JP4654549B2 - Method for producing fine-grained recycled fine aggregate - Google Patents

Method for producing fine-grained recycled fine aggregate Download PDF

Info

Publication number
JP4654549B2
JP4654549B2 JP2001248724A JP2001248724A JP4654549B2 JP 4654549 B2 JP4654549 B2 JP 4654549B2 JP 2001248724 A JP2001248724 A JP 2001248724A JP 2001248724 A JP2001248724 A JP 2001248724A JP 4654549 B2 JP4654549 B2 JP 4654549B2
Authority
JP
Japan
Prior art keywords
aggregate
particle size
fine
sand
fine aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001248724A
Other languages
Japanese (ja)
Other versions
JP2003055012A (en
Inventor
久志 立屋敷
裕和 島
毅之 中戸
剛 美坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001248724A priority Critical patent/JP4654549B2/en
Publication of JP2003055012A publication Critical patent/JP2003055012A/en
Application granted granted Critical
Publication of JP4654549B2 publication Critical patent/JP4654549B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/167Recycled materials, i.e. waste materials reused in the production of the same materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【0001】
【発明の属する技術分野】
本発明は、解体コンクリートから再生された再生細骨材に関するものであり、特に粒度分布の改善を図った粒度調整再生細骨材の製造方法に関するものである。
【0002】
【従来の技術】
近年、資源のリサイクルの観点から、解体に伴って廃棄されるコンクリートからセメントや細骨材、粗骨材等を再生することが行われている。解体コンクリートから再生される再生細骨材としては、例えば砂利からなる粗骨材と、山砂及び川砂からなる細骨材とを含有する解体コンクリートから再生される砂利/山川砂起源の再生細骨材や、砕石からなる粗骨材と、海砂からなる細骨材とを含有する解体コンクリートから再生される砕石/海砂起源の再生細骨材や、砕石からなる粗骨材と、砕砂からなる細骨材とを含有する解体コンクリートから再生される砕石/砕砂起源の再生細骨材などがある。なお、砕石や砕砂は、岩石等を破砕することによって人工的に作り出されたものである。
【0003】
上記再生細骨材は、解体コンクリートを所定の大きさに破砕した後加熱してから、すりもみを行うことによって再生することができる。すりもみ工程では、回転ドラム内にコンクリート破砕材及びすりもみ媒体を投入することにより、コンクリート破砕材同士をこすり合わせたり、コンクリート破砕材とすりもみ媒体とをこすり合わせたりすることにより、各骨材粒から硬化セメントペーストをすり落とすことになる。このすりもみにより、硬化セメントペーストがきれいにすり落とされた高品質の再生細骨材を得ることができる。
【0004】
【発明が解決しようとする課題】
ところで、上記砂利/山川砂起源の再生細骨材をコンクリートの細骨材として用いた場合には、フレッシュコンクリートのワーカビリティ等が良好になるものの、砕石/海砂起源の再生細骨材や砕石/砕砂起源の再生細骨材を用いた場合には、ワーカビリティ等が劣ったものとなるという問題があった。
【0005】
このため、この問題を解決すべく種々のコンクリートについて調査研究を行った。この結果、砂利/山川砂起源の再生細骨材の場合は、細骨材としての0〜5mmの粒度範囲の全体にわたって、骨材粒が偏りなく一定に分布していることがわかり、これによりワーカビリティ等が良好になるということが推定できた。一方、砕石/海砂起源の再生細骨材や砕石/砕砂起源の再生細骨材の場合は、細骨材の粒度範囲のうち、粒度の小さな範囲と、大きな範囲に偏って分布し、中間粒度範囲の骨材粒が不足していることがわかり、これによりワーカビリティ等が劣ったものになるということが推定できた。
【0006】
なお、砂利/山川砂起源の再生細骨材が偏りなく一定に分布するのは、元々の粗骨材や細骨材が全体的に丸く形成されているので、すりもみを行っても形状変化が少なく、新品時の粒度分布をほぼそのまま維持することができるためと考えられる。一方、砕石/海砂起源の再生細骨材や砕石/砕砂起源の再生細骨材が粒度の小さな範囲と大きな範囲に偏って分布するのは、粗骨材としての砕石が角張った形状になっているため、その角張った部分がすりもみによって削られて、細骨材の中でも粒度の大きな骨材粒を増加させる結果となること、また砕石のうち粒度の小さなものがすりもみによって縮小されて細骨材化されることからも、比較的粒度の大きな骨材粒が増加することになると考えられる。また、元々の細骨材として海砂や砕砂を使用したものにあっては、中間粒度範囲(砕砂にあっては中間から細かい範囲)の骨材粒を多く含む粒度分布のものが多く、この範囲のものが摩耗、破砕によって、細骨材の中でも粒度の小さな範囲に移行するということが考えられる。
【0007】
以上の研究の結果、砕石/海砂起源の再生細骨材や砕石/砕砂起源の再生細骨材であっても、その再生細骨材の特定の粒度範囲(中間粒度範囲)における骨材粒の不足分を補うような粒度分布を有する細骨材を混入させることにより、細骨材としての0〜5mmの粒度範囲の全体にわたって、骨材粒が偏りなく一定に分布する細骨材を得ることができ、これによって、フレッシュコンクリートのワーカビリティ等を良好にできるという知見を得た。
【0008】
この発明は、上記知見に基づいてなされたものであり、ワーカビリティ等の向上を図ることのできる粒度調整再生細骨材の製造方法を提供することを課題としている。
【0009】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、解体コンクリートのうち、特に粗骨材として砕石を用いるとともに細骨材として海砂または砕砂を用いた解体コンクリートに対して、すりもみにより硬化セメントペーストをすり落とす処理を施すことによって砕石/海砂起源の再生細骨材または砕石/砕砂起源の再生骨材を回収し、得られた上記砕石/海砂起源の再生細骨材または上記砕石/砕砂起源の再生骨材に、0.3〜1.2mmの中間粒度範囲の骨材粒の量が、細骨材としての全骨材粒の量の50重量パーセント以上の割合となるように分級した天然砂からなる粒度調整細骨材を混在させことを特徴としている。
【0010】
請求項2記載の発明は、請求項1に記載の発明において、上記天然砂が、海砂であることを特徴としている。
【0014】
【発明の実施の形態】
以下、この発明の一実施の形態について詳細に説明する。この実施の形態で示す粒度調整再生細骨材D(図2参照)は、解体コンクリートから再生された再生細骨材に対して粒度調整細骨材を混合することにより、再生細骨材の粒度分布の改善を図ったものである。上記再生細骨材は、砕石からなる粗骨材と、海砂からなる細骨材とを含有する解体コンクリートに対して、すりもみにより硬化セメントペーストをすり落とす処理を施すことによって再生した砕石/海砂起源の再生細骨材Bを用い、上記粒度調整細骨材は、コンクリートとして未使用の新品の海砂Cを用いたものである。
【0015】
上記砕石/海砂起源の再生細骨材Bは、骨材等の再生装置によって、解体コンクリートから再生されたものである。この再生装置は、解体コンクリートを所定の大きさ、例えば最大寸法で5mm以上の大きさ、好ましくは20mm以上の大きさに破砕した後、熱風式の加熱炉において250〜350℃に加熱してからすりもみドラムですりもみすることにより、再生細骨材、再生粗骨材、副産微粉等を得るようになっている。
【0016】
上記加熱炉では、5mm以上や20mm以上の大きさに破砕されたコンクリート破砕材を加熱することになるので、熱風の通りがよく、各コンクリート破砕材を短時間で均等な温度に加熱することができる。この加熱によって、硬化セメントペーストを脱水脆弱化させると共に、細骨材や粗骨材との熱膨張差によって硬化セメントペーストに無数の亀裂を生じさせることができる。このため、加熱後は、硬化セメントペーストが粗骨材や細骨材の各骨材粒から脱落しやすい状態になる。
【0017】
すりもみドラムは、水平方向の軸を中心にして回転する円筒容器を備えており、その容器内に加熱後のコンクリート破砕材を投入して回転することにより、コンクリート破砕材同士、あるいはコンクリート破砕材とすりもみ媒体とをこすり合わせることにより、細骨材や粗骨材から硬化セメントペーストを離脱させるようになっている。すりもみ媒体は、例えば鋼材で形成された球状のものや、断面異形状の棒状のものが用いられる。
【0018】
以上のような再生装置によって、再生細骨材、再生粗骨材、副産微粉等を効率よく回収することができる。
【0019】
また、解体コンクリート内に粗骨材として含まれていた砕石は、元々岩石等からジョークラッシャ等の破砕機を用いて人工的に生成されたものであるため、角張った部分を多く有している。このため、すりもみの際に、砕石の角張った部分が削り取られて、細骨材の中でもより粒度の大きな骨材粒を増加させることになる。しかも、砕石のうち粒度の小さなものは、すりもみによって縮小されて比較的粒度の大きな細骨材となるので、割合的には粒度の大きな骨材粒を増加させることにもなる。また、解体コンクリート内に細骨材として含まれていた海砂は、中間粒度範囲の大きさの骨材粒を多く含むものとなっているため、この範囲のものが摩耗、破砕によって、細骨材の中でもより粒度の小さな骨材粒を増加させることになる。このため、砕石/海砂起源の再生細骨材Bの粒度分布は、粒度の小さな範囲と、大きな範囲において骨材粒の量が多く、中間粒度範囲において骨材粒の量が少ないものとなる。
【0020】
一方、上記海砂Cは、コンクリートとして未使用の新品のものであるが、粒度の小さい範囲と、粒度の大きい範囲において骨材粒の量の少ない粒度分布のものとなっている。即ち、海砂Cは、細骨材としての0〜5mmの粒度範囲において粒度の大きな範囲の骨材粒の量が元々少ないこと、塩分等を洗い流す際に、粒度の小さな範囲の骨材粒が水と一緒に流出してしまうことから、粒度の小さな範囲と、粒度の大きな範囲において骨材粒の量が少なく、中間粒度範囲において骨材粒の量が多い粒度分布のものとなっている。即ち、海砂Cは、砕石/海砂起源の再生細骨材Bの中間粒度範囲(特定の粒度範囲)における骨材粒の不足分を補うような粒度分布を有するものとなっている。
【0021】
このため、上記砕石/海砂起源の再生細骨材Bに上記海砂Cを混合すると、粒度の小さい範囲及び大きい範囲での骨材粒の増加量は小さいが、中間粒度範囲での骨材粒の増加量は大きくなる。このため、砕石/海砂起源の再生細骨材Bと海砂Cとを混合して得た粒度調整再生細骨材Dは、細骨材における0〜5mmの全粒度範囲にわたって、骨材粒が偏りなく一定に分布するものとなる。従って、上記粒度調整再生細骨材Dを使用することによって、フレッシュコンクリートのワーカビリティや単位水量等を良好なものにすることができると共に、硬化コンクリートの強度や耐久性の向上を図ることができる。即ち、コンクリートに要求される基本的特性の向上を図ることができる。
【0022】
【実施例】
次に、この発明の実施例を図1及び図2を参照して説明する。図1及び図2は、横軸にふるい寸法(mm)、縦軸にふるい通過分率(%)をとることにより、細骨材の粒度分布について実際に調べた結果を表示したものである。なお、ふるい寸法は、正方形状に開口するふるい開き目の一辺の寸法を示したものであり、粒度を意味するものとした。ふるい通過分率は、すべてのふるい寸法のふるいを通過する骨材粒の合計重量に対する、0から所定のふるい寸法のふるいまでを通過する骨材粒の合計重量の割合をパーセントで示したものである。即ち、ふるい通過分率は、0から所定のふるい寸法のふるいまでを通過する骨材粒の全重量に対応するものとなっている。従って、各図においては、折線の傾きが大きいほど、その粒度範囲(ふるい寸法範囲)の骨材粒の量が多いことになると共に、折線が一定の傾きで直線状につながるほど、各粒度範囲において骨材粒の過不足の変動が少なく、当該骨材粒が一定に分布していることになる。
【0023】
また、粒度分布の測定結果は、上述した砕石/海砂起源の再生細骨材B及び海砂Cの他に、砂利からなる粗骨材と、山砂からなる細骨材とを含有する解体コンクリートから再生される砂利/山砂起源の再生細骨材Aについても示した。
【0024】
砂利/山砂起源の再生細骨材Aは、図1に示すように、細骨材における0〜5mmの全粒度範囲にわたって、骨材粒が過不足なく一定に分布している(折線が一定の傾きで直線状につながっている)ことがわかる。一方、砕石/海砂起源の再生細骨材Bは、粒度の小さな範囲即ち0〜0.3mmの粒度範囲と、大きな範囲即ち1.2〜5mmの粒度範囲とにおいて、骨材粒の量が多くなっている(折線の傾きが大きくなっている)ことがわかり、かつ中間粒度範囲即ち0.3〜1.2mmの粒度範囲において、骨材粒の量が少なくなっている(折線の傾きが小さくなっている)ことがわかる。即ち、砕石/海砂起源の再生細骨材Bは、0〜0.3mmの粒度の小さな範囲と、1.2〜5mmの粒度の大きな範囲とにおいて骨材粒の量が多く、0.3〜1.2mmの中間粒度範囲において骨材粒の量が少ない粒度分布のものとなっている。
【0025】
海砂Cは、図2に示すように、粒度の小さい範囲即ち0〜0.3mmの粒度範囲と、粒度の大きな範囲即ち1.2〜5mmの粒度範囲において、骨材粒の量が少なくなっている(折線の傾きが小さくなっている)ことがわかり、かつ中間粒度範囲即ち0.3〜1.2mmの粒度範囲において骨材粒の量が多くなっている(折線の傾きが大きくなっている)ことがわかる。因みに、海砂Cについての0.3〜1.2mmの中間粒度範囲における骨材粒の合計量は、全骨材粒の合計量の57重量パーセントである。
【0026】
粒度調整再生細骨材Dは、上記砕石/海砂起源の再生細骨材Bと上記海砂Cとを1:1の割合で混合して得たものであり、0〜0.3mmの粒度範囲及び1.2〜5mmの粒度範囲、0.3〜1.2mmの中間粒度範囲において、砕石/海砂起源の再生細骨材Bの粒度分布と、海砂Cの粒度分布とが平均化された粒度分布となる結果となった。即ち、粒度調整再生細骨材Dは、0〜5mmの粒度範囲にわたって、骨材粒がより一定に分布する(折線がより一定の傾きで直線状につながる)ものとなった。なお、図1及び図2において、点線は、JIS A5308で求められている粒度分布の規格範囲を示している。
【0027】
次に、細骨材として上記砂利/山砂起源の再生細骨材A、砕石/海砂起源の再生細骨材B、粒度調整再生細骨材D、コンクリートとして未使用の山砂を用いてコンクリートのフレッシュ特性について実験したので、その結果を表1を参照して説明する。この実験では、すべてのコンクリートについて、単位水量を180Kg/m3(キログラム/立法メートル)、水セメント比(W/C)を59パーセントとし、粗骨材としては実績率が0.59の砕石を用いた。また、粒度調整再生細骨材Dは、砕石/海砂起源の再生細骨材Bと海砂Cとを1:1の割合で混合したものである。
【0028】
【表1】

Figure 0004654549
【0029】
上記表1から、▲2▼の砕石/海砂起源の再生細骨材Bを用いた場合には、スランプが15.8cmとなり、ワーカビリティが他の細骨材を用いた場合に比べて劣っていることがわかる。また、目視によっても、砕石/海砂起源の再生細骨材Bを用いたコンクリートは、粗粒砂が目立ち、粗骨材とモルタル分とが分離する状態が確認された。従って、実際の施工では、バイブレータ等による充填時間が短い場合などにおいて、ジャンカ(コンクリート中に生じる「す」)等の施工不良の原因となり、硬化後の強度も十分ではないと予想される。
【0030】
一方、▲3▼の粒度調整再生細骨材Dを用いた場合は、スランプが▲1▼の砂利/山砂起源の再生細骨材Aや▲4▼の山砂を用いた場合と同程度の18.0cmとなり、砂利/山砂起源の再生細骨材Aや天然の山砂を用いた場合と同程度のワーカビリティが得られることが確認できた。また、目視によるフレッシュコンクリートの状態も良好であった。即ち、粗骨材とモルタル分との分離もなく、硬化後の強度を十分確保することができると判断できる。
【0031】
なお、上記実施の形態及び実施例においては、砕石/海砂起源の再生細骨材Bと海砂Cとを混合することによって、粒度調整再生細骨材Dを作製したが、砕石/砕砂起源の再生細骨材と海砂Cとを混合することにより粒度調整再生細骨材Dを作製するようにしてもよい。
【0032】
即ち、砕石/砕砂起源の再生細骨材も、上述したように、砕石/海砂起源の再生細骨材Bとほぼ同一の粒度分布を有するものになることから、海砂Cと混合することにより、良質の粒度調整再生細骨材Dを得ることができる。
【0033】
また、上記実施の形態においては、粒度調整細骨材として海砂Cを用いた例を示したが、この粒度調整細骨材としては、中間粒度範囲の骨材粒の量が多くなるように分級した天然砂を用いてもよい。そして、この場合には、0.3〜1.2mmの中間粒度範囲に入る骨材粒の合計量が細骨材としての全骨材粒の合計量の50重量パーセント以上の割合となるように分級することが好ましい。即ち、50重量パーセント以上であれば、砕石/海砂起源の再生細骨材Bや砕石/砕砂起源の再生細骨材の0.3〜1.2mmの中間粒度範囲における骨材粒の不足分を補充して、全粒度範囲にわたって過不足の少ない一定した粒度分布のものに調整できるからである。
【0034】
ただし、より好ましくは、上記割合は50〜80重量パーセントにすることが望ましい。即ち、当該80重量パーセントを超えた粒度調整細骨材を用いなければ骨材粒の補充ができないほど、0.3〜1.2mmの中間粒度範囲における骨材粒が不足する砕石/海砂起源の再生細骨材や砕石/砕砂起源の再生細骨材は極めて少ないからである。
【0035】
また、上記実施例においては、海砂Cとして、0.3〜1.2mmの中間粒度範囲における骨材粒の合計量が全骨材粒の合計量の57重量パーセントの割合となったものを示したが、この割合も上述したように、50重量パーセント以上、より好ましくは50〜80重量パーセントとなるようにしてもよい。
【0036】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、再生細骨材として砕石/海砂起源の再生細骨材を用いているので、再生細骨材をすりもみにより再生する際に、粗骨材としての砕石の角張った部分がすりもみによって削られて、細骨材の中でも粒度の大きな骨材粒を増加させると共に、砕石のうち粒度の小さなものがすりもみによって縮小されて、これも粒度の大きな骨材粒を増加させることになる。また、細骨材としての海砂が中間粒度範囲の大きさの骨材粒を多く含んでいることから、この範囲のものが摩耗、破砕によって、小さな骨材粒の量を増加させることになる。このため、再生細骨材の粒度分布は、粒度の小さな範囲と、大きな範囲に偏ったものとなる。即ち、砕石/海砂起源の再生細骨材は、中間粒度範囲において、骨材粒が不足した粒度分布のものとなる。
【0037】
このため、特定の粒度範囲、即ち上記中間粒度範囲における骨材粒の不足分を補うような粒度分布を有する粒度調整細骨材を、上記砕石/海砂起源の再生細骨材に混合することにより、骨材粒の少ない部分と多い部分とが互いに補われることになるので、細骨材の粒度範囲の全体にわたって、骨材粒が偏りなく一定に分布する細骨材を得ることができる。従って、フレッシュコンクリートのワーカビリティや単位水量等を良好なものにすることができると共に、硬化コンクリートの強度や耐久性の向上を図ることができる。即ち、コンクリートに要求される基本的特性の向上を図ることができる。
【0038】
また、砕石/砕砂起源の再生細骨材上記砕石/海砂起源の再生細骨材と同様の粒度分布となることから、同様の効果を奏することができる。
【0040】
ここで、砕石/海砂起源の再生細骨材や砕石/砕砂起源の再生細骨材における骨材粒が不足する粒度範囲が0.3〜1.2mmの中間粒度範囲になるのに対して、この0.3〜1.2mmの中間粒度範囲の骨材粒の量が細骨材の全骨材粒の量の50重量パーセント以上と多くなっている粒度調整細骨材を用いているので、粒度範囲の全体にわたって、骨材粒が偏りなく一定に分布する細骨材を得ることができる。
【0041】
なお、上記のように、細骨材の全骨材粒の量に対する中間粒度範囲の骨材粒の量の割合を50重量パーセントとしたのは、50重量パーセント以上であれば、砕石/海砂起源の再生細骨材や砕石/砕砂起源の再生細骨材の中間粒度範囲における骨材粒の不足分を補充して、細骨材の全粒度範囲にわたって過不足の少ない一定した粒度分布のものに調整できるからである。
【0042】
さらに、請求項2に記載の発明によれば、粒度調整細骨材として海砂を用いているので、細骨材の粒度範囲の全体にわたって、骨材粒が偏りなく一定に分布する細骨材を得ることができる。即ち、海砂は、細骨材の粒度範囲のうち粒度の大きなものの量が元々少ないこと、及び塩分等を洗い流す際に、粒度の小さなものも一緒に洗い流されてしまうことから、粒度の小さな範囲と、粒度の大きな範囲において骨材粒の少ない粒度分布のものとなっている。
【0043】
また、換言すれば、海砂は、水洗いによるだけで、上述のような0.3〜1.2mmの中間粒度範囲の骨材粒の合計量を全骨材粒の合計量の57重量パーセントに分級することができる天然砂であるといえる。従って、海砂を、砕石/海砂起源の再生細骨材や砕石/砕砂起源の再生細骨材に混合することにより、細骨材の粒度範囲の全体にわたって、偏りなく一定に分布する細骨材を得ることができる。
【図面の簡単な説明】
【図1】この発明の実施例を示す図であって、砂利/山砂起源の再生細骨材及び砕石/海砂起源の再生細骨材の粒度分布について実際に測定した結果を示す図である。
【図2】この発明の実施例を示す図であって、砕石/海砂起源の再生細骨材、海砂及び粒度調整再生細骨材の粒度分布について実際に測定した結果を示す図である。
【符号の説明】
B 砕石/海砂起源の再生細骨材
C 海砂(粒度調整細骨材)
D 粒度調整再生細骨材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a recycled fine aggregate regenerated from demolished concrete, and more particularly to a method for producing a grain size-adjusted recycled fine aggregate with an improved particle size distribution.
[0002]
[Prior art]
In recent years, from the viewpoint of resource recycling, cement, fine aggregate, coarse aggregate, and the like are regenerated from concrete that is discarded along with dismantling. Recycled fine aggregates reclaimed from demolished concrete include, for example, reclaimed fine bones of gravel / Yamakawa sand origin that are regenerated from dismantled concrete containing coarse aggregate composed of gravel and fine aggregate composed of mountain sand and river sand. From crushed stone / recycled fine aggregate derived from demolition concrete containing timber, coarse aggregate made of crushed stone, and fine aggregate made of sea sand, coarse aggregate made of crushed stone, and crushed sand There are reclaimed fine aggregates of crushed stone / crushed sand that are regenerated from demolition concrete containing fine aggregates. Note that crushed stone and crushed sand are artificially produced by crushing rocks and the like.
[0003]
The recycled fine aggregate can be regenerated by crushing the demolished concrete to a predetermined size and then heating and then grinding. In the grinding process, by putting the concrete crushed material and the grinding medium into the rotating drum, each aggregate is rubbed together by rubbing the concrete crushed material with each other or by rubbing the concrete crushed material and the grinding medium. Hardened cement paste will be scraped off the grains. By this grinding, a high-quality recycled fine aggregate from which the hardened cement paste has been scraped off can be obtained.
[0004]
[Problems to be solved by the invention]
By the way, when the above-mentioned recycled fine aggregate derived from gravel / Yamakawa sand is used as the fine aggregate of concrete, the workability of fresh concrete is improved, but the recycled fine aggregate or crushed stone derived from crushed stone / sea sand. / When reclaimed fine aggregate derived from crushed sand is used, there is a problem that workability is inferior.
[0005]
For this reason, research was conducted on various concrete to solve this problem. As a result, in the case of reclaimed fine aggregate derived from gravel / Yamakawa sand, it can be seen that aggregate particles are uniformly distributed throughout the particle size range of 0-5 mm as fine aggregate. It was estimated that workability and the like were improved. On the other hand, in the case of reclaimed fine aggregates derived from crushed stone / sea sand and regenerated fine aggregates derived from crushed stone / crushed sand, the fine particles are distributed in a small and large range within the fine particle size range. It was found that there was a shortage of aggregate particles in the particle size range, and it was estimated that this would result in poor workability.
[0006]
Note that the regenerated fine aggregates from gravel / Yamakawa sand are distributed evenly and uniformly, because the original coarse and fine aggregates are formed in a round shape as a whole. This is because the particle size distribution at the time of a new article can be maintained almost as it is. On the other hand, reclaimed fine aggregates derived from crushed stone / sea sand and regenerated fine aggregates derived from crushed stone / crushed sand are unevenly distributed in a small range and a large range because the crushed stone as coarse aggregate has an angular shape. As a result, the angular part is scraped off by surimi, resulting in an increase in aggregate particles having a large particle size even among fine aggregates, and a small particle size among crushed stones being reduced by surimi. It is considered that aggregate particles having a relatively large particle size will increase due to the fine aggregate. In addition, in the case of using sea sand or crushed sand as the original fine aggregate, many of them have a particle size distribution containing many aggregate particles in the intermediate particle size range (the intermediate to fine range in the case of crushed sand). It is conceivable that those in the range shift to a small particle size range among fine aggregates due to wear and crushing.
[0007]
As a result of the above research, aggregate particles in the specific particle size range (intermediate particle size range) of recycled fine aggregates of crushed stone / sea sand and recycled fine aggregates of crushed stone / crushed sand By mixing a fine aggregate having a particle size distribution that compensates for the shortage of the fine aggregate, a fine aggregate in which the aggregate particles are uniformly distributed over the entire particle size range of 0 to 5 mm as a fine aggregate is obtained. It was possible to improve the workability and the like of fresh concrete.
[0008]
The present invention has been made on the basis of the above knowledge, and an object of the present invention is to provide a method for producing a particle size-adjusted regenerated fine aggregate capable of improving workability and the like.
[0009]
[Means for Solving the Problems]
To solve the above problems, an invention according to claim 1, of the demolition concrete for demolition concrete using sea sand or crushed sand as particularly Rutotomoni fine aggregate used crushed stone as coarse aggregate, by Surimomi Recycled fine aggregate derived from crushed stone / sea sand or recycled aggregate derived from crushed stone / crushed sand is recovered by applying a process of scraping the hardened cement paste, and the obtained recycled fine aggregate derived from crushed stone / crushed sand or obtained above Recycled aggregates of crushed stone / crushed sand origin such that the amount of aggregate particles in the intermediate particle size range of 0.3 to 1.2 mm is a ratio of 50 weight percent or more of the total amount of aggregate particles as fine aggregate is characterized in that the particle size adjustment fine aggregate comprising two classifying the natural sand Ru mix.
[0010]
The invention described in claim 2 is characterized in that , in the invention described in claim 1, the natural sand is sea sand .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail. The particle size-adjusted recycled fine aggregate D shown in this embodiment (see FIG. 2) is obtained by mixing the particle size-adjusted fine aggregate with the recycled fine aggregate regenerated from the demolished concrete. The distribution is improved. The recycled fine aggregate is a crushed stone / recycled material obtained by subjecting demolition concrete containing coarse aggregate made of crushed stone and fine aggregate made of sea sand to scrape the hardened cement paste by grinding. Recycled fine aggregate B derived from sea sand is used, and the fine particle size-adjusted fine aggregate is a fresh sea sand C that is unused as concrete.
[0015]
The reclaimed fine aggregate B derived from crushed stone / sea sand is regenerated from demolished concrete by a regenerator such as aggregate. In this reclaiming device, demolition concrete is crushed into a predetermined size, for example, a maximum size of 5 mm or more, preferably 20 mm or more, and then heated to 250 to 350 ° C. in a hot air heating furnace. Reclaimed fine aggregate, recycled coarse aggregate, by-product fine powder, and the like are obtained by rubbing with a surimi drum.
[0016]
In the above-mentioned heating furnace, the concrete crushed material crushed to a size of 5 mm or more or 20 mm or more is heated. Therefore, hot air is good and each concrete crushed material can be heated to a uniform temperature in a short time. it can. By this heating, the hardened cement paste can be dewatered and embrittled, and innumerable cracks can be generated in the hardened cement paste due to the difference in thermal expansion from fine aggregate and coarse aggregate. For this reason, after heating, the hardened cement paste is likely to fall off from the aggregate particles of the coarse aggregate and the fine aggregate.
[0017]
The surimi drum is provided with a cylindrical container that rotates about a horizontal axis, and the concrete crushing material after heating is put into the container and rotated to rotate the concrete crushing material or between the concrete crushing materials. The hardened cement paste is separated from the fine aggregate and coarse aggregate by rubbing with the grind medium. As the grinding medium, for example, a spherical one made of steel or a rod-like one having an irregular cross section is used.
[0018]
With the above-described regenerating apparatus, regenerated fine aggregate, regenerated coarse aggregate, by-product fine powder and the like can be efficiently recovered.
[0019]
In addition, the crushed stone contained as coarse aggregate in the demolished concrete was originally generated artificially from rocks etc. using a crusher such as a jaw crusher, so it has many angular parts. . For this reason, when grinding, the angular portion of the crushed stone is scraped off, and aggregate particles having a larger particle size are increased among the fine aggregates. In addition, the crushed stone having a small particle size is reduced by grinding and becomes a fine aggregate having a relatively large particle size, and as a result, aggregate particles having a large particle size are also increased. In addition, sea sand contained as fine aggregate in demolished concrete contains a lot of aggregate particles in the middle particle size range. Among the materials, aggregate particles having a smaller particle size are increased. For this reason, the particle size distribution of the reclaimed fine aggregate B derived from crushed stone / sea sand has a large amount of aggregate particles in a small range and a large range, and a small amount of aggregate particles in an intermediate particle size range. .
[0020]
On the other hand, the sea sand C is a new one not used as concrete, but has a particle size distribution in which the amount of aggregate particles is small in a small particle size range and a large particle size range. That is, the sea sand C originally has a small amount of aggregate particles in a large particle size range in a particle size range of 0 to 5 mm as a fine aggregate, and when washing away salt, etc., aggregate particles in a small particle size range. Since it flows out together with water, the amount of aggregate particles is small in the small particle size range and the large particle size range, and the aggregate particle size is large in the intermediate particle size range. That is, the sea sand C has a particle size distribution that compensates for the shortage of aggregate particles in the intermediate particle size range (specific particle size range) of the reclaimed fine aggregate B derived from crushed stone / sea sand.
[0021]
Therefore, when the sea sand C is mixed with the crushed stone / sea sand-origin regenerated fine aggregate B, the increase in aggregate particles in the small and large particle ranges is small, but the aggregate in the intermediate particle size range. The amount of increase in grains increases. For this reason, the particle size-adjusted regenerated fine aggregate D obtained by mixing the crushed stone / sea sand-derived regenerated fine aggregate B and the sea sand C is an aggregate particle over the entire particle size range of 0-5 mm in the fine aggregate. Are distributed uniformly without bias. Therefore, by using the above-mentioned particle size-adjusted regenerated fine aggregate D, it is possible to improve the workability, unit water amount, etc. of fresh concrete and to improve the strength and durability of the hardened concrete. . That is, the basic characteristics required for concrete can be improved.
[0022]
【Example】
Next, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 and FIG. 2 show the results of actual examination of the particle size distribution of fine aggregates, with the horizontal axis representing the sieve size (mm) and the vertical axis representing the sieve passing fraction (%). The sieve size indicates the size of one side of the sieve opening that opens in a square shape, and means the particle size. The sieve passage fraction is the percentage of the total weight of aggregate particles that pass from 0 to a sieve of a given sieve size to the total weight of aggregate particles that pass through a sieve of all sieve sizes. is there. That is, the sieve passage fraction corresponds to the total weight of aggregate particles passing from 0 to a sieve having a predetermined sieve size. Therefore, in each figure, the larger the inclination of the broken line, the greater the amount of aggregate particles in the particle size range (sieving dimension range), and the more the broken line is connected in a straight line with a certain inclination, In this case, the fluctuation of the excess and deficiency of the aggregate particles is small, and the aggregate particles are distributed uniformly.
[0023]
In addition to the above-mentioned recycled fine aggregate B and sea sand C derived from crushed stone / sea sand, the particle size distribution measurement result is a dismantle containing coarse aggregate made of gravel and fine aggregate made of mountain sand. Recycled fine aggregate A from gravel / mountain sand recycled from concrete is also shown.
[0024]
As shown in FIG. 1, the regenerated fine aggregate A of gravel / mountain sand has a uniform distribution of aggregate particles over and over the entire particle size range of 0-5 mm in the fine aggregate (the broken line is constant). (It is connected in a straight line with the inclination of On the other hand, the recycled fine aggregate B derived from crushed stone / sea sand has an aggregate particle amount in a small particle size range, that is, a particle size range of 0 to 0.3 mm, and a large particle size range of 1.2 to 5 mm. It can be seen that there is an increase (the inclination of the broken line is increased), and in the intermediate particle size range, that is, the particle size range of 0.3 to 1.2 mm, the amount of aggregate particles is reduced (the inclination of the broken line is (It is getting smaller) That is, the recycled fine aggregate B derived from crushed stone / sea sand has a large amount of aggregate particles in a small range of 0 to 0.3 mm particle size and a large range of 1.2 to 5 mm particle size. In the intermediate particle size range of ˜1.2 mm, the amount of aggregate particles is small.
[0025]
As shown in FIG. 2, the sea sand C has a small amount of aggregate particles in a small particle size range, that is, a particle size range of 0 to 0.3 mm, and a large particle size range, that is, a particle size range of 1.2 to 5 mm. (The inclination of the broken line is reduced), and the amount of aggregate particles is increased in the intermediate particle size range, that is, the particle size range of 0.3 to 1.2 mm (the inclination of the broken line is increased). I understand). Incidentally, the total amount of aggregate particles in the intermediate particle size range of 0.3 to 1.2 mm for sea sand C is 57 weight percent of the total amount of all aggregate particles.
[0026]
The particle size-adjusted regenerated fine aggregate D is obtained by mixing the crushed stone / sea sand-origin regenerated fine aggregate B and the sea sand C in a ratio of 1: 1, and has a particle size of 0 to 0.3 mm. Average particle size distribution of reclaimed fine aggregate B originating from crushed stone / sea sand and particle size distribution of sea sand C in the range, 1.2-5 mm particle size range, and 0.3-1.2 mm intermediate particle size range As a result, the obtained particle size distribution was obtained. That is, in the particle size-adjusted regenerated fine aggregate D, the aggregate particles are more uniformly distributed over the particle size range of 0 to 5 mm (the broken line is connected in a straight line with a more constant inclination). In FIG. 1 and FIG. 2, the dotted line indicates the standard range of the particle size distribution determined by JIS A5308.
[0027]
Next, using the above-mentioned reclaimed fine aggregate A of gravel / mountain sand, reclaimed fine aggregate B of crushed stone / sea sand, particle size-adjusted reclaimed fine aggregate D, and unused pile sand as concrete. Since the experiment was conducted on the fresh properties of concrete, the results will be described with reference to Table 1. In this experiment, for all concrete, the unit water volume is 180 kg / m3 (kilogram / legal meter), the water-cement ratio (W / C) is 59%, and the coarse aggregate has a record rate of 0.59. It was. The particle size-adjusted regenerated fine aggregate D is a mixture of reclaimed fine aggregate B derived from crushed stone / sea sand and sea sand C in a ratio of 1: 1.
[0028]
[Table 1]
Figure 0004654549
[0029]
From Table 1 above, when the crushed stone / sea sand-derived recycled fine aggregate B of (2) is used, the slump is 15.8 cm, which is inferior to the workability when using other fine aggregates. You can see that Further, it was confirmed by visual observation that the concrete using the reclaimed fine aggregate B derived from crushed stone / sea sand had a coarse sand and the coarse aggregate and mortar were separated. Therefore, in the actual construction, when the filling time by a vibrator or the like is short, it causes a construction failure such as a junker (“su” generated in the concrete), and the strength after curing is expected to be insufficient.
[0030]
On the other hand, when using the fine-grained adjusted fine aggregate D of (3), the slump is the same as when using recycled fine aggregate A of gravel / mountain sand of (1) or mountain sand of (4). It was confirmed that the same workability as that obtained when using reclaimed fine aggregate A of gravel / mountain sand or natural mountain sand was obtained. Moreover, the state of the fresh concrete visually was also good. That is, it can be determined that there is no separation between the coarse aggregate and the mortar, and the strength after hardening can be sufficiently secured.
[0031]
In the above-described embodiment and examples, the regenerated fine aggregate B derived from crushed stone / sea sand is mixed with the sea sand C to prepare a particle size-adjusted regenerated fine aggregate D. The regenerated fine aggregate D may be prepared by mixing the regenerated fine aggregate and sea sand C.
[0032]
That is, the reclaimed fine aggregate derived from crushed stone / crushed sand has the same particle size distribution as the regenerated fine aggregate B derived from crushed stone / sea sand, as described above. As a result, it is possible to obtain a fine particle size-adjusted recycled fine aggregate D.
[0033]
Moreover, in the said embodiment, although the example using the sea sand C was shown as a particle size adjustment fine aggregate, as this particle size adjustment fine aggregate, so that the quantity of the aggregate particle of an intermediate particle size range may increase. Classified natural sand may be used. In this case, the total amount of aggregate particles falling in the intermediate particle size range of 0.3 to 1.2 mm is 50% by weight or more of the total amount of all aggregate particles as the fine aggregate. It is preferable to classify. That is, if it is 50 weight percent or more, there is a shortage of aggregate particles in the intermediate particle size range of 0.3 to 1.2 mm of recycled fine aggregate B derived from crushed stone / sea sand or recycled fine aggregate derived from crushed stone / crushed sand. This is because it can be adjusted to a constant particle size distribution with little excess or deficiency over the entire particle size range.
[0034]
However, more preferably, the ratio is 50 to 80 weight percent. That is, the crushed stone / sea sand origin that lacks aggregate particles in the intermediate particle size range of 0.3 to 1.2 mm so that the aggregate particles cannot be replenished without using the fine particle-adjusted fine aggregate exceeding 80 weight percent. This is because there are very few regenerated fine aggregates and regenerated fine aggregates derived from crushed stone / crushed sand.
[0035]
Moreover, in the said Example, as sea sand C, the total amount of the aggregate grain in the intermediate particle size range of 0.3-1.2 mm became a ratio of 57 weight percent of the total amount of all aggregate grains. Although shown, this ratio may also be 50 weight percent or more, more preferably 50 to 80 weight percent, as described above.
[0036]
【The invention's effect】
As described above, according to the invention described in claim 1, since regenerated fine aggregate derived from crushed stone / sea sand is used as the regenerated fine aggregate, when regenerating the regenerated fine aggregate with surimi, The angular part of the crushed stone as coarse aggregate is shaved by grinding, increasing the aggregate grain of large particle size among the fine aggregates, and the smaller one of the crushed stone is reduced by grinding. Will also increase the aggregate grain size. In addition, since the sea sand as fine aggregate contains many aggregate particles in the intermediate particle size range, those in this range will increase the amount of small aggregate particles due to wear and crushing. . For this reason, the particle size distribution of the reclaimed fine aggregate is biased to a small particle size range and a large range. That is, the regenerated fine aggregate derived from crushed stone / sea sand has a particle size distribution with insufficient aggregate particles in the intermediate particle size range.
[0037]
For this reason, a fine- grained fine aggregate having a particle size distribution that compensates for the shortage of aggregate particles in a specific particle size range, that is, the intermediate particle size range, is mixed with the recycled fine aggregate derived from the crushed stone / sea sand. As a result, a portion with a small amount of aggregate particles and a portion with a large amount of aggregate are complemented with each other, so that it is possible to obtain a fine aggregate in which aggregate particles are uniformly distributed over the entire particle size range of the fine aggregate. Therefore, it is possible to improve the workability and unit water amount of fresh concrete, and to improve the strength and durability of the hardened concrete. That is, the basic characteristics required for concrete can be improved.
[0038]
Moreover, crushed stone / crushed sand origin of reproduction fine aggregate also the crushed stone / sand origin of reproduction fine aggregate and found either be the same particle size distribution, can achieve the similar effect.
[0040]
Here, the particle size range in which aggregate particles are insufficient in reclaimed fine aggregate derived from crushed stone / sea sand and regenerated fine aggregate derived from crushed stone / crushed sand is an intermediate particle size range of 0.3 to 1.2 mm. Because the particle size-adjusted fine aggregate in which the amount of aggregate particles in the intermediate particle size range of 0.3 to 1.2 mm is greater than 50 weight percent of the total amount of fine aggregate particles is used. Thus, it is possible to obtain a fine aggregate in which aggregate grains are uniformly distributed over the entire particle size range.
[0041]
As described above, the ratio of the amount of aggregate particles in the intermediate particle size range to the amount of all aggregate particles in the fine aggregate is 50 weight percent. A fixed particle size distribution with little excess or deficiency over the entire particle size range of the fine aggregate, supplementing the shortage of aggregate particles in the intermediate particle size range of regenerated fine aggregates of origin and crushed stone / crushed sand origin It is because it can adjust to.
[0042]
Furthermore, according to the invention described in claim 2, since sea sand is used as the particle size-adjusted fine aggregate, the fine aggregate in which the aggregate particles are uniformly distributed over the entire particle size range of the fine aggregate. Can be obtained. In other words, sea sand has a small particle size range because the amount of fine particles in the fine particle size range is originally small, and when the salt content is washed away, the small particle size is also washed away. In a large particle size range, the aggregate particle size distribution is small.
[0043]
In other words, the sea sand is only washed by water, and the total amount of aggregate particles in the intermediate particle size range of 0.3 to 1.2 mm as described above is changed to 57 weight percent of the total amount of all aggregate particles. It can be said that it is natural sand that can be classified. Therefore, by mixing sea sand with reclaimed fine aggregate derived from crushed stone / sea sand or regenerated fine aggregate derived from crushed stone / crushed sand, fine bone distributed uniformly throughout the particle size range of fine aggregate. A material can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention, and is a diagram showing the results of actual measurement of the particle size distribution of reclaimed fine aggregate derived from gravel / mountain sand and reclaimed fine aggregate derived from crushed stone / sea sand. is there.
FIG. 2 is a diagram showing an embodiment of the present invention, and is a diagram showing the results of actual measurement of particle size distribution of crushed stone / sea sand-derived recycled fine aggregate, sea sand, and particle size-adjusted recycled fine aggregate. .
[Explanation of symbols]
B Recycled fine aggregate of crushed stone / sea sand C Sea sand (fine-grained fine aggregate)
D Particle size adjusted recycled fine aggregate

Claims (2)

解体コンクリートのうち、特に粗骨材として砕石を用いるとともに細骨材として海砂または砕砂を用いた解体コンクリートに対して、すりもみにより硬化セメントペーストをすり落とす処理を施すことによって砕石/海砂起源の再生細骨材または砕石/砕砂起源の再生骨材を回収し、得られた上記砕石/海砂起源の再生細骨材または上記砕石/砕砂起源の再生骨材に、0.3〜1.2mmの中間粒度範囲の骨材粒の量が、細骨材としての全骨材粒の量の50重量パーセント以上の割合となるように分級した天然砂からなる粒度調整細骨材を混在させことを特徴とする粒度調整再生細骨材の製造方法 Of demolition concrete, especially for demolition concrete using sea sand or crushed sand as Rutotomoni fine aggregate used crushed stone as coarse aggregate, crushed stone / by performing a process of decreasing sliding the cured cement paste by Surimomi sand The regenerated fine aggregate of origin or the regenerated aggregate of crushed stone / crushed sand is recovered, and the obtained reclaimed fine aggregate of crushed stone / sea sand origin or the regenerated aggregate of crushed stone / crushed sand origin is 0.3-1 Mix fine particle size-adjusted fine aggregate composed of natural sand classified so that the amount of aggregate particles in the intermediate particle size range of 2 mm is 50 weight percent or more of the total amount of aggregate particles as fine aggregate. manufacturing method of particle size control playback fine aggregate, characterized in that that. 上記天然砂が、海砂であることを特徴とする請求項1に記載の粒度調整再生細骨材の製造方法 The method for producing a fine particle-adjusted recycled fine aggregate according to claim 1 , wherein the natural sand is sea sand .
JP2001248724A 2001-08-20 2001-08-20 Method for producing fine-grained recycled fine aggregate Expired - Lifetime JP4654549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001248724A JP4654549B2 (en) 2001-08-20 2001-08-20 Method for producing fine-grained recycled fine aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001248724A JP4654549B2 (en) 2001-08-20 2001-08-20 Method for producing fine-grained recycled fine aggregate

Publications (2)

Publication Number Publication Date
JP2003055012A JP2003055012A (en) 2003-02-26
JP4654549B2 true JP4654549B2 (en) 2011-03-23

Family

ID=19077841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001248724A Expired - Lifetime JP4654549B2 (en) 2001-08-20 2001-08-20 Method for producing fine-grained recycled fine aggregate

Country Status (1)

Country Link
JP (1) JP4654549B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1531148A1 (en) * 2003-11-14 2005-05-18 I.C.R.S. Industrial Ceramic Reinforcement Solution S.r.L. A panel in particular for raised flooring and a process for manufacturing said panel
JP4844916B2 (en) * 2005-05-10 2011-12-28 宇部テクノエンジ株式会社 High quality crushed sand production method
CN103145377A (en) * 2012-12-28 2013-06-12 上海寰保渣业处置有限公司 Cement stabilized macadam with part of fine aggregate replaced with machine-made sand produced by construction decoration rubbish
CN103159422A (en) * 2013-04-19 2013-06-19 上海寰保渣业处置有限公司 Concrete formed by partially replacing natural sand with mechanical sand produced by utilizing construction decoration wastes
JP7049199B2 (en) * 2018-07-05 2022-04-06 大成建設株式会社 How to adjust the grain size of concrete aggregate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059757A (en) * 1996-08-13 1998-03-03 Mitsubishi Materials Corp Device for regenerating concrete scrap
JPH10226546A (en) * 1997-02-12 1998-08-25 Mitsubishi Materials Corp Aggregate for concrete and its production
JP2000290049A (en) * 1999-04-09 2000-10-17 Kawatetsu Mining Co Ltd Fine aggregate for concrete and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059757A (en) * 1996-08-13 1998-03-03 Mitsubishi Materials Corp Device for regenerating concrete scrap
JPH10226546A (en) * 1997-02-12 1998-08-25 Mitsubishi Materials Corp Aggregate for concrete and its production
JP2000290049A (en) * 1999-04-09 2000-10-17 Kawatetsu Mining Co Ltd Fine aggregate for concrete and its production

Also Published As

Publication number Publication date
JP2003055012A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
JP5597467B2 (en) Manufacturing method of recycled concrete
JP4676245B2 (en) Method for producing recycled fine aggregate, and recycled fine aggregate
JP2006111523A (en) Method for manufacturing regenerated aggregate
JP2008208606A (en) Recycled aggregate manufacturing method and recycled porous asphalt mixture manufacturing method
JP4654549B2 (en) Method for producing fine-grained recycled fine aggregate
JP2002193646A (en) Spherical polished concrete aggregate using concrete waste and its manufacturing method
JP3518736B2 (en) Method for producing granulated blast furnace slag sand
JP2003252664A (en) Aggregate impregnated with waste concrete using waste concrete and its manufacturing method
JP2021139101A (en) Manufacturing method and manufacturing device of recycled asphalt mixture
JP2004218337A (en) Soil-cement wall reclamation material
JP3663582B2 (en) Manufacturing method of waste concrete impregnated aggregate using waste concrete material
JP2003261905A (en) Filler for asphalt mixture
JP2008094640A (en) Method of manufacturing ceramic product
JP2004083336A (en) Fresh concrete, its producing method, and concrete formed article formed from the fresh concrete
JP3348380B2 (en) Round polished aggregate and method for producing round polished aggregate
JP7165408B2 (en) Method for producing concrete using shirasu fine aggregate and method for producing fine aggregate for concrete
JP2007126343A (en) Mixed aggregate, usage method and manufacturing method thereof
JPH07300356A (en) Method for recovering regenerated aggregate
CN108314385A (en) A kind of C40 regeneration concretes and preparation method thereof
JP2006083062A (en) Fine aggregate and its manufacturing method
Ifeanyi et al. Structural Behavior of Concrete Produced Using Palm Kernel Shell (PKS) as a Partial Substitute for Coarse Aggregate
JP7407491B1 (en) Method for producing recycled fine aggregate for concrete and method for producing ready-mixed concrete
JP4476377B2 (en) Pavement regeneration method and apparatus
CN113480216A (en) Waste concrete recycling system and method and product thereof
JP2003235343A (en) Method for producing porous granular body having raw material inorganic waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4654549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term