JP3733617B2 - Fracture method of brittle material plate - Google Patents

Fracture method of brittle material plate Download PDF

Info

Publication number
JP3733617B2
JP3733617B2 JP20063395A JP20063395A JP3733617B2 JP 3733617 B2 JP3733617 B2 JP 3733617B2 JP 20063395 A JP20063395 A JP 20063395A JP 20063395 A JP20063395 A JP 20063395A JP 3733617 B2 JP3733617 B2 JP 3733617B2
Authority
JP
Japan
Prior art keywords
corner
heating
tip
brittle material
cut line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20063395A
Other languages
Japanese (ja)
Other versions
JPH0948627A (en
Inventor
勉 澤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP20063395A priority Critical patent/JP3733617B2/en
Publication of JPH0948627A publication Critical patent/JPH0948627A/en
Application granted granted Critical
Publication of JP3733617B2 publication Critical patent/JP3733617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/04Cutting or splitting in curves, especially for making spectacle lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は脆性材料を破断する方法、特にガラス板を曲線状の切り筋に沿って破断する方法に関する。
【0002】
【従来の技術】
ガラス板を曲線形状に破断させるためには、超硬ホイール等の冶具を用いてガラスに曲線の切り筋を与え、その切り筋に応力を与えることで破断にいたらしめる方法がとられる。この応力は、手または機械でガラスを曲げることにより発生させるか、あるいはフレーム(燃焼炎)またはレーザでガラスを加熱することで熱的に発生させるかのいずれかであった。特に後者は、ガラスの破断を自動で行うのに好適な手法で、広くガラスの曲線切断に用いられてきた。
【0003】
【発明が解決しようとする課題】
このガラスをフレームまたはレーザで加熱してガラスを破断させる方法は、加熱点からある距離離れた領域では円周方向に引っ張り応力が働くことを応用したもので、切り筋に垂直方向にその引っ張り応力の分力を与えることで、ガラスが切り筋どおりに引き裂かれて破断にいたる。
【0004】
図6および図7に示すように、この破断方法を用いて角部20を有する曲線形状の切り筋23にそって脆性材料板を破断させた場合、角部20を挟む2辺24、25のうちの一方の辺24の延長線26上に加熱点Dを置いたときは、その辺24の切り筋は的確に破断されるが、他方の切り筋25は破断されないという問題が生じる。これを防ぐためには、各辺に均等に応力をかけることが必要であり、通常その角部20につながる2辺24,25が挟む角度の2等分線上、またはその近傍に加熱点Cを置く方法が採用されている。
【0005】
この方法では、厚みが3mmまたはそれ以下の薄板で切り筋角部の曲率が、曲率半径で表して30mm(以後、曲率を、例えばR30のように、Rの後に曲率半径をmmで表した数値を付けて表示することがある)またはそれよりも大きい曲率半径の場合、または厚みが5mm程度で角部の曲率がR100またはそれよりも大きい曲率半径の場合は、カケ、ハマ等の発生がなく切り筋どおりの破断が行われるが、厚みが3mmまたはそれ以下の薄板で角部の曲率がR10程度の場合、または厚みが5mm程度で角部の曲率がR30またはそれよりも小さい曲率半径以上になると、カケ等が発生したり切り筋どおりに破断が行われないという問題点が発生していた。
【0006】
本発明は、上記の問題点を解決して小さな曲率半径の角部を有する切り筋を入れられたガラス板のような脆性材料板を、その切り筋にそってカケ等の発生なしに切り筋どおり破断することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、角部を有する切り筋を入れた脆性材料板をその切り筋に沿って破断する方法において、該切り筋の角部先端に、前記角部を構成する角度の2等分線に垂直であって角部先端を通る線上で、かつ角部先端から所定距離離れた脆性材料板部分を最初に加熱することにより、初期亀裂を発生させ、ついで該角部先端以外の切り筋に、前記角部を構成する角の2等分線上でかつ角部先端から角部の外側に所定距離離れた脆性材料板部分を、前記最初の加熱についで加熱することにより、その亀裂を進展させるか、または独立の亀裂を発生させることを特徴とする脆性材料板の破断方法である。
【0008】
本発明をガラス板を例として以下図面により説明する。
図1〜図3は、ほぼ三角形の形状の閉曲線の切り筋1を入れた長方形のガラス板2から、ほぼ三角形の形状のガラス板を切り筋1に沿って破断させる方法を示している。切り筋1に沿ってほぼ三角形のガラス板3を切り出す際に、角部4を構成する角度(角部を挟む2辺の延長線がなす角度)の2等分線5に垂直であって角部4の先端を通る線6上で、かつ角部先端から所定距離離れたガラス板部分7に第一の加熱点Aを設ける。そして前記角部を構成する角度の2等分線5の上で、かつ角部先端から角部4の外側に所定距離離れたガラス板部分8に、第二の加熱点Bを設ける。そして、ガラス板の破断は、第一の加熱点を最初に加熱することにより角部先端に初期亀裂を発生させ、ついで第二の加熱点を加熱することにより、該先端部以外の切り筋にその亀裂を進展させるかまたは独立の亀裂を発生させる。
【0009】
ここで、切り筋に対する亀裂発生のための加熱について説明する。
都市ガスのような気体燃料に、空気または酸素を予め混合した気体流を燃焼させてできた予混合フレーム(例;熱量3000cal/hr、フレーム直径約20mm)を、フレーム先端がガラス表面に接触する状態で、ガラス板の表面上の1点を垂直方向から加熱した場合、ガラス板表面の温度分布、すなわち加熱点からのガラス板表面の半径方向の距離(mm)における温度(℃)を測定すると、図4に示すように加熱点を点対称として概ね正規分布に近い分布形状を示す。図中の数字1〜5は、加熱開始からの時間1〜5秒の経過毎のそれぞれの温度分布を表している。この分布の広がりはフレームの大きさ、形状で変わる。加熱源としてフレームではなくレーザを用いた場合は、ガラス表面に接触する位置でのレーザ光束の直径を、例えば0.1〜0.5mm程度に小さくして加熱面積を小さくすることができるので、中心温度が高く広がりの少ないシャープな温度分布となる。
【0010】
この加熱によるガラス表面に発生する熱応力を、加熱点を中心として測った距離の位置における、半径方向およびそれに垂直な方向(以後、円周接線方向という)の平面熱応力成分に分解すると、半径方向の応力は全て圧縮応力であり、加熱点の近くで最も大きな圧縮応力が働き、加熱点から遠ざかるに従って次第に圧縮応力が小さくなるのに対して、円周接線方向の応力は加熱点の近くで最も大きな圧縮応力が働き、加熱点からある程度遠ざかるまでは次第に圧縮応力が減少してそれ以降は引張応力になり、ある位置で最大引っ張り応力値を示しその後徐々に小さくなることが観察される。
【0011】
加熱点からのガラス板表面の半径方向の距離(mm)における、円周接線方向の応力値(kg/mm2) の分布を図5に示す。図中の数字1〜5は図4に対応して、加熱開始からの時間1〜5秒の経過毎のそれぞれの応力分布を表している。この図から、加熱点を中心にして17〜18mmの半径までは円周接線方向に圧縮応力が、それ以上は引張応力が働き半径40〜60mmところで最大引張応力値を示し、それ以降はなだらかに減少する。加熱面積がより小さく、ガラス表面単位面積に毎秒与えられる熱量がより大きく、または加熱温度がより高くなって、図4に示す温度分布がよりシャープになると、図5における圧縮応力から引張応力に変化する位置および引張応力の最大位置はともに更に加熱点に近づき、例えば最大引張応力値を示す半径方向距離は短くなって例えば20〜30mmになり、図5の引張応力最大点近傍の円周接線方向応力分布はシャープになる。従って、切り筋部分の延長線上であって切り筋部分から少なくとも30mm以上、好ましくは40〜60mのガラス表面位置を1〜5秒間加熱することにより、切り筋部分の垂直方向に大きな引っ張り応力が働いて、そこにガラス板厚み方向に向かって亀裂が発生して、ガラス板の切り筋とは反対の表面に達することになる。
【0012】
本発明において、図1〜3に示すように、第一の加熱点A、すなわち切り筋の角部4を構成する角度の2等分線に垂直であって、角部先端を通る線6上でかつ角部先端から所定距離、例えば少なくとも30mm以上、好ましくは40〜60mm離れたガラス板部分7を最初に加熱することにより、角部先端に初期亀裂を発生させる。加熱は、例えばガラス板の第一の加熱点Aに配置したサイドバーナー9から発する予混合フレーム10(熱量1000cal/hr)を、1〜5秒間燃焼することにより行われる。これによって、角部先端の切り筋垂直方向に引っ張り応力を働かせて、角部先端の切り筋から板厚み方向に向かって、初期亀裂が発生してガラス板下面に達する。
【0013】
次にガラス板の第二の加熱点B、すなわち前記角部4を構成する角の2等分線5上でかつ角部先端から角部の外側に所定距離、例えば少なくとも30mm以上、好ましくは40〜60mm離れたガラス板部分8を加熱する。加熱は、例えばガラス板の第二の加熱点に配置したメインバーナー11から発する予混合フレーム12(熱量3000cal/hr)を、1〜5秒間燃焼することにより行われる。この第二の加熱点の加熱により、先の第一の加熱点の加熱により発生した初期亀裂は、角部を挟む2辺の切り筋の方に向かって進展する。第二の加熱点の加熱による最大引っ張り応力発生位置が角部先端よりもやや内側に離れているときは、初期亀裂とは離れた2辺の切り筋に独立の亀裂を発生することもあるが、その亀裂は上記初期亀裂に連絡するようになり、いずれにしてもカケ、ハマ等の発生がなく切り筋どおりの破断が行われる。第一の加熱点の加熱開始から1秒経過すれば、初期亀裂はすでに発生しているので、第二の加熱点の加熱は第一の加熱点の加熱開始から少なくとも1秒経過しておれば開始してよい。
【0014】
第二の加熱点に設けるメインバーナー11の発生熱量は、1000〜10000cal/hrが必要である。第一の加熱点に設けるサイドバーナー9は角部のみを局所的に加熱すればよいので、その発生熱量はメインバーナーのそれよりも小さくてもよく、300〜10000cal/hrの範囲が好ましい。サイドバーナーは上述のように2等分線の片側に設けてもよいが、2等分線の両側に設けてもよい。またメインバーナーとサイドバーナーを個別に設けてもよいが、ただ一つのバーナーを使用して、上記サイドバーナーの位置で加熱した後、燃焼を続けながらまたは燃焼を中断して、直ちにメインバーナーの位置にバーナーまたはガラス板を移動させて加熱させてもよい。
【0015】
もしサイドバーナーを用いずに、メインバーナーによるフレーム加熱だけでは次のように不都合を生じる。図6、図7を用いて、亀裂の発生現象を説明する。曲線状の切り筋の角部20の2等分線上の点Cに、メインバーナー21によるフレーム22の加熱点を置くと、加熱点から3cm以上離れた領域に存在する切り筋部分24,25に亀裂が発生する。しかし角部20の先端については、その切り筋部分は加熱点からみて円周接線方向に伸びており、切り筋と垂直方向に常に圧縮力が働いているため亀裂は発生せず、そのため角部先端が破断されないまま残り、後で機械的に外力を加えると切り筋から外れて破断されて、カケ、ハマ等の欠点を生じることになる。この現象は角部の曲率半径が小さくなるほど、また板厚が厚いほど顕著に現れる。また、この現象は加熱点を2等分線上から離しておいても同様で、極端な場合、一辺24の延長線26上に加熱点Dを置いた場合はその一辺24のみは亀裂が発生するが、他辺25は全く亀裂が発生せず、角部先端の切り筋にも亀裂は発生しないことになる。
【0016】
本発明は一時的に脆性材料板に局所的に温度差を生じさせて、熱応力を発生させるものであるから、本発明で用いる加熱手段としてはガスバーナー、レーザ加熱装置など、脆性材料を急激かつ局所的に加熱することができるものが適しており、熱風加熱のような徐々にかつ広範囲に加熱するものは不適当である。
【0017】
本発明は2〜20mm厚みのガラス板、セラミック板その他の脆性材料の板に適用することができ、厚みが3mmまたはそれ未満の板については、切り筋の角部が1〜20mmの曲率半径を有する脆性材料板、厚みが5mmまたはそれ以上の板については、切り筋の角部が2〜80mmの曲率半径を有する脆性材料板に適用して大きな効果が得られる。
【0018】
また本発明は、破断すべき脆性材料板の角部を挟む2辺の間の角度が、120度以下にあるときに著しい効果が得られる。この角度が120度を越えるときには、従来の方法でもカケの発生なく切り筋どおりに破断が行われる。
【0019】
以上は、切り筋の角部先端に初期亀裂を発生させる手段および該先端部以外の切り筋にその亀裂を進展させるか、または独立の亀裂を発生させる手段としてともに加熱手段を使用する場合について説明したが、それ以外に加熱に代えて例えばドライアイスなどの冷却手段を用いて、脆性材料板内部に引っ張り応力を発生させてもよい。ただし冷却位置は加熱の場合と異なるのは言うまでもない。
【0020】
【発明の実施の形態】
以下、本発明の実施例を図面を用いて説明する。
【0021】
図1〜3に示すように、厚みがそれぞれ5mmと3mmの50cm×80cmのソーダ石灰珪酸塩ガラス組成のフロートガラス板2に、それぞれ三角形に近い形のガラス板を切断すべく2種の形状(角部の曲率半径が30mmと5mm)の閉曲線の切り筋1を入れた後、この曲線に沿ってガラス板を破断してほぼ三角形のガラス板3を得る。2種の形状の閉曲線とも、辺13と辺14の間の角部15、および辺14と辺16の間の角部17は曲率半径が100mmよりも大きい。辺16と辺13の間の角部4は、30mmと5mmの曲率半径を有している。そして辺16と辺13の間の角度はともに50度であり、この角部4の破断が問題となる。サイドバーナーとメインバーナーを用いる本発明による破断方法と、従来法のメインバーナーのみによる破断方法を適用して破断不良を比較した。破断不良は角部にカケやハマが発生したり、切り筋どおりに破断されない場合とした。
【0022】
切り筋については、直径5mmの超硬質のホイールを有するホイールカッタを用いて荷重8kgで与えた。また、サイドフレーム10 (熱量1000cal/hr、フレーム直径8mm)で、角部頂点から50mmの距離の位置にある加熱点Aを加熱開始後、2秒後にメインフレーム12(熱量3000cal/hr、フレーム直径20mm)で、角部頂点から50mmの距離の位置にある加熱点Bの加熱を開始し約3秒加熱した。なお、比較のためサイドバーナーを点火しないで、上記と同様に行った試験を比較例とした。
実施例、比較例とも、4種の試料についてそれぞれ200枚ずつ破断試験を行い、200枚の内、破断不良の生じない枚数の割合である良品率を表1に示す。表1から、厚みが厚く曲率半径が小さくなるほど本発明の効果は大きいことがわかる。
【0023】
【表1】
===============================
厚み 曲率 実施例 比較例
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3mm R30 100% 99.5%
3mm R5 99.5% 82%
5mm R30 100% 92%
5mm R5 99.5% 63%
===============================
【0024】
【発明の効果】
曲線角部の先端部にサイドフレームを用いて初期亀裂を発生させることで、従来法では亀裂の発生が困難であった先端部の破断が容易になり、カケ等のない切り筋通りの破断が可能になった。
【図面の簡単な説明】
【図1】本発明の一実施例であるサイドバーナーとメインバーナーを用いた破断方法を示す平面図。
【図2】図1の部分拡大図。
【図3】図2の斜視図。
【図4】フレームでガラス表面を加熱した場合のガラス表面の温度分布を示すグラフ。
【図5】図4の温度分布により生じたガラス表面上の円周方向の応力分布を示すグラフ。
【図6】従来法におけるメインバーナーのみを用いた破断方法を示す平面図。
【図7】図6の斜視図。
【符号の説明】
1 切り筋
2 脆性材料板
4 切り筋の角部
A 第一の加熱点
B 第二の加熱点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for breaking a brittle material, and more particularly to a method for breaking a glass plate along a curved cut line.
[0002]
[Prior art]
To break the glass plate in a curved shape, giving the cut muscle curve glass withtool such as carbide wheel, the method occupied lead to fracture by giving stress to the cut muscle is taken. This stress was either generated by bending the glass by hand or machine, or generated thermally by heating the glass with a flame (combustion flame) or laser. In particular, the latter is a method suitable for automatically performing glass breakage, and has been widely used for curving glass.
[0003]
[Problems to be solved by the invention]
This method of breaking glass by heating it with a frame or laser applies the fact that tensile stress acts in the circumferential direction in a region away from the heating point, and the tensile stress is perpendicular to the cut line. By applying the component force of, the glass is torn according to the score and breaks.
[0004]
As shown in FIGS. 6 and 7, when the brittle material plate is broken along the curved cut line 23 having the corner portion 20 by using this breaking method, the two sides 24 and 25 sandwiching the corner portion 20 When the heating point D is placed on the extension line 26 of one of the sides 24, the cut line on the side 24 is accurately broken, but the other cut line 25 is not broken. In order to prevent this, it is necessary to apply stress evenly to each side, and the heating point C is usually placed on or near the bisector of the angle between the two sides 24 and 25 connected to the corner 20. The method is adopted.
[0005]
In this method, the curvature of the cut corner portion is expressed as a curvature radius of 30 mm with a thin plate having a thickness of 3 mm or less (hereinafter, a numerical value in which the curvature radius is expressed in mm after R, such as R30, for example). When the radius of curvature is larger than that, or when the thickness is about 5 mm and the curvature of the corner is R100 or larger than that, there will be no occurrence of cracks, hooks, etc. Breaking is performed according to the scissors, but when the thickness is about 3 mm or less and the corner curvature is about R10, or the thickness is about 5 mm and the corner curvature is greater than or equal to R30 or a smaller radius of curvature. Then, the problem that a crack etc. generate | occur | produced or a fracture | rupture was not performed according to the cut line had generate | occur | produced.
[0006]
The present invention solves the above-described problems and allows a brittle material plate such as a glass plate having a cut corner having a small radius of curvature to be cut along the cut line without causing cracks or the like. The purpose is to break as usual.
[0007]
[Means for Solving the Problems]
The present invention relates to a method of breaking a brittle material plate having a cut line having a corner along the cut line, and at a corner end of the cut line, a bisector of an angle constituting the corner part. in line through a by corner tip vertical, and by heating the predetermined distance away brittle material plate portion from the Kakubu tip first, to generate initial crack, then the cut muscle other than the angle tip, Whether the crack is developed by heating the brittle material plate portion on the bisector of the corner constituting the corner and spaced apart from the corner tip by a predetermined distance to the outside of the corner, following the initial heating. Or a method of breaking a brittle material plate, characterized by generating an independent crack.
[0008]
The present invention will be described below with reference to the drawings by taking a glass plate as an example.
1 to 3 show a method in which a substantially triangular glass plate is broken along the cut line 1 from a rectangular glass plate 2 with a cut line 1 having a substantially triangular closed curve. When cutting a substantially triangular glass plate 3 along the cut line 1, the angle is perpendicular to the bisector 5 of the angle forming the corner 4 (the angle formed by the extension lines of the two sides sandwiching the corner). A first heating point A is provided on a glass plate portion 7 on a line 6 passing through the tip of the portion 4 and a predetermined distance away from the tip of the corner. Then, a second heating point B is provided on the glass plate portion 8 on the bisector 5 of the angle constituting the corner and a predetermined distance away from the corner tip to the outside of the corner 4. Then, the glass plate breaks by first heating the first heating point to generate an initial crack at the corner tip, and then heating the second heating point to the cutting line other than the tip. The crack propagates or an independent crack is generated.
[0009]
Here, heating for generating cracks in the cut lines will be described.
A premixed frame (eg, calorie 3000 cal / hr, frame diameter of about 20 mm) made by burning a gas flow in which air or oxygen is premixed in a gaseous fuel such as city gas, the frame tip contacts the glass surface. In the state, when one point on the surface of the glass plate is heated from the vertical direction, the temperature distribution on the glass plate surface, that is, the temperature (° C.) at the radial distance (mm) of the glass plate surface from the heating point is measured. As shown in FIG. 4, the distribution shape is almost a normal distribution with the heating point being point-symmetric. Numbers 1 to 5 in the figure represent respective temperature distributions for every 1 to 5 seconds elapsed from the start of heating. The spread of this distribution varies depending on the size and shape of the frame. When using a laser instead of a frame as a heating source, the heating area can be reduced by reducing the diameter of the laser beam at a position in contact with the glass surface to about 0.1 to 0.5 mm, for example. Sharp temperature distribution with high center temperature and little spread.
[0010]
When the thermal stress generated on the glass surface by this heating is decomposed into plane thermal stress components in the radial direction and the direction perpendicular to the radial direction (hereinafter referred to as the circumferential tangential direction) at a distance measured with the heating point as the center, All the stresses in the direction are compressive stresses, and the greatest compressive stress works near the heating point, and the compressive stress gradually decreases as the distance from the heating point increases, whereas the circumferential tangential stress is near the heating point. It is observed that the maximum compressive stress works, the compressive stress gradually decreases until a certain distance from the heating point, and thereafter becomes tensile stress, shows the maximum tensile stress value at a certain position, and then gradually decreases.
[0011]
FIG. 5 shows the distribution of the stress value (kg / mm 2 ) in the circumferential tangent direction at the radial distance (mm) of the glass plate surface from the heating point. Numbers 1 to 5 in the figure correspond to FIG. 4 and represent respective stress distributions for each elapse of 1 to 5 seconds from the start of heating. From this figure, compressive stress is applied in the circumferential tangential direction up to a radius of 17 to 18 mm with the heating point as the center, and tensile stress is applied beyond that, showing a maximum tensile stress value at a radius of 40 to 60 mm, and thereafter gently Decrease. When the heating area is smaller, the amount of heat given to the glass surface unit area per second is larger, or the heating temperature is higher and the temperature distribution shown in FIG. 4 becomes sharper, the compressive stress in FIG. 5 changes to the tensile stress. 5 and the maximum position of the tensile stress are further closer to the heating point, for example, the radial distance indicating the maximum tensile stress value is shortened to, for example, 20 to 30 mm, and the circumferential tangential direction in the vicinity of the maximum tensile stress point in FIG. The stress distribution becomes sharp. Therefore, a large tensile stress acts in the vertical direction of the cut line portion by heating the glass surface position on the extension line of the cut line portion at least 30 mm or more, preferably 40 to 60 m from the cut line portion for 1 to 5 seconds. As a result, cracks occur in the thickness direction of the glass plate and reach the surface opposite to the cut line of the glass plate.
[0012]
In the present invention, as shown in FIGS. 1 to 3, the first heating point A, that is, perpendicular to the bisector of the angle forming the corner 4 of the scoring line, on the line 6 passing through the tip of the corner In addition, initial cracks are generated at the corner tips by first heating the glass plate portion 7 at a predetermined distance from the corner tips, for example, at least 30 mm or more, preferably 40-60 mm away. Heating is performed, for example, by burning a premixing frame 10 (heat quantity 1000 cal / hr) emitted from a side burner 9 disposed at the first heating point A of the glass plate for 1 to 5 seconds. As a result, tensile stress is applied in the direction perpendicular to the cut line at the corner tip, and an initial crack is generated from the cut line at the corner tip toward the plate thickness direction to reach the lower surface of the glass plate.
[0013]
Next, on the second heating point B of the glass plate, that is, the bisector 5 of the corner constituting the corner 4 and a predetermined distance from the tip of the corner to the outside of the corner, for example, at least 30 mm or more, preferably 40 The glass plate part 8 separated by -60 mm is heated. Heating is performed, for example, by burning a premixing frame 12 (heat quantity 3000 cal / hr) emitted from the main burner 11 arranged at the second heating point of the glass plate for 1 to 5 seconds. By the heating at the second heating point, the initial crack generated by the heating at the first heating point progresses toward the cut lines on the two sides sandwiching the corner. When the maximum tensile stress generation position due to heating at the second heating point is slightly inward from the tip of the corner, an independent crack may be generated at the cut line on the two sides apart from the initial crack. The crack comes into contact with the initial crack, and in any case, there is no occurrence of cracks, sag, etc., and the fracture according to the cut line is performed. If 1 second has elapsed from the start of heating at the first heating point, the initial crack has already occurred, so the heating at the second heating point should be at least 1 second from the start of heating at the first heating point. You may start.
[0014]
The generated heat amount of the main burner 11 provided at the second heating point needs to be 1000 to 10000 cal / hr. Since the side burner 9 provided at the first heating point only needs to locally heat only the corners, the amount of generated heat may be smaller than that of the main burner, and is preferably in the range of 300 to 10,000 cal / hr. The side burner may be provided on one side of the bisector as described above, but may be provided on both sides of the bisector. The main burner and the side burner may be provided separately, but after heating at the position of the above side burner using only one burner, the position of the main burner is immediately maintained while continuing the combustion or interrupting the combustion. The burner or the glass plate may be moved and heated.
[0015]
If the side burner is not used and the flame is heated only by the main burner, the following inconvenience occurs. The crack generation phenomenon will be described with reference to FIGS. When the heating point of the frame 22 by the main burner 21 is placed at a point C on the bisector of the corner 20 of the curved cut line, the cut line portions 24 and 25 existing in a region 3 cm or more away from the heating point are formed. Cracks occur. However, with respect to the tip of the corner 20, the cut line portion extends in the circumferential tangential direction as viewed from the heating point, and since a compressive force is always acting in the direction perpendicular to the cut line, no cracks are generated. The tip remains unbroken, and when an external force is mechanically applied later, it breaks away from the cut line, resulting in defects such as cracks and hooks. This phenomenon becomes more prominent as the radius of curvature of the corner becomes smaller and the plate thickness increases. This phenomenon is the same even when the heating point is separated from the bisector. In an extreme case, when the heating point D is placed on the extended line 26 of the side 24, only one side 24 cracks. However, no cracks occur on the other side 25, and no cracks occur on the cut lines at the corner tips.
[0016]
Since the present invention temporarily generates a temperature difference in the brittle material plate to generate thermal stress, the heating means used in the present invention is a rapid heating of the brittle material such as a gas burner or a laser heating device. Those that can be heated locally are suitable, and those that heat gradually and over a wide range, such as hot air heating, are inappropriate.
[0017]
The present invention can be applied to a glass plate having a thickness of 2 to 20 mm, a ceramic plate or other plate of a brittle material. For a plate having a thickness of 3 mm or less, the corner of the cut line has a curvature radius of 1 to 20 mm. When the brittle material plate having a thickness of 5 mm or more is applied to the brittle material plate having a curvature radius of 2 to 80 mm at the corner of the cut line, a great effect can be obtained.
[0018]
In addition, the present invention has a remarkable effect when the angle between two sides sandwiching the corner of the brittle material plate to be broken is 120 degrees or less. When this angle exceeds 120 degrees, the conventional method can be ruptured according to the cut line without the occurrence of chipping.
[0019]
The above describes the case where the heating means is used as a means for generating an initial crack at the corner tip of the cut line and a means for causing the crack to propagate to a cut line other than the tip part or as a means for generating an independent crack. However, a tensile stress may be generated inside the brittle material plate by using a cooling means such as dry ice instead of heating. However, it goes without saying that the cooling position is different from that in the case of heating.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0021]
As shown in FIGS. 1 to 3, the float glass plate 2 having a soda-lime silicate glass composition having a thickness of 5 mm and 3 mm, each having a thickness of 5 mm and 3 mm, has two types of shapes ( After inserting a cut line 1 having a closed curve having corner radii of curvature of 30 mm and 5 mm, the glass plate is broken along this curve to obtain a substantially triangular glass plate 3. In both types of closed curves, the corner 15 between the side 13 and the side 14 and the corner 17 between the side 14 and the side 16 have a radius of curvature larger than 100 mm. The corner 4 between the side 16 and the side 13 has a radius of curvature of 30 mm and 5 mm. The angles between the side 16 and the side 13 are both 50 degrees, and the breakage of the corner 4 becomes a problem. The fracture failure was compared by applying the fracture method according to the present invention using a side burner and a main burner and the fracture method using only a conventional main burner. The failure to break was defined as a case in which cracks or hooks were generated at the corners, or the breakage did not follow the cut lines.
[0022]
The incisor was given with a load of 8 kg using a wheel cutter having a super-hard wheel having a diameter of 5 mm. Also, with the side frame 10 (heat quantity 1000 cal / hr, frame diameter 8 mm), the heating point A located at a distance of 50 mm from the apex of the corner started to be heated, and 2 seconds later the main frame 12 (heat quantity 3000 cal / hr, frame diameter 20 mm), heating of the heating point B located at a distance of 50 mm from the corner apex was started and heated for about 3 seconds. For comparison, a test performed in the same manner as described above without igniting the side burner was used as a comparative example.
In both the examples and comparative examples, 200 pieces of rupture tests were performed for each of the four types of samples, and the non-defective product ratio, which is the ratio of the 200 sheets that do not cause breakage failure, is shown in Table 1. From Table 1, it can be seen that the greater the thickness and the smaller the radius of curvature, the greater the effect of the present invention.
[0023]
[Table 1]
==============================
Thickness Curvature Example Comparative Example ------------------------------
3mm R30 100% 99.5%
3mm R5 99.5% 82%
5mm R30 100% 92%
5mm R5 99.5% 63%
==============================
[0024]
【The invention's effect】
By generating an initial crack using a side frame at the tip of the curved corner, it becomes easy to break the tip, which was difficult to crack by the conventional method, and it is possible to break along the scoring line without cracks etc. It became possible.
[Brief description of the drawings]
FIG. 1 is a plan view showing a breaking method using a side burner and a main burner according to an embodiment of the present invention.
FIG. 2 is a partially enlarged view of FIG.
FIG. 3 is a perspective view of FIG. 2;
FIG. 4 is a graph showing the temperature distribution on the glass surface when the glass surface is heated with a frame.
FIG. 5 is a graph showing a stress distribution in the circumferential direction on the glass surface generated by the temperature distribution of FIG. 4;
FIG. 6 is a plan view showing a breaking method using only a main burner in a conventional method.
7 is a perspective view of FIG. 6. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cut line 2 Brittle material board 4 Corner part A of cut line 1st heating point B 2nd heating point

Claims (1)

角部を有する切り筋を入れた脆性材料板をその切り筋に沿って破断する方法において、
該切り筋の角部先端に、前記角部を構成する角度の2等分線に垂直であって角部先端を通る線上でかつ角部先端から所定距離離れた脆性材料板部分を最初に加熱することにより、初期亀裂を発生させ、
ついで該角部先端以外の切り筋に、前記角部を構成する角度の2等分線上でかつ角部先端から角部の外側に所定距離離れた脆性材料板部分を前記最初の加熱についで加熱することにより、前記初期亀裂を進展させるかまたは独立の亀裂を発生させることを特徴とする脆性材料板の破断方法。
In a method of breaking a brittle material plate containing a cut line having a corner along the cut line,
The corner tip of該切Ri muscle, a predetermined distance away brittle material plate portion from the line a and Kakubu tip through a by corner tip perpendicular to the bisector of the angle that constitutes the front Symbol corners first By heating, initial cracks are generated,
Then the cut muscle other than the angle tip, followed heated brittle material plate portion a predetermined distance away on the outside of the corner portion from a and Kakubu tip bisector of the angle forming the corner in the first heating A method for breaking a brittle material plate, wherein the initial crack is propagated or an independent crack is generated.
JP20063395A 1995-08-07 1995-08-07 Fracture method of brittle material plate Expired - Fee Related JP3733617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20063395A JP3733617B2 (en) 1995-08-07 1995-08-07 Fracture method of brittle material plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20063395A JP3733617B2 (en) 1995-08-07 1995-08-07 Fracture method of brittle material plate

Publications (2)

Publication Number Publication Date
JPH0948627A JPH0948627A (en) 1997-02-18
JP3733617B2 true JP3733617B2 (en) 2006-01-11

Family

ID=16427636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20063395A Expired - Fee Related JP3733617B2 (en) 1995-08-07 1995-08-07 Fracture method of brittle material plate

Country Status (1)

Country Link
JP (1) JP3733617B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4203177B2 (en) * 1999-03-18 2008-12-24 株式会社ベルデックス Scribing method and apparatus

Also Published As

Publication number Publication date
JPH0948627A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
JP3923526B2 (en) Method and apparatus for breaking fragile materials
JP5897138B2 (en) Method for cutting thin glass with specially formed edges
JP5612289B2 (en) Laser division method of glass sheet
AU2004294430B2 (en) Method and device for cutting plate glass
TW464578B (en) Control of median crack depth in laser scoring
WO2011026074A1 (en) Methods for laser scribing and breaking thin glass
EP3107868A1 (en) Methods and apparatus for cutting radii in flexible thin glass
WO2004067243B1 (en) Substrate dividing apparatus and method for dividing substrate
JP3733617B2 (en) Fracture method of brittle material plate
JPH02296745A (en) Method for tearing plate of fragile material
US20180093913A1 (en) Methods and apparatuses for removing edges of a glass ribbon
CN114728832A (en) Glass plate processing method and glass plate
EP1380550B1 (en) Tempered glass sheet having a central zone of higher compressive stress, process and apparatus therefor
JP4831003B2 (en) Repairing surface scratches on the surface of glass substrates by laser irradiation
Abramov et al. Laser separation of chemically strengthened glass
US3795572A (en) Method of cutting glass and article made thereby
US20010042798A1 (en) Refractory burner nozzle with stress relief slits
JPH06102480A (en) Scribing device
TWI625211B (en) Method for forming inclined cracks in brittle material substrate and method for breaking brittle material substrate
CN100467939C (en) Reflector and light source apparatus having reflector
JP3685554B2 (en) Original mixed surface flame type burner
JP2005194137A (en) Glass substrate
JPH01275440A (en) Method for cutting glass plate
JPH06219761A (en) Method of cutting glass tube
JPH09118535A (en) Method for cutting brittle material plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

LAPS Cancellation because of no payment of annual fees