JP3731524B2 - Method for estimating corrosion rate of steel - Google Patents

Method for estimating corrosion rate of steel Download PDF

Info

Publication number
JP3731524B2
JP3731524B2 JP2001324607A JP2001324607A JP3731524B2 JP 3731524 B2 JP3731524 B2 JP 3731524B2 JP 2001324607 A JP2001324607 A JP 2001324607A JP 2001324607 A JP2001324607 A JP 2001324607A JP 3731524 B2 JP3731524 B2 JP 3731524B2
Authority
JP
Japan
Prior art keywords
steel
rust
corrosion rate
corrosion
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001324607A
Other languages
Japanese (ja)
Other versions
JP2003130788A (en
Inventor
和彦 塩谷
公宏 西村
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001324607A priority Critical patent/JP3731524B2/en
Publication of JP2003130788A publication Critical patent/JP2003130788A/en
Application granted granted Critical
Publication of JP3731524B2 publication Critical patent/JP3731524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼材、特に好適には耐候性鋼材の腐食速度の推定に関し、大気環境下での鋼材の腐食速度を高精度に推定可能とするものである。
なお、以下では、本発明に適用する鋼材として耐候性鋼材を例示して説明するが、 本発明が鋼材一般に適用できるものであることは言うまでもない。
【0002】
【従来の技術】
耐候性鋼は、鋼中にP、Cu、Cr、Ni等の合金元素を添加し大気中における耐食性を向上させた鋼であり、タンク、鉄塔、橋梁等の鋼構造物に広く使用されている。
耐候性鋼は、屋外の大気暴露下において数年で、腐食の原因である酸素や水を通しにくい保護性さびと呼ばれるさび層を形成し、その後の腐食の進行を抑制している。このため、耐候性鋼は防錆塗料の塗布が不要であり、いわゆる裸使用が可能で安価な高耐食材料である。
【0003】
耐候性鋼材を使用した鋼構造物は、ライフサイクルコストやミニマムメンテナンスの観点から注目されているが、適用するには各種の制限があり、また適用後も最低限の維持管理、点検が必要である。
例えば、建設省(現国土交通省)による耐候性鋼の適用指針(「耐候性鋼材の橋梁への適用に関する共同研究報告書(XX)、建設省土木研究所、(社)鋼材倶楽部、(社)日本橋梁建設協会発行」)によれば、飛来塩分量が0.05mdd (mg/dm2 /day )以上となる地域では、従来の耐候性鋼(JISG3144:溶接構造用耐候性熱間圧延鋼材) は無塗装で使用できないことが規定されている。
【0004】
飛来塩分量の測定は長期間を要するが、一般に、飛来塩分量は海岸からの距離とともに減少するので、各沿岸地域に応じて、飛来塩分量の測定を省略してもよい離岸距離が定められている。しかし、海からの飛来塩分が少ない山間部でも、路面に凍結防止のため融雪塩を散布する場合があり、 そのような環境下では、耐候性鋼材に著しい腐食を生じ、保護性さびが形成されない場合もある。また、常に湿った環境下では保護性さびは形成されにくいことが知られており、場合によっては適切な処置を必要とする場合もある。
【0005】
耐候性鋼を使用した鋼構造物の維持管理上最も重要なことは、鋼材表面に保護性さびが形成されたかどうかを判定することである。ここで、「(耐候性)鋼材がさび安定化状態にあること」の定義は、例えば、 「社団法人腐食防食協会主催、第132 回腐食防食シンポジウム資料(2001)、pp27〜36(特にp30 参照)」によれば、「構造物耐荷重性能の経年劣化が工学的に問題とならない程度に腐食速度が低減( 目安として0.01mm/y以下) した状態になること」と示されている。
【0006】
しかしながら、耐候性鋼に保護性さびが形成されて腐食速度が低減する期間は、耐候性鋼の大気中での暴露環境に大きく依存するのが現実であり、その判定方法として的確で信頼性のあるさび安定化状態評価方法は未だ確立されていないのが現状である。
ここで、本質的に重要となるのは、問題とする鋼材の大気環境下における腐食速度である。腐食速度は、腐食量の微分値であり、腐食量の経年変化を測定し、その腐食量カーブから回帰式により算出される。
【0007】
つまり、ある時点での腐食速度を測定するためには、初めに多くの試験片を暴露し、一定期間ごとにそれらの試験片を順次回収して当該試験片の初期重量からの腐食による重量減を求めた過去の一連のデータが必要となる。
しかしながら、このようなデータを採取することは、 鋼構造物の維持管理のための手段としてはコストも労力もかかり、とても簡便な方法とは言えない。 確かに、 この方法は、 鋼構造物が架設された時点からその構造物と同じ環境に測定用試料(試験片)を設置し、その腐食量を追跡することのできる確実で信頼性の高い方法である。
【0008】
そのため、従来から、 腐食速度と相関があると考えられているさびの状態を判定し、 腐食速度を簡便に推定する各種の方法が提案されている。
まず、さびの外観からの判定基準として、「耐候性鋼材の橋梁への適用に関する共同研究報告書(XV)(建設省土木研究所、(社)鋼材倶楽部、(社)日本橋梁建設協会発行)」に示されている5段階評価基準がある。この基準は、 さび外観の粗度、剥離さびの有無から評点をつけて評価するものである。 すなわち、外観上で、繊密で密着性のあるさびが形成されていれば、腐食速度は十分低減されているものと判定し、維持管理上問題がないとするものである。
【0009】
次に、 現場で非破壊かつ迅速にさび状態を計測する方法として、「Corrosion 、vol.45、No.4、pp347-352(1989) 」には、「錆層のイオン透過抵抗を測定して、錆の保護性を評価する方法」が開示されている。 この方法は、さび層の環境遮断性に着目したものであり、定量的な方法で優れている。
また、特開平11-316209 号公報には、耐候性鋼材と参照電極との電位差を測定して、その電位差から腐食速度を推定する方法が開示されている。
【0010】
さらに、特開2000-241339 号公報には、さび層の断面の光学顕微鏡解析を行って、さび層内のクラック密度、あるいは、地鉄界面における消光錆占有率によってさびの保護性を判定する方法が開示されている。
【0011】
【発明が解決しようとする課題】
しかしながら、上記の5段階評価基準によるさびの外観判定については、観察者の主観がはいることになり、一般性に欠け、定量的な評価が困難であるという問題がある。
また、さび層のイオン透過抵抗を測定する方法は、定量性があり優れた方法といえるが、異常腐食を生じた厚いさびの場合、イオン透過抵抗の測定結果に信頼性がなく、外観判定を併用せざるを得ず、やはり一般性に欠ける。
【0012】
なお、イオン透過抵抗の測定は、実際の腐食速度を測定するものではなく、さびの環境遮断性と腐食速度の相関を仮定して測定する方式である。
また、特開平11-316209 号公報に開示された、電位差を測定する方法は、さびで覆われた鋼板の電位と腐食速度との相関について原理的に不明な点が多く、厚い異常さびで覆われた場合には測定値に誤差を生ずるという欠点を有する。
【0013】
さらに、特開2000-241339 号公報に開示された、さび層の断面の光学顕微鏡写真を解析する方法では、その解析のための指標として提示されているクラック密度と界面消光錆占有率と腐食速度との定量的相関が必ずしも明確にされていない。また、自然にできたさび層の不均一性を考えると、ミクロ的な観察結果での判定では誤差が大きいものと考えられる。
【0014】
本発明は、 以上に示した各問題点を解消し、 簡便かつ定量的な鋼材の腐食速度推定方法を提供するものである。
なお、腐食速度を推定することができれば、その推定した腐食速度に基づいて腐食評価を行うことが容易であることは、既に説明したとおりである。
【0015】
【発明が解決しようとする課題】
本発明は、大気環境で暴露された耐候性鋼材に代表される鋼材の腐食速度を高精度に推定することを可能としたものである。
すなわち、 本発明は、 大気環境下に曝された鋼材の腐食速度推定方法であって、該鋼材の暴露期間と、 該鋼材に形成されたさび層に蓄積された塩分量とから腐食速度を推定することを特徴とする鋼材の腐食速度推定方法によって上記課題を解決したのである。
【0016】
【発明の実施の形態】
鋼材の腐食は環境に大きく依存するが、既に説明したように、特に飛来塩分量と相関を持つことが知られている。
そして、本発明者らは、 単に腐食量と飛来塩分量の相関だけにとどまらず、腐食速度と飛来塩分量の間にも強い相関をもつことを見出し、 本発明をするに至ったのである。
【0017】
ところで、飛来塩分量は、季節さらには年毎の変動が大きく、その測定には長期間を要する。さらに、ある橋梁を考えた場合、その橋梁全体に対する飛来塩分量は同じだとしても、内桁・外桁、あるいは、フランジ・ウエブ、上面(対空面)・下面(対地面) で、塩分の付着の仕方が異なってくることは容易に想像できる。そして、付着、蓄積の仕方が異なってくれば、腐食の仕方も当然に異なってくる。
【0018】
ここで、鋼材の腐食に影響を及ぼすのは、実効的には飛来した塩分そのものではなく、鋼材表面のさび層に実際に付着し蓄積した塩分の量、すなわち、さび中蓄積塩分量である。
一方で、耐候性鋼は経時とともに、さび状態が変化し、保護性を増す性質を持っている。したがって、さび中蓄積塩分量が同じだとしても、短期間暴露された耐候性鋼と長期間暴露された耐候性鋼では、その腐食速度は異なっている。
【0019】
以上の知見に基づき、 本発明者らは、耐候性鋼の腐食速度が、さび中蓄積塩分量と暴露期間に依存することを見出した。
また、 以上の知見に基づき、 鋼材の暴露期間およびさび中蓄積塩分量と、その腐食速度との関係を更に明確にするため、大気環境に暴露された耐候性鋼についての調査を実施した。
【0020】
まず、さび中蓄積塩分量の算出測定方法について説明する。
暴露期間が既知の耐候性鋼材のさび層を地鉄が露出するまで採取し、採取した総さび重量を電子天秤で計測する。更に、採取したさびのうちの一定量(約 200mg程度) について、Cl濃度分析を実施する。
そして、 そのCl濃度分析値から、下記(1)式に基づき、 さび中蓄積塩分量を導出する。
【0021】

Figure 0003731524
一方、 腐食速度は、上述のように、腐食による重量減から腐食量の経年変化を測定して、その腐食量カーブから回帰式(Y=aXb 、Y:腐食量、X:暴露期間、 a、b :係数)を算出し、時間微分することで求められる(dY /dX=abXb-1 )。
【0022】
図1のグラフに、 以上の手順に基づいて求めた暴露期間毎のさび中蓄積塩分量と腐食速度の関係を示す。
図2は、 図1の結果に基づき、 腐食速度をパラメ―タとして、鋼材の暴露期間とさび中蓄積塩分量の関係を再構成して示したグラフである。
すなわち、このように、一度、図2のデータを採取しておけば、その後は、 図2を適用することで、上記のさび中蓄積塩分量と暴露期間のデータから、 腐食速度を簡便かつ高精度に推定することが可能となる。
【0023】
さらに、既に説明したさび安定化状態の判定基準に基づき、腐食速度が0.01mm/y以下であるかどうかを判定することで、 簡単にさび安定化状態の評価を実施することができる。
ところで、本発明の鋼材の腐食速度推定方法を適用して、実際の鋼構造物の腐食評価を行うには、 評価対象の鋼構造物そのもののさびを採取する代わりに、鋼構造物が竣工した時点で、 その鋼構造物と同一素材の評価試験片を構造物の近傍に装着し、同一条件の環境下で大気暴露しておくようにしておき、その評価試験片を適用することもできる。
【0024】
この場合、所要年数経過後の腐食評価時に、 当該評価試験片を取り外して所定面積のさび層を削り取り、 その塩分量の測定を行い、 測定した塩分量と経過年数、すなわち、暴露期間とから、腐食速度推定を行う。 このようにして推定した腐食速度から、さびの保護性を容易に判定することができ、鋼構造物の的確な腐食評価を行うことが可能となる。
【0025】
ちなみに、測定後の評価試験片は再利用することが可能である。すなわち、当該評価試験片を、取付けていた元の場所に再度取付けておけば、次の腐食評価時に、未だ削り取っていない部分のさび層を削り取って塩分量を測定することで、その時点での腐食速度推定を行うことができる。 そのため、本発明では、 評価試験片を用いる場合においても多数の評価試験片を用意しておく必要がなく、 必要最小限の評価試験片を用意するだけで足りる。
【0026】
【実施例】
耐候性鋼を、種々の環境に暴露し、所定の暴露期間経過後にその試験片を回収し、本発明方法に従い、さび中蓄積塩分量から推定腐食速度を求めた。その結果を表1に示す。なお、表1には、比較のため、各試験片について、 その重量減少量から実測腐食速度を求めた結果を示した。
【0027】
【表1】
Figure 0003731524
【0028】
また、図3は、 表1に示す各地点での結果を図2のデータ上にオーバープロットしたグラフである。
以上のことから、 本発明によって得た推定腐食速度と実測腐食速度とが良い一致を示していることは明らかである。
【0029】
【発明の効果】
本発明によれば、環境変化によるさび状態の変化を的確に評価することが可能となり、 耐候性鋼材に代表される鋼材の腐食速度を簡便かつ高精度に推定することができるようになった。さらには、さび安定化の判定も容易に実現できる。
すなわち、本発明を適用することで、 耐候性鋼等の鋼材を用いた鋼構造物の維持管理を、簡便、かつ、的確に行うことができるようになり、もしも腐食速度の増大が見られた場合には、早急に塗装等の適切な補修を行うことで、構造物としての致命的な損傷を回避することが可能となる。
【図面の簡単な説明】
【図1】暴露期間をパラメ―タとして、さび中蓄積塩分量と腐食速度の関係を示すグラフである。
【図2】腐食速度をパラメ―タとして、耐候性鋼材の暴露期間とさび中蓄積塩分量の関係を示すグラフである。
【図3】図2のグラフに、 各地域に置いた耐候性鋼材試験片から得られた結果をプロットしたグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to estimation of the corrosion rate of a steel material, particularly preferably a weathering steel material, and makes it possible to estimate the corrosion rate of the steel material in an atmospheric environment with high accuracy.
In addition, below, although a weathering steel material is illustrated and demonstrated as a steel material applied to this invention, it cannot be overemphasized that this invention is applicable to steel materials generally.
[0002]
[Prior art]
Weatherproof steel is steel that has been improved in corrosion resistance in the atmosphere by adding alloying elements such as P, Cu, Cr, Ni, etc., and is widely used in steel structures such as tanks, steel towers, bridges, etc. .
Weather-resistant steel forms a rust layer called protective rust that prevents the passage of oxygen and water, which cause corrosion, in several years under outdoor atmospheric exposure, and suppresses the subsequent progress of corrosion. For this reason, the weather-resistant steel does not require the application of a rust preventive paint, and is a highly corrosion-resistant material that can be used barely and is inexpensive.
[0003]
Steel structures using weathering steel are attracting attention from the viewpoint of life cycle cost and minimum maintenance, but there are various restrictions on their application, and minimum maintenance and inspection are required after application. is there.
For example, the Ministry of Construction (currently the Ministry of Land, Infrastructure, Transport and Tourism) applied guidelines for weathering steels (“Joint Research Report on the Application of Weathering Steels to Bridges (XX), Ministry of Construction Civil Engineering Research Institute, Steel Club) According to “Japan Bridge Construction Association”), in areas where the amount of incoming salt is 0.05 mdd (mg / dm 2 / day) or more, conventional weathering steel (JISG3144: weathering hot rolled steel for welded structures) It is stipulated that can not be used without painting.
[0004]
The measurement of the amount of salinity takes a long time, but in general, the amount of salt salinity decreases with the distance from the coast. Therefore, the distance from the coast where the measurement of the amount of salt salinity may be omitted is determined according to each coastal area. It has been. However, even in mountainous areas where the amount of salt coming from the sea is low, snow melting salt may be sprayed on the road surface to prevent freezing. Under such circumstances, weathering steel will be significantly corroded and protective rust will not be formed. In some cases. Further, it is known that protective rust is hardly formed in a constantly humid environment, and in some cases, appropriate measures may be required.
[0005]
The most important thing in the maintenance and management of steel structures using weathering steel is to determine whether protective rust has been formed on the steel surface. Here, the definition of “(weather resistance) steel is in a rust-stabilized state” is, for example, “The Corrosion and Corrosion Association sponsored by the 132nd Corrosion and Corrosion Prevention Symposium (2001), pp27 to 36 (especially p30”) ) ”Indicates that“ the corrosion rate is reduced to a level that is 0.01 mm / y or less as a guideline ”so that deterioration over time of the load bearing capacity of the structure is not an engineering problem.
[0006]
However, the period during which the protective rust is formed on the weathering steel and the corrosion rate is reduced is largely dependent on the exposure environment of the weathering steel in the atmosphere. At present, a certain rust stabilization state evaluation method has not yet been established.
Here, what is essentially important is the corrosion rate of the steel material in question under the atmospheric environment. The corrosion rate is a differential value of the corrosion amount, and the change over time of the corrosion amount is measured, and is calculated from the corrosion amount curve by a regression equation.
[0007]
In other words, in order to measure the corrosion rate at a certain point in time, a large number of test pieces are first exposed, and the test pieces are collected sequentially at regular intervals, and the weight loss due to corrosion from the initial weight of the test pieces is measured. A series of past data is required.
However, collecting such data is costly and labor intensive as a means for maintaining and managing steel structures, and is not a very simple method. Certainly, this method is a reliable and reliable method that allows the measurement sample (test piece) to be installed in the same environment as the structure from the time when the steel structure was installed and the amount of corrosion to be tracked. It is.
[0008]
For this reason, various methods have been proposed for determining the state of rust, which is thought to have a correlation with the corrosion rate, and simply estimating the corrosion rate.
First, the criteria for judging the appearance of rust are as follows: “Joint research report on the application of weathering steel to bridges (XV) (Public Works Research Institute, Ministry of Construction, Steel Club, Japan Bridge Construction Association) Is a five-level evaluation standard. This criterion is evaluated based on the roughness of the rust appearance and the presence or absence of peeling rust. In other words, if a rust having an adhesive appearance is formed, the corrosion rate is judged to be sufficiently reduced, and there is no problem in maintenance.
[0009]
Next, “Corrosion, vol.45, No.4, pp347-352 (1989)” is a method for measuring the rust state quickly and non-destructively on site. , "A method for evaluating the protection of rust". This method focuses on the environmental barrier properties of the rust layer and is excellent in a quantitative method.
Japanese Patent Application Laid-Open No. 11-316209 discloses a method of measuring a potential difference between a weather resistant steel material and a reference electrode and estimating a corrosion rate from the potential difference.
[0010]
Furthermore, Japanese Patent Laid-Open No. 2000-241339 discloses a method for determining the protection of rust based on the crack density in the rust layer or the extinction rust occupancy rate at the iron-iron interface by performing an optical microscope analysis of the cross section of the rust layer. Is disclosed.
[0011]
[Problems to be solved by the invention]
However, regarding the rust appearance determination based on the above five-level evaluation criteria, there is a problem that the observer's subjectivity is inferior, lacks generality, and quantitative evaluation is difficult.
In addition, the method of measuring the ion permeation resistance of the rust layer is quantitative and excellent, but in the case of a thick rust that has caused abnormal corrosion, the measurement result of the ion permeation resistance is unreliable and the appearance judgment is performed. It must be used in combination and still lacks generality.
[0012]
The ion permeation resistance is not measured based on the actual corrosion rate, but is measured based on the assumption of the correlation between the rust environmental barrier property and the corrosion rate.
In addition, the method for measuring the potential difference disclosed in Japanese Patent Application Laid-Open No. 11-316209 has many unclear points in principle regarding the correlation between the potential of the steel sheet covered with rust and the corrosion rate, and is covered with thick abnormal rust. If this occurs, there is a disadvantage that an error occurs in the measured value.
[0013]
Furthermore, in the method of analyzing the optical micrograph of the cross section of the rust layer disclosed in Japanese Patent Application Laid-Open No. 2000-241339, the crack density, interfacial quenching rust occupancy, and corrosion rate presented as indicators for the analysis are disclosed. Quantitative correlation with is not necessarily clarified. Considering the non-uniformity of the naturally formed rust layer, it is considered that the error is large in the determination based on the microscopic observation result.
[0014]
The present invention solves the above-mentioned problems and provides a simple and quantitative method for estimating the corrosion rate of a steel material.
As already described, if the corrosion rate can be estimated, it is easy to perform the corrosion evaluation based on the estimated corrosion rate.
[0015]
[Problems to be solved by the invention]
The present invention makes it possible to estimate the corrosion rate of steel materials represented by weathering steel materials exposed in the atmospheric environment with high accuracy.
That is, the present invention is a method for estimating the corrosion rate of steel exposed to an atmospheric environment, and estimates the corrosion rate from the exposure period of the steel and the amount of salt accumulated in the rust layer formed on the steel. The above-mentioned problems have been solved by a method for estimating the corrosion rate of a steel material.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Although corrosion of steel depends greatly on the environment, as already explained, it is known to correlate with the amount of incoming salt.
The present inventors have found that there is a strong correlation between the corrosion rate and the amount of incoming salt, as well as the correlation between the amount of corrosion and the amount of incoming salt, and the present invention has been achieved.
[0017]
By the way, the amount of incoming salt varies greatly from season to season and from year to year, and its measurement requires a long period of time. Furthermore, when a certain bridge is considered, even if the amount of salinity for the entire bridge is the same, the amount of salt on the inner girder / outer girder, flange / web, upper surface (anti-air surface), lower surface (to the ground surface) It is easy to imagine that the way of doing things will be different. And if the way of adhesion and accumulation is different, the way of corrosion is naturally different.
[0018]
Here, what actually affects the corrosion of the steel material is not the salt content itself that has actually come, but the amount of salt content that actually adheres and accumulates on the rust layer on the steel surface, that is, the amount of salt content accumulated in the rust.
On the other hand, weathering steel has the property that the rust state changes with time and the protection is increased. Therefore, even if the accumulated salt content in rust is the same, the corrosion rate differs between the weather resistant steel exposed for a short period of time and the weather resistant steel exposed for a long period of time.
[0019]
Based on the above findings, the present inventors have found that the corrosion rate of weathering steel depends on the amount of accumulated salt in rust and the exposure period.
In addition, based on the above knowledge, in order to further clarify the relationship between the exposure period of steel materials, the amount of salt accumulated in rust, and the corrosion rate, a survey was conducted on weathering steel exposed to the atmospheric environment.
[0020]
First, a method for calculating and measuring the amount of accumulated salt in rust will be described.
A rust layer of weathering steel with a known exposure period is collected until the ground iron is exposed, and the total rust weight collected is measured with an electronic balance. In addition, a certain amount of the collected rust (about 200 mg) is analyzed for Cl concentration.
Based on the Cl concentration analysis value, the amount of accumulated salt in rust is derived based on the following equation (1).
[0021]
Figure 0003731524
On the other hand, as described above, the corrosion rate is determined by measuring the secular change of the corrosion amount from the weight loss due to corrosion, and using the regression curve (Y = aX b , Y: corrosion amount, X: exposure period, a , B: coefficient) and obtained by time differentiation (dY / dX = abX b-1 ).
[0022]
The graph of FIG. 1 shows the relationship between the amount of accumulated salt in rust and the corrosion rate for each exposure period determined based on the above procedure.
Fig. 2 is a graph based on the results of Fig. 1 and reconstructing the relationship between the exposure period of steel and the amount of accumulated salt in rust, using the corrosion rate as a parameter.
In other words, once the data of FIG. 2 has been collected in this manner, the corrosion rate can be easily and easily increased from the above-mentioned data of accumulated salt content in rust and exposure period by applying FIG. It is possible to estimate with accuracy.
[0023]
Furthermore, it is possible to easily evaluate the rust stabilization state by determining whether the corrosion rate is 0.01 mm / y or less based on the rust stabilization state determination criteria already described.
By the way, in order to evaluate the corrosion rate of the actual steel structure by applying the method for estimating the corrosion rate of the steel material of the present invention, the steel structure was completed instead of collecting the rust of the steel structure itself to be evaluated. At that time, an evaluation test piece made of the same material as that of the steel structure can be mounted in the vicinity of the structure and exposed to the atmosphere under the same conditions, and the evaluation test piece can be applied.
[0024]
In this case, at the time of corrosion evaluation after the lapse of the required years, the evaluation test piece is removed, the rust layer of a predetermined area is scraped off, the salt content is measured, and from the measured salt content and the elapsed years, that is, the exposure period, Estimate the corrosion rate. Thus, it is possible to easily determine the protection of rust from the estimated corrosion rate, and it is possible to accurately evaluate the corrosion of the steel structure.
[0025]
Incidentally, the evaluation test piece after the measurement can be reused. In other words, if the evaluation test piece is reattached to the original place where it was attached, at the time of the next corrosion evaluation, the portion of the rust layer that has not yet been removed is scraped off and the salinity is measured. Corrosion rate estimation can be performed. Therefore, in the present invention, it is not necessary to prepare a large number of evaluation test pieces even when using an evaluation test piece, and it is sufficient to prepare a minimum number of evaluation test pieces.
[0026]
【Example】
The weathering steel was exposed to various environments, the specimens were collected after a predetermined exposure period, and the estimated corrosion rate was determined from the accumulated salt content in rust according to the method of the present invention. The results are shown in Table 1. For comparison, Table 1 shows the results of determining the measured corrosion rate from the weight loss for each test piece.
[0027]
[Table 1]
Figure 0003731524
[0028]
FIG. 3 is a graph in which the results at each point shown in Table 1 are overplotted on the data of FIG.
From the above, it is clear that the estimated corrosion rate obtained by the present invention and the measured corrosion rate are in good agreement.
[0029]
【The invention's effect】
According to the present invention, it is possible to accurately evaluate the change in the rust state due to the environmental change, and the corrosion rate of steel materials represented by weathering steel materials can be estimated easily and with high accuracy. Furthermore, the determination of rust stabilization can be easily realized.
That is, by applying the present invention, it becomes possible to easily and accurately perform maintenance and management of steel structures using steel materials such as weathering steel, and if the corrosion rate is increased. In such a case, it is possible to avoid fatal damage as a structure by promptly performing appropriate repairs such as painting.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of accumulated salt in rust and the corrosion rate, with the exposure period as a parameter.
FIG. 2 is a graph showing the relationship between the exposure period of weathering steel and the amount of accumulated salt in rust, with the corrosion rate as a parameter.
FIG. 3 is a graph in which the results obtained from the weathering steel specimens placed in each region are plotted on the graph of FIG.

Claims (1)

大気環境下に曝された鋼材の腐食速度推定方法であって、
該鋼材の暴露期間と、 該鋼材に形成されたさび層に蓄積された塩分量とから腐食速度を推定することを特徴とする鋼材の腐食速度推定方法。
A method for estimating the corrosion rate of steel exposed to an atmospheric environment,
A method for estimating a corrosion rate of a steel material, wherein the corrosion rate is estimated from an exposure period of the steel material and a salt content accumulated in a rust layer formed on the steel material.
JP2001324607A 2001-10-23 2001-10-23 Method for estimating corrosion rate of steel Expired - Fee Related JP3731524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001324607A JP3731524B2 (en) 2001-10-23 2001-10-23 Method for estimating corrosion rate of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001324607A JP3731524B2 (en) 2001-10-23 2001-10-23 Method for estimating corrosion rate of steel

Publications (2)

Publication Number Publication Date
JP2003130788A JP2003130788A (en) 2003-05-08
JP3731524B2 true JP3731524B2 (en) 2006-01-05

Family

ID=19141306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324607A Expired - Fee Related JP3731524B2 (en) 2001-10-23 2001-10-23 Method for estimating corrosion rate of steel

Country Status (1)

Country Link
JP (1) JP3731524B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411875A (en) * 2013-07-26 2013-11-27 攀钢集团攀枝花钢铁研究院有限公司 Quantitative measurement method for surface corrosion rate of film coated steel plate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100487422C (en) * 2004-12-17 2009-05-13 中国科学院金属研究所 Accelerated test method for atmospheric corrosion and special test device therefor
JP5066160B2 (en) * 2009-11-25 2012-11-07 株式会社神戸製鋼所 Method for predicting steel sheet thickness reduction
CN104568638B (en) * 2013-10-10 2017-08-11 鞍钢股份有限公司 A kind of band rust steel sample rusty scale and the method for testing and device of matrix binding ability
JP6575217B2 (en) * 2015-08-17 2019-09-18 東京電力ホールディングス株式会社 Corrosion environment evaluation method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411875A (en) * 2013-07-26 2013-11-27 攀钢集团攀枝花钢铁研究院有限公司 Quantitative measurement method for surface corrosion rate of film coated steel plate

Also Published As

Publication number Publication date
JP2003130788A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
Morcillo et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part II: Testing, inspection, maintenance
Manning Corrosion performance of epoxy-coated reinforcing steel: North American experience
Urban et al. The development of corrosion processes on weathering steel bridges
JP3731524B2 (en) Method for estimating corrosion rate of steel
Kubzova et al. Influence of chloride deposition on corrosion products
JP2007039970A (en) Predicting method for rusting level of non-painted atmospheric corrosion-resistant steel bridge
Clemeña Investigation of the resistance of several new metallic reinforcing bars to chloride-induced corrosion in concrete
Nürnberger et al. Stainless steel in concrete structures and in the fastening technique
McDad et al. Performance of weathering steel in TxDOT bridges
JP3797189B2 (en) Method for estimating corrosion rate and evaluation method for steel
Albrecht et al. Fatigue strength of weathered rolled beam made of A588 steel
Deflorian et al. Premature corrosion failure of structural highway components made from weathering steel
Ebrahimi et al. Galvanic corrosion risk assessment of bolt materials in contact with ASTM A1010 steel bridges
JP2000001816A (en) Decision method of applicability to bridge of weather- resistant steel
Sagüés et al. Corrosion of galvanized strips in Florida reinforced earth walls
Granata et al. Assessing corrosion on steel structures using corrosion coulometer
Matthes et al. Atmospheric corrosion and precipitation runoff from zinc and zinc alloy surfaces
Klinghoffer et al. Smart Structures: Embeddable sensors for use in the integrated monitoring systems of concrete structures
WINT Performance of Weathering Steel Bridge under Atmospheric Corrosion in Myanmar
Dolling et al. Weathering steel bridges in the UK
NAGASAWA et al. Long-term Follow-up Survey on 3% Ni-added High-performance Weathering Steel (NAW-TEN™ 15) in High Airborne Salt Concentration Environment and Risk Management of Weathering Steel Bridges
JP7020448B2 (en) Method for estimating the amount of flying salt and method for determining the applicability of weathering steel
Maziah et al. Corrosivity Map For Peninsular Malaysia
Becerra‐Mosquera et al. The Arousa Island bridge. Complete refurbishment and 10 years analysis description
Freeseman et al. Project Goal and Objectives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees