbon fiber reinforced carbon composite crucible according to any one of claims 7 to 12,
The carbon fiber woven fabric is bonded using a mixed adhesive of a thermosetting resin and carbon powder, and then formed by performing a thermosetting treatment, a carbonization treatment, a graphitization treatment and a high purification treatment. A method for producing a carbon fiber reinforced carbon composite crucible.
JP2012088496A 2011-05-18 2012-04-09 Carbon fiber-reinforced carbon composite cylindrical member, method of manufacturing carbon fiber-reinforced carbon composite cylindrical member, carbon fiber-reinforced carbon composite material crucible, and method of manufacturing carbon fiber-reinforced carbon composite material crucible Pending JP2012254916A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012088496A JP2012254916A (en) 2011-05-18 2012-04-09 Carbon fiber-reinforced carbon composite cylindrical member, method of manufacturing carbon fiber-reinforced carbon composite cylindrical member, carbon fiber-reinforced carbon composite material crucible, and method of manufacturing carbon fiber-reinforced carbon composite material crucible
CN 201220224890 CN202830218U (en) 2011-05-18 2012-05-18 Carbon fiber reinforced carbon composite crucible and composite cylinder component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011110905 2011-05-18
JP2011110905 2011-05-18
JP2012088496A JP2012254916A (en) 2011-05-18 2012-04-09 Carbon fiber-reinforced carbon composite cylindrical member, method of manufacturing carbon fiber-reinforced carbon composite cylindrical member, carbon fiber-reinforced carbon composite material crucible, and method of manufacturing carbon fiber-reinforced carbon composite material crucible

Publications (1)

Publication Number Publication Date
JP2012254916A true JP2012254916A (en) 2012-12-27

Family

ID=47526872

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012088496A Pending JP2012254916A (en) 2011-05-18 2012-04-09 Carbon fiber-reinforced carbon composite cylindrical member, method of manufacturing carbon fiber-reinforced carbon composite cylindrical member, carbon fiber-reinforced carbon composite material crucible, and method of manufacturing carbon fiber-reinforced carbon composite material crucible
JP2012088497A Pending JP2012254917A (en) 2011-05-18 2012-04-09 Crucible, and method for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012088497A Pending JP2012254917A (en) 2011-05-18 2012-04-09 Crucible, and method for producing the same

Country Status (2)

Country Link
JP (2) JP2012254916A (en)
CN (1) CN202830218U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064505A1 (en) * 2013-10-30 2015-05-07 株式会社アライドマテリアル Crucible and single crystal sapphire production method using same
USD771167S1 (en) 2013-08-21 2016-11-08 A.L.M.T. Corp. Crucible
CN116283331A (en) * 2022-11-08 2023-06-23 湖南碳谷装备制造有限公司 Production process, equipment and application of furnace tube of carbon material high-temperature rotary kiln

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106995314A (en) * 2017-04-27 2017-08-01 西安交通大学 A kind of preparation method of the reaction sintering silicon carbide ceramic of low residual silicon size and content
JP6743797B2 (en) 2017-09-29 2020-08-19 株式会社Sumco Crucible support pedestal, quartz crucible support device, and method for manufacturing silicon single crystal
CN114919202A (en) * 2022-03-15 2022-08-19 云路复合材料(上海)有限公司 Method for weaving carbon fiber composite material crucible preformed body and integrally forming carbon fiber composite material crucible preformed body and base

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209883A (en) * 1981-06-16 1982-12-23 Tokai Carbon Kk Manufacture of carbon fiber reinforced carbon material
JPH04149068A (en) * 1990-10-09 1992-05-22 Tokai Carbon Co Ltd Double hollow cylinder made of carbon fiber-reinforced carbon composite
JPH05306166A (en) * 1991-04-05 1993-11-19 Toyota Motor Corp Carbon composite material
US5616175A (en) * 1994-07-22 1997-04-01 Herecules Incorporated 3-D carbon-carbon composites for crystal pulling furnace hardware
JPH10167879A (en) * 1996-12-12 1998-06-23 Toyo Tanso Kk Crucible for pulling up single crystal
JP2000302589A (en) * 1999-04-23 2000-10-31 Fudow Co Ltd Production of carbon crucible for single crystal pulling- up
JP2001226855A (en) * 2000-02-10 2001-08-21 Mitsubishi Chemicals Corp Woven fabric of pitch-based carbon fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209883A (en) * 1981-06-16 1982-12-23 Tokai Carbon Kk Manufacture of carbon fiber reinforced carbon material
JPH04149068A (en) * 1990-10-09 1992-05-22 Tokai Carbon Co Ltd Double hollow cylinder made of carbon fiber-reinforced carbon composite
JPH05306166A (en) * 1991-04-05 1993-11-19 Toyota Motor Corp Carbon composite material
US5616175A (en) * 1994-07-22 1997-04-01 Herecules Incorporated 3-D carbon-carbon composites for crystal pulling furnace hardware
JPH10167879A (en) * 1996-12-12 1998-06-23 Toyo Tanso Kk Crucible for pulling up single crystal
JP2000302589A (en) * 1999-04-23 2000-10-31 Fudow Co Ltd Production of carbon crucible for single crystal pulling- up
JP2001226855A (en) * 2000-02-10 2001-08-21 Mitsubishi Chemicals Corp Woven fabric of pitch-based carbon fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7016000190; 深川 敏弘: 'ピッチ系炭素繊維の現状と将来' 第24回複合材料セミナー資料 , 20110218 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD771167S1 (en) 2013-08-21 2016-11-08 A.L.M.T. Corp. Crucible
USD839444S1 (en) 2013-08-21 2019-01-29 A.L.M.T. Corp. Crucible
USD872872S1 (en) 2013-08-21 2020-01-14 A.L.M.T. Corp. Crucible
WO2015064505A1 (en) * 2013-10-30 2015-05-07 株式会社アライドマテリアル Crucible and single crystal sapphire production method using same
CN116283331A (en) * 2022-11-08 2023-06-23 湖南碳谷装备制造有限公司 Production process, equipment and application of furnace tube of carbon material high-temperature rotary kiln
CN116283331B (en) * 2022-11-08 2024-02-23 湖南碳谷装备制造有限公司 Production process, equipment and application of furnace tube of carbon material high-temperature rotary kiln

Also Published As

Publication number Publication date
JP2012254917A (en) 2012-12-27
CN202830218U (en) 2013-03-27

Similar Documents

Publication Publication Date Title
KR101114650B1 (en) Crucible holding member and method for producing the same
KR101242366B1 (en) Crucible holding member and method for producing the same
JP2012254916A (en) Carbon fiber-reinforced carbon composite cylindrical member, method of manufacturing carbon fiber-reinforced carbon composite cylindrical member, carbon fiber-reinforced carbon composite material crucible, and method of manufacturing carbon fiber-reinforced carbon composite material crucible
KR20090092247A (en) Crucible holding member and method for producing the same
KR101114604B1 (en) Crucible holding member and method for producing the same
EP2098618B1 (en) Container holding member and method for producing the same
JP4700218B2 (en) A crucible made of carbon fiber reinforced carbon composite material for single crystal pulling
JP3198914B2 (en) Graphite crucible for pulling single crystal and method for producing the same
JPH11255587A (en) Carbon-fiber reinforced carbonaceous material crucible for pulling single crystal and its production
CN214193511U (en) Crucible with supporting structure
JP2012211062A (en) Carbon fiber reinforced carbon composite crucible
JP4018503B2 (en) Single crystal pulling crucible
JPH10167879A (en) Crucible for pulling up single crystal
JP2000290093A (en) Carbon crucible for single crystal pulling-up
JP2012076956A (en) Carbon crucible and method for producing silicon single crystal by using carbon crucible
JPH11255586A (en) Carbon-fiber reinforced carbonaceous material crucible for pulling single crystal and its production
JP2000072588A (en) Carbon crucible for pulling single crystal
JPH10167878A (en) Crucible for single crystal pulling
JP4529158B2 (en) Single crystal pulling crucible
JP2007297275A (en) Crucible for pulling single crystal
JP2007314420A (en) Crucible for pulling single crystal

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160627