JP3733733B2 - Volume reduction treatment method for ion exchange resin - Google Patents

Volume reduction treatment method for ion exchange resin Download PDF

Info

Publication number
JP3733733B2
JP3733733B2 JP05259598A JP5259598A JP3733733B2 JP 3733733 B2 JP3733733 B2 JP 3733733B2 JP 05259598 A JP05259598 A JP 05259598A JP 5259598 A JP5259598 A JP 5259598A JP 3733733 B2 JP3733733 B2 JP 3733733B2
Authority
JP
Japan
Prior art keywords
volume reduction
exchange resin
ion exchange
reaction vessel
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05259598A
Other languages
Japanese (ja)
Other versions
JPH11244816A (en
Inventor
源一 片桐
孝 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP05259598A priority Critical patent/JP3733733B2/en
Publication of JPH11244816A publication Critical patent/JPH11244816A/en
Application granted granted Critical
Publication of JP3733733B2 publication Critical patent/JP3733733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物として生じるイオン交換樹脂の減容処理装置に係わり、特に酸素含有雰囲気中の放電により生じる活性酸素を用いて灰化し減容処理する方法及びその装置に関する。
【0002】
【従来の技術】
図5は、従来のイオン交換樹脂の減容処理装置の構成例を示す断面図で、すでに特願平9−37478号に提示されている構成である。図に見られるように、本減容処理装置は、被処理用のイオン交換樹脂3を搭載したセラミックス製の処理皿4を内蔵する反応容器2、反応容器2の上部に連通して配された円筒状の放電容器1、放電容器1の上端に備えられたガス導入口5、放電容器1の外側に巻装された高周波誘導コイル8、反応容器2と放電容器1の内部を排気する減圧ポンプ6を組み込んだ排気配管7より構成されている。このうち、放電容器1は、高周波を通し活性酸素に耐性のある電気絶縁性材料である石英を用いて形成されており、反応容器2は、高周波を遮蔽し活性酸素に耐性のある金属材料であるアルミニウムにより形成されている。
【0003】
本構成において、ガス導入口5より酸素を含むガスを導入し、減圧ポンプ6で排気して反応容器2と放電容器1の内部を減圧酸素含有雰囲気とし、高周波発生器9を用いて高周波誘導コイル8に高周波電流を通電すると、放電容器1の内部に高周波磁界が発生し、電磁誘導の作用で放電が形成、維持され、活性酸素やイオンを生成する。この時、放電と高周波誘導コイル8の高周波とは誘導的に結合し、放電内部に発生する旋回方向に交番する誘導電界が電子を加速するので、放電内部に高周波電力が供給される。したがって効果的に電子の加熱が行われ、高密度の活性酸素やイオンが生成される。生成されたこれらの活性酸素やイオンは、反応容器2の内部へと吹き出し、処理皿4に搭載された被処理用のイオン交換樹脂3に接触反応してこれを直接酸化し、最終的に、吸着された金属イオンを含む灰分だけを残して減容する。このように減容処理する方法を用いれば、すすの発生がなくまた処理炉材の損傷もないのでメンテナンスが簡単となり、かつ排出ガス量を少量に抑えることが可能となる。
【0004】
【発明が解決しようとする課題】
上記のごときイオン交換樹脂の減容処理装置における活性酸素による灰化処理速度は、減圧雰囲気において生成される酸素の活性状態と被処理物に到達する活性種の数とに依存するため、放電プラズマの形成に必要な高周波電力と処理圧力条件を適正に選定することにより、適正な活性種が十分に得られ、所要の処理速度で処理できることとなる。
【0005】
しかしながら、例えば1kgのイオン交換樹脂を1時間で処理する場合を想定すると、毎時数立方米の酸素ガスを供給する必要があり、これに伴って灰化処理によって発生する排ガス量も多量となり、この多量の排ガスを排気し、かつ反応室の内部を所定の減圧雰囲気に保持する能力を所持する減圧排気設備の設置が要求されることとなるので、処理速度を上げることが困難であるという難点があった。また、反応室の内部を減圧して用いると、圧力の低下とともに粒子密度も低下するので、イオン交換樹脂の炭素や水素等の成分の酸化が不完全となり、有害なCOやH2 として排出される。したがって、これらのCOやH2 をより安定で安全なCO2 やH2Oに変換するための処理設備が必要となり、排ガス処理設備が複雑になるという問題点があった。
【0006】
本発明は、これらの従来技術の問題点を考慮してなされたもので、処理効率が高く、早い処理速度で減容処理でき、また、排ガスに含まれるCOやH2 の濃度が低くなり、排ガス処理装置が簡素化できるイオン交換樹脂の減容処理方法及びその装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明においては、
1)放電容器の内部を減圧酸素含有雰囲気に保持し、放電容器に巻装した高周波誘導コイルに高周波電流を通電して、放電容器の内部に放電を生成、維持し、得られた活性酸素を、放電容器と連通して減圧酸素含有雰囲気に保持された反応容器の内部に備えられたイオン交換樹脂に接触作用させて、これを灰化減容処理するイオン交換樹脂の減容処理方法において、
(a)反応容器の内部を80 Pa 以下の圧力に保持して灰化減容処理することとする。
【0008】
(b)減圧酸素含有雰囲気に保持するために導入されるガスの反応容器内部での滞在時間を 0.3秒以上に保持して灰化減容処理することとする。
2)また、被処理用のイオン交換樹脂を内蔵する反応容器、反応容器と連通し、高周波誘導コイルを巻装した電気絶縁材よりなる放電容器、反応容器と放電容器の内部を排気して減圧状態に保持する減圧手段、および反応容器と放電容器の内部に酸素または酸素を含む複数のガスを導入するためのガス導入手段を備えてなるイオン交換樹脂の減容処理装置において、前記の減圧手段としてメカニカルドライポンプを備えることとする。
【0009】
酸素ガスに高周波電界をかけて電子エネルギーを与えると、式(1)〜(4)のごとく原子状酸素に代表される化学的活性度の高い活性酸素が生成され、この活性酸素の働きにより、イオン交換樹脂は、COやCO2 、H2 やH2Oとしてガス化され、灰化減容処理される。
【0010】
【数1】

Figure 0003733733
ここで、電子の電荷、質量、平均速度を、それぞれq,me ,ve で表示すると、電位差Vによって加速される電子のエネルギーは、式(5)で表される。
【0011】
【数2】
(1/2)me e 2 = qV (5)
ここでさらに、電界強度E、圧力P、および0℃、1.33×102 Paにおける電子の平均自由行程λ0 を用いて、電位差Vを置き換えれば、式(5)は次式(6)で表現される。
【0012】
【数3】
(1/2)me e 2 = qλ0 (E/P) (6)
この式から、電子エネルギーに圧力が大きな影響を及ぼすことがわかる。すなわち、電界強度Eの制御因子である高周波電力を調整する方法のみならず、放電プラズマの形成空間の圧力を低下させる方法を採ることによっても、電子エネルギーが増大し、活性酸素の生成が促されることとなる。
【0013】
したがって、反応容器の内部の圧力を従来より低く設定し、上記1)の(a)のごとく、80 Pa 以下の圧力に保持して灰化減容処理することとすれば、後述の実施例に示すように、電子エネルギーを一段と効果的に増大できるので、活性酸素量が増大し、減容処理の効率が高くなる。
また、導入されるガスの反応容器内部での滞在時間を長くすれば、粒子密度の低い減圧雰囲気においても、形成されたCOやH2 の活性酸素との接触の機会が増大し、CO2 やH2 Oへの酸化反応が進行するので、COやH2 の濃度が減少する。特に上記の1)の(b)のごとく、反応容器内部での滞在時間を 0.3秒以上に保持して灰化減容処理することとすることとすれば、後述の実施例に示すように、排ガス中のCOやH2 の濃度を効果的に減少させることができる。
【0014】
また、上記の2)のごとく、メカニカルドライポンプを減圧手段として備えてイオン交換樹脂の減容処理装置を構成することとすれば、導入されるガスの流量が多量となっても、反応容器の内部を、大気圧から10 Pa に至る広範囲の減圧条件に設定することが可能となるので、上記の1)(a)のごとく、80 Pa 以下の圧力に保持して灰化減容処理することができる。また、同様に、上記の1)の(b)のごとく、導入されるガスの反応容器内部での滞在時間を 0.3秒以上に保持して灰化減容処理することも可能となる。
【0015】
【発明の実施の形態】
<実施例1>
図1は、本発明の第1の実施例に用いたイオン交換樹脂の減容処理装置の基本構成を示す断面図である。本減容処理装置の本体の構成は、すでに図5に示した従来例の装置と基本的に同一であるので、構成部品に関する重複する説明は省略する。本減容処理装置の特徴は、反応容器2に接続された排気配管7にメカニカルドライポンプ14を設置したことにある。
【0016】
本実施例に用いた減容処理装置においても、反応容器2と放電容器1の内部を減圧酸素含有雰囲気とし、高周波誘導コイル8に高周波電流を通電して放電を形成し、生成された活性酸素やイオンを、反応容器2の内部へと吹き出させ、処理皿4に搭載された被処理用のイオン交換樹脂3に接触反応させてこれを直接酸化し、減容処理する方法が採られるが、本減容処理装置には、排気配管7にメカニカルドライポンプ14が備えられているので、導入されるガスの流量が多量となっても、反応容器2と放電容器1の内部を、大気圧から約10 Pa に至る広範囲の減圧条件に設定することが可能である。
【0017】
図2は、図1に示した減容処理装置を用いてイオン交換樹脂の灰化減容処理を行ったときの処理速度の圧力依存性を示す特性図で、横軸は、メカニカルドライポンプで調整した反応容器の圧力、縦軸は、排気ガス中のCOおよびCO2 から求めた炭素の排気速度、すなわちイオン交換樹脂の処理速度の相対値である。図には高周波電力をそれぞれ 600W、 800W、1000W投入したときの特性が示されており、高周波電力の増大とともに処理速度が上昇している。また、いずれの値の高周波電力においても、反応容器の圧力の低下とともに処理速度が上昇しており、特に圧力が80 Pa 以下になるととりわけ急激に上昇している。したがって、このように反応容器の圧力を80 Pa 以下に保持して減容処理を行えば、高周波電力を増大させなくとも早い処理速度で、効率的にイオン交換樹脂の灰化減容処理できることとなる。
【0018】
図3は、図1に示した減容処理装置において、導入ガスの反応容器内部での滞在時間(Tr)を変化させてイオン交換樹脂の灰化減容処理を行ったときの排気ガス中のCO濃度とCO2 濃度との比率を示した特性図である。
導入ガスの反応容器内部での滞在時間(Tr)は、圧力をP、ガス流量をQ、メカニカルドライポンプの排気速度をVとすれば、次式(7)で与えられ、排気速度Vは、インバ─タによりドライポンプの回転数を制御する方法、あるいはドライポンプに付設のしぼり機構によりコンダクタンスを制御する方法により調整される。
【0019】
【数4】
Tr = PV/Q (7)
図3に示した特性は、後者のしぼり機構によりコンダクタンスを制御する方法を用いて排気速度Vを調整し、滞在時間(Tr)を設定して測定したものである。図の横軸は高周波電力の投入量であり、縦軸は排気ガス中のCO濃度とCO2 濃度との比率である。図に見られるように、導入ガスの滞在時間(Tr)が約 0.1sec の場合には、高周波電力が低いときもCO濃度が高く、高周波電力の増大とともにCO濃度は上昇し、高周波電力が1000Wを超えるとCO濃度がCO2 濃度より高くなっており、酸化が不十分であることがわかる。これに対して、滞在時間が 0.3 sec以上の場合には、高周波電力の大小によらず常にCO濃度はCO2 濃度より十分低い濃度に維持されており、滞在時間を長くすることによって、効果的に酸化が進行していることがわかる。したがって、排気手段としてメカニカルドライポンプを組み込み、排気速度を調整して導入ガスの反応容器内部での滞在時間を 0.3 sec以上に保持させれば、反応容器内部での酸化反応が効果的に進行し、排気ガス中のCO等の未酸化の成分が低減できるので、簡素な排ガス処理装置で処理できることとなる。
【0020】
<実施例2>
図4は、本発明のイオン交換樹脂の減容処理装置の第2の実施例の基本構成を示す断面図である。本減容処理装置の本体の構成は、既に特願平9−37478号に提示されている構成と同一の構成で、イオン交換樹脂3を搭載した処理皿4を内蔵したアルミニウム製の反応容器2A、反応容器2Aと連通した内部空間をもつド─ム状の石英製の放電容器1A、反応容器2Aの上端に備えられたガス導入口5A、ならびに放電容器1Aの外側に巻装された高周波誘導コイル8Aにより本体が構成されており、さらに、イオン交換樹脂3を搭載した処理皿4を反応容器2に搬入あるいは搬出するための搬入室12と搬出室13が備えられている。本実施例の減容処理装置の特徴は、反応容器2Aの内部を減圧酸素含有雰囲気とするための減圧手段として、排気配管7にメカニカルドライポンプ14が備えられていることにある。
【0021】
したがって、本実施例の減容処理装置では、第1の実施例の減容処理装置の場合と同様に、導入ガス量が多量であっても、反応容器2Aの圧力を大気圧から約10 Pa に至る広範囲の減圧条件に設定することが可能である。したがって、反応容器2Aの圧力を80 Pa 以下に保持して処理を行えば、高い処理効率でイオン交換樹脂が減容処理され、また、導入ガスの反応容器2A内の滞在時間が 0.3sec 以上となるよう調整すれば、酸化反応が効果的に進行し、排ガス中のCO等の未酸化の成分が低減し、簡素な排ガス処理装置で処理できることとなる。
【0022】
なお、上記の第1の実施例および第2の実施例の減容処理装置では、反応容器の減圧手段として、排気配管7にメカニカルドライポンプ14を備えているが、メカニカルドライポンプ14の上流側に、さらにメカニカルドライブースターポンプを設置すれば、排気容量が増大し、有効真空度をさらに上げることが可能となる。
【0023】
【発明の効果】
上記したように、本発明によれば、反応容器の内部を80Pa以下の圧力に保持するので、活性酸素量が増大し、減容処理の効率が高くなって、早い処理速度で減容処理ができるようになった。また、減圧酸素含有雰囲気に保持するために導入されるガスの反応容器内部での滞在時間を0.3秒以上に保持するので、反応容器内での酸化が効果的に進行し、排ガスに含まれるCOやHの濃度が低くなるので、排ガスを簡素化された排ガス処理装置で処理できることとなる。また、減圧をメカニカルドライポンプを用いて行うと、反応容器内の圧力を大気圧から約10Paに至る広範囲の減圧条件に設定することが可能となり、早い処理速度で減容処理できるとともに、排ガス処理装置が簡素化されたイオン交換樹脂の減容処理装置が得られる。
【0024】
(2)また、請求項2に記載の方法によってイオン交換樹脂を灰化減容処理することとすれば、反応容器内での酸化が効果的に進行し、排ガスに含まれるCOやH2 の濃度が低くなるので、排ガスを簡素化された排ガス処理装置で処理できることとなる。
(3)また、請求項3に記載のごとくイオン交換樹脂の減容処理装置を構成することとしたので、反応容器内の圧力を大気圧から約10 Pa に至る広範囲の減圧条件に設定することが可能となり、上記の(1)のごとく早い処理速度で減容処理できるとともに、上記の(2)のごとく排ガス処理装置が簡素化されるイオン交換樹脂の減容処理装置が得られることとなった。
【図面の簡単な説明】
【図1】本発明の第1の実施例に用いたイオン交換樹脂の減容処理装置の基本構成を示す断面図
【図2】図1のイオン交換樹脂の減容処理装置を用いて減容処理を行ったときの処理速度の圧力依存性を示す特性図
【図3】図1のイオン交換樹脂の減容処理装置を用いて減容処理を行ったときの排気ガス中のCO濃度とCO2 濃度との比率とガスの滞在時間との関係を示す特性図
【図4】本発明のイオン交換樹脂の減容処理装置の第2の実施例の基本構成を示す断面図
【図5】従来のイオン交換樹脂の減容処理装置の構成例を示す断面図
【符号の説明】
1,1A 放電容器
2,2A 反応容器
3 イオン交換樹脂
4 処理皿
5,5A ガス導入口
7 排気配管
8,8A 高周波誘導コイル
9 高周波発生器
11 排気口
14 メカニカルドライポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a volume reduction treatment apparatus for ion exchange resin produced as waste, and more particularly to a method and apparatus for ashing and volume reduction using active oxygen produced by discharge in an oxygen-containing atmosphere.
[0002]
[Prior art]
FIG. 5 is a cross-sectional view showing a configuration example of a conventional ion exchange resin volume reduction treatment device, which is already presented in Japanese Patent Application No. 9-37478. As shown in the figure, this volume reduction treatment apparatus is arranged in communication with a reaction vessel 2 containing a ceramic processing dish 4 on which an ion exchange resin 3 to be treated is mounted, and an upper part of the reaction vessel 2. A cylindrical discharge vessel 1, a gas inlet 5 provided at the upper end of the discharge vessel 1, a high-frequency induction coil 8 wound around the outside of the discharge vessel 1, a decompression pump that exhausts the reaction vessel 2 and the inside of the discharge vessel 1 6 is constituted by an exhaust pipe 7 in which 6 is incorporated. Among these, the discharge vessel 1 is formed using quartz, which is an electrically insulating material that is resistant to active oxygen through high frequencies, and the reaction vessel 2 is a metal material that shields high frequencies and is resistant to active oxygen. It is made of some aluminum.
[0003]
In this configuration, a gas containing oxygen is introduced from the gas introduction port 5, exhausted by the decompression pump 6, and the inside of the reaction vessel 2 and the discharge vessel 1 is made into a decompressed oxygen-containing atmosphere. When a high frequency current is supplied to 8, a high frequency magnetic field is generated inside the discharge vessel 1, and a discharge is formed and maintained by the action of electromagnetic induction to generate active oxygen and ions. At this time, the discharge and the high frequency of the high frequency induction coil 8 are inductively coupled, and the induction electric field alternating in the turning direction generated inside the discharge accelerates the electrons, so that high frequency power is supplied inside the discharge. Therefore, electrons are effectively heated, and high-density active oxygen and ions are generated. These generated active oxygen and ions are blown out into the reaction vessel 2, contacted with the ion exchange resin 3 to be processed mounted on the processing dish 4, and directly oxidized, finally, The volume is reduced leaving only the ash containing the adsorbed metal ions. If the volume reduction method is used in this manner, soot is not generated and the processing furnace material is not damaged, so that maintenance is simplified and the amount of exhaust gas can be suppressed to a small amount.
[0004]
[Problems to be solved by the invention]
The ashing rate by active oxygen in the ion exchange resin volume reduction treatment apparatus as described above depends on the active state of oxygen generated in the reduced-pressure atmosphere and the number of active species reaching the object to be processed. By appropriately selecting the high-frequency power and the processing pressure conditions necessary for forming the substrate, appropriate active species can be sufficiently obtained and processed at a required processing speed.
[0005]
However, for example, assuming that 1 kg of ion exchange resin is processed in 1 hour, it is necessary to supply oxygen gas of several cubic rice per hour, and the amount of exhaust gas generated by the ashing treatment is increased accordingly. Since it is required to install a reduced pressure exhaust system that exhausts a large amount of exhaust gas and has the ability to maintain the inside of the reaction chamber in a predetermined reduced pressure atmosphere, it is difficult to increase the processing speed. there were. Also, if the inside of the reaction chamber is used under reduced pressure, the particle density also decreases as the pressure decreases, so that the oxidation of components such as carbon and hydrogen in the ion exchange resin becomes incomplete and is discharged as harmful CO and H 2. The Therefore, a processing facility for converting these CO and H 2 into more stable and safe CO 2 and H 2 O is required, and there is a problem that the exhaust gas processing facility becomes complicated.
[0006]
The present invention was made in consideration of the problems of these prior arts, has high processing efficiency, can be volume-reduced at a high processing speed, and the concentration of CO and H 2 contained in the exhaust gas is low. An object of the present invention is to provide an ion exchange resin volume reduction processing method and apparatus capable of simplifying an exhaust gas processing apparatus.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention,
1) The inside of the discharge vessel is maintained in a reduced-pressure oxygen-containing atmosphere, and a high-frequency current is passed through a high-frequency induction coil wound around the discharge vessel to generate and maintain a discharge inside the discharge vessel. In the method for reducing the volume of the ion exchange resin in contact with the ion exchange resin provided inside the reaction vessel maintained in a reduced pressure oxygen-containing atmosphere in communication with the discharge vessel, the ashing volume reduction treatment is performed.
(A) The inside of the reaction vessel is maintained at a pressure of 80 Pa or less and subjected to ashing volume reduction treatment.
[0008]
(B) The ashing volume reduction treatment is carried out while maintaining the residence time of the gas introduced to maintain the reduced pressure oxygen-containing atmosphere in the reaction vessel at 0.3 seconds or more.
2) In addition, a reaction vessel containing an ion exchange resin for processing, a discharge vessel made of an electrically insulating material that is connected to the reaction vessel and wound with a high-frequency induction coil, and the inside of the reaction vessel and the discharge vessel are evacuated to reduce pressure. In the ion exchange resin volume reduction processing apparatus, comprising the pressure reducing means for maintaining the state and the gas introducing means for introducing oxygen or a plurality of gases containing oxygen into the reaction vessel and the discharge vessel, the pressure reducing means A mechanical dry pump is provided.
[0009]
When electron energy is applied by applying a high frequency electric field to oxygen gas, active oxygen having a high chemical activity represented by atomic oxygen is generated as in the formulas (1) to (4). The ion exchange resin is gasified as CO, CO 2 , H 2 or H 2 O, and subjected to ashing and volume reduction treatment.
[0010]
[Expression 1]
Figure 0003733733
Here, the electron charge, mass, average speed, respectively q, m e, when viewed in v e, the energy of electrons accelerated by the potential difference V can be expressed by equation (5).
[0011]
[Expression 2]
(1/2) m e v e 2 = qV (5)
Further, if the potential difference V is replaced by using the electric field strength E, the pressure P, and the mean free path λ 0 of electrons at 0 ° C. and 1.33 × 10 2 Pa, the equation (5) is expressed by the following equation (6). Is done.
[0012]
[Equation 3]
(1/2) m e v e 2 = qλ 0 (E / P) (6)
From this equation, it can be seen that the pressure has a great influence on the electron energy. That is, not only the method of adjusting the high-frequency power, which is a control factor of the electric field strength E, but also the method of reducing the pressure in the discharge plasma formation space increases the electron energy and promotes the generation of active oxygen. It will be.
[0013]
Therefore, if the pressure inside the reaction vessel is set lower than before and the ashing volume reduction treatment is performed while maintaining the pressure at 80 Pa or less as in (a) of 1) above, As shown, since the electron energy can be increased more effectively, the amount of active oxygen is increased and the efficiency of volume reduction treatment is increased.
Also, if longer residence time in the reaction vessel inside the gas introduced, even at low particle density reduced pressure atmosphere, opportunities for contact is increased with the formed CO in or H 2 active oxygen, CO 2 Ya Since the oxidation reaction to H 2 O proceeds, the concentration of CO and H 2 decreases. In particular, as described in 1) (b) above, assuming that the residence time inside the reaction vessel is maintained at 0.3 seconds or longer and the ashing volume reduction treatment is performed, as shown in the examples described later, The concentration of CO and H 2 in the exhaust gas can be effectively reduced.
[0014]
Further, as described in 2) above, if a volume reduction treatment apparatus for ion exchange resin is configured by providing a mechanical dry pump as a pressure reducing means, even if the flow rate of introduced gas becomes large, Since the interior can be set to a wide range of decompression conditions from atmospheric pressure to 10 Pa, as in 1) (a) above, the ashing and volume reduction treatment should be performed while maintaining the pressure at 80 Pa or less. Can do. Similarly, as described in 1) (b) above, it is possible to carry out the ashing volume reduction treatment while maintaining the residence time of the introduced gas in the reaction vessel at 0.3 seconds or more.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
<Example 1>
FIG. 1 is a cross-sectional view showing the basic configuration of an ion exchange resin volume reduction treatment apparatus used in the first embodiment of the present invention. The configuration of the main body of this volume reduction processing apparatus is basically the same as that of the conventional apparatus shown in FIG. The feature of this volume reduction processing apparatus is that a mechanical dry pump 14 is installed in the exhaust pipe 7 connected to the reaction vessel 2.
[0016]
Also in the volume reduction treatment apparatus used in this example, the inside of the reaction vessel 2 and the discharge vessel 1 is made into a reduced pressure oxygen-containing atmosphere, a high frequency current is passed through the high frequency induction coil 8 to form a discharge, and the generated active oxygen Or ions are blown out into the reaction vessel 2 and contact-reacted with the ion-exchange resin 3 to be treated mounted in the treatment dish 4 to directly oxidize and reduce the volume. In the present volume reduction processing apparatus, the exhaust pipe 7 is provided with a mechanical dry pump 14, so that the reaction vessel 2 and the discharge vessel 1 can be kept from atmospheric pressure even if the flow rate of the introduced gas is large. A wide range of decompression conditions up to about 10 Pa can be set.
[0017]
FIG. 2 is a characteristic diagram showing the pressure dependence of the processing speed when the ashing volume reduction processing of the ion exchange resin is performed using the volume reduction processing apparatus shown in FIG. 1, and the horizontal axis is a mechanical dry pump. The adjusted pressure of the reaction vessel and the vertical axis are relative values of the exhaust rate of carbon obtained from CO and CO 2 in the exhaust gas, that is, the treatment rate of the ion exchange resin. The figure shows the characteristics when high-frequency power is input at 600 W, 800 W, and 1000 W, respectively, and the processing speed increases as the high-frequency power increases. Further, at any value of high-frequency power, the processing speed increases as the pressure in the reaction vessel decreases, and particularly increases rapidly when the pressure is 80 Pa or less. Therefore, if the volume reduction treatment is performed while maintaining the pressure in the reaction vessel at 80 Pa or less in this manner, the ashing and volume reduction treatment of the ion exchange resin can be efficiently performed at a high treatment speed without increasing the high frequency power. Become.
[0018]
FIG. 3 shows an exhaust gas in the exhaust gas when the ash reduction of the ion exchange resin is performed by changing the residence time (Tr) of the introduced gas inside the reaction vessel in the volume reduction treatment apparatus shown in FIG. It is a characteristic view showing the ratio of CO concentration and CO 2 concentration.
The residence time (Tr) of the introduced gas inside the reaction vessel is given by the following equation (7), where P is the pressure, Q is the gas flow rate, and V is the exhaust speed of the mechanical dry pump. It is adjusted by a method of controlling the rotation speed of the dry pump by an inverter or a method of controlling conductance by a squeezing mechanism attached to the dry pump.
[0019]
[Expression 4]
Tr = PV / Q (7)
The characteristics shown in FIG. 3 are measured by adjusting the exhaust speed V using a method of controlling conductance by the latter squeezing mechanism and setting the staying time (Tr). In the figure, the horizontal axis represents the amount of high-frequency power input, and the vertical axis represents the ratio between the CO concentration and the CO 2 concentration in the exhaust gas. As shown in the figure, when the residence time (Tr) of the introduced gas is about 0.1 sec, the CO concentration is high even when the high frequency power is low, the CO concentration increases with the increase of the high frequency power, and the high frequency power is 1000 W. If it exceeds, the CO concentration is higher than the CO 2 concentration, indicating that the oxidation is insufficient. On the other hand, when the stay time is 0.3 sec or more, the CO concentration is always kept sufficiently lower than the CO 2 concentration regardless of the magnitude of the high-frequency power, and it is effective by increasing the stay time. It can be seen that oxidation proceeds. Therefore, if a mechanical dry pump is incorporated as an evacuation means and the evacuation rate is adjusted so that the residence time of the introduced gas in the reaction vessel is kept at 0.3 sec or more, the oxidation reaction inside the reaction vessel effectively proceeds. Since unoxidized components such as CO in the exhaust gas can be reduced, it can be processed with a simple exhaust gas treatment device.
[0020]
<Example 2>
FIG. 4 is a cross-sectional view showing the basic configuration of the second embodiment of the ion exchange resin volume reduction treatment apparatus of the present invention. The configuration of the main body of this volume reduction processing apparatus is the same as the configuration already presented in Japanese Patent Application No. 9-37478, and is an aluminum reaction vessel 2A containing a processing dish 4 on which an ion exchange resin 3 is mounted. A domed quartz discharge vessel 1A having an internal space communicating with the reaction vessel 2A, a gas inlet 5A provided at the upper end of the reaction vessel 2A, and a high frequency induction wound around the discharge vessel 1A The main body is configured by the coil 8A, and further, a loading chamber 12 and a loading chamber 13 for loading or unloading the processing dish 4 on which the ion exchange resin 3 is mounted into the reaction vessel 2 are provided. A feature of the volume reduction processing apparatus of the present embodiment is that a mechanical dry pump 14 is provided in the exhaust pipe 7 as a decompression means for making the inside of the reaction vessel 2A into a decompressed oxygen-containing atmosphere.
[0021]
Therefore, in the volume reduction processing apparatus of the present embodiment, as in the case of the volume reduction processing apparatus of the first embodiment, even if the amount of introduced gas is large, the pressure in the reaction vessel 2A is reduced from atmospheric pressure to about 10 Pa. It is possible to set a wide range of decompression conditions up to. Therefore, if the treatment is performed while maintaining the pressure in the reaction vessel 2A at 80 Pa or less, the ion exchange resin is reduced in volume with high treatment efficiency, and the residence time of the introduced gas in the reaction vessel 2A is 0.3 sec or more. If adjusted so that the oxidation reaction proceeds effectively, unoxidized components such as CO in the exhaust gas are reduced, and processing can be performed with a simple exhaust gas processing apparatus.
[0022]
In the volume reduction processing apparatuses of the first and second embodiments described above, the exhaust pipe 7 is provided with the mechanical dry pump 14 as the pressure reducing means of the reaction vessel, but the upstream side of the mechanical dry pump 14 In addition, if a mechanical drive star pump is further installed, the exhaust capacity is increased, and the effective vacuum can be further increased.
[0023]
【The invention's effect】
As described above, according to the present invention, since the inside of the reaction vessel is maintained at a pressure of 80 Pa or less, the amount of active oxygen is increased, the efficiency of the volume reduction treatment is increased, and the volume reduction treatment can be performed at a high treatment speed. I can do it now. In addition, since the residence time of the gas introduced to maintain the reduced pressure oxygen-containing atmosphere inside the reaction vessel is maintained at 0.3 seconds or more, the oxidation in the reaction vessel effectively proceeds and is contained in the exhaust gas. since the concentration of CO or H 2 that is lower, and can be processed by the exhaust gas treatment apparatus which is simplified flue gas. In addition, when the pressure is reduced using a mechanical dry pump, the pressure in the reaction vessel can be set in a wide range of pressure reduction conditions from atmospheric pressure to about 10 Pa, and volume reduction processing can be performed at a high processing speed, and exhaust gas treatment can be performed. An ion exchange resin volume reduction treatment apparatus with a simplified apparatus is obtained.
[0024]
(2) Further, if the ion exchange resin is subjected to ashing and volume reduction treatment by the method according to claim 2, oxidation in the reaction vessel proceeds effectively, and CO and H 2 contained in the exhaust gas Since the concentration is low, the exhaust gas can be treated with a simplified exhaust gas treatment device.
(3) Since the ion exchange resin volume reduction treatment apparatus is configured as described in claim 3, the pressure in the reaction vessel is set to a wide range of decompression conditions from atmospheric pressure to about 10 Pa. Thus, it is possible to obtain an ion exchange resin volume reduction treatment apparatus that can perform volume reduction treatment at a high treatment speed as described in (1) above, and that simplifies the exhaust gas treatment apparatus as described in (2) above. It was.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a basic configuration of an ion exchange resin volume reduction processing apparatus used in a first embodiment of the present invention. FIG. 2 is a volume reduction using the ion exchange resin volume reduction processing apparatus of FIG. FIG. 3 is a characteristic diagram showing the pressure dependence of the processing speed when processing is performed. FIG. 3 is a graph showing CO concentration and CO in exhaust gas when volume reduction processing is performed using the ion-exchange resin volume reduction processing apparatus of FIG. sectional view showing a basic configuration of a second embodiment of a volume reduction treatment apparatus for ion-exchange resins of the characteristic diagram [4] the present invention showing the relationship between the ratio and the gas residence time of 2 concentration [5] conventional Sectional view showing an example of the configuration of an ion exchange resin volume reduction treatment apparatus [Explanation of symbols]
1, 1A Discharge vessel 2, 2A Reaction vessel 3 Ion exchange resin 4 Treatment dish 5, 5A Gas inlet 7 Exhaust piping 8, 8A High frequency induction coil 9 High frequency generator 11 Exhaust port 14 Mechanical dry pump

Claims (2)

放電容器の内部を減圧酸素含有雰囲気に保持し、放電容器に巻装した高周波誘導コイルに高周波電流を通電して、放電容器の内部に放電を生成、維持し、得られた活性酸素を、放電容器と連通して減圧酸素含有雰囲気に保持された反応容器の内部に備えられたイオン交換樹脂に接触作用させて、これを灰化減容処理するイオン交換樹脂の減容処理方法において、
反応容器の内部を80Pa以下の圧力に保持し、かつ減圧酸素含有雰囲気に保持するために導入されるガスの反応容器内部での滞在時間を0.3秒以上に保持して、灰化減容処理することを特徴とするイオン交換樹脂の減容処理方法。
The inside of the discharge vessel is maintained in a reduced-pressure oxygen-containing atmosphere, a high-frequency current is passed through a high-frequency induction coil wound around the discharge vessel to generate and maintain a discharge inside the discharge vessel, and the obtained active oxygen is discharged. In the volume reduction treatment method of the ion exchange resin in contact with the ion exchange resin provided in the inside of the reaction vessel that is communicated with the vessel and maintained in the reduced pressure oxygen-containing atmosphere, and ashing and volume-reducing it,
Ashing and volume reduction by maintaining the inside of the reaction vessel at a pressure of 80 Pa or less and maintaining the residence time of the gas introduced to maintain the reduced pressure oxygen-containing atmosphere at 0.3 seconds or more. A volume reduction treatment method for an ion exchange resin, characterized by comprising:
放電容器内部と反応容器内部の減圧を、メカニカルドライポンプにより行うことを特徴とする請求項1記載のイオン交換樹脂の減容処理方法。2. The method for reducing the volume of an ion exchange resin according to claim 1, wherein the pressure inside the discharge vessel and the inside of the reaction vessel is reduced by a mechanical dry pump.
JP05259598A 1998-03-05 1998-03-05 Volume reduction treatment method for ion exchange resin Expired - Fee Related JP3733733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05259598A JP3733733B2 (en) 1998-03-05 1998-03-05 Volume reduction treatment method for ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05259598A JP3733733B2 (en) 1998-03-05 1998-03-05 Volume reduction treatment method for ion exchange resin

Publications (2)

Publication Number Publication Date
JPH11244816A JPH11244816A (en) 1999-09-14
JP3733733B2 true JP3733733B2 (en) 2006-01-11

Family

ID=12919149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05259598A Expired - Fee Related JP3733733B2 (en) 1998-03-05 1998-03-05 Volume reduction treatment method for ion exchange resin

Country Status (1)

Country Link
JP (1) JP3733733B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101183619B1 (en) * 2010-01-22 2012-09-17 씨앤지하이테크 주식회사 Active decomposing apparatus of organic wastes

Also Published As

Publication number Publication date
JPH11244816A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
KR0159179B1 (en) Method of cleaning hydrogen plasma downstream apparatus and method of making a semiconductor device using such apparatus
CN110049614B (en) Microwave plasma device and plasma excitation method
US6261525B1 (en) Process gas decomposition reactor
WO2004093175A1 (en) Hydrogen plasma downflow processing method and hydrogen plasma downflow processing apparatus
JPH0216731A (en) Plasma reactor
TWI305375B (en)
JP3733733B2 (en) Volume reduction treatment method for ion exchange resin
KR101275870B1 (en) Wafer processing system having plasma generator for cleaning exhaust gas
JP2005142234A (en) Processor and method
JP2000310697A (en) Processing device and method for solid waste
JP3845933B2 (en) Volume reduction processing method and apparatus for ion exchange resin
JP2001168076A (en) Method for treating surface
JPS61135126A (en) Equipment of plasma treatment
JPH0729889A (en) Microwave plasma treatment processing equipment
CN111477537A (en) Wafer cleaning method and wafer cleaning equipment
JPS6327022A (en) Microwave plasma treater
JPS587337B2 (en) Oxide reduction method
JP3852645B2 (en) Ion exchange resin volume reduction processing apparatus and processing method
JPS6070730A (en) Plasma processor
JP3123203B2 (en) Plasma device and method of using the device
JPS611024A (en) Manufacturing apparatus of semiconductor circuit
JP3994608B2 (en) Plasma processing equipment
KR20050100370A (en) Member of apparatus for plasma treatment, member of treating apparatus, apparatus for plasma treatment, treating apparatus and method of plasma treatment
JPH07300395A (en) Method for reducing amount of hydrogen adsorbed to diamond surface
KR20080083289A (en) Substrate treatment method and substrate treatment apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees