JP3731529B2 - Biodegradable resin cross-linked foam and production method - Google Patents

Biodegradable resin cross-linked foam and production method Download PDF

Info

Publication number
JP3731529B2
JP3731529B2 JP2001364400A JP2001364400A JP3731529B2 JP 3731529 B2 JP3731529 B2 JP 3731529B2 JP 2001364400 A JP2001364400 A JP 2001364400A JP 2001364400 A JP2001364400 A JP 2001364400A JP 3731529 B2 JP3731529 B2 JP 3731529B2
Authority
JP
Japan
Prior art keywords
resin
biodegradable resin
foam
continuous sheet
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001364400A
Other languages
Japanese (ja)
Other versions
JP2003165862A (en
Inventor
善之 岡
房吉 秋丸
純一 田井中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001364400A priority Critical patent/JP3731529B2/en
Publication of JP2003165862A publication Critical patent/JP2003165862A/en
Application granted granted Critical
Publication of JP3731529B2 publication Critical patent/JP3731529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、連続シート状生分解性樹脂架橋発泡体の製造方法に関するものである。
【0002】
【従来の技術】
従来より、ポリオレフィン系樹脂発泡体、ポリウレタン系樹脂発泡体等の樹脂発泡体が軽量性、断熱性、成形性、緩衝性等に優れていることから、広く工業的に用いられてきた。しかし、これらの樹脂発泡体は、軽量ではあるものの廃棄する場合には嵩張り、再利用が困難であった。特に、樹脂を架橋させた架橋樹脂発泡体の場合は、リサイクルは事実上不可能であるという欠点があった。また、これらの樹脂発泡体は、土中に埋没しても半永久的に地中に残存し、焼却あるいは埋め立てによるゴミ廃棄場所の確保等で地球環境を汚染し、自然の景観を損なう場合も少なくなかった。
【0003】
このため、自然環境中で微生物等により分解される生分解性樹脂が研究、開発され、フィルムや繊維として商品化されている。また、生分解性樹脂の押し出し発泡体についても開発されており、例えば、生分解性樹脂として脂肪族ポリエステル樹脂を用いた発泡体が知られている。しかし、脂肪族ポリエステル樹脂は、重縮合時に発生する水による加水分解等の副反応により高分子量化が難しいため、押し出し発泡時に気泡を保持するための十分な溶融粘度が得られず、良好な気泡状態及び表面状態を有する発泡体を得るのが困難であった。これを解決する方法として、例えば、特開平11−279311号公報では、ラクトン樹脂を用いた発泡樹脂が提案されている。
【0004】
【発明が解決しようとする課題】
しかし、ラクトン樹脂は、架橋時に崩壊も同時に進行するため、発泡時に気泡を十分保持するための溶融粘度が得にくく、表面形態の良好な発泡体を得ることは困難であった。さらに、架橋度の高い発泡体を得るためには非常に高いエネルギーで放射線処理を行わなければならないという欠点があった。
【0005】
本発明は、かかる従来技術の背景に鑑み、低いエネルギーで架橋処理ができ、かつ、表面形態の良好な連続シート状生分解性樹脂架橋発泡体の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、かかる課題を解決するために誠意検討した結果、次のような手段を採用するものである。すなわち、本発明は、
(1)ラクトン樹脂を50重量%以上含む生分解性樹脂と熱分解型発泡剤と架橋助剤とを含む樹脂組成物をシート状に成形し連続シート状生分解性樹脂を得る工程、該連続シート状生分解性樹脂に電離性放射線を照射して架橋させて、架橋連続シート状生分解性樹脂を得る工程、さらに該架橋連続シート状生分解性樹脂を該熱分解型発泡剤の分解温度以上の温度で熱処理し連続シート状生分解性樹脂架橋発泡体とする工程を含むことを特徴とする連続シート状生分解性樹脂架橋発泡体の製造方法である。
【0007】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について具体的に説明する。
【0008】
本発明で使用するラクトン樹脂としては、例えば、ε−カプロラクトン、β−プロピオラクトン、γ−ブチロラクトン、δ−バレロラクトン、エナントラクトンや4−メチルカプロラクトン、2,2,4−トリメチルカプロラクトン、3,3,5−トリメチルカプロラクトンなどの各種メチル化ラクトンの単独重合体、又は共重合体、及びそれらの混合物などがあげられる。
【0009】
本発明で用いられる生分解性樹脂としては、ラクトン樹脂を100%使用しても良いし、ラクトン樹脂以外の生分解性樹脂を含んでいても良い。本発明で用いられるラクトン樹脂以外の生分解性樹脂としては、例えば合成高分子としては、ポリ乳酸、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート、ポリブチレンサクシネート・カーボネート等の脂肪族ポリエステル、酢酸セルロース、セルロースブチレート、セルロースプロピオネート、硝酸セルロース、硫酸セルロース、セルロースアセテートブチレート、硝酸酢酸セルロース等の生分解性セルロースエステル等があげられる。また、合成高分子として、ポリグルタミン酸、ポリアスパラギン酸、ポリロイシン等のポリペプチドや、ポリビニルアルコール等も例示できる。また、天然高分子としては、例えば、澱粉としてトウモロコシ澱粉、コムギ澱粉、コメ澱粉などの生澱粉、酢酸エステル化澱粉、メチルエーテル化澱粉、アミロース等の加工澱粉等が挙げられる。また、セルロース、カラギーナン、キチン・キトサン質、ポリヒドロキシブチレート・バリレート等の天然直鎖状ポリエステル系樹脂等の天然高分子等が例示できる。また、これらの生分解性樹脂を構成する成分の共重合体であっても良い。これらの生分解性樹脂は、単独で用いても良いし、2種類上併用しても良い。
【0010】
ラクトン樹脂以外の生分解性樹脂としては、好ましくは、脂肪族ポリエステル、生分解性セルロースエステル、ポリペプチド、ポリビニルアルコール、澱粉、セルロース、キチン・キトサン質および天然直鎖状ポリエステル系樹脂から選ばれる少なくとも一種が用いられる。
【0011】
本発明に使用する生分解性樹脂中のラクトン樹脂の割合は、50重量%以上であることが重要であり、好ましくは60重量%以上である。
【0012】
本発明において、樹脂組成物中の全樹脂成分に対する生分解性樹脂の割合は特に限定されないが、50重量%以上で、かつ、生分解性樹脂量が増えるほど、分解速度が速くなり、また、分解後の崩形性が向上する。かかる生分解性樹脂以外の樹脂成分としては特に制限は無く、例えば、超低密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、ポリプロピレン、エチレン−プロピレンゴム、ポリ酢酸ビニル、ポリブテン等を添加することができる。
【0013】
本発明で使用する熱分解型発泡剤とは熱分解温度を有する発泡剤であれば特に限定されないが、例えば、アゾジカルボンアミド、ベンゼンスルホニルヒドラジド、ジニトロソペンタメチレンテトラミン、トルエンスルホニルヒドラジド、アゾビスイソブチロニトリル、アゾジカルボン酸バリウム等を挙げることができる。これらは単独で用いても良いし、併用しても良く、樹脂組成物100重量部に対して、好ましくは1〜50重量部の割合で使用され、より好ましくは4〜25重量部である。熱分解型発泡剤の添加量は、少なすぎると樹脂組成物の発泡性が低下し、多すぎると得られる発泡体の強度、並びに耐熱性が低下する傾向がある。
【0014】
本発明で使用する架橋助剤は特に限定されないが、従来公知の多官能性モノマー、例えば、1,6−ヘキサンジオールジメタクリレート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、テトラメチロールメタントリアクリレート、1,9−ノナンジオールジメタクリレート、1,10−デカンジオールジメタクリレート等のアクリレート系又はメタクリレート系の化合物;トリメリット酸トリアリルエステル、ピロメリット酸トリアリルエステル、シュウ酸ジアリル等のカルボン酸のアリルエステル;トリアリルシアヌレート、トリアリルイソシアヌレート等のシアヌール酸又はイソシアヌール酸のアリルエステル;N−フェニルマレイミド、N,N’−m−フェニレンビスマレイミド等のマレイミド系化合物;フタル酸ジプロパギル、マレイン酸ジプロパギル等の2個以上の三重結合を有する化合物;ジビニルベンゼンなどの多官能性モノマーを使用することができ、取り扱いやすさや生分解性などの観点から、1,6−ヘキサンジオールジメタクリレート等のエステル系の多官能性モノマーが好ましく用いられる。
【0015】
これらの多官能モノマーは、それぞれ単独で用いても、あるいは2種以上を組み合わせて用いることもできる。
【0016】
これらの多官能モノマーの添加量は、少なすぎると良好な架橋発泡体が得にくく、多すぎると得られた発泡体の成形性が低下する傾向があるため、樹脂組成物100重量部に対して、好ましくは0.5〜10重量部、より好ましくは1〜6重量部である。
【0017】
本発明に使用する樹脂組成物中には、本発明の効果を阻害しない範囲において、熱分解型発泡剤、架橋助剤以外の添加剤成分を添加しても良い。例えば、添加剤として架橋剤、酸化防止剤、滑剤、熱安定剤、顔料、難燃剤、帯電防止剤、核剤、可塑剤、抗菌剤、生分解促進剤、光安定剤、紫外線吸収剤、ブロッキング防止剤、充填剤、防臭剤、増粘剤、発泡助剤、気泡安定剤、金属害防止剤などを単独、もしくは2種類以上併用して添加しても良い。
【0018】
本発明において、樹脂組成物を架橋する方法は特に限定されず、例えば、電離性放射線を所定線量照射する方法、過酸化物による架橋、シラン架橋などを挙げることができる。
【0019】
電離性放射線としては、例えば、α線、β線、γ線、電子線等を挙げることができる。電離性放射線の照射線量は、架橋助剤の種類、量、目的とする架橋度等によって異なるが、通常1〜500kGy、好ましくは5〜300kGyである。照射線量が少なすぎると発泡成形時に気泡を保持するために十分な溶融粘度が得られず、多すぎると得られる発泡体の成形加工性が低下する。
【0020】
本発明において、発泡は、架橋した樹脂組成物を熱分解型発泡剤の熱分解温度以上に加熱することで、通常行われる。
【0021】
本発明の発泡体の発泡倍率は、1.5〜50倍であることが好ましい。発泡倍率が1.5倍を下回ると軽量性、柔軟性が低下傾向となり、また、発泡倍率が50倍を上回ると機械的特性および成形加工性が低下傾向となる。
【0022】
本発明の発泡体のゲル分率は3%以上であることが好ましい。ゲル分率が3%を下回ると、得られる発泡体の二次加工性が低下傾向となる。
【0023】
本発明でいうゲル分率とは、以下の方法にて算出した値のことである。すなわち、生分解性樹脂架橋発泡体を約50mg精密に秤量し、130℃のテトラリン25mlに3時間浸漬した後、200メッシュのステンレス製金網で濾過して、金網状の不溶解分を真空乾燥する。次いで、この不溶解分の重量を精密に秤量し、以下の式に従ってゲル分率を百分率で算出した。
ゲル分率(%)={不溶解分の重量(mg)/秤量した生分解性樹脂架橋発泡体の重量(mg)}×100
次に、本発明の生分解性樹脂架橋発泡体の好ましい製造方法について説明する。
【0024】
本発明の連続シート状生分解性樹脂架橋発泡体の製造方法は、ラクトン樹脂を50重量%以上含む生分解性樹脂と熱分解型発泡剤と架橋助剤とを含む樹脂組成物を、シート状に成形し連続シート状生分解性樹脂を得る工程、該連続シート状生分解性樹脂に電離性放射線を照射して架橋させて、架連続シート状生分解性樹脂を得る工程、さらに該架橋連続シート状生分解性樹脂を該熱分解型発泡剤の分解温度以上の温度で熱処理し連続シート状生分解性樹脂架橋発泡体とする工程を含むことを特徴とするものである。具体的には、例えば、下記の製造方法などが挙げられる。
【0025】
ラクトン樹脂を50重量%以上含む生分解性樹脂と熱分解型発泡剤と架橋助剤とを含む樹脂組成物を単軸押出機、二軸押出機、バンバリーミキサー、ニーダーミキサー、ミキシングロール等の混練装置を用いて、熱分解型発泡剤の分解温度以下で均一に溶融混練し、これをシート状に成形する。また、これらの樹脂組成物は溶融混練する前に、必要に応じてミキサー等で機械的に混合しておいてもよい。このときの溶融混練温度は、発泡剤の分解開始温度から10℃以上低い温度であることが好ましい。混練温度が高すぎると混練時に熱分解型発泡剤が分解してしまい、良好な発泡体が得られない。
【0026】
次いで、得られた連続シート状生分解性樹脂に電離性放射線を所定線量照射して架橋させて、架連続シート状生分解性樹脂を得る。
【0027】
次いで、この架橋連続シート状生分解性樹脂を熱分解型発泡剤の分解温度以上の温度で熱処理し発泡させる。発泡成形のための熱処理は、従来公知の方法を用いてよく、例えば、縦型及び横型の熱風発泡炉、溶融塩等の薬液浴上などで行うことができる。
【0028】
【実施例】
以下、本発明を実施例により、さらに詳細に説明するが、本発明はこれに限定されるものではない。
【0029】
実施例1
生分解製樹脂としてポリカプロラクトンである”TONE”(UCC株製)100kg、発泡剤としてアゾジカルボンアミド7.5kg、架橋助剤として1,6−ヘキサンジオールジメタクリレート5kgを準備し、これらをヘンシェルミキサーに投入し、200〜400rpmの低速回転で約3分混合し、ついで800〜1000rpmの高速回転とし、3分間混合して発泡用樹脂組成物とした。この発泡用樹脂組成物を発泡剤の分解しない温度、具体的には120℃に加熱したベント付きの押出し機に導入、Tダイから押し出し、厚みが1.5mmの架橋発泡用シートに成型した。このシートに80kGyの電子線を照射し、架橋せしめた後、縦型熱風発泡装置に連続的に導入、230℃で3〜4分加熱発泡して連続シート状架橋発泡体として巻取った。
このようにして得られた発泡体の厚みは3.0mm、ゲル分率は40%、発泡倍率12倍で、表面形態がよく外観美麗なものであった。このものを土壌中に埋設した所、1年間経過後には実用性のない強度まで低下し、分解変化が観察された。
【0030】
比較例1
架橋助剤を用いない以外は実施例1と同様の方法を用いて発泡体を作成した。このようにして得られた発泡体は厚み1.5mm、ゲル分率は2.5%、発泡倍率1.8倍で表面形状が凸凹しており、非常に外観の悪いものであった。また、発泡時に発生するガスを十分保持できないため、発泡状態が均一な発泡体とならなかった。
【0031】
【発明の効果】
本発明によれば、表面形態の良好な生分解性樹脂架橋発泡体を提供することができ、その実用性は大きい。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a continuous sheet-like biodegradable resin crosslinked foam.
[0002]
[Prior art]
Conventionally, resin foams such as polyolefin resin foams and polyurethane resin foams have been widely used industrially because they are excellent in lightness, heat insulation, moldability, buffering properties, and the like. However, although these resin foams are lightweight, they are bulky when discarded and difficult to reuse. In particular, in the case of a crosslinked resin foam obtained by crosslinking a resin, there is a drawback that recycling is virtually impossible. In addition, these resin foams remain in the ground semi-permanently even if they are buried in the soil, contaminating the global environment by securing garbage disposal sites by incineration or landfill, etc., and rarely damage the natural landscape. There wasn't.
[0003]
For this reason, biodegradable resins that are decomposed by microorganisms and the like in the natural environment have been researched and developed and commercialized as films and fibers. Also, an extruded foam of a biodegradable resin has been developed. For example, a foam using an aliphatic polyester resin as a biodegradable resin is known. However, aliphatic polyester resins are difficult to increase in molecular weight due to side reactions such as hydrolysis with water generated during polycondensation, so that sufficient melt viscosity to retain bubbles during extrusion foaming cannot be obtained, and good bubbles It was difficult to obtain a foam having a state and a surface state. As a method for solving this problem, for example, JP-A-11-279711 proposes a foamed resin using a lactone resin.
[0004]
[Problems to be solved by the invention]
However, since the lactone resin also collapses at the time of crosslinking, it is difficult to obtain a melt viscosity for sufficiently retaining bubbles during foaming, and it is difficult to obtain a foam having a good surface form. Furthermore, in order to obtain a foam having a high degree of cross-linking, there is a drawback in that radiation treatment must be performed with very high energy.
[0005]
An object of this invention is to provide the manufacturing method of the continuous sheet-like biodegradable resin crosslinked foaming body which can be bridge | crosslinked with low energy and has a favorable surface form in view of the background of this prior art.
[0006]
[Means for Solving the Problems]
The present invention adopts the following means as a result of sincerity studies in order to solve such problems. That is, the present invention
(1) A step of forming a resin composition containing a biodegradable resin containing 50% by weight or more of a lactone resin, a thermally decomposable foaming agent, and a crosslinking aid into a sheet to obtain a continuous sheet-like biodegradable resin, the continuous A step of obtaining a crosslinked continuous sheet-like biodegradable resin by irradiating the sheet-like biodegradable resin with ionizing radiation to cross-link it, and further decomposing the crosslinked continuous sheet-like biodegradable resin into the decomposition temperature of the thermally decomposable foaming agent. It is a manufacturing method of the continuous sheet-like biodegradable resin crosslinked foam characterized by including the process heat-processed at the above temperature and making it a continuous sheet-like biodegradable resin crosslinked foam.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be specifically described.
[0008]
Examples of the lactone resin used in the present invention include ε-caprolactone, β-propiolactone, γ-butyrolactone, δ-valerolactone, enanthlactone, 4-methylcaprolactone, 2,2,4-trimethylcaprolactone, 3, Examples thereof include homopolymers or copolymers of various methylated lactones such as 3,5-trimethylcaprolactone, and mixtures thereof.
[0009]
As the biodegradable resin used in the present invention, 100% of a lactone resin may be used, or a biodegradable resin other than the lactone resin may be included. Examples of the biodegradable resin other than the lactone resin used in the present invention include, for example, polylactic acid, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, polybutylene succinate carbonate and the like as a synthetic polymer. Examples include aliphatic polyesters, cellulose acetate, cellulose butyrate, cellulose propionate, cellulose nitrate, cellulose sulfate, cellulose acetate butyrate, and biodegradable cellulose esters such as cellulose nitrate acetate. Examples of synthetic polymers include polypeptides such as polyglutamic acid, polyaspartic acid, and polyleucine, and polyvinyl alcohol. Examples of the natural polymer include raw starch such as corn starch, wheat starch, and rice starch as starch, processed starch such as acetate esterified starch, methyl etherified starch, and amylose. Further, natural polymers such as natural linear polyester resins such as cellulose, carrageenan, chitin / chitosan, and polyhydroxybutyrate / valerate can be exemplified. Moreover, the copolymer of the component which comprises these biodegradable resin may be sufficient. These biodegradable resins may be used alone or in combination of two kinds.
[0010]
The biodegradable resin other than the lactone resin is preferably at least selected from aliphatic polyester, biodegradable cellulose ester, polypeptide, polyvinyl alcohol, starch, cellulose, chitin / chitosan and natural linear polyester-based resin. One kind is used.
[0011]
Of the lactone resin in biodegradable resin used in the present invention, it is important that at 5 0 wt% or more, good Mashiku is 60 wt% or more.
[0012]
In the present invention, the proportion of the biodegradable resin to the total resin component in the resin composition is not particularly limited, at least 50% by weight, and, Ruhodo more biodegradable resin amount, the degradation rate becomes faster, also The deformability after decomposition is improved. There is no particular limitation as a resin component other than such biodegradable resins, for example, ultra low density polyethylene, low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultra high molecular weight polyethylene, polypropylene, ethylene -Propylene rubber, polyvinyl acetate, polybutene, etc. can be added.
[0013]
The thermal decomposition type foaming agent used in the present invention is not particularly limited as long as it has a thermal decomposition temperature. For example, azodicarbonamide, benzenesulfonyl hydrazide, dinitrosopentamethylenetetramine, toluenesulfonylhydrazide, azobisiso Examples include butyronitrile and barium azodicarboxylate. These may be used alone or in combination, and are preferably used in a proportion of 1 to 50 parts by weight, more preferably 4 to 25 parts by weight, relative to 100 parts by weight of the resin composition. If the amount of the pyrolytic foaming agent added is too small, the foamability of the resin composition will decrease, and if it is too large, the strength and heat resistance of the resulting foam will tend to decrease.
[0014]
The crosslinking aid used in the present invention is not particularly limited, but conventionally known polyfunctional monomers such as 1,6-hexanediol dimethacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, tetra Acrylate or methacrylate compounds such as methylol methane triacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate; trimellitic acid triallyl ester, pyromellitic acid triallyl ester, oxalic acid diallyl, etc. Allyl esters of carboxylic acids; cyanuric acids such as triallyl cyanurate and triallyl isocyanurate or allyl esters of isocyanuric acid; N-phenylmaleimide, N, N′-m-pheny Maleimide compounds such as lenbismaleimide; compounds having two or more triple bonds such as dipropargyl phthalate and dipropargyl maleate; polyfunctional monomers such as divinylbenzene can be used for ease of handling and biodegradability In view of the above, ester-based polyfunctional monomers such as 1,6-hexanediol dimethacrylate are preferably used.
[0015]
These polyfunctional monomers can be used alone or in combination of two or more.
[0016]
If the addition amount of these polyfunctional monomers is too small, it is difficult to obtain a good crosslinked foam, and if it is too much, the moldability of the obtained foam tends to be lowered. The amount is preferably 0.5 to 10 parts by weight, more preferably 1 to 6 parts by weight.
[0017]
In the resin composition used for this invention, you may add additive components other than a thermal decomposition type foaming agent and a crosslinking adjuvant in the range which does not inhibit the effect of this invention. For example, as additives, crosslinking agents, antioxidants, lubricants, heat stabilizers, pigments, flame retardants, antistatic agents, nucleating agents, plasticizers, antibacterial agents, biodegradation accelerators, light stabilizers, UV absorbers, blocking Inhibitors, fillers, deodorizers, thickeners, foaming aids, cell stabilizers, metal damage inhibitors and the like may be added alone or in combination of two or more.
[0018]
In the present invention, the method for crosslinking the resin composition is not particularly limited, and examples thereof include a method of irradiating a predetermined dose of ionizing radiation, crosslinking with a peroxide, and silane crosslinking.
[0019]
Examples of the ionizing radiation include α rays, β rays, γ rays, and electron beams. The irradiation dose of ionizing radiation varies depending on the type and amount of the crosslinking aid, the target degree of crosslinking, and the like, but is usually 1 to 500 kGy, preferably 5 to 300 kGy. If the irradiation dose is too small, a sufficient melt viscosity cannot be obtained to hold the bubbles during foam molding, and if it is too large, the moldability of the resulting foam is lowered.
[0020]
In the present invention, foaming is usually performed by heating the crosslinked resin composition to a temperature equal to or higher than the thermal decomposition temperature of the pyrolytic foaming agent.
[0021]
The expansion ratio of the foam of the present invention is preferably 1.5 to 50 times. If the expansion ratio is less than 1.5 times, the lightness and flexibility tend to decrease, and if the expansion ratio exceeds 50 times, the mechanical properties and moldability tend to decrease.
[0022]
The gel fraction of the foam of the present invention is preferably 3% or more. When the gel fraction is less than 3%, the secondary processability of the obtained foam tends to decrease.
[0023]
The gel fraction as used in the field of this invention is the value computed with the following method. That is, about 50 mg of the biodegradable resin-crosslinked foam is precisely weighed, immersed in 25 ml of tetralin at 130 ° C. for 3 hours, filtered through a 200 mesh stainless steel wire mesh, and the wire mesh insoluble matter is vacuum dried. . Next, the weight of this insoluble matter was precisely weighed, and the gel fraction was calculated as a percentage according to the following formula.
Gel fraction (%) = {weight of insoluble matter (mg) / weight of weighed biodegradable resin crosslinked foam (mg)} × 100
Next, the preferable manufacturing method of the biodegradable resin crosslinked foam of this invention is demonstrated.
[0024]
Method for producing a continuous sheet-like biodegradable resin crosslinked foam of the present invention, a resin composition comprising a biodegradable resin containing a lactone resin 50 wt% or more and a thermally decomposable foaming agent and crosslinking aid, sheet-like molded to obtain a continuous sheet-like biodegradable resins to process the ionizing radiation and by cross-linking irradiated in continuous sheet form biodegradable resin to obtain a cross-linking continuous sheet-like biodegradable resins, further the a crosslinked continuous sheet-like biodegradable resin is characterized in that it comprises the step of a thermal decomposition type foaming agent heat-producing continuous sheet at the decomposition temperature or more of the decomposable resin crosslinked foam. Specifically, the following manufacturing method etc. are mentioned, for example.
[0025]
Kneading a resin composition containing a biodegradable resin containing 50% by weight or more of a lactone resin, a thermal decomposable foaming agent, and a crosslinking aid into a single screw extruder, twin screw extruder, Banbury mixer, kneader mixer, mixing roll, etc. Using an apparatus, the mixture is uniformly melt-kneaded at a temperature equal to or lower than the decomposition temperature of the pyrolytic foaming agent, and formed into a sheet shape . These resin compositions may be mechanically mixed with a mixer or the like as necessary before melt-kneading. The melt kneading temperature at this time is preferably a temperature lower by 10 ° C. or more than the decomposition start temperature of the foaming agent. If the kneading temperature is too high, the pyrolytic foaming agent is decomposed during kneading, and a good foam cannot be obtained.
[0026]
Then, the ionizing radiation in a continuous sheet form biodegradable resin obtained by a predetermined dose irradiated to cross-linking, to obtain a cross-linking continuous sheet-like biodegradable resins.
[0027]
Next, this crosslinked continuous sheet-like biodegradable resin is foamed by heat treatment at a temperature equal to or higher than the decomposition temperature of the pyrolytic foaming agent. The heat treatment for foam molding may be performed by a conventionally known method, for example, in a vertical or horizontal hot-air foaming furnace or a chemical bath such as a molten salt.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this.
[0029]
Example 1
Prepare 100 kg of polycaprolactone "TONE" (UCC Co.) as biodegradable resin, 7.5 kg of azodicarbonamide as foaming agent, and 5 kg of 1,6-hexanediol dimethacrylate as crosslinking aid. The mixture was mixed at a low speed of 200 to 400 rpm for about 3 minutes, then at a high speed of 800 to 1000 rpm and mixed for 3 minutes to obtain a foaming resin composition. This foaming resin composition was introduced into an extruder equipped with a vent heated to a temperature at which the foaming agent was not decomposed, specifically 120 ° C., extruded from a T-die, and molded into a crosslinked foamed sheet having a thickness of 1.5 mm. The sheet was irradiated with an 80 kGy electron beam and crosslinked, and then continuously introduced into a vertical hot-air foaming apparatus, heated and foamed at 230 ° C. for 3 to 4 minutes, and wound up as a continuous sheet-like crosslinked foam.
The foam thus obtained had a thickness of 3.0 mm, a gel fraction of 40%, a foaming magnification of 12 times, a good surface form, and a beautiful appearance. When this material was buried in soil, after 1 year, the strength dropped to a non-practical strength and a degradation change was observed.
[0030]
Comparative Example 1
A foam was prepared using the same method as in Example 1 except that no crosslinking aid was used. The foam thus obtained had a thickness of 1.5 mm, a gel fraction of 2.5%, a foaming ratio of 1.8 times, and an irregular surface shape, and had a very poor appearance. Moreover, since the gas generated at the time of foaming cannot be sufficiently retained, the foamed state did not become a uniform foam.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the biodegradable resin crosslinked foam with a favorable surface form can be provided, and the utility is large.

Claims (1)

ラクトン樹脂を50重量%以上含む生分解性樹脂と熱分解型発泡剤と架橋助剤とを含む樹脂組成物をシート状に成形し連続シート状生分解性樹脂を得る工程、該連続シート状生分解性樹脂に電離性放射線を照射して架橋させて、架橋連続シート状生分解性樹脂を得る工程、さらに該架橋連続シート状生分解性樹脂を該熱分解型発泡剤の分解温度以上の温度で熱処理し連続シート状生分解性樹脂架橋発泡体とする工程を含むことを特徴とする連続シート状生分解性樹脂架橋発泡体の製造方法。 A step of forming a resin composition containing a biodegradable resin containing 50% by weight or more of a lactone resin, a thermal decomposable foaming agent and a crosslinking aid into a sheet to obtain a continuous sheet-like biodegradable resin, A step of obtaining a crosslinked continuous sheet-like biodegradable resin by irradiating the degradable resin with ionizing radiation to crosslink, and further, the temperature of the crosslinked continuous sheet-like biodegradable resin above the decomposition temperature of the thermally decomposable foaming agent. The manufacturing method of the continuous sheet-like biodegradable resin crosslinked foam characterized by including the process of heat-processing with a continuous sheet-like biodegradable resin crosslinked foam.
JP2001364400A 2001-11-29 2001-11-29 Biodegradable resin cross-linked foam and production method Expired - Fee Related JP3731529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364400A JP3731529B2 (en) 2001-11-29 2001-11-29 Biodegradable resin cross-linked foam and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364400A JP3731529B2 (en) 2001-11-29 2001-11-29 Biodegradable resin cross-linked foam and production method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005191344A Division JP4135732B2 (en) 2005-06-30 2005-06-30 Biodegradable resin crosslinked foam and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003165862A JP2003165862A (en) 2003-06-10
JP3731529B2 true JP3731529B2 (en) 2006-01-05

Family

ID=19174597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364400A Expired - Fee Related JP3731529B2 (en) 2001-11-29 2001-11-29 Biodegradable resin cross-linked foam and production method

Country Status (1)

Country Link
JP (1) JP3731529B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126603A (en) * 2003-10-24 2005-05-19 Japan Atom Energy Res Inst Heat resistant crosslinked product having biodegradability and method for producing the same
JP4761105B2 (en) * 2004-06-08 2011-08-31 独立行政法人 日本原子力研究開発機構 Highly efficient crosslinking method for biodegradable polyester

Also Published As

Publication number Publication date
JP2003165862A (en) 2003-06-10

Similar Documents

Publication Publication Date Title
JP4311204B2 (en) Biodegradable resin cross-linked continuous foam sheet and method for producing the same
JP2005008869A (en) Sheet-shaped polylactic acid crosslinked foam and preparation process therefor
US20100120932A1 (en) Polylactic acid foam
JP3731529B2 (en) Biodegradable resin cross-linked foam and production method
JP4135732B2 (en) Biodegradable resin crosslinked foam and method for producing the same
JP4178990B2 (en) Biodegradable resin crosslinked foam sheet and adhesive tape
JP2003253028A (en) Crosslinked polyester resin foam, laminated sheet therefrom and molded article using the sheet
JP4066683B2 (en) Foamable resin composition and cross-linked foam thereof
JP2008163136A (en) Polylactic acid composite and manufacturing method of polylactic acid composite
JP4238636B2 (en) Biodegradable resin cross-linked continuous foam sheet and method for producing the same
JP2004352258A (en) Biodegradable cushioning medium
WO2020201935A1 (en) Biodegradable polyester-based resin expanded particle, method for producing biodegradable polyester-based resin expanded particle, biodegradable polyester-based resin expanded molded article, and method for producing biodegradable polyester-based resin expanded molded article
JP2003253029A (en) Biodegradable crosslinked resin foam and production method therefor
JP2004277552A (en) Flame-retardant biodegradable resin crosslinked foam
JP2006273995A (en) Method for producing polylactic acid cross-linked foam
JP3882639B2 (en) Biodegradable polyester resin cross-linked foam and method for producing the same
JP2003253031A (en) Biodegradable crosslinked resin foam
JP3787447B2 (en) Expandable resin composition having biodegradability
JP2004352751A (en) Biodegradable resin crosslinked foam and its manufacturing method
JP2006312728A (en) Recycled resin composition and crosslinked foam product of the recycled resin
JP3922050B2 (en) Biodegradable resin cross-linked foam and method for producing the same
JP2004346102A (en) Continuously foamed crosslinked biodegradable resin sheet
JP4110870B2 (en) Desk mat
JP2004075122A (en) Packing material
JP4761105B2 (en) Highly efficient crosslinking method for biodegradable polyester

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050621

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20050727

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050920

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20051003

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091021

LAPS Cancellation because of no payment of annual fees