【0001】
【発明の属する技術分野】
本発明は工業用の分散剤に関し、特に炭酸カルシウムや酸化チタン等の無機顔料スラリー用、石膏用に適した分散剤に関する。
【0002】
【従来技術】
無機顔料は、製紙産業、塗料産業をはじめとする様々な産業で水分散体として使用されている。この無機顔料・水スラリーは通常高濃度であり、良好なポンプ圧送性、貯蔵安定性のために粘度を低く高い流動性があること、及び安定性の高いことが望まれる。
【0003】
従来よりこれらの目的のためにトリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ポリアクリル酸塩、ナフタレンスルホン酸ホルムアルデヒド縮合物等が分散剤として使われる。
【0004】
しかしながら従来より使用されている分散剤は上記の効果が必ずしも充分ではなく、これらの効果を高めるために添加量を上げるとコストが高くなる上に、他の物性にも悪影響を与えてしまうといった問題点があった。
【0005】
また石膏は、水と混合すると流動性のあるスラリーとなり、数分後には硬化するといった特徴から、従来より石膏ボード、石膏プラスターとして建築材料、陶磁器、鋳物等の型材として使用されてきた。この石膏スラリーの流動性を高める目的で以前より分散剤が用いられてきた。
【0006】
しかしながら石膏用分散剤として従来より使用されているナフタレンスルホン酸ホルムアルデヒド縮合物においても分散性が充分ではなく、さらに高い分散性を示す分散剤が望まれていた。
【0007】
先にこれらの分野の分散剤として、ビスフェノール類、アミノベンゼンスルホン酸、及びアミノ酸のホルムアルデヒド縮合物を主成分とする分散剤が提唱されている(特許第2696303号)。この分散剤は従来のものと比べ非常に高い分散性を有するが、この分散剤においても分散性が満足されているわけでなく、更に高い分散性が要求されていた。
【0008】
【発明が解決しようとする課題】
本発明は、炭酸カルシウム、酸化チタン等の無機顔料、石膏に良好な分散性を与える分散剤を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は上記のような問題について鋭意検討した結果、ビスフェノールよりも疎水性の低いフェノールを用い、アミノ酸によってカルボキシル基を導入して分散剤骨格の疎水性を最適化できることを見出した。さらに分子量を最適化するようコントロールすることによって無機顔料スラリーにおいても石膏スラリーにおいても従来より高い分散性を示す分散剤の発明に至った。
【0010】
すなわち本発明は、フェノール類及び/またはその塩(A)、アミノベンゼンスルホン酸類及び/またはその塩(B)、アミノ酸類及び/またはその塩(C)のホルムアルデヒド縮合物を含有することを特徴とする分散剤である。
【0011】
【発明の実施の形態】
本発明に用いるフェノール類及び/またはその塩(A)としては、フェノール、ピロカテコール、m-カテコール、グアヤコール等が挙げられる。これらは1種あるいは2種以上を組み合わせて用いても良い。これらの中でもフェノールがもっとも適している。
【0012】
アミノベンゼンスルホン酸類及び/またはその塩(B)としては、4−アミノベンゼンスルホン酸、2−アミノ−5−メチルベンゼンスルホン酸等が挙げられ、特に本発明には4−アミノベンゼンスルホン酸が適している。
【0013】
アミノ酸類及び/またはその塩(C)としては、グルタミン酸、グリシン、アラニン、イミノ二酢酸、アミノ酪酸、等が可能である。
【0014】
ホルムアルデヒド類(D)としては、通常ホルムアルデヒド水溶液(ホルマリン)を使用するが、パラホルムアルデヒド等のホルムアルデヒド誘導体を使用してもよい。
【0015】
本発明の縮合物は、フェノール類及び/またはその塩(A)、アミノベンゼンスルホン酸類及び/またはその塩(B)、アミノ酸類及び/またはその塩(C)、ホルムアルデヒド類(D)をA:B:C:D=1.0:0.2〜0.7:0.07〜0.4:1.4〜2.2のモル比でホルムアルデヒド縮合して得られた縮合物が望ましい。上記の範囲を外れて縮合すると未反応のフェノール類、あるいはアミノベンゼンスルホン酸類が増加するため分散性が低下する。反応は常圧または加圧下50-130℃、5-50時間で行う。
【0016】
これらの反応時には反応を進行させる観点から水酸化ナトリウム等のアルカリを添加する必要がある。使用するアルカリは水酸化ナトリウムの他、水酸化カリウム、水酸化カルシウム、アンモニア及び水酸化アンモニウム等が使用可能である。アルカリ添加量はフェノール類1.0モルに対し、0.4〜1.2モル当量が好ましい。
【0017】
本発明の縮合物は、重量平均分子量が10000〜40000、好ましくは20000〜40000でかつ反応終了時の縮合物水溶液中のホルムアルデヒド量が0.5重量%以下であることが望ましい。この範囲をはずれると分散性は悪化する。
【0018】
本発明における重量平均分子量はゲルパーミエイションクロマトグラフィー(GPC)で、ポリエチレングリコールを標準物質として容易に測定できる。
【0019】
縮合物水溶液中のホルムアルデヒド量はフロログルシン法、アセチルアセトン法等の公知の方法や市販キット(例えば、和光純薬(株)製ホルムアルデヒド-テストワコー等)を用いて測定することができる。
【0020】
本発明の分散剤は、上記縮合物のみでも分散剤として良好な性能を発揮するが、従来分散剤であるナフタレンスルホン酸ホルムアルデヒド縮合物、メラミンスルホン酸ホルムアルデヒド縮合物、リグニンスルホン酸等と併用することもできる。これらを併用する場合、上記課題に対する所望の効果を阻害しない範囲であれば特に問題ないが、好ましくは、上記縮合物が20重量%以上である。
【0021】
本発明の分散剤は炭酸カルシウム、酸化チタン等の無機顔料/水スラリー用として好適に使用される。分散剤添加量は無機顔料に対して0.1〜5.0重量%で使用するのが望ましい。添加量がこれより少なければ分散効果は少なく、過剰添加にすると分散剤の凝集作用によりスラリー粘度が上昇する。
【0022】
また石膏用途に用いる際においては、0.05〜1.0重量%で使用するのが望ましく、添加量が少なければ分散効果が少なく、過剰添加であれば硬化遅延が起こる。
【0023】
【実施例】
以下本発明を実施例に従って、更に詳細に説明するが、本発明はこれによって限定されるものではない。
【0024】
合成例1
撹拌装置、環流装置、温度計、ホルムアルデヒド滴下装置のついた反応容器に下記の物質を所定量仕込んだ。
フェノール 65.9部
4−アミノベンゼンスルホン酸 45.5部
グリシン 13.1部
水酸化ナトリウム 18.2部
水 265.0部
この混合液を60℃に加熱した後、37%ホルムアルデヒド水溶液(ホルマリン)102.2部を30分かけて滴下しその後70℃にて反応を行った。経時的に縮合物水溶液中のホルムアルデヒド量を測定し、0.5重量%以下になったところで反応を終了させ、縮合物水溶液を得た。
【0025】
なお重量平均分子量はGPC法によりポリエチレングリコールを標準物質として測定した。詳しい測定条件を以下に示す。
カラム;OH pak SB-806 + SB-804 + SB-802.5 (昭和電工(株)製)
検出器;示差屈折計
溶離液;0.05mol/L 硝酸ナトリウム水溶液とアセトニトリルの体積比8:2混合液
また縮合物水溶液中のホルムルデヒド量は、ホルムアルデヒド−テストワコーキット(和光純薬(株)製)により測定した。
【0026】
合成例2〜7
表1に示した各成分と配合割合(部)を用いて、合成例1と同様にして縮合物水溶液を得た。
【0027】
合成例8〜9
表1に示した各成分と配合割合(部)を用いて、合成例1と同様にして反応を行った。ただし、経時的に縮合物水溶液中のホルムアルデヒド量を測定し、1.0重量%になったところで反応を終了させ、縮合物水溶液を得た。
【0028】
【表1】
表1
【0029】
各合成例におけるA、B、C及びホルムアルデヒドのモル比を表2に示す。
【0030】
【表2】
表2
【0031】
合成例で得られた縮合物水溶液の重量平均分子量と、ホルムアルデヒド量を表3に示す。
【0032】
【表3】
表3
【0033】
比較合成例
特許第2696303号報の合成例1に従い以下の方法で比較合成例の縮合物水溶液を得た。
撹拌装置、乾留装置、温度計、ホルムアルデヒド滴下装置のついた反応容器に下記の物質を所定量仕込んだ。
(1)2,2-ビス(4-ヒドロキシフェニル)プロパン 228.3部(1.0モル)
(2)4−アミノベンゼンスルホン酸 129.9部(0.75モル)
(3)グルタミン酸 22.1部(0.15モル)
(4)水酸化ナトリウム 39.2部(0.98モル)
(5)水 876.4部
この固液に温度100℃にて37%ホルムアルデヒド水溶液202.7部(2.50モル)を1時間で滴下し、更にその温度で20時間反応させて比較合成例の縮合物水溶液を得た。
【0034】
合成例1−9で得られた本発明の分散剤、及び比較例1として比較合成例で得た分散剤、比較例2としてナフタレンスルホン酸ホルムアルデヒド縮合物系分散剤(花王(株)製 商品名マイティー150)を用いて、下記のように各種分散性試験を行った。結果を表4に示す。
【0035】
[無機顔料分散試験]
・炭酸カルシウム分散性試験
水と所定量の分散剤(固形分添加率で炭酸カルシウムに対し1.0wt.%)を合計225g採取し調製した水溶液中に炭酸カルシウム(白石工業(株)製 商品名PZ)275gを1分かけて添加した後、ホモミキサー(特殊機化工業(株)製TK)にて8000rpm、20分撹拌し、スラリーの粘度をB型粘度計で測定した。
・酸化チタン分散性試験
水と所定量の分散剤(固形分添加率で酸化チタンに対し0.6wt.%)を合計200g採取し調製した水溶液中に酸化チタン(石原産業(株)製 商品名CR-90)300gを1分間かけて添加した後、ホモミキサーにて8000rpm、20分撹拌し、スラリーの粘度をB型粘度計で測定した。
【0036】
[石膏分散性試験]
水と所定量の分散剤(固形分で石膏に対し0.1wt.%)を合計70g採取し調製した水溶液中を撹拌しながら石膏(睦化学(株)製 商品名SK)100gを投入し、15秒間撹拌した。撹拌終了後内径40mm、高さ50mmのフロー測定用円柱に流し込み、円柱を引き抜いてスラリー流れ出た円の直径を2カ所測定した(2カ所の平均をフロー値とする)。
【0037】
【表4】
表4
【0038】
以上の実施例より本発明の分散剤は比較例の分散剤と比べ、炭酸カルシウム、酸化チタンスラリーに添加すれば粘度を低減できる。また石膏スラリーに添加すれば高いフロー値を示すことから高い分散性を示すことがわかる。これらの結果から、本発明の分散剤が優れた効果を示すのは明らかである。
【0039】
【発明の効果】
本発明の分散剤は、従来の分散剤と比較し分散性に優れているため、無機顔料スラリー用、石膏用のみならず、コンクリート用の減水剤、石炭微粉末スラリー等の分散剤としても優れた性能を示すものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an industrial dispersant, and more particularly to a dispersant suitable for inorganic pigment slurries such as calcium carbonate and titanium oxide, and gypsum.
[0002]
[Prior art]
Inorganic pigments are used as water dispersions in various industries including the paper industry and the paint industry. This inorganic pigment / water slurry is usually high in concentration, and it is desired that the viscosity is low and the fluidity is high and the stability is high for good pumpability and storage stability.
[0003]
Conventionally, for these purposes, sodium tripolyphosphate, sodium hexametaphosphate, polyacrylate, naphthalenesulfonic acid formaldehyde condensate and the like are used as a dispersant.
[0004]
However, conventionally used dispersants do not necessarily have the above-mentioned effects. If the amount added is increased to increase these effects, the cost increases and other physical properties are adversely affected. There was a point.
[0005]
Gypsum has been used as a mold material for building materials, ceramics, castings and the like as a plaster board and a plaster plaster, because it becomes a fluid slurry when mixed with water and hardens after a few minutes. Dispersants have been used for the purpose of increasing the fluidity of this gypsum slurry.
[0006]
However, the naphthalenesulfonic acid formaldehyde condensate conventionally used as a dispersant for gypsum is not sufficiently dispersible, and a dispersant exhibiting higher dispersibility has been desired.
[0007]
As a dispersant in these fields, a dispersant mainly composed of bisphenols, aminobenzenesulfonic acid, and a formaldehyde condensate of amino acids has been proposed (Japanese Patent No. 2696303). Although this dispersant has a very high dispersibility compared with the conventional one, the dispersibility is not satisfied even in this dispersant, and a higher dispersibility is required.
[0008]
[Problems to be solved by the invention]
An object of this invention is to provide the dispersing agent which gives favorable dispersibility to inorganic pigments, such as a calcium carbonate and a titanium oxide, and a gypsum.
[0009]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventors have found that the hydrophobicity of the dispersant skeleton can be optimized by introducing a carboxyl group with an amino acid using a phenol having a lower hydrophobicity than bisphenol. Furthermore, by controlling to optimize the molecular weight, the present invention has led to the invention of a dispersant exhibiting higher dispersibility than ever in both inorganic pigment slurry and gypsum slurry.
[0010]
That is, the present invention is characterized by containing a formaldehyde condensate of phenols and / or salts thereof (A), aminobenzenesulfonic acids and / or salts thereof (B), amino acids and / or salts thereof (C). It is a dispersing agent.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the phenols and / or salts (A) thereof used in the present invention include phenol, pyrocatechol, m-catechol, guaiacol, and the like. These may be used alone or in combination of two or more. Of these, phenol is most suitable.
[0012]
Examples of aminobenzenesulfonic acids and / or salts thereof (B) include 4-aminobenzenesulfonic acid, 2-amino-5-methylbenzenesulfonic acid and the like, and 4-aminobenzenesulfonic acid is particularly suitable for the present invention. ing.
[0013]
Amino acids and / or salts thereof (C) can be glutamic acid, glycine, alanine, iminodiacetic acid, aminobutyric acid, and the like.
[0014]
As the formaldehydes (D), a formaldehyde aqueous solution (formalin) is usually used, but formaldehyde derivatives such as paraformaldehyde may be used.
[0015]
The condensate of the present invention comprises phenols and / or their salts (A), aminobenzenesulfonic acids and / or their salts (B), amino acids and / or their salts (C), and formaldehydes (D) as A: A condensate obtained by formaldehyde condensation at a molar ratio of B: C: D = 1.0: 0.2 to 0.7: 0.07 to 0.4: 1.4 to 2.2 is desirable. If the condensation is out of the above range, unreacted phenols or aminobenzene sulfonic acids increase, resulting in a decrease in dispersibility. The reaction is carried out at normal pressure or under pressure at 50-130 ° C. for 5-50 hours.
[0016]
In these reactions, it is necessary to add an alkali such as sodium hydroxide from the viewpoint of advancing the reaction. As the alkali to be used, potassium hydroxide, calcium hydroxide, ammonia, ammonium hydroxide and the like can be used in addition to sodium hydroxide. The alkali addition amount is preferably 0.4 to 1.2 molar equivalents relative to 1.0 mole of phenols.
[0017]
The condensate of the present invention has a weight average molecular weight of 10,000 to 40,000, preferably 20000 to 40,000, and the amount of formaldehyde in the aqueous condensate solution at the end of the reaction is desirably 0.5% by weight or less. Outside this range, dispersibility deteriorates.
[0018]
The weight average molecular weight in the present invention can be easily measured by gel permeation chromatography (GPC) using polyethylene glycol as a standard substance.
[0019]
The amount of formaldehyde in the aqueous condensate solution can be measured using a known method such as the phloroglucin method or the acetylacetone method or a commercially available kit (for example, Wako Pure Chemical Industries, Ltd. Formaldehyde-Test Wako).
[0020]
Although the dispersant of the present invention exhibits good performance as a dispersant only with the above-mentioned condensate, it should be used in combination with naphthalene sulfonic acid formaldehyde condensate, melamine sulfonic acid formaldehyde condensate, lignin sulfonic acid, etc. which are conventional dispersants. You can also. When these are used in combination, there is no particular problem as long as the desired effect on the above-mentioned problems is not impaired, but preferably the condensate is 20% by weight or more.
[0021]
The dispersant of the present invention is suitably used for inorganic pigment / water slurry such as calcium carbonate and titanium oxide. It is desirable to use the dispersant in an amount of 0.1 to 5.0% by weight based on the inorganic pigment. If the addition amount is less than this, the dispersion effect is small, and if it is added excessively, the slurry viscosity increases due to the coagulation action of the dispersant.
[0022]
In addition, when used for gypsum, it is desirable to use 0.05 to 1.0% by weight. If the addition amount is small, the dispersion effect is small, and if it is excessively added, curing delay occurs.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[0024]
Synthesis example 1
A predetermined amount of the following substances was charged into a reaction vessel equipped with a stirrer, a reflux device, a thermometer, and a formaldehyde dropping device.
Phenol 65.9 parts 4-Aminobenzenesulfonic acid 45.5 parts Glycine 13.1 parts Sodium hydroxide 18.2 parts Water 265.0 parts After heating this mixture to 60 ° C, a 37% aqueous formaldehyde solution (formalin) 102.2 parts were added dropwise over 30 minutes and then reacted at 70 ° C. The amount of formaldehyde in the aqueous condensate solution was measured over time, and the reaction was terminated when it became 0.5% by weight or less to obtain an aqueous condensate solution.
[0025]
The weight average molecular weight was measured by the GPC method using polyethylene glycol as a standard substance. Detailed measurement conditions are shown below.
Column: OH pak SB-806 + SB-804 + SB-802.5 (manufactured by Showa Denko KK)
Detector: Differential refractometer eluent: 0.05 mol / L Sodium nitrate aqueous solution and acetonitrile volume ratio 8: 2 The amount of formaldehyde in the mixed solution or the aqueous condensate solution is determined by the formaldehyde-test Wako kit (manufactured by Wako Pure Chemical Industries, Ltd.). ).
[0026]
Synthesis Examples 2-7
A condensate aqueous solution was obtained in the same manner as in Synthesis Example 1 using each component and blending ratio (parts) shown in Table 1.
[0027]
Synthesis Examples 8-9
Using each component and blending ratio (parts) shown in Table 1, the reaction was carried out in the same manner as in Synthesis Example 1. However, the amount of formaldehyde in the aqueous condensate solution was measured over time, and when it reached 1.0% by weight, the reaction was terminated to obtain an aqueous condensate solution.
[0028]
[Table 1]
Table 1
[0029]
Table 2 shows the molar ratio of A, B, C and formaldehyde in each synthesis example.
[0030]
[Table 2]
Table 2
[0031]
Table 3 shows the weight average molecular weight and the amount of formaldehyde of the aqueous condensate solution obtained in the synthesis example.
[0032]
[Table 3]
Table 3
[0033]
Comparative Synthesis Example According to Synthesis Example 1 of Japanese Patent No. 2696303, a condensate aqueous solution of Comparative Synthesis Example was obtained by the following method.
A predetermined amount of the following substances was charged into a reaction vessel equipped with a stirrer, a carbonization device, a thermometer, and a formaldehyde dropping device.
(1) 2,2-bis (4-hydroxyphenyl) propane 228.3 parts (1.0 mol)
(2) 4-aminobenzenesulfonic acid 129.9 parts (0.75 mol)
(3) Glutamic acid 22.1 parts (0.15 mol)
(4) Sodium hydroxide 39.2 parts (0.98 mol)
(5) Water 876.4 parts To this solid liquid, 202.7 parts (2.50 mol) of 37% formaldehyde aqueous solution was added dropwise at a temperature of 100 ° C. over 1 hour, and the reaction was further carried out at that temperature for 20 hours to condense the comparative synthesis example. A product aqueous solution was obtained.
[0034]
Dispersant of the present invention obtained in Synthesis Example 1-9, Dispersant obtained in Comparative Synthesis Example as Comparative Example 1, and Naphthalenesulfonate Formaldehyde Condensate Dispersant as Comparative Example 2 (trade name, manufactured by Kao Corporation) Various dispersibility tests were conducted using Mighty 150) as follows. The results are shown in Table 4.
[0035]
[Inorganic pigment dispersion test]
・ Calcium carbonate (produced by Shiraishi Kogyo Co., Ltd.) in an aqueous solution prepared by collecting a total of 225 g of calcium carbonate dispersibility test water and a predetermined amount of dispersant (1.0 wt. ) After adding 275 g over 1 minute, the mixture was stirred for 20 minutes at 8000 rpm with a homomixer (TK manufactured by Tokushu Kika Kogyo Co., Ltd.), and the viscosity of the slurry was measured with a B-type viscometer.
-Titanium oxide (made by Ishihara Sangyo Co., Ltd.) in an aqueous solution prepared by collecting a total of 200 g of titanium oxide dispersibility test water and a predetermined amount of dispersant (0.6 wt.% With respect to titanium oxide in solid content addition rate) -90) After adding 300 g over 1 minute, the mixture was stirred with a homomixer at 8000 rpm for 20 minutes, and the viscosity of the slurry was measured with a B-type viscometer.
[0036]
[Gypsum dispersibility test]
A total of 70 g of water and a predetermined amount of a dispersant (0.1 wt.% With respect to gypsum in solid content) were collected, and 100 g of gypsum (product name SK manufactured by Sakai Chemical Co., Ltd.) was added while stirring in the prepared aqueous solution. Stir for 2 seconds. After stirring, the mixture was poured into a flow measurement cylinder having an inner diameter of 40 mm and a height of 50 mm, and the diameter of the circle from which the slurry flowed out was measured by pulling out the cylinder (the average of the two positions was taken as the flow value).
[0037]
[Table 4]
Table 4
[0038]
From the above examples, the viscosity of the dispersant of the present invention can be reduced when added to a calcium carbonate or titanium oxide slurry as compared with the dispersant of the comparative example. Moreover, when it adds to a gypsum slurry, it shows that a high dispersibility is shown from showing a high flow value. From these results, it is clear that the dispersant of the present invention exhibits an excellent effect.
[0039]
【The invention's effect】
Since the dispersant of the present invention is superior in dispersibility compared to conventional dispersants, it is excellent not only for inorganic pigment slurries and gypsum, but also as a water reducing agent for concrete, a fine coal powder slurry, and the like. Performance.