JP3731571B2 - Blast furnace granulated slag fine aggregate and method for preventing consolidation of blast furnace granulated slag - Google Patents

Blast furnace granulated slag fine aggregate and method for preventing consolidation of blast furnace granulated slag Download PDF

Info

Publication number
JP3731571B2
JP3731571B2 JP2002237520A JP2002237520A JP3731571B2 JP 3731571 B2 JP3731571 B2 JP 3731571B2 JP 2002237520 A JP2002237520 A JP 2002237520A JP 2002237520 A JP2002237520 A JP 2002237520A JP 3731571 B2 JP3731571 B2 JP 3731571B2
Authority
JP
Japan
Prior art keywords
blast furnace
slag
granulated
granulated slag
furnace granulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002237520A
Other languages
Japanese (ja)
Other versions
JP2004075454A (en
Inventor
清太 上川
和則 鍋倉
正人 真沢
彰 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002237520A priority Critical patent/JP3731571B2/en
Publication of JP2004075454A publication Critical patent/JP2004075454A/en
Application granted granted Critical
Publication of JP3731571B2 publication Critical patent/JP3731571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート用細骨材として用いられる高炉水砕スラグ細骨材、及びそれに供する等の目的で固結性を改善する高炉水砕スラグの固結防止方法に関する。
【0002】
【従来の技術】
高炉水砕スラグは、枯渇が懸念されている天然砂の代替として広く使用されているが、欠点として長期間保存すると固結する性質がある。特に、高炉水砕スラグ細骨材は、粒形改善のために軽破砕するため、微粒分が多くなり固結する性質が顕著になる。高炉水砕スラグ細骨材が固結すると、吸水率が高くなり、密度は小さくなって品質が著しく低下し、コンクリートの製造に支障をきたす。また、サイロなどの貯蔵びんに入れた高炉水砕スラグ細骨材が固結すると、排出口が詰まり、供給できなくなるという問題が生じる。
【0003】
高炉水砕スラグが固結するのは次のような理由による。
スラグのガラス質が湿潤状態では徐々にCa2+の溶出があって、長期にわたるpHの上昇、微粒分からのより急速なCa2+の溶出などが刺激剤の役割を果たし、アルカリ刺激を受けると、SiO四面体の網目状構造をしたSiOの鎖状環が切れて溶解が始まり、SiOの網目状構造に閉じ込められているカルシウム、アルミニウムなどの網目修飾イオンが溶出する。一旦この反応が開始されると、溶解した高炉水砕スラグからアルカリが供給され、自らのアルカリ成分でアルカリ性を持続し、水和反応が進行して硬化するからである。
【0004】
そこで、高炉水砕スラグのこのような潜在的水和硬化性による固結を防止するために、従来より種々の方法が提案されている。
例えば、特公昭58−35944号公報には、脂肪族オキシカルボン酸、脂肪族オキシカルボン酸塩或いはこれらの二種の混合物を重要成分とした固結防止剤を用い、これを水にて希釈した後、高炉水砕スラグにスプレー処理又は混練機で練り混ぜる、或いは希釈水の中にスラグを浸漬する方法が開示されている。
【0005】
また、特公昭58−35735号公報及び特開昭58−99146号公報には、リグニンスルホン酸又はその塩を含有する固結防止剤を高炉水砕スラグに散布混合する方法が開示されている。
【0006】
【発明が解決しようとする課題】
しかし、このような固結防止剤は、コンクリートを凝固遅延させる界面活性剤でもあるため、過度に使用するとコンクリートの凝結を遅らせる等、その品質に悪影響を及ぼす。また、ベルトコンベア上から高炉水砕スラグ細骨材に固結防止剤を噴霧すると、ベルトコンベア上の高炉水砕スラグ細骨材全体に一律に行き渡らせることは困難である。その結果、固結防止剤が高炉水砕スラグ細骨材全体に均一に混合されないため、高炉水砕スラグ細骨材の固結防止効果が偏り、薄れると固結防止効果が弱く、濃いとコンクリートに悪影響を生じる。
【0007】
そこで、本発明は、固結防止剤を用いずに固結を防止できる高炉水砕スラグ細骨材と、生産管理が容易で、単純な方法で連続的に固結防止処理を行える高炉水砕スラグの固結防止方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、高炉水砕スラグの固結特性を研究し、固結防止剤のように化学的に固結を抑制するのではなく、物理的に高炉水砕スラグの活性を落とすことで、固結を抑制しようという観点から、硬化反応の面積(比表面積)を小さくすれば、硬化反応を抑制できるという知見を見出し、次の(1)〜(4)のような本発明に到達したものである。
【0009】
(1)0.6mm通過質量百分率を9%以下に粒度調整した高炉水砕スラグからなることを特徴とする高炉水砕スラグ細骨材。
(2)0.6mm通過質量百分率を12%以下に粒度調整した高炉水砕スラグを工業用水で洗浄したものであることを特徴とする高炉水砕スラグ細骨材。
(3)高炉水砕スラグを0.6mm通過質量百分率が9%以下になるように湿式分級することを特徴とする高炉水砕スラグの固結防止方法。
(4)高炉水砕スラグを0.6mm通過質量百分率が12%以下になるように湿式分級し、工業用水で洗浄することを特徴とする高炉水砕スラグの固結防止方法。その際の洗浄は、分級後に篩い上において行うことができ、同じ篩いの上流側で分級、下流側で洗浄すれば、効率的であるとともに、使用する装置も少なくて済む。
【0010】
高炉水砕スラグ細骨材は、長時間野積みしておくと、セメント系水和物が生成して硬化が始まる。その硬化反応は、通常の化学反応と同様に、温度が高いほど、また反応面積(比表面積)が大きいほど、顕著となる。従って、反応面積(比表面積)が小さければ、それだけ反応も小さくなるので、高炉水砕スラグ中の微粒分が少なければ少ないほど固結防止効果があるが、本発明は、製品歩留まりと篩い効率の面で有利であることから、粒度の分級点を0.6mmとしたものである。すなわち、製品歩留まりと篩い効率を確認した結果、粒度の分級点を0.6mmとするのが、最も適していたからである。
【0011】
分級したものをそのまま細骨材とする場合には、0.6mm以下の粒度分の質量百分率を9%以下に抑えないと、通常の固結防止剤(固結遅延剤)を添加した場合と同等以上の効果が得られない。
【0012】
分級後に篩い上において工業用水で水洗することにより、篩上粒子に付着している水和反応促進成分を含む吹製循環水を除去できるため、0.6mm以下の粒子分の質量百分率を12%以下まで増加させても、通常の固結防止剤を添加した場合と同等以上の効果があることが判明した。
【0013】
【発明の実施の形態】
次に、本発明の実施の形態について説明する。
【0014】
図1は、高炉水砕スラグを粒度調整してコンクリート用細骨材とする流れ図である。高炉水砕スラグ1は、ベルトコンベア2にて搬送され、ホッパ3を通じてフィーダ4へ投入される。フィーダ4には吹製循環水7が供給されており、高炉水砕スラグは、フィーダ4にてスラリー化されながら湿式篩い分け装置5のシーブベンド5Aへ送られ、湿式分級される。
【0015】
湿式分級によるオーバーサイズの高炉水砕スラグは、湿式篩い分け装置5の振動スクリーン5B上において、工業用水によるシャワー8にて洗浄され、振動スクリーン5B上に残った高炉水砕スラグが製品9、つまりコンクリート用細骨材として回収され、振動スクリーン5Bを通過した微粉粒の高炉水砕スラグ10は、シーブベンド5Aによるアンダーサイズの高炉水砕スラグと共に製品から除外される。
【0016】
分級には乾式分級と湿式分級があり、湿式分級としては、湿式サイクロン、スパイラル、湿式篩いがよく知られている。本発明者らは、種々の分級試験を行った結果、高炉水砕スラグには、湿式篩いが最も高い分級効率が得られたので、湿式篩い分け装置5を採用した。
【0017】
一般の高炉水砕スラグは、次の表1に示すように、天然砂の粗目砂(5〜0mm)に相当するA品と、中目砂(2.5〜0mm)に相当するB品がある。
【0018】
【表1】

Figure 0003731571
【0019】
前述のように、高炉水砕スラグ中の細粒分が少なければ少ないほど固結防止効果があるが、製品歩留まりと篩い効率の面で有利であることから、本発明では、湿式篩い分け装置5での粒度の分級点を0.6mmとした。
【0020】
そして、湿式分級後、シャワー洗浄しないで製品化する場合には、0.6mm通過質量百分率を9%以下に抑え、またシャワー洗浄して製品化する場合には、湿式分級後の0.6mm通過質量百分率を12%以下に抑えることで、このように粒度分調整した高炉水砕スラグは、固結防止剤(固結遅延剤)を添加しなくとも、後述のように、添加した場合と同等の固結防止効果があることを確認した。すなわち、表1から、原料である高炉水砕スラグにおける0.6mm以下の粒度分布は、A品で質量百分率にして21.5〜24.2%、B品で質量百分率にして36.2〜38.8%で、これをシャワー洗浄しない場合には9%以下まで下げ、またシャワー洗浄する場合には12%以下まで下げることで、実用上満足できる固結防止効果が図れることを見出したものである。
【0021】
図2及び図3のグラフは、A品、B品のそれぞれについて分級しない元の高炉水砕スラグ、すなわち細粒除去率0%の高炉水砕スラグと、これに固結遅延剤(グルコン酸ナトリウム)を0.01%添加したものとについて、固結の進行試験を行い、養生期間(週)と固結部分の長さ割合(%)との関係を示したものである。試験は、吹製循環水を用いて水分7%に調整した試料約30kgをペール缶(直径:28.5cm、高さ30cm)に充填し、ビニール袋で密閉した状態で、40℃の恒温で養生し、一定期間(養生期間:2週、4週、6週、8週)の固結状況を調べた。試料の充填方法は、ペール缶に試料をあふれる程度に入れた後、ペール缶を5cmほど持ち上げ、4回タッピングを行い、ナイフで上部を水平に均した。評価方法は、ペール缶を逆さにしてそれからの排出状況から、充填した試料長さに対する固結部分の長さ割合で示した。
【0022】
図4及び図5は、0.6mm以下の細粒除去率を変え、それが固結速度に与える影響について、上記と同様に調べた試験例のグラフで、A品の細粒除去率は100%、80%、60%、40%、0%とした。B品については細粒除去率77%を更に追加した。すなわち、0.6mm以下を完全に除去したものを細粒除去率100%とし、篩わないものを0%とし、その他の細粒除去率は、0.6mm以下の細粒含有量を比例で示した。実際には、表1の粒度分布を有する高炉水砕スラグを水槽に入れ、充分に撹拌後、目開き1.0mmの網目の篩いに移し、手篩いで篩い試験を行った後、0.6mm以下の細粒除去率を確認した。
【0023】
次の表2は、高炉水砕スラグ細骨材の細粒径0.6mmの細粒除去率と細粒含有率との関係を示し、A品の場合、0.6mm通過質量百分率を60%除去したときの細粒含有は9%であり、B品の場合、0.6mm通過質量百分率を77%除去したときの細粒含有は9%である。
【0024】
【表2】
Figure 0003731571
【0025】
本試験結果から、細粒分(微粉分)が少なければ少ないほど、固結防止効果が現れている。しかし、細粒分(微粉分)を完全に除去するにはコストがかかるため、通常の固結防止剤を使用した場合と同等以上の効果を発揮する程度をもって最大値として管理するのが実用的である。このような観点から、調整水として吹製循環水を使用した場合については、図4のグラフから、A品の場合は0.6mm通過質量百分率を60%以上、図5のグラフから、B品の場合は77%以上除去すれば、通常の固結防止剤を使用した場合と同等以上の効果になっていることから、0.6mm通過質量百分率を9%以下にすれば、充分な固結防止効果が期待できることが分かった。
【0026】
図6及び図7は、A品の場合、0.6mm以下の細粒除去率を100%、80%、60%、45%、40%、0%と変え、B品については細粒除去率77%を更に追加し、それぞれの細粒除去率について篩い上において工業用水で洗浄し、それが固結速度に与える影響について、上記と同様に調べた試験例のグラフである。実際には、上記と同様に、表1の粒度分布を有する高炉水砕スラグを水槽に入れ、充分に撹拌後、目開き1.0mmの網目の篩いに移し、手篩いで篩い試験を行った後、0.6mm以下の細粒除去率を確認し、次に工業用水を使用して水洗した。
【0027】
この場合、水洗前に0.6mm通過質量百分率をA品の場合は45%以上除去、B品の場合は77%以上除去しておけば、通常の固結防止剤を使用した場合と同等以上の効果になっており、表2よりA品の場合は45%除去、B品の場合は70%除去したときの細粒含有率は12%であることから、0.6mm通過質量百分率を12%以下に調整しておいて工業用水(通常の工業用水)で洗浄すれば、充分な固結防止効果が期待できることが分かった。
【0028】
図8は、洗浄水の種類が高炉水砕スラグ細骨材の固結速度に与える影響について調べた試験例のグラフである。本試験では、高炉水砕スラグ細骨材を工業用水で洗浄した後、工業用水で水分調整したもの(種類A)と、工業用水に代えて吹製循環水を用いたもの(種類B)と(図1において吹製循環水のシャワー7’で洗浄)、工業用水を吹製循環水と同等のpH≒9.0になるようにCa(OH)2水で調整したもの(種類C)を対象に、上述の試験条件で養生期間を6週間として、固結速度を調べた。
【0029】
この試験結果から、工業用水を用いた種類Aが最も固結速度が低い。これは単にpHの影響だけではなく、吹製循環水中に含まれるSO4−2イオンを含む付着水と高炉水砕スラグ細骨材から溶出したCa+2、Al+3とが反応して水和反応が促進し、エトリンガイドが生成したためと考えられる。エトリンガイドとは、セメントの水和反応の初期において、石膏の存在下でアルミン酸三カルシウムが水和するときの針状結晶生成物である。このことから、吹製循環水が付着している高炉水砕スラグ細骨材を工業用水で洗浄することが、固結の抑制に著しく効果があることが分かった。
【0030】
図1の流れ図では、湿式篩い分け装置5について、シーブベンド5Aと振動スクリーン5Bとを組み合わせた場合を図示したが、分級と洗浄を1台のスクリーン上で行うことができる。図9は、それを行うバナナ型と言われる篩い分け装置11を示す。
【0031】
【発明の効果】
以上述べたように本発明は、0.6mm通過質量百分率を9%以下に粒度調整することにより、又は0.6mm通過質量百分率を12%以下に粒度調整したものを工業用水で洗浄することにより、固結防止剤(固結遅延剤)を使用することなく高炉水砕スラグ細骨材特有の固結問題を解消できるので、高炉水砕スラグ細骨材の管理が容易になり、高炉水砕スラグのコンクリート用細骨材への有効利用性が格段に向上する。また、固結防止剤(固結遅延剤)を全く使用しなくとも良いので、コンクリートの品質に影響を与えることがなく、信頼性の高いコンクリート用細骨材として提供できる。なお、篩い分けを行うと、アンダーサイズの微粉粒の高炉水砕スラグも得られるが、これをセメント用原料に使用すれば、粉砕効率が向上する。
【図面の簡単な説明】
【図1】 高炉水砕スラグを粒度調整してコンクリート用細骨材とする本発明の一例の流れ図である。
【図2】 表1に示すA品について、細粒除去率0%の高炉水砕スラグと、これに固結遅延剤を0.01%添加したものとについて、固結の進行試験を行い、養生期間(週)と固結部分の長さ割合(%)との関係を示したグラフである。
【図3】 表1に示すB品についての同様のグラフである。
【図4】 A品について、0.6mm以下の細粒除去率を変え、それが固結速度に与える影響について、図2の試験例と同様に調べた試験例のグラフである。
【図5】 B品についての同様のグラフである。
【図6】 0.6mm以下の細粒除去率を変え、更にそれぞれの場合について篩い上において工業用水で洗浄し、それが固結速度に与える影響について、図2の試験例と同様に調べた試験例のグラフである。
【図7】 B品についての同様のグラフである。
【図8】 洗浄水の種類が高炉水砕スラグ細骨材の固結速度に与える影響について調べた試験例のグラフである。
【図9】 分級と洗浄を同じスクリーン上で行うバナナ型篩い分け装置の概要側面図である。
【符号の説明】
1 高炉水砕スラグ
2 ベルトコンベア
3 ホッパ
4 フィーダ
5 湿式篩い分け装置
5A シーブベンド
5B 振動スクリーン
7 吹製循環水
7’ 吹製循環水のシャワー
工業用水によるシャワー
9 製品
10 微粉粒の高炉水砕スラグ
11 バナナ型湿式篩い分け装置[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a blast furnace granulated slag fine aggregate used as a fine aggregate for concrete, and a method for preventing consolidation of blast furnace granulated slag for improving the caking property for the purpose of providing it.
[0002]
[Prior art]
Blast furnace granulated slag is widely used as an alternative to natural sand, which is feared to be depleted, but has the property of solidifying when stored for a long period of time. In particular, the granulated blast furnace slag fine aggregate is lightly crushed to improve the particle shape, so that the property of solidifying by increasing the amount of fine particles becomes remarkable. If the granulated blast furnace granulated slag is consolidated, the water absorption rate is increased, the density is decreased, the quality is remarkably deteriorated, and the concrete production is hindered. In addition, when the granulated blast furnace granulated slag in a storage bottle such as a silo is consolidated, there is a problem that the discharge port is clogged and cannot be supplied.
[0003]
The reason why blast furnace granulated slag is consolidated is as follows.
When the glassy slag is wet, there is a gradual dissolution of Ca 2+ , and a long-term increase in pH, more rapid dissolution of Ca 2+ from fine particles, etc. play the role of stimulant. 4 tetrahedra begins dissolving reticulated structure was SiO 2 chain rings off, calcium trapped in a mesh-like structure of SiO 2, the network-modifying ions, such as aluminum eluted. This is because once this reaction is started, alkali is supplied from the melted blast furnace granulated slag, maintains alkalinity with its own alkali components, and the hydration reaction proceeds to cure.
[0004]
Therefore, various methods have been proposed in the past in order to prevent caking due to such latent hydration hardenability of granulated blast furnace slag.
For example, in Japanese Patent Publication No. 58-35944, an anti-caking agent comprising an aliphatic oxycarboxylic acid, an aliphatic oxycarboxylate salt, or a mixture of these two as an important component was diluted with water. Thereafter, a method is disclosed in which the granulated blast furnace slag is kneaded and mixed with a spray process or a kneader, or the slag is immersed in diluted water.
[0005]
Japanese Patent Publication No. 58-35735 and Japanese Patent Application Laid-Open No. 58-99146 disclose a method of spraying and mixing an anti-caking agent containing lignin sulfonic acid or a salt thereof into blast furnace granulated slag.
[0006]
[Problems to be solved by the invention]
However, since such an anti-caking agent is also a surfactant that delays the solidification of the concrete, excessive use of the anti-caking agent adversely affects the quality of the concrete such as delaying the setting of the concrete. Moreover, when the anti-caking agent is sprayed onto the blast furnace granulated slag fine aggregate from the belt conveyor, it is difficult to uniformly distribute the entire blast furnace granulated slag fine aggregate on the belt conveyor. As a result, the anti-caking agent is not uniformly mixed throughout the blast furnace granulated slag fine aggregate, so the anti-caking effect of the blast furnace granulated slag fine aggregate is biased. Adversely affects.
[0007]
Accordingly, the present invention provides a blast furnace granulated slag fine aggregate that can prevent consolidation without using an anti-caking agent, and a blast furnace granulated granule that is easy to control production and can perform anti-caking treatment continuously in a simple manner. An object is to provide a method for preventing slag consolidation.
[0008]
[Means for Solving the Problems]
The present inventors have studied the consolidation characteristics of granulated blast furnace slag, and do not suppress the consolidation chemically like anti-caking agents, but physically reduce the activity of granulated blast furnace slag. From the viewpoint of suppressing consolidation, the inventors have found that the curing reaction can be suppressed by reducing the area (specific surface area) of the curing reaction, and have reached the present invention as described in the following (1) to (4). Is.
[0009]
(1) A blast furnace granulated slag fine aggregate comprising a granulated blast furnace slag whose particle size is adjusted to 9% or less by 0.6 mm passing mass percentage.
(2) A blast furnace granulated slag fine aggregate obtained by washing blast furnace granulated slag having a particle size of 0.6 mm passing mass percentage adjusted to 12% or less with industrial water .
(3) A method of preventing consolidation of blast furnace granulated slag, which comprises wet-classifying blast furnace granulated slag so that the mass percentage passing through 0.6 mm is 9% or less.
(4) A method for preventing consolidation of blast furnace granulated slag, characterized in that blast furnace granulated slag is wet-classified so that a mass percentage passing through 0.6 mm is 12% or less and washed with industrial water . Washing at that time can be carried out on a sieve after classification, and if classification is performed on the upstream side and washing on the downstream side of the same sieve, it is efficient and less equipment is used.
[0010]
When granulated blast furnace slag fine aggregate is piled up for a long time, cement-based hydrate is generated and hardening begins. The curing reaction becomes more prominent as the temperature is higher and the reaction area (specific surface area) is larger, as in a normal chemical reaction. Therefore, the smaller the reaction area (specific surface area) is, the smaller the reaction is. Therefore, the smaller the amount of fine particles in the granulated blast furnace slag, the more effective the anti-caking effect. Since it is advantageous in terms of surface, the particle size classification point is set to 0.6 mm. That is, as a result of confirming the product yield and sieving efficiency, it was most suitable to set the particle size classification point to 0.6 mm.
[0011]
When the classified material is used as a fine aggregate as it is, unless the mass percentage of a particle size of 0.6 mm or less is suppressed to 9% or less, and when a normal anti-caking agent (caking retarder) is added The same or higher effect cannot be obtained.
[0012]
By washing with industrial water on the sieve after classification, the blown circulating water containing the hydration reaction promoting component adhering to the sieve particles can be removed, so the mass percentage of particles of 0.6 mm or less is 12%. It has been found that even if it is increased to the following, there is an effect equal to or greater than that obtained when a normal anti-caking agent is added.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
[0014]
FIG. 1 is a flow chart of adjusting the particle size of granulated blast furnace slag to obtain a fine aggregate for concrete. The blast furnace granulated slag 1 is conveyed by a belt conveyor 2 and fed into a feeder 4 through a hopper 3. Blowing circulating water 7 is supplied to the feeder 4, and the granulated blast furnace slag is sent to the sieve bend 5 </ b> A of the wet sieving device 5 while being slurried in the feeder 4 and is subjected to wet classification.
[0015]
The oversized blast furnace granulated slag by wet classification is washed by the industrial water shower 8 on the vibrating screen 5B of the wet sieving device 5, and the blast furnace granulated slag remaining on the vibrating screen 5B is the product 9, that is, The fine granulated blast furnace granulated slag 10 collected as fine aggregate for concrete and passed through the vibrating screen 5B is excluded from the product together with the undersized blast furnace granulated slag by the sieve bend 5A.
[0016]
Classification includes dry classification and wet classification, and wet cyclones, spirals, and wet sieves are well known as wet classification. As a result of conducting various classification tests, the present inventors have adopted wet sieving equipment 5 because blast furnace granulated slag has the highest classification efficiency of wet sieving.
[0017]
As shown in Table 1 below, general blast furnace water granulated slag has A product corresponding to coarse sand (5 to 0 mm) of natural sand and B product corresponding to medium mesh sand (2.5 to 0 mm). is there.
[0018]
[Table 1]
Figure 0003731571
[0019]
As described above, the smaller the fine granule content in the granulated blast furnace slag, the more effective the anti-caking effect is. However, since this is advantageous in terms of product yield and sieving efficiency, in the present invention, the wet sieving device 5 The particle size classification point was 0.6 mm.
[0020]
And, when commercializing without shower cleaning after wet classification, the 0.6% passage mass percentage is suppressed to 9% or less, and when commercializing after shower cleaning, 0.6 mm passes after wet classification. By suppressing the mass percentage to 12% or less, the granulated blast furnace slag thus adjusted is equivalent to the case where the anti-caking agent (caking retarder) is added, as described later, without adding an anti-caking agent (caking retarder). It was confirmed that there is an anti-caking effect. That is, from Table 1, the particle size distribution of 0.6 mm or less in the raw material blast furnace granulated slag is 21.5 to 24.2% in terms of mass percentage for product A, and 36.2 in terms of mass percentage for product B. 38.8%, it was found that when it is not shower washed, it is lowered to 9% or less, and when it is shower washed, it is lowered to 12% or less to achieve a caking prevention effect that is practically satisfactory. It is.
[0021]
The graphs of FIGS. 2 and 3 show the original blast furnace granulated slag that is not classified for each of the products A and B, that is, a granulated blast furnace slag with a fine particle removal rate of 0%, and a set retarder (sodium gluconate ) Was added to 0.01%, and a consolidation progress test was conducted to show the relationship between the curing period (weeks) and the length ratio (%) of the consolidated part. In the test, a pail can (diameter: 28.5 cm, height 30 cm) filled with about 30 kg of sample adjusted to 7% moisture using blown circulating water, sealed in a plastic bag, at a constant temperature of 40 ° C. It was cured and examined for consolidation for a certain period (curing period: 2 weeks, 4 weeks, 6 weeks, 8 weeks). The sample was filled in a pail can so that the sample overflowed, then the pail can was lifted about 5 cm, tapped four times, and the upper part was leveled with a knife. The evaluation method was shown by the ratio of the length of the consolidated portion to the length of the filled sample from the state of discharging the pail can upside down.
[0022]
4 and FIG. 5 are graphs of test examples in which the fine particle removal rate of 0.6 mm or less was changed and the influence of the change on the consolidation speed was examined in the same manner as described above. %, 80%, 60%, 40%, and 0%. For product B, a fine particle removal rate of 77% was further added. That is, the removal of 0.6 mm or less is defined as 100% fine particle removal rate, the non-sieving material is defined as 0%, and the other fine particle removal rate is proportional to the fine particle content of 0.6 mm or less. Indicated. Actually, granulated blast furnace slag having the particle size distribution shown in Table 1 was put in a water tank, and after sufficient stirring, transferred to a sieve having a mesh size of 1.0 mm and subjected to a sieve test with a hand sieve, then 0.6 mm The following fine particle removal rate was confirmed.
[0023]
The following Table 2 shows the relationship between the fine particle removal rate of fine granule 0.6 mm and the fine particle content of granulated blast furnace slag fine aggregate, and in the case of product A, 0.6% passage mass percentage is 60%. The fine particle content when removed is 9%, and in the case of product B, the fine particle content is 9% when 0.6% passage mass percentage is removed by 77%.
[0024]
[Table 2]
Figure 0003731571
[0025]
From this test result, the smaller the fine particle content (fine powder content), the more effective the caking prevention effect appears. However, it is costly to completely remove the fine particles (fine powder), so it is practical to manage the maximum value with the degree of effect equivalent to or higher than that when using an ordinary anti-caking agent. It is. From this point of view, when blown circulated water is used as the adjustment water, from the graph of FIG. 4, in the case of A product, the 0.6 mm passage mass percentage is 60% or more, from the graph of FIG. In this case, if 77% or more is removed, the effect is equal to or greater than that obtained when a normal anti-caking agent is used. Therefore, if the 0.6 mm passage mass percentage is 9% or less, sufficient consolidation is achieved. It was found that the prevention effect can be expected.
[0026]
6 and 7 show that the fine particle removal rate of 0.6 mm or less is changed to 100%, 80%, 60%, 45%, 40%, and 0% in the case of product A, and the fine particle removal rate for product B. It is a graph of a test example in which 77% was further added, and the fine particle removal rate was washed with industrial water on a sieve and its influence on the consolidation rate was examined in the same manner as described above. Actually, similarly to the above, blast furnace granulated slag having the particle size distribution shown in Table 1 was put in a water tank, and after sufficient stirring, transferred to a sieve having a mesh size of 1.0 mm, and a sieve test was conducted using a hand sieve. Thereafter, the fine particle removal rate of 0.6 mm or less was confirmed, and then washed with industrial water .
[0027]
In this case, if 0.6% passage mass percentage is removed 45% or more in the case of A product and 77% or more is removed in the case of B product before washing with water , it is equal to or more than when using a normal anti-caking agent. From Table 2, the fine particle content is 12% when 45% is removed from the product A and 70% is removed from the product B from Table 2. Therefore, the mass percentage passing through 0.6 mm is 12%. It was found that a sufficient anti-caking effect can be expected if it is adjusted to less than% and washed with industrial water (ordinary industrial water).
[0028]
FIG. 8 is a graph of a test example in which the effect of the type of washing water on the consolidation speed of granulated blast furnace slag fine aggregate was examined. In this test, after washing the granulated blast furnace slag fine aggregates in industrial water, those moisture control in industrial water and (type A), those using吹製circulating water in place of the industrial water and (Type B) (In FIG. 1, washed with blown circulating water shower 7 ′), industrial water adjusted with Ca (OH) 2 water (type C) so that the pH is equal to 9.0 equivalent to blown circulating water The subject was examined for consolidation rate under the above test conditions with a curing period of 6 weeks.
[0029]
From this test result, the type A using industrial water has the lowest consolidation speed. This is not only the effect of pH, but the adhering water containing SO4-2 ions contained in the blown circulated water reacts with Ca + 2 and Al + 3 eluted from the granulated blast furnace slag fine aggregate to accelerate the hydration reaction. This is probably because the Etrin guide was generated. Etrin guide is an acicular crystal product when tricalcium aluminate hydrates in the presence of gypsum in the early stage of cement hydration. From this, it was found that washing the granulated blast furnace slag fine aggregate to which blown circulating water is adhered with industrial water has a significant effect on suppressing consolidation.
[0030]
In the flowchart of FIG. 1, the case where the sieve bend 5A and the vibrating screen 5B are combined in the wet sieving device 5 is illustrated. However, classification and cleaning can be performed on one screen. FIG. 9 shows a sieving device 11 called a banana type that performs this.
[0031]
【The invention's effect】
As described above, the present invention can be obtained by adjusting the particle size of 0.6 mm passing mass percentage to 9% or less, or by washing the particle size adjusted to 0.6 mm passing mass percentage to 12% or less with industrial water. , Blast furnace granulated slag fine aggregate can be easily managed and blast furnace granulated slag fine aggregate can be solved without using anti-caking agent (caking retarder). Effective utilization of slag for fine aggregate for concrete is greatly improved. Moreover, since it is not necessary to use an anti-caking agent (caking retarder) at all, it can be provided as a highly reliable fine aggregate for concrete without affecting the quality of concrete. In addition, when sieving is performed, ground granulated blast furnace slag of undersize fine particles can be obtained, but if this is used as a raw material for cement, the grinding efficiency is improved.
[Brief description of the drawings]
FIG. 1 is a flowchart of an example of the present invention in which granulated blast furnace slag is finely grained to obtain fine aggregate for concrete.
[Fig. 2] For product A shown in Table 1, a blast furnace granulated slag with a fine particle removal rate of 0% and a caking retarder added to 0.01% were subjected to a consolidation progress test. It is the graph which showed the relationship between a curing period (week) and the length ratio (%) of a consolidation part.
FIG. 3 is a similar graph for product B shown in Table 1.
FIG. 4 is a graph of a test example in which the fine particle removal rate of 0.6 mm or less was changed and the influence of the change on the consolidation speed was examined in the same manner as the test example of FIG.
FIG. 5 is a similar graph for product B.
FIG. 6 shows that the removal rate of fine particles of 0.6 mm or less was changed, and in each case, washing with industrial water on the sieve was performed, and the influence of this on the consolidation speed was examined in the same manner as in the test example of FIG. It is a graph of a test example.
FIG. 7 is a similar graph for product B.
FIG. 8 is a graph of a test example in which the effect of the type of cleaning water on the consolidation rate of granulated blast furnace slag fine aggregate was examined.
FIG. 9 is a schematic side view of a banana sieving device that performs classification and cleaning on the same screen.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Blast furnace granulated slag 2 Belt conveyor 3 Hopper 4 Feeder 5 Wet sieving device 5A Sheave bend 5B Vibrating screen 7 Blowing circulating water 7 'Blowing circulating water shower 8 Shower with industrial water 9 Product 10 Fine granulated blast furnace granulated slag 11 Banana type wet sieving equipment

Claims (6)

0.6mm通過質量百分率を9%以下に粒度調整した高炉水砕スラグからなることを特徴とする高炉水砕スラグ細骨材。  A blast furnace granulated slag fine aggregate comprising a granulated blast furnace slag having a particle size adjusted to 0.6% passing mass percentage to 9% or less. 0.6mm通過質量百分率を12%以下に粒度調整した高炉水砕スラグを工業用水で洗浄したものであることを特徴とする高炉水砕スラグ細骨材。A granulated blast furnace slag fine aggregate obtained by washing blast furnace granulated slag having a particle size of 0.6 mm passing mass percentage adjusted to 12% or less with industrial water . 高炉水砕スラグを0.6mm通過質量百分率が9%以下になるように湿式分級することを特徴とする高炉水砕スラグの固結防止方法。  A method for preventing consolidation of granulated blast furnace slag, characterized in that wet granulation of blast furnace granulated slag is wet-classified so that a mass percentage passing through 0.6 mm is 9% or less. 高炉水砕スラグを0.6mm通過質量百分率が12%以下になるように湿式分級し、工業用水で洗浄することを特徴とする高炉水砕スラグの固結防止方法。A method for preventing caking of blast furnace granulated slag, characterized in that wet granulated blast furnace slag is wet-classified so that the passing mass percentage of 0.6 mm is 12% or less and washed with industrial water . 分級後に篩い上において洗浄することを特徴とする請求項4に記載の高炉水砕スラグの固結防止方法。  The method for preventing caking of granulated blast furnace slag according to claim 4, wherein the slag is washed on a sieve after classification. 同じ篩いの上流側で分級、下流側で洗浄することを特徴とする請求項5に記載の高炉水砕スラグの固結防止方法。  6. The method for preventing consolidation of granulated blast furnace slag according to claim 5, wherein classification is performed on the upstream side of the same sieve and washing is performed on the downstream side.
JP2002237520A 2002-08-16 2002-08-16 Blast furnace granulated slag fine aggregate and method for preventing consolidation of blast furnace granulated slag Expired - Fee Related JP3731571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237520A JP3731571B2 (en) 2002-08-16 2002-08-16 Blast furnace granulated slag fine aggregate and method for preventing consolidation of blast furnace granulated slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237520A JP3731571B2 (en) 2002-08-16 2002-08-16 Blast furnace granulated slag fine aggregate and method for preventing consolidation of blast furnace granulated slag

Publications (2)

Publication Number Publication Date
JP2004075454A JP2004075454A (en) 2004-03-11
JP3731571B2 true JP3731571B2 (en) 2006-01-05

Family

ID=32021238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237520A Expired - Fee Related JP3731571B2 (en) 2002-08-16 2002-08-16 Blast furnace granulated slag fine aggregate and method for preventing consolidation of blast furnace granulated slag

Country Status (1)

Country Link
JP (1) JP3731571B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515214B2 (en) * 2004-10-06 2010-07-28 川崎重工業株式会社 Method for processing molten slag.
JP2007161519A (en) * 2005-12-13 2007-06-28 Jfe Steel Kk Civil engineering and building material and its producing method
JP5321845B2 (en) * 2010-06-22 2013-10-23 新日鐵住金株式会社 Wet classification equipment for steel slag
JP5831227B2 (en) * 2011-12-30 2015-12-09 Jfeスチール株式会社 Process for producing granulated blast furnace slag fine aggregate
CN104973845A (en) * 2015-05-26 2015-10-14 王品伦 Mine tailing filling gel powder and preparation method thereof
CN113499860A (en) * 2021-07-08 2021-10-15 江西新金叶实业有限公司 Efficient flotation method for smelting slag recycled by copper regeneration

Also Published As

Publication number Publication date
JP2004075454A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
RU2599398C2 (en) Method of modifying beta stucco with diethylene-triamine-pentaacetic acid
CA2712063C (en) Process for producing a granular material
JP7152427B2 (en) Method for producing aggregate from returned concrete
JP3731571B2 (en) Blast furnace granulated slag fine aggregate and method for preventing consolidation of blast furnace granulated slag
JP2009028581A (en) Method of fixing carbon dioxide
JPH09165244A (en) Production of gypsum board
JP6084431B2 (en) Water curable cured body
JP2005231947A (en) Method of treating steel slag to make aggregate
JP2020033225A (en) Manufacturing method of artificial stone material
EP0498815B1 (en) Process for producing an active fine aggregate for the preparation of concrete
CN110194627A (en) A kind of regeneration concrete and preparation method thereof
JP2007268431A (en) Concrete reproduction material
JP3847531B2 (en) Steelmaking slag aggregate processing method
TWI634082B (en) Method for treating and mixing inorganic sludge for cold-solidified artificial aggregate
JP2006083062A (en) Fine aggregate and its manufacturing method
JP3831693B2 (en) Classification method of granulated blast furnace slag
JP4654549B2 (en) Method for producing fine-grained recycled fine aggregate
JP3814860B2 (en) Method for producing non-fired aggregate
JP4070024B2 (en) Non-dust solidifying material and method for producing the same
JP2002145650A (en) Production process of concrete aggregate and concrete aggregate
JP2009078934A (en) Quick setting cement concrete, and spraying method
JP7165408B2 (en) Method for producing concrete using shirasu fine aggregate and method for producing fine aggregate for concrete
JP7262896B2 (en) Admixture package and method for producing fast-hardening concrete using admixture package
JP2002121053A (en) Cement/concrete admixture and its production process
JP7120950B2 (en) Method for producing fly ash mixed material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

R150 Certificate of patent or registration of utility model

Ref document number: 3731571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees