JP3732427B2 - Improvement method of ground reinforcement in underground cavity - Google Patents

Improvement method of ground reinforcement in underground cavity Download PDF

Info

Publication number
JP3732427B2
JP3732427B2 JP2001258566A JP2001258566A JP3732427B2 JP 3732427 B2 JP3732427 B2 JP 3732427B2 JP 2001258566 A JP2001258566 A JP 2001258566A JP 2001258566 A JP2001258566 A JP 2001258566A JP 3732427 B2 JP3732427 B2 JP 3732427B2
Authority
JP
Japan
Prior art keywords
repair material
ground
underground
cavity
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001258566A
Other languages
Japanese (ja)
Other versions
JP2003064656A (en
Inventor
伸一 渡邊
孝信 鈴木
Original Assignee
秋葉建設工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 秋葉建設工業株式会社 filed Critical 秋葉建設工業株式会社
Priority to JP2001258566A priority Critical patent/JP3732427B2/en
Publication of JP2003064656A publication Critical patent/JP2003064656A/en
Application granted granted Critical
Publication of JP3732427B2 publication Critical patent/JP3732427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Sewage (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は主として下水道管など地中に埋設された配管の周辺に形成された地中空洞部の地盤強化改善方法に関する。
【0002】
【従来の技術】
地下には種々の導管(配管)が埋設されているが、このうち下水道管からの漏水や浸入水が社会問題となっている。すなわち、下水道管として使用されているヒューム管、陶管、塩化ビニール管等の接合部が、埋設時やその後の山留め材引抜きなどによりずれたり、あるいは埋設後の地盤の沈下などにより管体付近にクラックが発生し、そうした破損、欠損部分から汚水が配管の周囲に漏れ出していることが多い。
【0003】
その結果、漏水個所や浸入水の地盤は軟弱化が進行し、さらに空洞が発生し、そして、空洞に溜った汚水は転圧が不十分な軟弱な地盤に沿って流れを形成し、そのまま放置すると地下水脈へと成長する。この汚水により形成された地下水脈は、地盤沈下により陥没といった問題や、貴重な地下水の汚染を誘発するのである。
しかし、従来ではその補修方法について経済性を満たす実用的な方法がないため放置されていることが多く、下水道管からの漏水や浸入水による生活破壊環境問題は深刻化の一途をたどっていた。
【0004】
【発明が解決しようする課題】
本発明は前記のような問題点を解決するためになされたのもので、その目的とするところは、下水道管などの地中埋設管からの漏水や浸入水により軟弱化しあるいは空洞化した地中欠陥部を、的確にしかも後の地中埋設管の交換やメンテナンス作業に支障を来さないように強化、改善することができ、かつそれを低コストで行なえる地中空洞部の地盤強化改善方法を提供することにある。
【0005】
また、本発明の他の目的は、前記目的に加えて、地盤強化改善用材料が地中埋設管内に固着するのを防止して実施できる地中空洞部の地盤強化改善方法を提供することにある。
【0006】
【課題を解決するための手段】
前記第1の目的を達成するため本発明は、地中に生じている空洞部ないし軟弱化部を強化改善するにあたり、活性汚泥式廃水処理過程から排出される剰余汚泥脱水ケーキの破砕物を骨材とし、これに耐有機酸性のセメント系固化材を配合して、フロー値7〜9cm、硬化日数が28日経た時点での圧縮強度が4〜7kgf/cm程度、酢酸濃度0.5%の酢酸浸漬養生下での硬化日数が28日経た時点での圧縮強度が3.4〜5.5kgf/cm程度となるように構成した補修用材を用い、これを地中の空洞部ないし軟弱化部に圧入充填し、硬化させ、強度を発現させることを特徴としている。
地中に生じている空洞部ないし軟弱化部は、代表的には、地中埋設管周辺の漏水や浸入水よる空洞部ないし軟弱化部である。
【0007】
第2の目的を達成するため本発明は、漏水や浸入水による空洞部ないし軟弱化部に対応する部分の地中埋設管内に、補修用材の浸入防止手段を配して行なう。好適には、前記補修用材を使用し、これを地中の空洞部ないし軟弱化部に圧入充填するにあたり,補修用材の浸入防止手段として、軸方向中心に管体を有しその外周に複数の可縮性膨張体を相互に間隔をおいて設け、前記可縮性膨張体間の管体壁部位に補修用材を注入するノズルが位置しているものを使用し、ノズルが漏水による空洞部ないし軟弱化部に対応する部位に位置するように補修用材の浸入防止手段を地中埋設管内に配して可縮性膨張体を膨張させ、ノズルから補修用材を地中埋設管の欠陥部分を通して外部に吐出させる。
【0008】
【発明の実施の形態】
以下本発明の実施例を添付図面を参照して説明する。
まず、本発明の地中空洞部の地盤強化改善方法は、補修用材5として特殊な組成物を使用する。基本的には、図1のように、活性汚泥式廃水処理過程から排出される剰余汚泥脱水ケーキの破砕物1を骨材とし、これにセメント系固化材2と水3を配合し均一に混合したたとえば密度が1.0〜2.5g/cm2、pH13〜14のミルク状の組成物からなる。組成物には、さらに、混和剤4などが添加されていてもよい。
【0009】
詳述すると、本発明による補修用材5の特徴は、骨材として、活性汚泥式廃水処理施設から排出される剰余汚泥脱水ケーキを使用することにある。こうした剰余汚泥脱水ケーキは、従来では大半が焼却処分されているが、含水率が高いために燃焼しにくく重油などの燃料を使用しなければならず、焼却に費やされる燃料とエネルギーロスは多大である。また、焼却に起因して発生する排煙、残灰の処理も難渋していた。本発明は、かかる産業廃棄物の剰余汚泥を、地中空洞部ないし空洞部形成の前段階の軟弱化した地盤状態の補修・強化改善用補修用材の原料として資源化し、同時に補修用材の低コスト化を図ったものである。
【0010】
本発明において、剰余汚泥脱水ケーキ破砕物1は、脱水ケーキを撹拌粉砕したものを使用する。公共下水道の剰余汚泥の脱水ケーキは、有機物含有率(平均)が夏期において約64%、冬期において約70%であり、含水率は約70〜82%である。この状態の脱水ケーキをホッパーやタンクなどに装入し、ミキサーなどの撹拌手段によって機械的に分断、破砕する。
剰余汚泥脱水ケーキ破砕物1は、表面乾燥状態で、最大粒径が約1.5mmφ以下の丸みを帯びた粒状物である。しかも、前記粒径は比較的そろっているため、補修用材を作ってこれを圧送し、対象個所に注入充填するときの流動性がよいものとなる。この理由から、本発明は剰余汚泥の破砕物1を骨材として使用するのである。
【0011】
さらに、脱水ケーキおよびこれを処理した粒状物は、通常、炭素分45〜59%、水素分5〜8%、窒素分5〜10%、可燃性硫黄分0.5〜2.1%、酸素23〜37%であり、この組成中にセルロースなどの繊維分がかなり多く含まれている。この繊維分がつなぎ材として機能するため、水中不分離性を向上することができる。この理由からも本発明は剰余汚泥の破砕物1を骨材として使用するのである。
【0012】
次に、セメント系固化材2としては、汎用のポルトランドセメントで代表される普通セメントでは不適当である。その理由は、下水道管を通る生活排水中には有機物が多く含まれており、これが腐敗すると有機酸となる。こうした生活排水が下水道管から漏水することにより空洞部や軟弱化部は有機酸環境にある。有機酸はセメントの水和反応を阻害し、固化作用を遅延させるので、普通セメントでは本発明で目的とする補修用材として機能しえないからである。
【0013】
そのために、本発明は耐有機酸性を有するセメント系固化材2を使用する。かかるセメント系固化材2としては、セメントに耐有機酸性物質を添加した組成を有するものが好適な例としてあげられる。具体例としては、太平洋セメント株式会社の製造に係る商品名ゼオセットGS30があげられる。このセメント系固化材は粉末状で、性状として密度約2.99g/cm3、比表面積4850cm2/gであり、化学成分として、二酸化珪素、酸化アルミニウム、酸化第二鉄、酸化カルシウム、酸化マグネシウム、二硫化硫黄などを含んでいる。
【0014】
本発明は、剰余汚泥破砕物1とセメント系固化材2、さらに少なくとも水3を、28日の範囲の硬化日数が経た時点での圧縮強度(日本工業規格に準拠した水中養生での強度)が、3〜15kgf/cm2程度、さらに好適には4〜10kgf/cm2、最も好適には4〜7kgf/cm2となるように所定重量比で計量し、ミキサーなどにより均一に混合し、流動性の良好な補修用材5を得る。
【0015】
強度範囲を限定したのは、空洞部、軟弱化部の地盤強化を図るのには圧縮強度が高い方がよいが、通常の地中埋設構造物と異なり、下水道管は経路変更などのために再掘削されて地中から取り出されたり、再修理されることがある。その際に、あまり圧縮強度が高いと、固化している補修用材を含む地盤をスコップや簡易な破壊機器による破壊が困難になり、その作業に多大な手間と時間がかかることになる。そのために、軟弱すぎず固すぎもしない適当な強度とする必要があるからである。28日の範囲の硬化日数が経た時点での圧縮強度が前記範囲であれば、実用上十分な強度であり、かつ前記作業を容易に行なうことが可能である。
【0016】
さらに、硬化した補修用材を含む地盤の強度が高すぎると、硬化した補修用材を含む地盤が支点として機能してしまい、下水道管の割れやクラックの進行を助長するが、前記強度範囲であれば下水道管が不等沈下したときにもこれにうまく追従することができる。この点からも強度範囲を限定したものである。
【0017】
さらに、前記範囲の強度と流動性を得るために、膨張剤、AE減水剤、流動化剤、水中不分離剤など所望の混和剤を1種以上添加することも好都合である。それらの添加量は適宜設定すればよく、たとえば、セメント系固化材2に対し、膨張剤は5〜8%程度、流動化剤は0.6〜1%程度、AE減水剤は2%程度、水中不分離剤は1.0%程度添加すればよい。
【0018】
表1は補修用材5の配合比を決定するために、剰余汚泥脱水ケーキ破砕物1の量を一定にした実験の内容とその結果を示している。剰余汚泥脱水ケーキ破砕物1は最大粒径1.5mm以下(表面乾燥状態)のものを使用した。
表中のセメント系固化材は、太平洋セメント株式会社の製造に係る商品名ゼオセットGS30を使用した。
流動性はフロー試験によって評価したもので、直径約3.0cm、高さ約4.5cmの円筒容器に補修用材を充填し、円筒容器の底面を開口することにより床面に落下させた後、床面に広がったサンプルの直径を直交する値の平均値であり、8cm程度の流動性をもって良否を判定した。○は良好、◎は極めて良好を指しており、圧縮強度は、水中養生と酢酸浸漬条件の2種とした。後者は有機酸に接触する環境に対応するものである。
【0019】
【表1】

Figure 0003732427
【0020】
この表1によれば、サンプル3が水中およびと酢酸浸漬条件での強度が良好であり、サンプル2が水中および酢酸浸漬条件での強度と流動性の双方の特性のバランスがよい。なお、本発明はこの例に限定されるものではなく、前記圧縮強度を満たし、かつ、ポンプ圧送と材料分離回避の面から、フロー値が7.0〜9cm程度の範囲の配合が好ましい。
いずれにしても実際の施工に際しては、テストサンプルによりフロー試験、及び圧縮強度試験を行い、必要な強度と流動性を有する配合を設定する。この配合に基づき必要量に応じた補修用材を製造する。
【0021】
次に、本発明は、前記補強用材5を地中の空洞部ないし軟弱化部に圧入充填し、硬化させ強度を発現させる。
図2はその施工法の第1実施例を示している。この第1実施例はマンホール付近の下水道管Aの漏水による欠陥地盤部10(空洞部ないし軟弱化部位)に対する施工を示しており、前記のように調製した補修用材5を撹拌機能付きの貯蔵タンク6たとえばアジテーター車に収容し、圧送ポンプ7により導管8中を圧送し、マンホール13の底付近から欠陥地盤部10に向けたノズル9から圧入充填する。 前記導管8には補修用材5の流動性および充填部位までの距離に応じた注入圧を得るための圧力制御弁11と欠陥地盤部10の大きさに則した充填量に制御するための流量制御弁12を設けている。さらに導管8には補修用材の圧入充填流量および注入圧が測定できるように流量圧力測定用計計器22を設けている。
【0022】
漏水部位は下水道管Aの内外に通じているから、欠陥地盤部10への補修用材5の充填に伴って下水道管A内に補修用材5が浸入すると、それが下水道管内壁に固化して断面積を減少させ、以後の円滑な汚水の流れを阻害する可能性がある。また同時に、補修用材5が際限なく流出してしまう。
そこで、補修用材5の注入に先立ち、下水道管A内に補修用材浸入防止手段14を配して行なう。この補修用材浸入防止手段14としては、ゴム袋などの可縮性膨張体が都合よく、収縮した状態で下水道管A内に搬入し、補修用材5の欠陥地盤部10への注入に先立って、可縮性膨張体内に流体供給源15から空気あるいは水を注入して膨張させ、欠陥地盤部10と通ずる漏水部の塞ぐように下水道管内壁に密着させる。この状態で補修用材5が硬化するまで保持させ、補修用材浸入防止手段14を収縮して取り出せばよい。5’は充填された補修用材である。
【0023】
図3ないし図6は施工法の第2実施例を示している。この第2実施例も下水道管Aの漏水による欠陥地盤部10(空洞部ないし軟弱化部位)に対する施工を示しているが、第1実施例と異なり、下水道管Aの内部から欠陥地盤部10に補修用材5を注入する点で異なっている。
【0024】
この第2実施例においては、補修用材注入機を兼ねた補修用材浸入防止手段14が用いられる。すなわち該手段は、軸方向中心に管体16を有し、その外周に複数(この例では2つ)の可縮性膨張体17,17を相互に間隔をおいて設けている。前記管体16は前後に下水道管Aの内壁に接してスムースな移動を行なうためのガイド手段20,20を有している。ガイド手段20,20は駆動機構を有した自走式でもよい。
【0025】
前記管体16には左右の可縮性膨張体17,17間の管壁部位を貫いて補修用材5のノズル9が設けられており、ノズル9には導管8’が接続され、管体16の軸方向に伸びている。導管8’の端部には圧送ポンプ7からの導管8が着脱可能に接続されるようになっている。また、可縮性膨張体17,17の中央部に対応する管体16には膨張用流体の給排部18,18が設けられており、それら給排部18,18には管体16の軸方向に伸びる導管19が接続され、これに流体供給源15からの導管が着脱可能に接続されるようになっている。
【0026】
この第2実施例においては、図4のように、可縮性膨張体17,17を収縮させた状態にして補修用材浸入防止手段14を下水道管A内へと移動させ、可縮性膨張体17,17の間のノズル9が欠陥地盤部10に略対峙する位置で停める。第1実施例、第2実施例のいずれも欠陥地盤部位10に補修用材5を圧入するに先立って、欠陥地盤部10の場所を任意の方法たとえばテレビカメラ、探傷器、圧気などによって検知し、あるいはさらに、欠陥地盤部位の規模や大きさを知るため、欠陥部位10に給水してその給水量を予め測っておく。第2実施例においては、管体16の先端にテレビカメラなどの検出手段を搭載しておくことができ、また、ノズル9から水を吐出させることにより欠陥地盤部位の規模や大きさを知ることができる。
【0027】
ついで、図5のように導管19から給排部18,18に流体を注入して可縮性膨張体17,17を膨張させ、欠陥地盤部位10に近接する下水道管内壁に密着させる。これにより欠陥地盤部位10に通ずる漏水個所10’は可縮性膨張体17,17で囲繞された環状空間21に存することになる。
そこで、補修用材5を圧送ポンプ7により導管8,8’に圧送し、ノズル9から吐出させる。これにより補修用材5は下水道管内の環状空間21から漏水個所10’を通して下水道管外の欠陥地盤部位10に圧入充填される。
【0028】
このようにして欠陥地盤部位10が補修用材5で充填され、所要の時間が経過したならば、図6のように、可縮性膨張体17,17を収縮させ、導管8と導管8’との接続を外し、管体16を移動させる。漏水個所10’に対応する部分の下水道管内には補修用材5の一部が局部的に残存しているが、高圧水などを吹き付けることにより除去することができる。
【0029】
この第2実施例の場合、補修用材浸入防止手段14が移動自在であり、かつノズル9により下水道管内から漏水個所10’を通して欠陥地盤部位10に補修用材5を注入、充填するので、マンホール13に近接した部位だけでなくかなり遠隔部位の施工にも適用できる利点がある。また、ノズル9から補修用材5を可縮性膨張体17,17で囲繞された環状空間21に吐出させるので、漏水個所10’が下水道管Aの下部だけでなく側部および上部に存する場合にも、これにうまく充填することができる利点がある。
【0030】
以上の方法により、地中の空洞部や軟弱部の地盤を強化し、しかもその地盤強度を補修等のために都合のよい大きさにすることができる。
なお、本発明において、骨材として活性汚泥式廃水処理過程から排出される剰余汚泥脱水ケーキの破砕物を使用することが必須であるが、必ずしも骨材使用量の全部でなくてもよく、強度や流動性を満足する限度で他の汎用の天然あるいは人工の骨材たとえば砂などを添加してもよい。
また、本発明は下水道で代表される地中埋設管周辺の漏水部位さらには空洞部の補強施工に好適であるが、そのほか、経年ビルの基礎の埋め戻し部分や、光ファイバーケーブル敷設管付近の施工にも適用しうる。
【0031】
次に本発明の具体例を示す。
本発明による補修用材の強度と流動性を見るため、剰余汚泥脱水ケーキ破砕物の量を一定とし、固化材量および水量を種々にして補修用材を調製し、フロー試験と圧縮強度試験を行なった。これらは、水中養生、酢酸浸漬養生(酢酸濃度0.5%)で評価した。酢酸浸漬養生は有機酸に浸けられる環境における性能を知るためである。テストピースは前記表1と同じ条件とした。
なお、比較のため、剰余汚泥量を同じとし、固化材として普通セメントを使用した実験(添加量240kg/m2)を行なったみたが、その結果は、7日強度で0.7kg/cm2であり、まったく強度不足であった。
【0032】
【表2】
Figure 0003732427
【0033】
【表3】
Figure 0003732427
【0034】
これら表から、特に混和剤を添加していないにもかかわらず、サンプル▲1▼〜▲8▼は28日強度において3kg/cm2を越えている。しかし、酢酸に浸された場合、サンプル▲1▼は28日強度において3kg/cm2を下回っている。一方、サンプル▲7▼▲8▼は28日強度は高いものの、流動性が低くなっている。したがって、強度と流動性の両面から、サンプル▲2▼〜▲6▼が好ましい補修用材である。特に、下水道管の空洞部類が置かれる有機酸環境28日強度でも良好な強度が得られている。
【0035】
次に、実際に地中の欠陥部位の地盤強化、改善効果を得られるかを試験した。この試験は、図7に示すように、透明樹脂パイプ25を下水道管のモデルとして使用し、これを解体可能な箱体26に設置し、透明樹脂パイプ25の周囲に土27を充填して圧密化した。一方、箱体26の一側端部に注入口28を設け、ここからノズル29を挿込み、本発明の補修用材(表2におけるサンプル▲5▼を使用)を圧入した。
【0036】
なお、箱体26は幅400mm、深さ400mm、長さ1800mmとし、透明樹脂パイプ25は外径265mm、長さ2000mmとし、ノズル29は内径20mmのものを使用し、箱端から150mm突入させた。
前記樹脂パイプ25の下部および側部に人工的に空洞部をつくり、その空洞部に、モルタルポンプを使用し、注入圧力を2.0kgf/cm2にして補修用材を注入充填し、硬化させた。
【0037】
この実験の結果、ノズルの閉塞は生じず、補修用材は空洞部を含む地中に浸透し、図8(a)(b)のように透明樹脂パイプ25の底部から上側部にかけて強化地盤部5’が形成されたことが確認された。なお、図8(a)は透明樹脂パイプ25の前後を図7(a)に示すものと逆にして示している。
【0038】
【発明の効果】
以上説明した本発明の請求項1,2によるときには、活性汚泥式廃水処理過程から排出される剰余汚泥脱水ケーキの破砕物を骨材とし、これに耐有機酸性のセメント系固化材を配合して、フロー値7〜9cm、硬化日数が28日経た時点での圧縮強度が4〜7kgf/cm程度、酢酸濃度0.5%の酢酸浸漬養生下での硬化日数が28日経た時点での圧縮強度が3.4〜5.5kgf/cm程度となるように構成した補修用材を用い、これを地中の空洞部ないし軟弱化部に圧入充填し、硬化させ、強度を発現させるので、下水道管で代表される地中構造物付近の軟弱化しあるいは空洞化したしかも有機酸環境下の欠陥部を、的確にしかも後の地中構造物の交換やメンテナンス作業に支障を来さないように強化、改善することができ、同時に処理に膨大な費用と手間をかけていた廃棄物を資源として再利用するため補修用材が安価なものとなり、施工費用を低コストにすることができるというすぐれた効果が得られる。
【0039】
請求項3によれば、地中埋設管の内部への補修用材の浸入を防止できるため、補修用材の無駄な浪費を避けることができるとともに、補修用材の地中埋設管内での固化による下水の流れの悪影響を回避できるというすぐれた効果が得られる。 請求項4によれば、地中埋設管内からこれの欠陥個所を通して外部の軟弱化しあるいは空洞化した領域に補修用材を注入、充填することができるので、補修可能部位の範囲を広げることができ、また、ノズルから補修用材を可縮性膨張体で囲繞された環状空間に吐出させるので、漏水個所などの欠陥部分が地中埋設管の下部だけでなく全周部分に存する場合にも、これにうまく充填することができるというすぐれた効果が得られる。
【図面の簡単な説明】
【図1】本発明による地中空洞部の地盤強化改善法に使用する補修用材の配合を模式的に示す説明図である。
【図2】(a)は本発明による地中空洞部の地盤強化改善法の施工例を模式的に示す断面図、(b)は(a)のX−X線に沿う断面図である。
【図3】本発明による地中空洞部の地盤強化改善法の他の施工例を模式的に示す断面図である。
【図4】(a)は図3の施工例の第1段階を示す断面図、(b)は(a)のY−Y線に沿う断面図である。
【図5】(a)は図3の施工例の第2段階を示す断面図、(b)はその一部拡大図である。
【図6】図3の施工例の第3段階を示す断面図である。
【図7】(a)は本発明の実験装置の側面図、(b)はその断面図である。
【図8】(a)は実験後の状態を示す側面図、(b)はその断面図である。
【符号の説明】
1 骨材(余剰汚泥破砕物)
2 セメント系固化材
5 補修用材
10 欠陥地盤部位[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a method for improving ground reinforcement of underground cavities formed around pipes buried in the ground such as sewer pipes.
[0002]
[Prior art]
Various conduits (piping) are buried underground, but water leakage and intrusion from sewer pipes are social problems. In other words, joints such as fume pipes, ceramic pipes, and vinyl chloride pipes that are used as sewer pipes may be displaced near the pipe body by burying or by subsequent removal of mountain retaining materials, or by subsidence of the ground after burial. Cracks often occur, and sewage often leaks around the piping from such damaged or missing parts.
[0003]
As a result, the ground of the leaked water and the infiltration water is weakened, and further cavities are generated, and the sewage collected in the cavities forms a flow along the soft ground where the rolling pressure is insufficient and is left as it is. Then it grows into a groundwater vein. The groundwater veins formed by this sewage induce problems such as depression due to land subsidence and precious groundwater contamination.
However, in the past, the repair method has often been left because there is no practical method that satisfies the economics, and the problem of environmental damage due to leakage from the sewer pipes and intrusion water has been getting worse.
[0004]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is an underground defect portion softened or hollowed out due to water leakage or intrusion from underground pipes such as sewer pipes. Can be strengthened and improved so as not to hinder the replacement and maintenance work of underground pipes in the future, and it is possible to do so at low cost. It is to provide.
[0005]
In addition to the above object, another object of the present invention is to provide a ground reinforcement improving method for underground cavities that can be carried out while preventing the material for improving ground reinforcement from adhering to the underground pipe. is there.
[0006]
[Means for Solving the Problems]
In order to achieve the first object, in the present invention, in order to reinforce and improve the hollow portion or softened portion generated in the ground, the surplus sludge dewatered cake crushed material discharged from the activated sludge wastewater treatment process is boned. This material is mixed with an organic acid-resistant cement-based solidified material, and has a flow value of 7 to 9 cm, a compressive strength of about 4 to 7 kgf / cm 2 after 28 days of curing, and an acetic acid concentration of 0.5%. Using a repair material constructed so that the compressive strength is about 3.4 to 5.5 kgf / cm 2 when the number of days of curing under acetic acid immersion curing is 28 days, It is characterized in that it is press-filled into the forming part, cured, and developed in strength.
The hollow portion or softened portion generated in the ground is typically a hollow portion or softened portion due to water leakage or intrusion water around the underground pipe.
[0007]
In order to achieve the second object, the present invention is carried out by providing means for preventing the entry of a repair material in the underground pipe in the portion corresponding to the cavity or weakened portion caused by water leakage or intrusion water. Preferably, when the repair material is used and is press-fitted into a hollow portion or softened portion in the ground, a pipe body is provided at the center in the axial direction as a means for preventing the intrusion of the repair material, and a plurality of outer peripheral members are provided on the outer periphery thereof. A retractable expansion body is provided with a space between each other, and a nozzle in which a repair material is injected into a tube wall portion between the expandable expansion bodies is used. The invasion prevention means of the repair material is arranged in the underground pipe so that it is located in the part corresponding to the softened part, the contractible expansion body is expanded, and the repair material from the nozzle is externally passed through the defective part of the underground pipe. To discharge.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
First, the ground reinforcement improvement method of the underground cavity of the present invention uses a special composition as the repair material 5. Basically, as shown in Fig. 1, the surplus sludge dewatered cake crushed material 1 discharged from the activated sludge wastewater treatment process is used as an aggregate, and this is mixed with cement-based solidified material 2 and water 3 and mixed uniformly. For example, it comprises a milky composition having a density of 1.0 to 2.5 g / cm 2 and a pH of 13 to 14. Admixture 4 or the like may be further added to the composition.
[0009]
If it explains in full detail, the characteristic of the repair material 5 by this invention exists in using the surplus sludge dewatering cake discharged | emitted from an activated sludge type wastewater treatment facility as an aggregate. Conventionally, most of these sludge dewatered cakes are incinerated, but due to their high water content, they are difficult to burn and must use fuels such as heavy oil, which consumes a lot of fuel and energy loss. is there. In addition, it was difficult to deal with smoke and residual ash generated due to incineration. The present invention recycles surplus sludge from such industrial waste as a raw material for repairing / strengthening / improving the softened ground state before the formation of underground cavities or cavities, and at the same time, reducing the cost of repairing materials. It is a plan to make it.
[0010]
In the present invention, surplus sludge dewatered cake crushed material 1 is obtained by stirring and grinding a dewatered cake. The dewatered cake of surplus sludge from public sewers has an organic matter content (average) of about 64% in the summer and about 70% in the winter, and a moisture content of about 70 to 82%. The dehydrated cake in this state is charged into a hopper, a tank or the like, and mechanically divided and crushed by stirring means such as a mixer.
The surplus sludge dewatered cake crushed material 1 is a rounded granular material having a maximum particle size of about 1.5 mmφ or less in a surface-dried state. And since the said particle size is comparatively equal, the fluidity | liquidity at the time of making a repair material and pumping this and injecting and filling to an object part will become good. For this reason, the present invention uses the surplus sludge crushed material 1 as an aggregate.
[0011]
Further, the dehydrated cake and the granular material treated with this are usually 45 to 59% carbon, 5 to 8% hydrogen, 5 to 10% nitrogen, 0.5 to 2.1% flammable sulfur, oxygen It is 23 to 37%, and the fiber content such as cellulose is considerably contained in this composition. Since this fiber component functions as a binder, it is possible to improve the inseparability in water. For this reason as well, the present invention uses the surplus sludge crushed material 1 as an aggregate.
[0012]
Next, as the cement-based solidifying material 2, ordinary cement typified by general-purpose Portland cement is inappropriate. The reason is that a lot of organic matter is contained in the domestic wastewater that passes through the sewer pipe, and when it is spoiled, it becomes an organic acid. When such domestic wastewater leaks from the sewer pipe, the cavity and the weakened part are in an organic acid environment. This is because the organic acid inhibits the hydration reaction of the cement and delays the solidification action, so that ordinary cement cannot function as the repair material intended in the present invention.
[0013]
Therefore, the present invention uses a cement-based solidifying material 2 having organic acid resistance. A suitable example of the cement-based solidifying material 2 has a composition in which an organic acid-resistant substance is added to cement. As a specific example, a trade name Zeoset GS30 related to the manufacture of Taiheiyo Cement Co., Ltd. can be mentioned. This cement-based solidified material is in powder form, has a density of about 2.99 g / cm 3 and a specific surface area of 4850 cm 2 / g, and contains chemical components such as silicon dioxide, aluminum oxide, ferric oxide, calcium oxide, magnesium oxide. Contains sulfur disulfide.
[0014]
In the present invention, the residual sludge crushed material 1, the cement-based solidified material 2, and at least water 3 have a compressive strength (strength under water curing in accordance with Japanese Industrial Standards) at the time when the curing days in the range of 28 days have passed. 3 to 15 kgf / cm 2 , more preferably 4 to 10 kgf / cm 2 , and most preferably 4 to 7 kgf / cm 2 , measured at a predetermined weight ratio, and mixed uniformly with a mixer or the like. A repairing material 5 with good properties is obtained.
[0015]
The strength range is limited because it is better to have high compressive strength in order to strengthen the ground of the cavity and softened part, but unlike ordinary underground structures, sewer pipes are used for route changes, etc. It may be re-excavated and removed from the ground or repaired. At that time, if the compressive strength is too high, it becomes difficult to destroy the ground containing the repair material that has been solidified with a scoop or a simple destructive device, which requires a lot of work and time. For this reason, it is necessary to have an appropriate strength that is neither too soft nor too hard. If the compressive strength at the time when the curing days in the range of 28 days elapses is within the above range, the strength is practically sufficient and the operation can be easily performed.
[0016]
Furthermore, if the strength of the ground containing the hardened repair material is too high, the ground containing the hardened repair material functions as a fulcrum, and promotes the progress of cracks and cracks in the sewer pipe, but if the strength range Even when the sewer pipe sinks unevenly, it can follow this well. From this point as well, the strength range is limited.
[0017]
Furthermore, in order to obtain the strength and fluidity within the above-mentioned range, it is also convenient to add one or more desired admixtures such as a swelling agent, an AE water reducing agent, a fluidizing agent, and a non-separating agent in water. What is necessary is just to set those addition amount suitably, for example, with respect to the cement-type solidification material 2, about 5 to 8% of a swelling agent, about 0.6 to 1% of a fluidizing agent, about 2% of AE water reducing agents, About 1.0% of the non-separating agent in water may be added.
[0018]
Table 1 shows the contents and results of an experiment in which the amount of surplus sludge dewatered cake crushed material 1 is kept constant in order to determine the blending ratio of the repair material 5. The surplus sludge dehydrated cake crushed material 1 was used having a maximum particle size of 1.5 mm or less (surface dried state).
As the cement-based solidifying material in the table, trade name ZEOSET GS30 related to the manufacture of Taiheiyo Cement Co., Ltd. was used.
The fluidity was evaluated by a flow test. After filling a cylindrical container having a diameter of about 3.0 cm and a height of about 4.5 cm with a repair material and opening the bottom surface of the cylindrical container, it was dropped on the floor surface, The average value of the values orthogonal to the diameter of the sample spread on the floor surface was judged as good or bad with a fluidity of about 8 cm. ○ indicates good, and ◎ indicates extremely good. The compressive strength was set to two types: water curing and acetic acid immersion conditions. The latter corresponds to the environment in contact with organic acids.
[0019]
[Table 1]
Figure 0003732427
[0020]
According to Table 1, the strength of sample 3 in water and in acetic acid immersion conditions is good, and sample 2 has a good balance of both strength and fluidity characteristics in water and acetic acid immersion conditions. In addition, this invention is not limited to this example, The mixing | blending of the range whose flow value is about 7.0-9 cm is preferable from the surface of satisfying the said compressive strength and avoiding pumping and material separation.
In any case, in actual construction, a flow test and a compressive strength test are performed using a test sample, and a blend having necessary strength and fluidity is set. Based on this formulation, a repair material corresponding to the required amount is manufactured.
[0021]
Next, in the present invention, the reinforcing material 5 is press-filled into a hollow portion or a softened portion in the ground, and cured to develop strength.
FIG. 2 shows a first embodiment of the construction method. This first embodiment shows a construction for a defective ground part 10 (cavity part or softened part) due to water leakage in a sewer pipe A near a manhole, and a storage tank with a stirring function for the repair material 5 prepared as described above. 6 For example, it is accommodated in an agitator vehicle, and is pumped through the conduit 8 by the pump 7 and is press-fitted from the nozzle 9 toward the defective ground portion 10 from near the bottom of the manhole 13. The conduit 8 has a flow rate control for controlling the filling amount according to the size of the pressure control valve 11 and the defective ground portion 10 for obtaining the injection pressure corresponding to the fluidity of the repair material 5 and the distance to the filling site. A valve 12 is provided. The conduit 8 is further provided with a flow rate pressure measuring instrument 22 so that the press-fitting flow rate and injection pressure of the repair material can be measured.
[0022]
Since the water leakage site is connected to the inside and outside of the sewer pipe A, when the repair material 5 enters the sewer pipe A with the filling of the repair material 5 to the defective ground portion 10, it solidifies on the inner wall of the sewer pipe and breaks. It may reduce the area and hinder subsequent smooth sewage flow. At the same time, the repair material 5 flows out without limit.
Therefore, prior to the injection of the repair material 5, the repair material intrusion prevention means 14 is disposed in the sewer pipe A. As the repair material intrusion prevention means 14, a retractable inflatable body such as a rubber bag is conveniently carried into the sewer pipe A in a contracted state, and prior to injection of the repair material 5 into the defective ground portion 10, Air or water is injected from the fluid supply source 15 into the expandable expandable body and expanded, and is brought into close contact with the inner wall of the sewer pipe so as to close the leaked portion communicating with the defective ground portion 10. In this state, the repair material 5 is held until it is cured, and the repair material intrusion prevention means 14 is contracted and taken out. 5 ′ is a filled repair material.
[0023]
3 to 6 show a second embodiment of the construction method. Although this 2nd Example also has shown the construction with respect to the defective ground part 10 (cavity part or weakened part) by the water leak of the sewer pipe A, unlike the 1st Example, from the inside of the sewer pipe A to the defective ground part 10 The difference is that the repair material 5 is injected.
[0024]
In the second embodiment, the repair material intrusion preventing means 14 which also serves as a repair material injection machine is used. That is, the means has a tubular body 16 at the center in the axial direction, and a plurality of (in this example, two) contractible expansion bodies 17 and 17 are provided on the outer periphery thereof at intervals. The pipe body 16 has guide means 20 and 20 for smoothly moving in contact with the inner wall of the sewer pipe A in the front-rear direction. The guide means 20, 20 may be a self-propelled type having a drive mechanism.
[0025]
The pipe body 16 is provided with a nozzle 9 for the repair material 5 penetrating through the pipe wall portion between the left and right retractable expansion bodies 17, 17, and a conduit 8 ′ is connected to the nozzle 9. It extends in the axial direction. A conduit 8 from the pressure pump 7 is detachably connected to the end of the conduit 8 '. Further, the pipe body 16 corresponding to the center part of the contractible expansion bodies 17 and 17 is provided with supply and discharge portions 18 and 18 for the expansion fluid, and the supply and discharge portions 18 and 18 include the pipe body 16. An axially extending conduit 19 is connected to which a conduit from the fluid supply 15 is detachably connected.
[0026]
In the second embodiment, as shown in FIG. 4, the contractible expandable bodies 17, 17 are contracted, and the repair material intrusion preventing means 14 is moved into the sewer pipe A, so that the contractible expandable body. The nozzle 9 between 17 and 17 stops at a position substantially facing the defective ground portion 10. Prior to press-fitting the repair material 5 into the defective ground portion 10 in both the first embodiment and the second embodiment, the location of the defective ground portion 10 is detected by an arbitrary method such as a TV camera, a flaw detector, and pressure air. Or, furthermore, in order to know the scale and size of the defective ground part, water is supplied to the defective part 10 and the amount of water supply is measured in advance. In the second embodiment, detection means such as a television camera can be mounted on the tip of the tube body 16, and the size and size of the defective ground portion can be known by discharging water from the nozzle 9. Can do.
[0027]
Next, as shown in FIG. 5, fluid is injected from the conduit 19 to the supply / discharge portions 18, 18 to expand the contractible expansion bodies 17, 17, and are brought into close contact with the inner wall of the sewer pipe adjacent to the defective ground portion 10. As a result, the water leaking portion 10 ′ leading to the defective ground portion 10 exists in the annular space 21 surrounded by the contractible expansion bodies 17 and 17.
Therefore, the repairing material 5 is pumped to the conduits 8 and 8 ′ by the pumping pump 7 and discharged from the nozzle 9. As a result, the repair material 5 is press-fitted and filled into the defective ground portion 10 outside the sewer pipe from the annular space 21 in the sewer pipe through the water leakage location 10 '.
[0028]
In this way, when the defective ground portion 10 is filled with the repair material 5 and the required time has elapsed, the contractible expandable bodies 17 and 17 are contracted as shown in FIG. Is disconnected, and the tube body 16 is moved. Although a part of the repair material 5 remains locally in the sewer pipe corresponding to the water leak location 10 ', it can be removed by spraying high pressure water or the like.
[0029]
In the case of this second embodiment, the repairing material intrusion preventing means 14 is movable, and the repairing material 5 is injected and filled into the defective ground part 10 through the leaked part 10 ′ from the sewer pipe by the nozzle 9. There is an advantage that it can be applied not only to a close part but also to a considerably remote part. In addition, since the repair material 5 is discharged from the nozzle 9 to the annular space 21 surrounded by the retractable expansion bodies 17 and 17, when the water leakage place 10 ′ exists not only in the lower part of the sewer pipe A but also in the side part and the upper part. Also has the advantage that it can be filled well.
[0030]
By the above method, it is possible to reinforce the ground of the hollow portion and the soft portion in the ground, and to make the strength of the ground convenient for repair or the like.
In the present invention, it is indispensable to use the crushed waste sludge dewatered cake discharged from the activated sludge wastewater treatment process as an aggregate, but it is not necessarily the total amount of aggregate used, and the strength In addition, other general-purpose natural or artificial aggregates such as sand may be added as long as the fluidity is satisfied.
In addition, the present invention is suitable for the reinforcement work of the leaked part around the underground buried pipe represented by the sewerage system and the cavity part, but in addition, the backfill part of the foundation of an aged building and the construction near the optical fiber cable laying pipe It can also be applied to.
[0031]
Next, specific examples of the present invention will be shown.
In order to see the strength and fluidity of the repair material according to the present invention, the amount of surplus sludge dewatered cake crushed material was kept constant, the repair material was prepared with various amounts of solidified material and water, and the flow test and the compressive strength test were performed. . These were evaluated by water curing and acetic acid immersion curing (acetic acid concentration 0.5%). Acetic acid immersion curing is for knowing the performance in an environment immersed in an organic acid. The test piece had the same conditions as in Table 1 above.
For comparison, an experiment using the same amount of excess sludge and using ordinary cement as a solidifying material (addition amount 240 kg / m 2 ) was conducted, and the result was 0.7 kg / cm 2 at 7 days strength. The strength was insufficient.
[0032]
[Table 2]
Figure 0003732427
[0033]
[Table 3]
Figure 0003732427
[0034]
From these tables, samples (1) to (8) exceeded 3 kg / cm 2 at 28 days strength, although no admixture was added. However, when immersed in acetic acid, sample (1) is below 3 kg / cm 2 at 28 days strength. On the other hand, Samples (7) and (8) have a high fluidity on the 28th, but have low fluidity. Therefore, samples (2) to (6) are preferable repair materials in terms of both strength and fluidity. In particular, good strength is obtained even in the organic acid environment 28-day strength where the cavities of the sewer pipe are placed.
[0035]
Next, it was tested whether the ground strengthening and improvement effect of the defect site in the ground could be actually obtained. In this test, as shown in FIG. 7, a transparent resin pipe 25 is used as a model of a sewer pipe, this is installed in a box 26 that can be dismantled, and soil 27 is filled around the transparent resin pipe 25 for consolidation. Turned into. On the other hand, an injection port 28 was provided at one end of the box body 26, and a nozzle 29 was inserted therefrom, and the repair material of the present invention (sample (5) in Table 2) was press-fitted.
[0036]
The box 26 has a width of 400 mm, a depth of 400 mm, and a length of 1800 mm, the transparent resin pipe 25 has an outer diameter of 265 mm and a length of 2000 mm, and a nozzle 29 having an inner diameter of 20 mm is used and is made to enter 150 mm from the end of the box. .
Cavity portions were artificially formed in the lower and side portions of the resin pipe 25, and a mortar pump was used in the cavity portion to inject and fill a repair material with an injection pressure of 2.0 kgf / cm 2 and cured. .
[0037]
As a result of this experiment, nozzle clogging does not occur, and the repair material penetrates into the ground including the cavity, and the reinforced ground portion 5 extends from the bottom to the upper side of the transparent resin pipe 25 as shown in FIGS. It was confirmed that 'was formed. FIG. 8A shows the front and rear of the transparent resin pipe 25 reversed from that shown in FIG.
[0038]
【The invention's effect】
According to claims 1 and 2 of the present invention described above, the crushed material of the residual sludge dewatered cake discharged from the activated sludge wastewater treatment process is used as an aggregate, and an organic acid-resistant cement-based solidifying material is blended into this. Compressive strength after 28 days of curing under acetic acid immersion curing with a flow value of 7-9 cm, a compressive strength of about 4-7 kgf / cm 2 when the curing days are 28 days, and an acetic acid concentration of 0.5% Since the repair material configured to have a strength of about 3.4 to 5.5 kgf / cm 2 is press-filled into a hollow portion or a softened portion in the ground and cured to develop strength, sewerage Reinforced so as not to hinder the replacement and maintenance work of the underground structure, which has been softened or hollowed out in the vicinity of the underground structure represented by the pipe, and that is defective in the organic acid environment. Can be improved, the same Enormous costs and repair timber for recycling waste have effort as a resource to process becomes inexpensive, excellent effect that it is possible to the construction costs at low cost is obtained.
[0039]
According to claim 3, since it is possible to prevent the repair material from entering the underground buried pipe, wasteful use of the repair material can be avoided, and sewage caused by solidification of the repair material in the underground buried pipe can be avoided. An excellent effect is obtained that the adverse effects of the flow can be avoided. According to claim 4, since it is possible to inject and fill the repair material into the externally weakened or hollowed area through the defective portion from the underground pipe, the range of repairable parts can be expanded, In addition, since the repair material is discharged from the nozzle into the annular space surrounded by the retractable expansion body, even if there are defective parts such as water leakage not only in the lower part of the underground pipe, but also in the entire circumference part. The excellent effect that it can be filled well is obtained.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory view schematically showing the composition of a repair material used in a ground reinforcement improvement method for underground cavities according to the present invention.
FIG. 2A is a cross-sectional view schematically showing a construction example of a method for improving ground reinforcement of an underground cavity according to the present invention, and FIG.
FIG. 3 is a cross-sectional view schematically showing another construction example of the method for improving ground reinforcement of underground cavities according to the present invention.
4A is a cross-sectional view showing a first stage of the construction example of FIG. 3, and FIG. 4B is a cross-sectional view taken along line YY of FIG.
5A is a cross-sectional view showing a second stage of the construction example of FIG. 3, and FIG. 5B is a partially enlarged view thereof.
6 is a cross-sectional view showing a third stage of the construction example in FIG. 3;
7A is a side view of the experimental apparatus of the present invention, and FIG. 7B is a cross-sectional view thereof.
8A is a side view showing a state after the experiment, and FIG. 8B is a cross-sectional view thereof.
[Explanation of symbols]
1 Aggregate (excess sludge crushed material)
2 Cement-based solidified material 5 Repair material 10 Defective ground part

Claims (4)

地中に生じている空洞部ないし軟弱化部を強化改善するにあたり、活性汚泥式廃水処理過程から排出される剰余汚泥脱水ケーキの破砕物を骨材とし、これに耐有機酸性のセメント系固化材を配合して、フロー値7〜9cm、硬化日数が28日経た時点での圧縮強度が4〜7kgf/cm程度、酢酸濃度0.5%の酢酸浸漬養生下での硬化日数が28日経た時点での圧縮強度が3.4〜5.5kgf/cm程度となるように構成した補修用材を用い、これを地中の空洞部ないし軟弱化部に圧入充填し、硬化させ、強度を発現させることを特徴とする地中空洞部の地盤強化改善方法。In strengthening and improving the cavity or softening part generated in the ground, the surplus sludge dewatered cake crushed material discharged from the activated sludge wastewater treatment process is used as an aggregate, and this is an organic acid-resistant cementitious solidified material. , The flow value was 7-9 cm, the compression strength at the time when the curing days were 28 days, about 4-7 kgf / cm 2 , and the curing days were 28 days under acetic acid immersion curing with acetic acid concentration 0.5% Using a repair material configured so that the compressive strength at the time becomes about 3.4 to 5.5 kgf / cm 2 , this is press-filled into a hollow portion or softened portion in the ground, and cured to develop strength. A method for improving ground reinforcement in an underground cavity, characterized by comprising: 地中に生じている空洞部ないし軟弱化部が、地中埋設管周辺の空洞部ないし軟弱化部である請求項1に記載の地中空洞部の地盤強化改善方法。2. The method for improving ground reinforcement of an underground cavity according to claim 1, wherein the cavity or the weakened part generated in the ground is a cavity or a weakened part around the underground pipe. 地中埋設管内に補修用材の浸入防止手段を配して行なう請求項2に記載の地中空洞部の地盤強化改善方法。The method for improving ground reinforcement of an underground cavity according to claim 2, which is carried out by providing means for preventing entry of a repair material into the underground pipe. 請求項1に記載の補修用材を使用し、これを地中の空洞部ないし軟弱化部に圧入充填するにあたり,補修用材の浸入防止手段として、軸方向中心に管体を有しその外周に複数の可縮性膨張体を相互に間隔をおいて設け、前記可縮性膨張体間の管体壁部位に補修用材を注入するノズルが位置しているものを使用し、ノズルが漏水による空洞部ないし軟弱化部に対応する部位に位置するように補修用材の浸入防止手段を地中埋設管内に配して可縮性膨張体を膨張させ、ノズルから補修用材を地中埋設管の欠陥部分を通して外部に吐出させる請求項1に記載の地中空洞部の地盤強化改善方法。When using the repair material according to claim 1 and press-fitting it into a hollow portion or softening portion in the ground, a pipe body is provided at the center in the axial direction as a means for preventing intrusion of the repair material. The contractible expansion body is provided with a space between each other, and a nozzle for injecting a repair material into the tube wall portion between the contractible expansion bodies is used. Or, the intrusion prevention means of the repair material is arranged in the underground pipe so as to be located at the site corresponding to the softened portion, the contractible expansion body is expanded, and the repair material from the nozzle is passed through the defective portion of the underground pipe. The ground reinforcement | strengthening improvement method of the underground hollow part of Claim 1 discharged to the exterior.
JP2001258566A 2001-08-28 2001-08-28 Improvement method of ground reinforcement in underground cavity Expired - Fee Related JP3732427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001258566A JP3732427B2 (en) 2001-08-28 2001-08-28 Improvement method of ground reinforcement in underground cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001258566A JP3732427B2 (en) 2001-08-28 2001-08-28 Improvement method of ground reinforcement in underground cavity

Publications (2)

Publication Number Publication Date
JP2003064656A JP2003064656A (en) 2003-03-05
JP3732427B2 true JP3732427B2 (en) 2006-01-05

Family

ID=19086063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001258566A Expired - Fee Related JP3732427B2 (en) 2001-08-28 2001-08-28 Improvement method of ground reinforcement in underground cavity

Country Status (1)

Country Link
JP (1) JP3732427B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7492411B2 (en) 2020-09-07 2024-05-29 東京電力ホールディングス株式会社 Small-diameter jacking method and small-diameter jacking device for underground cavities

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798220B1 (en) 2005-04-28 2008-01-24 유정식 Non-excavation mortar lining and crimp repair / reinforcement method
JP4734174B2 (en) * 2006-05-17 2011-07-27 東京瓦斯株式会社 Abolition method and new pipe laying method
JP5893276B2 (en) * 2011-07-22 2016-03-23 管清工業株式会社 Ground reinforcement method around underground pipes
JP2013177733A (en) * 2012-02-28 2013-09-09 Shirosaki Corporation Structure for preventing subsidence of u-groove channel, and construction method for preventing subsidence
CN104696664B (en) * 2015-02-09 2017-04-19 郑州安源工程技术有限公司 High-polymer composite grouting method for leakage and sand inrush blocking of underground pipeline
JP6949758B2 (en) * 2018-02-27 2021-10-13 アロン化成株式会社 How to repair underground drainage facilities
CN114033026B (en) * 2021-10-15 2024-01-19 中建环能科技股份有限公司 Pool bottom accumulated silt hardening and removing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7492411B2 (en) 2020-09-07 2024-05-29 東京電力ホールディングス株式会社 Small-diameter jacking method and small-diameter jacking device for underground cavities

Also Published As

Publication number Publication date
JP2003064656A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
FI81559B (en) FYLLMASSA OCH FOERFARANDE FOER DESS FRAMSTAELLNING.
US5002438A (en) Method of rehabilitating manholes by custom lining/relining
US10066356B2 (en) System to manufacture native soils flowable fill and related methods
US5791378A (en) Method for grouting pipe liners
US5427154A (en) Method for grouting pipe liners
US5063967A (en) Pumpable cement grout
CN105986570B (en) The Construction of High Pressure Jet Grouting Pile method of sealing is sealed as ground-connecting-wall interface external reinforcement
JP3732427B2 (en) Improvement method of ground reinforcement in underground cavity
CN108396737A (en) The Soil-cement pile material of Strengthening Wet soil base
CN111140264A (en) Method for treating water leakage of cracks of tunnel concrete lining structure
CN110885227B (en) Curing agent for curing slurry of hollow pile section, preparation method and construction method
KR100356344B1 (en) Founding method of wall for blocking a leachate from a buried wastes
KR100272950B1 (en) Method of forming water-resist wall of rubbish buried place
CN103603355A (en) Hollow pile handling method for cast-in-situ bored piles
JP3515014B2 (en) Filling method for cavity
JP3037929B2 (en) How to fill underground cavities
CN110560467B (en) Harmless treatment method for waste and old pipelines
JP3640198B2 (en) Underground impermeable wall and its construction method
CN106703008A (en) Vacuum-film-free vacuum preloading winter construction method
JP2733755B2 (en) Filling method for cavities in the ground
Ouellette et al. Rehabilitation of sanitary sewer pipelines
KR20020024486A (en) A mothod of preparation for a coagulating soil and a coagulating soil thereby
CN116809550A (en) Pipeline cleaning grouting construction method
Feng Earthwork and the Strategies of Concrete Construction Technology Application in Building Construction
JPS62233324A (en) Grouting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees