JP7020448B2 - Method for estimating the amount of flying salt and method for determining the applicability of weathering steel - Google Patents

Method for estimating the amount of flying salt and method for determining the applicability of weathering steel Download PDF

Info

Publication number
JP7020448B2
JP7020448B2 JP2019063397A JP2019063397A JP7020448B2 JP 7020448 B2 JP7020448 B2 JP 7020448B2 JP 2019063397 A JP2019063397 A JP 2019063397A JP 2019063397 A JP2019063397 A JP 2019063397A JP 7020448 B2 JP7020448 B2 JP 7020448B2
Authority
JP
Japan
Prior art keywords
point
amount
target point
weathering steel
flying salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019063397A
Other languages
Japanese (ja)
Other versions
JP2020165661A (en
Inventor
萌美 藤岡
克佳 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019063397A priority Critical patent/JP7020448B2/en
Publication of JP2020165661A publication Critical patent/JP2020165661A/en
Application granted granted Critical
Publication of JP7020448B2 publication Critical patent/JP7020448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、海上から陸上の対象地点に飛来する飛来塩分量の推定方法、および前記対象地点で用いられる耐候性鋼の適用可否判定方法に関する。 The present invention relates to a method for estimating the amount of flying salt flying from the sea to a target point on land, and a method for determining the applicability of weathering steel used at the target point.

耐候性鋼は、銅、ニッケル、クロム等の耐候性向上に有効な元素を含有する低合金鋼であり、適切な環境下においては、腐食速度を抑制し得る暗褐色の保護性さび層が数年で形成されるため、無塗装での使用が可能である。 Weathering steel is a low alloy steel containing elements such as copper, nickel, and chromium that are effective in improving weather resistance, and under appropriate circumstances, there are a number of dark brown protective rust layers that can suppress the corrosion rate. Since it is formed in a year, it can be used without painting.

近年、特に鋼製橋梁の建設においては、建設時の初期コストのみならず、建設後の維持管理を含めたライフサイクルコストの低減が求められていることを背景に、無塗装での使用が可能な耐候性鋼の使用実績が伸びている。 In recent years, especially in the construction of steel bridges, it is possible to use it without painting against the background that it is required to reduce not only the initial cost at the time of construction but also the life cycle cost including maintenance after construction. The use record of weathering steel is increasing.

しかし、耐候性鋼は、塩分濃度の高い環境下においては、保護性さび層が形成され難く、十分な耐候性を発揮できないことが知られている。そこで、日本国内では、耐候性鋼の適用条件に関する研究活動(建設省土木研究所・(社)鋼材倶楽部・(社)日本橋梁建設協会:耐候性鋼材の橋梁への適用に関する共同研究報告書(XX)-無塗装耐候性鋼橋梁の設計・施工要領(改訂案)-)に基づき、耐候性鋼を用いた鋼製橋梁の建設可否を判定する基準が定められている。 However, it is known that weathering steel is difficult to form a protective rust layer in an environment with a high salt concentration and cannot exhibit sufficient weather resistance. Therefore, in Japan, research activities on the application conditions of weathering steel (Ministry of Construction Civil Engineering Research Institute, Steel Club, Japan Bridge Construction Association: Joint research report on the application of weathering steel to bridges ( Based on XX) -Design and construction guidelines for unpainted weathering steel bridges (revised proposal)-), criteria for determining whether or not to construct steel bridges using weathering steel have been established.

この基準によると、耐候性鋼橋梁の建設予定地の飛来塩分量を所定の方法によって実測し、この飛来塩分量の実測値が所定の閾値(例えば0.05mdd(mg/dm/day))以下であることを確認するか、あるいは上記建設予定地が所定の指定地域内に位置する場合に、耐候性鋼橋梁を無塗装で使用することが可能と判定される。 According to this standard, the amount of flying salt in the planned construction site of a weathering steel bridge is actually measured by a predetermined method, and the measured value of this amount of flying salt is a predetermined threshold (for example, 0.05 mdd (mg / dm 2 / day)). It is determined that the weathering steel bridge can be used unpainted if it is confirmed that the following conditions are met, or if the planned construction site is located within a predetermined designated area.

また、特許文献1~3では、飛来塩分量・温度・湿度・濡れ時間・硫黄酸化物量等の環境因子の数値に基づいて、所定の供用期間における耐候性鋼の腐食量を予測し、耐候性鋼の適用可否を判定している。 Further, in Patent Documents 1 to 3, the amount of corrosion of weathering steel during a predetermined service period is predicted based on the numerical values of environmental factors such as the amount of flying salt, temperature, humidity, wetting time, and sulfur oxide amount, and the weathering resistance is predicted. The applicability of steel is judged.

また、特許文献4では、海上から陸上の対象地点に飛来する飛来塩分量を推定するにあたり、海岸線上で上記対象地点に最も近接する地点から対象地点までの離岸距離Dと、海岸線上の上記地点における波高強度Hとから、次の式により飛来塩分量Cを推定している(Cα:定数)。 Further, in Patent Document 4, in estimating the amount of flying salt flying from the sea to the target point on land, the offshore distance D from the point closest to the target point on the coastline to the target point and the above on the coastline are described. From the wave height intensity H at the point, the flying salt content C is estimated by the following formula (C α : constant).

C=Cα×H×D-0.6
さらに、特許文献5では、飛来塩分量の推定に風速・風向データベースを用いている。
C = C α × H × D -0.6
Further, in Patent Document 5, a wind speed / wind direction database is used for estimating the amount of flying salt.

しかしながら、特許文献1~3に開示されている技術においては、耐候性鋼橋梁の建設予定地において、耐候性鋼橋梁の建設可否を判定する因子の一つである飛来塩分量を所定の方法によって実測し、この飛来塩分量の実測値が所定の閾値以下であることを確認する必要がある。したがって、耐候性鋼橋梁の建設可否を判定する前に、1年間以上の飛来塩分量の現地調査が必要となるため、耐候性鋼橋梁の建設可否の判定費用がかさむとともに、工程管理面でも支障を生じやすい。 However, in the techniques disclosed in Patent Documents 1 to 3, the amount of flying salt, which is one of the factors for determining whether or not a weathering steel bridge can be constructed, is determined by a predetermined method at the planned construction site of the weathering steel bridge. It is necessary to actually measure and confirm that the measured value of the amount of flying salt is equal to or less than a predetermined threshold. Therefore, it is necessary to conduct a field survey of the amount of flying salt for one year or more before determining whether or not a weathering steel bridge can be constructed, which increases the cost of determining whether or not a weathering steel bridge can be constructed and hinders process control. Is likely to occur.

また、1年間にわたって飛来塩分量の現地調査を行ったとしても、得られた飛来塩分量の実測値は、特定の1年間という限られた期間のデータに過ぎない。よって、飛来塩分量の現地調査が行われた1年間の気象が平年通りでなかったような場合には、耐候性鋼橋梁の建設可否の判定結果の妥当性に疑問が残ることになる。さらに、耐候性鋼の腐食量の予測にあたり、飛来塩分量だけでなく、温度・湿度・濡れ時間・硫黄酸化物量等の他の環境因子も入力する必要があるため、腐食量の予測式が複雑である。 Moreover, even if the field survey of the amount of flying salt is conducted over one year, the measured value of the amount of flying salt obtained is only the data for a limited period of a specific one year. Therefore, if the weather for one year when the field survey of the amount of flying salt was conducted was not as usual, the validity of the judgment result of whether or not to construct a weathering steel bridge remains questionable. Furthermore, when predicting the amount of corrosion of weathering steel, it is necessary to enter not only the amount of flying salt but also other environmental factors such as temperature, humidity, wetting time, and amount of sulfur oxides, so the formula for predicting the amount of corrosion is complicated. Is.

そこで、特許文献1~3に開示されている技術において、建設予定地での飛来塩分量の現地調査を実施する代わりに、すでに存在する飛来塩分量の実測データベースを使用したり、あるいは特許文献4に開示されている方法により飛来塩分量を推定したりすることが考えられる。しかし、飛来塩分量の実測データベースや、特許文献4の方法により推定される飛来塩分量は、地形が平坦であることを前提とした安全側の値である。よって、耐候性鋼橋梁の建設予定地が、例えば大規模な山の背後に位置しており、耐候性鋼橋梁への飛来塩分が遮断されるような場合であっても、耐候性鋼橋梁の建設が不可と判定されてしまうなど、地形的な影響を考慮に入れることができない問題があった。 Therefore, in the techniques disclosed in Patent Documents 1 to 3, instead of conducting a field survey of the amount of flying salt at the planned construction site, an existing actual measurement database of the amount of flying salt may be used, or Patent Document 4 It is conceivable to estimate the amount of flying salt by the method disclosed in. However, the actual measurement database of the amount of flying salt and the amount of flying salt estimated by the method of Patent Document 4 are safe values on the premise that the terrain is flat. Therefore, even if the planned construction site of the weathering steel bridge is located behind a large mountain, for example, and the salt content flying to the weathering steel bridge is blocked, the weathering steel bridge can be constructed. There was a problem that the topographical impact could not be taken into consideration, such as the fact that construction was judged to be impossible.

また、特許文献5では、飛来塩分量の推定に風速・風向データを用いる場合、地形データを用いた流れ解析及び塩分拡散解析も併せて実施する必要性があり、耐候性鋼橋梁の建設可否を判定するのに時間を要するという問題があった。また、特許文献5においては、「海岸における発生塩分量の算定を行う第一の工程」が行われるが、この「海岸」の定義が明確でない。例えば、耐候性鋼橋梁の建設予定地が小さい島に位置する場合、建設予定地の周囲全体を上記「海岸」とみなすか、あるいは建設予定地に最も近接する海岸のみを上記「海岸」とみなすのか等が不明であり、「海岸」をどのように定義するかによって飛来塩分量の推定値が変わってしまうという問題があった。 Further, in Patent Document 5, when wind speed / direction data is used for estimating the amount of flying salt, it is necessary to also perform flow analysis and salt diffusion analysis using topographical data, and whether or not a weathering steel bridge can be constructed is determined. There was a problem that it took time to judge. Further, in Patent Document 5, "the first step of calculating the amount of salt generated on the coast" is performed, but the definition of "coast" is not clear. For example, if the planned construction site of a weather-resistant steel bridge is located on a small island, the entire circumference of the planned construction site is regarded as the above "coast", or only the coast closest to the planned construction site is regarded as the above "coast". There was a problem that the estimated value of the amount of flying salt changed depending on how the "coast" was defined.

特開2005-134320号公報Japanese Unexamined Patent Publication No. 2005-134320 特開2006-053122号公報Japanese Unexamined Patent Publication No. 2006-053122 特開2006-208346号公報Japanese Unexamined Patent Publication No. 2006-208346 特開2012-163374号公報Japanese Unexamined Patent Publication No. 2012-163374 特開2001-152413号公報Japanese Unexamined Patent Publication No. 2001-152413

本発明は、比較的簡単な構成により、海上から陸上の対象地点に飛来する飛来塩分量を推定可能な、飛来塩分量の推定方法、および前記対象地点で用いられる耐候性鋼の適用可否判定方法を提供することを目的とする。 The present invention is a method for estimating the amount of flying salt that can estimate the amount of flying salt flying from the sea to a target point on land with a relatively simple configuration, and a method for determining the applicability of weathering steel used at the target point. The purpose is to provide.

上記課題を解決するため、本発明は以下の特徴を有する。 In order to solve the above problems, the present invention has the following features.

[1]海上から陸上の対象地点に飛来する飛来塩分量の推定方法であって、前記対象地点および該対象地点の周囲4地点を含む、5以上の地点における風速・風向データを用いて、前記対象地点への海風エネルギー比例数を計算し、該海風エネルギー比例数を用いて、前記飛来塩分量の推定値を計算することを特徴とする飛来塩分量の推定方法。 [1] A method for estimating the amount of flying salt that flies from the sea to a target point on land, using wind speed / direction data at five or more points including the target point and four points around the target point. A method for estimating the amount of flying salt, which comprises calculating the proportional number of sea breeze energy to a target point and calculating the estimated value of the amount of flying salt using the proportional number of sea breeze energy.

[2]前記周囲4地点は、海岸線上で前記対象地点に最も近接する第1地点、前記対象地点から前記第1地点に向かう方角とは+90度をなす方角に延びる直線が、前記海岸線と交わる第2地点、前記対象地点から前記第1地点に向かう方角とは+180度をなす方角に延びる直線が、前記海岸線と交わる第3地点、および前記対象地点から前記第1地点に向かう方角とは+270度をなす方角に延びる直線が、前記海岸線と交わる第4地点
からなることを特徴とする上記[1]に記載の飛来塩分量の推定方法。
[2] The surrounding four points are the first point closest to the target point on the coastline, and a straight line extending in a direction forming +90 degrees from the direction from the target point to the first point intersects the coastline. The direction from the target point to the first point is +270 at the second point, the third point where the straight line extending in the direction forming +180 degrees from the target point intersects the coastline, and the direction from the target point to the first point. The method for estimating the amount of flying salt according to the above [1], wherein a straight line extending in a direction consisting of a fourth point intersecting the coastline.

[3]前記風速・風向データとして、メソ気象モデルによる気象解析から得られる風速・風向データを用いることを特徴とする上記[1]または[2]に記載の飛来塩分量の推定方法。 [3] The method for estimating the amount of flying salt according to the above [1] or [2], wherein the wind speed / wind direction data obtained from the meteorological analysis by the meso-meteorological model is used as the wind speed / direction data.

ここで、上記メソ気象モデルとしては、例えば、米国大気研究センター等によって開発されたソフトウェアである領域気象モデル「WRF」を用いることができる。「WRF」は、気温、風、気圧、水蒸気などで表せる大気の状態変化を流体力学や熱力学などの物理学の法則に則って解析を行うソフトウェアである。 Here, as the mesoscale meteorological model, for example, the regional meteorological model "WRF", which is software developed by the US Atmospheric Research Center and the like, can be used. "WRF" is software that analyzes changes in the state of the atmosphere, which can be expressed by temperature, wind, atmospheric pressure, water vapor, etc., according to the laws of physics such as fluid mechanics and thermodynamics.

[4]前記対象地点で用いられる耐候性鋼の適用可否判定方法であって、上記[1]~[3]のいずれかに記載の飛来塩分量の推定方法により計算される前記飛来塩分量の推定値が、前記耐候性鋼の鋼種毎に定められる飛来塩分量の許容上限値以下となる場合に、前記鋼種を適用可と判定することを特徴とする耐候性鋼の適用可否判定方法。 [4] The method for determining the applicability of the weathering steel used at the target point, which is the method for estimating the amount of flying salt according to any one of the above [1] to [3]. A method for determining applicability of a weathering steel, which comprises determining that the steel grade is applicable when the estimated value is equal to or less than the allowable upper limit value of the amount of flying salt determined for each weathering steel grade.

[5]前記対象地点で用いられる耐候性鋼の適用可否判定方法であって、前記風速・風向データを用いて、前記対象地点における陸風エネルギー比例数を計算し、該陸風エネルギー比例数を用いて、前記耐候性鋼の腐食抑制量を計算し、前記耐候性鋼の鋼種毎に定められる耐食性と、上記[1]~[3]のいずれかに記載の飛来塩分量の推定方法により計算される前記飛来塩分量の推定値と、前記腐食抑制量とを用いて、前記耐候性鋼の腐食量の推定値を計算し、前記腐食量の推定値が許容上限値以下となる場合に、前記鋼種を適用可と判定することを特徴とする耐候性鋼の適用可否判定方法。 [5] A method for determining the applicability of weathering steel used at the target point. Using the wind speed / direction data, the land wind energy proportional number at the target point is calculated, and the land wind energy proportional number is used. , The corrosion suppression amount of the weathering steel is calculated, and it is calculated by the corrosion resistance determined for each steel type of the weathering steel and the method for estimating the amount of flying salt according to any one of the above [1] to [3]. An estimated value of the amount of corrosion of the weathering steel is calculated using the estimated value of the amount of flying salt and the amount of suppression of corrosion, and when the estimated value of the amount of corrosion is equal to or less than the allowable upper limit value, the steel grade. A method for determining the applicability of weathering steel, which comprises determining that the applicability is applicable.

[6]前記耐候性鋼は、前記対象地点に建設される鋼製橋梁に用いられるものであることを特徴とする[4]または[5]に記載の耐候性鋼の適用可否判定方法。 [6] The method for determining applicability of a weathering steel according to [4] or [5], wherein the weathering steel is used for a steel bridge constructed at the target point.

本発明の飛来塩分量の推定方法およびこれを用いた耐候性鋼の適用可否判定方法によれば、上記対象地点および該対象地点の周囲4地点を含む、5以上の地点における風速・風向データを用いることにより、海上から陸上の対象地点に飛来する飛来塩分量の推定を、長期間にわたる詳細な飛来塩分量の現地調査を必要とすることなく、短時間で高い信頼性をもって実施できる。 According to the method for estimating the amount of flying salt and the method for determining the applicability of weathering steel using the method of the present invention, wind speed / direction data at 5 or more points including the target point and 4 points around the target point can be obtained. By using it, it is possible to estimate the amount of flying salt flying from the sea to the target point on land in a short time and with high reliability without requiring a detailed field survey of the amount of flying salt over a long period of time.

また、上記周囲4地点として、上記[2]の方法に従って第1~第4地点を設定することにより、上記対象地点が島や半島内に位置する場合であっても、対象地点の周囲四方から飛来する飛来塩分量を適切に考慮に入れ、飛来塩分量の推定を、さらに高い信頼性で実施できる。特に、上記対象地点における風速・風向データと、海岸線上で上記対象地点に最も近接する上記第1地点における風速・風向データとの相対的な関係は、上記対象地点と上記第1地点との間に山等の遮蔽物が存在する場合と遮蔽物が存在しない場合とで異なる。したがって、耐候性鋼が用いられる対象地点が、例えば山の背後などに位置しており、海風による塩分飛来が遮断されるような場合、この影響を考慮に入れて、飛来塩分量の推定および耐候性鋼の適用可否判定を、より適切に実施できる。 Further, by setting the first to fourth points as the four surrounding points according to the method of [2] above, even if the target points are located in an island or a peninsula, the target points can be viewed from all sides around the target points. The amount of flying salt can be estimated with even higher reliability by appropriately taking into consideration the amount of flying salt. In particular, the relative relationship between the wind speed / wind direction data at the target point and the wind speed / wind direction data at the first point closest to the target point on the coastline is between the target point and the first point. It differs depending on whether there is a shield such as a mountain or not. Therefore, if the target point where weathering steel is used is located behind a mountain, for example, and the salt arrival due to sea breeze is blocked, this effect is taken into consideration when estimating the amount of incoming salt and weather resistance. Applicability of weathering steel can be determined more appropriately.

また、上記[3]のように、風速・風向データとして、メソ気象モデルによる気象解析から得られる風速・風向データを用いることで、風速・風向の観測実績が無い地点においても、風速・風向に関する現地調査を必要とすることなく、高い信頼性で、飛来塩分量の推定を実施できる。 In addition, as described in [3] above, by using the wind speed / wind direction data obtained from the meteorological analysis by the meso-meteorological model as the wind speed / direction data, the wind speed / direction can be related even at a point where there is no observation record of the wind speed / direction. It is possible to estimate the amount of flying salt with high reliability without the need for a field survey.

また、上記[5]のように、陸風エネルギー比例数を用いることで、陸風によって耐候性鋼の表面が乾燥することによる腐食抑制効果を考慮に入れた耐候性鋼の適用可否判定を実施できる。 Further, as in the above [5], by using the proportional number of land wind energy, it is possible to determine the applicability of the weathering steel in consideration of the corrosion suppressing effect due to the surface of the weathering steel being dried by the land wind.

さらに、本願発明の飛来塩分量の推定方法およびこれを用いた耐候性鋼の適用可否判定方法は、特に、鋼製橋梁に用いられる耐候性鋼の適用可否判定に、好適に利用できる。 Further, the method for estimating the amount of flying salt and the method for determining the applicability of weathering steel using the method of the present invention can be suitably used for determining the applicability of weathering steel used for steel bridges.

本発明の第1実施形態の飛来塩分量の推定方法および耐候性鋼の適用可否判定方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the method of estimating the amount of flying salt content and the method of determining the applicability of weathering steel according to the first embodiment of the present invention. 本発明の飛来塩分量の推定方法における、対象地点の周囲4地点(第1~第4地点)の設定方法を示す図である。It is a figure which shows the setting method of 4 points (1st to 4th points) around a target point in the method of estimating the amount of flying salt of this invention. 本発明の飛来塩分量の推定方法によって推定される飛来塩分量推定値と、飛来塩分量実測値とを比較した例を示すグラフである。It is a graph which shows the example which compared the estimated value of the flying salt content estimated by the method of estimating the flying salt content of the present invention with the measured value of the flying salt content. 本発明の第2実施形態の耐候性鋼の適用可否判定方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the applicability determination method of the weathering steel of the 2nd Embodiment of this invention.

本発明の飛来塩分量の推定方法および耐候性鋼の適用可否判定方法の実施形態を、図面を参照しつつ、以下に説明する。
(第1の実施形態)
図1は、本発明の第1実施形態の飛来塩分量の推定方法および耐候性鋼の適用可否判定方法の流れを示すフローチャートである。
An embodiment of the method for estimating the amount of flying salt and the method for determining the applicability of weathering steel of the present invention will be described below with reference to the drawings.
(First Embodiment)
FIG. 1 is a flowchart showing a flow of a method for estimating the amount of flying salt and a method for determining applicability of weathering steel according to the first embodiment of the present invention.

まず、ステップS1では、使用候補となる耐候性鋼の鋼種を選定する。 First, in step S1, a steel grade of weathering steel that is a candidate for use is selected.

ステップS2では、前記耐候性鋼を用いた構造物(例えば鋼製橋梁)の建設予定地である対象地点Pを、地図データに設定する。なお、対象地点Pは、地図データ中の陸L上に設定するものとする。地図データとしては、一般に広く用いられている地理情報システム(GIS)などを利用できる。 In step S2, the target point P0 , which is the planned construction site of the structure using the weathering steel (for example, a steel bridge), is set in the map data. The target point P 0 shall be set on the land L in the map data. As the map data, a generally widely used geographic information system (GIS) or the like can be used.

ステップS3では、図2に示すように、上記地図データにおいて、海岸線SL上で対象地点Pに最も近接する地点である第1地点Pを設定する。さらに、対象地点Pから第1地点に向かう方角とは+90度、+180度、+270度をなす方角に延びる三本の直線が、それぞれ海岸線SLと交わる第2~第4地点P~Pを、上記地図データ上に設定する。 In step S3, as shown in FIG. 2 , in the map data, the first point P1 which is the closest point to the target point P0 on the coastline SL is set. Furthermore, the directions from the target point P 0 to the first point are +90 degrees, +180 degrees, and +270 degrees, and the three straight lines extending in the directions intersect the coastline SL, respectively, at the second to fourth points P2 to P4. Is set on the above map data.

ステップS4では、対象地点Pにおいて所定期間にわたって所定時間間隔で得られる風速データW(m/s)および風向データθ(度)、ならびに第1~第4地点P~Pの各々において所定期間中に所定時間間隔で得られる風速・風向データ(W(m/s),θ(度))~(W(m/s),θ(度))を、入力値として用意する。ここで、第1地点における風向θ(度)は、第1地点Pから対象地点Pに向かう方向に対する角度である。同様に、第2~第4地点P~Pにおける風向θ~θ(度)はそれぞれ、第2地点Pから対象地点Pに向かう方向に対する角度、第3地点Pから対象地点Pに向かう方向に対する角度、第4地点Pから対象地点Pに向かう方向に対する角度である。例えば、上記所定期間を1年、上記所定時間間隔を1ヶ月または2ヶ月とする場合には、上記対象地点Pおよび上記第1~第4地点P~Pの各々における、1ヶ月間または2ヶ月間の平均風速および最多風向を1年分用意し、これらを、1年間にわたって1ヶ月または2ヶ月間隔で得られる上記風速・風向データとの入力値として用いることができる。 In step S4, the wind speed data W 0 (m / s) and the wind direction data θ 0 (degrees) obtained at a predetermined time interval at the target point P 0 , and the first to fourth points P 1 to P 4 , respectively. In, the wind speed / direction data (W 1 (m / s), θ 1 (degrees)) to (W 4 (m / s), θ 4 (degrees)) obtained at predetermined time intervals during a predetermined period are input values. Prepare as. Here, the wind direction θ 1 (degrees) at the first point is an angle with respect to the direction from the first point P 1 to the target point P 0 . Similarly, the wind directions θ 2 to θ 4 (degrees) at the 2nd to 4th points P2 to P4 are the angles from the 2nd point P2 to the target point P0 and the target from the 3rd point P3, respectively. The angle with respect to the direction toward the point P0 and the angle with respect to the direction from the fourth point P4 to the target point P0 . For example, when the predetermined period is one year and the predetermined time interval is one month or two months, one month at each of the target points P0 and the first to fourth points P1 to P4. Alternatively, the average wind speed and the maximum wind direction for two months can be prepared for one year, and these can be used as input values with the above-mentioned wind speed / wind direction data obtained at one-month or two-month intervals over one year.

上記風速・風向データ(W(m/s),θ(度))~(W(m/s),θ(度))としては、対象地点Pおよび第1~第4地点P~Pの各々において、上記所定期間にわたって上記所定時間間隔で観測された実測値を使用しても良く、あるいは、これに代えて、メソ気象モデルによる気象解析から得られる、対象地点Pおよび第1~第4地点P~Pの各々における風速・風向の値を使用しても良い。 The wind speed / direction data (W 0 (m / s), θ 0 (degrees)) to (W 4 (m / s), θ 4 (degrees)) are the target points P 0 and the first to fourth points. In each of P1 to P4, the measured values observed at the predetermined time intervals over the predetermined period may be used, or instead, the target points P obtained from the meteorological analysis by the meso meteorological model. The wind speed / direction values at 0 and each of the first to fourth points P1 to P4 may be used.

ステップS5では、第1~第4地点P~Pの各々から対象地点Pへの海風エネルギー比例数を計算する。 In step S5, the proportional number of sea breeze energy from each of the first to fourth points P1 to P4 to the target point P0 is calculated.

対象地点Pにおける海風エネルギー比例数は、対象地点Pにおける風速Wの二乗の、第1地点Pから対象地点Pに向かう方向の成分、すなわちW cosθ(m/s)を上記所定期間中について累積した値Σ(W cosθ)(m/s)として計算される。 The proportional number of sea breeze energy at the target point P 0 is the component of the square of the wind speed W 0 at the target point P 0 in the direction from the first point P 1 to the target point P 0 , that is, W 0 2 cos θ 0 (m 2 / s). 2 ) is calculated as the accumulated value Σ (W 0 2 cos θ 0 ) (m 2 / s 2 ) during the above predetermined period.

第1地点Pから対象地点Pへの海風エネルギー比例数は、第1地点Pにおける風速W(m/s)の二乗の、第1地点Pから対象地点Pに向かう方向の成分、すなわちW cosθ(m/s)を、上記所定期間中について累積した値Σ(W cosθ)(m/s)として計算される。 The proportional number of sea breeze energy from the first point P 1 to the target point P 0 is the square of the wind speed W 1 (m / s) at the first point P 1 in the direction from the first point P 1 to the target point P 0 . The component, that is, W 1 2 cos θ 1 (m 2 / s 2 ), is calculated as the accumulated value Σ (W 1 2 cos θ 1 ) (m 2 / s 2 ) during the predetermined period.

同様に、第2~第4地点P~Pの各々から対象地点Pへの海風エネルギー比例数の各々は、Σ(W cosθ)、Σ(W cosθ)、Σ(W cosθ)(m/s)として計算される。 Similarly, each of the sea breeze energy proportional numbers from each of the second to fourth points P2 to P4 to the target point P0 is Σ (W 22 cos θ 2 ) , Σ ( W 32 cos θ 3 ) , Σ. It is calculated as (W 4 2 cos θ 4 ) (m 2 / s 2 ).

ステップS6では、海上から対象地点Pへの飛来塩分量推定値Cp(mdd)を計算する。飛来塩分量推定値Cpは、第1~第4地点P~Pの各々から対象地点Pへの直線距離をそれぞれD~D(km)とすると、ステップS5で得られた各海風エネルギー比例数を用いて、次の式(1)に従って計算される(αは定数)。ただし、D~Dの各々が1(km)未満のときは、式(1)に代入する値として1を用い、D~Dの各々が40(km)を超えるときは、式(1)に代入する値として∞(無限大)を用いる。 In step S6, the estimated value Cp ( mdd ) of the amount of flying salt from the sea to the target point P0 is calculated. The estimated flying salt content Cp is obtained in step S5, where the linear distance from each of the first to fourth points P1 to P4 to the target point P0 is D1 to D4 (km), respectively. It is calculated according to the following equation (1) using the sea breeze energy proportional number (α is a constant). However, when each of D 1 to D 4 is less than 1 (km), 1 is used as the value to be substituted in the equation (1), and when each of D 1 to D 4 exceeds 40 (km), the equation is used. Use ∞ (infinity) as the value to be assigned to (1).

Figure 0007020448000001
Figure 0007020448000001

ここで、上記定数αは、飛来塩分量実測値が得られている対象地点Pにおいて、上記式(1)の右辺の風速・風向データ(W(m/s),θ(度))~(W(m/s)(m/s),θ(度))、第1~第4地点P~Pの各々からの距離D~D(km)の実際の値を代入するとともに、左辺のCpに飛来塩分量実測値を代入することによって、得られる値である。飛来塩分量実測値が得られている複数の対象地点Pの各々について定数αを計算し、これらを元にして経験的に得られるαの値は、0.04~0.25(mdd・s/m)程度である。 Here, the constant α is the wind speed / direction data (W 1 (m / s), θ 1 (degrees) on the right side of the above equation (1) at the target point P 0 where the measured value of the amount of flying salt is obtained. )-(W 4 (m / s) (m / s), θ 4 (degrees)), actual distances D 1 to D 4 (km) from each of the first to fourth points P 1 to P 4 . It is a value obtained by substituting the value and substituting the measured value of the amount of flying salt into Cp on the left side. A constant α is calculated for each of the plurality of target points P 0 for which the measured value of the amount of flying salt is obtained, and the value of α obtained empirically based on these is 0.04 to 0.25 (mdd. It is about s / m 2 ).

図3に、北緯34度51分、東経139度55分の陸上地点を対象地点Pとして設定し、この対象地点Pに基づいて第1~第4地点P~Pを設定し、対象地点Pおよび第1~第4地点P~Pにおいて2005年4月~2006年3月の各月の月初から月末の1ヶ月間にわたって1時間間隔で観測された風速・風向データW~Wを入力(定数α=0.18(mdd・s/m)とした)して計算された、各月毎の飛来塩分量推定値Cp(mdd)と、海上から上記対象地点P(北緯34度51分、東経139度55分の陸上地点)に飛来した各月毎の飛来塩分量実測値と、を比較したグラフを示す。 In FIG. 3, the land point of 34 degrees 51 minutes north latitude and 139 degrees 55 minutes east longitude is set as the target point P 0 , and the first to fourth points P 1 to P 4 are set based on this target point P 0 . Wind speed / direction data W observed at 1-hour intervals from the beginning of each month to the end of each month from April 2005 to March 2006 at the target points P0 and the 1st to 4th points P1 to P4. Monthly estimated flying salt content Cp (mdd) calculated by inputting 0 to W 4 (constant α = 0.18 (mdd · s / m 2 )) and the above target points from the sea. The graph which compared the measured value of the amount of the incoming salt for each month which came to P 0 (the land point of 34 degrees 51 minutes north latitude, 139 degrees 55 minutes east longitude) is shown.

図3に示すように、飛来塩分量は月毎に変動しているが、飛来塩分量推定値Cp(mdd)は飛来塩分量実測値にほぼ比例して変動しており、式(1)によって計算される飛来塩分量推定値Cp(mdd)は、実測値に近い有効な値であることが分かる。 As shown in FIG. 3, the amount of flying salt fluctuates from month to month, but the estimated value of flying salt Cp (mdd) fluctuates almost in proportion to the measured value of flying salt, according to equation (1). It can be seen that the calculated flying salt content estimated value Cp (mdd) is an effective value close to the measured value.

ステップS7では、ステップS6で算出された飛来塩分量推定値Cp(mdd)が、ステップS1で選定された鋼種毎に定められた飛来塩分量許容上限値以下であるか否かを判定する。例えば、ステップS1で選定された鋼種がSMA材(溶接構造用耐候性熱間圧延鋼材)(JIS G3114)である場合は、飛来塩分量許容上限値として、0.05mdd等を用いることができる。 In step S7, it is determined whether or not the estimated flying salt content Cp (mdd) calculated in step S6 is equal to or less than the allowable upper limit of flying salt content determined for each steel type selected in step S1. For example, when the steel type selected in step S1 is an SMA material (welded structure weathering resistant hot-rolled steel material) (JIS G3114), 0.05 mdd or the like can be used as the allowable upper limit value of the amount of flying salt.

ステップS7で、飛来塩分量推定値Cpが許容上限値以下であると判定された場合(Yes)には、ステップS8において、対象地点PではステップS1で選定された鋼種が適用可と判定される。ステップS7で、飛来塩分量推定値Cpが許容上限値を超えると判定された場合(No)には、ステップS9において、対象地点PではステップS1で選定された鋼種が適用不可と判定される。以上で、第1実施形態の耐候性鋼の適用可否判定方法が終了する。
(第2実施形態)
図4は、本発明の第2実施形態の耐候性鋼の適用可否判定方法の流れを示すフローチャートである。
When it is determined in step S7 that the estimated flying salt content Cp is equal to or less than the allowable upper limit value (Yes), it is determined in step S8 that the steel grade selected in step S1 is applicable at the target point P0 . To. If it is determined in step S7 that the estimated flying salt content Cp exceeds the allowable upper limit value (No), it is determined in step S9 that the steel grade selected in step S1 is not applicable at the target point P0 . .. This completes the method for determining the applicability of the weathering steel of the first embodiment.
(Second Embodiment)
FIG. 4 is a flowchart showing a flow of a method for determining applicability of weathering steel according to the second embodiment of the present invention.

第2実施形態は、第1実施形態の飛来塩分量の推定方法および耐候性鋼の鋼種選定方法を基礎とし、さらに、陸風によって耐候性鋼の表面が乾燥することによる腐食抑制効果を考慮に入れて、耐候性鋼の適用可否判定を行うものである。 The second embodiment is based on the method of estimating the amount of flying salt and the method of selecting the steel type of the weathering steel of the first embodiment, and further takes into consideration the corrosion suppressing effect due to the surface of the weathering steel being dried by the land breeze. Therefore, the applicability of weathering steel is determined.

ステップS11~ステップS16は、第1実施形態のステップS1~S6と同様に行う。 Steps S11 to S16 are performed in the same manner as in steps S1 to S6 of the first embodiment.

ステップS17では、ステップS11で選定された耐候性鋼が対象地点Pに設置された場合の、陸風によって耐候性鋼の表面が乾燥することによる腐食抑制効果を考慮に入れる前の腐食量推定値t(mm/年)を、ステップS16で計算された飛来塩分量推定値Cp(mdd)と、ステップS11で選定された耐候性鋼の鋼種毎に定められる耐食性を用いて計算する。 In step S17, when the weathering steel selected in step S11 is installed at the target point P0 , the estimated corrosion amount before taking into consideration the corrosion suppressing effect due to the surface of the weathering steel being dried by the land wind. t 1 (mm / year) is calculated using the estimated flying salt content Cp (mdd) calculated in step S16 and the corrosion resistance determined for each weathering steel grade selected in step S11.

ステップS18では、対象地点Pにおける陸風エネルギー比例数を算出する。 In step S18, the proportional number of land breeze energy at the target point P0 is calculated.

ステップS19では、ステップS18で計算された対象地点7における陸風エネルギー比例数を用いて、陸風による腐食抑制量t(mm/年)を計算する。 In step S19, the amount of corrosion suppression due to land breeze t 2 (mm / year) is calculated using the land breeze energy proportional number at the target point 7 calculated in step S18.

ステップS20では、ステップS17で計算された、陸風による腐食抑制効果を考慮に入れる前の腐食量推定値t(mm/年)と、ステップS19で計算された、陸風による腐食抑制量t(mm/年)とから、ステップS11で選定された耐候性鋼が対象地点Pに設置された場合の、陸風による腐食抑制効果を考慮に入れた腐食量推定値t(mm/年)=t-tを計算する。 In step S20, the estimated corrosion amount t 1 (mm / year) calculated in step S17 before taking into account the corrosion suppression effect due to land wind, and the corrosion suppression amount t 2 due to land wind calculated in step S19 ( From mm / year), the estimated corrosion amount t (mm / year) = t, taking into consideration the corrosion suppression effect due to land wind when the weathering steel selected in step S11 is installed at the target point P0. Calculate 1 - t2.

表1に、三つの対象地点P(地点A:北緯34度51分、東経139度55分の陸上地点、地点B:北緯37度46分、東経139度04分の陸上地点、地点C:北緯35度22分、東経132度47分の陸上地点)の各々に、耐候性鋼(鋼種:SMA材)を、地点Aでは2005年4月~2006年3月の12ヶ月間、地点Bおよび地点Cでは、2005年2月~2006年1月の12ヶ月間設置した例について、対象地点Pと第1地点Pとの離岸距離D(km)、三つの対象地点Pにおける飛来塩分量実測値(mdd)、三つの対象地点における陸風エネルギー比例数(1年間の平均値)、上記耐候性鋼の腐食量実測値(mm)(上下フランジの平均値)を示す。 In Table 1, three target points P 0 (Point A: Land point at 34 ° 51'N, 139 ° 55'E, Point B: Land at 37 ° 46'N, 139 ° 04'E, Point C: Weather-resistant steel (steel grade: SMA material) is applied to each of the land points (35 degrees 22 minutes north latitude and 132 degrees 47 minutes east longitude), and at point A for 12 months from April 2005 to March 2006, points B and At point C, for the example installed for 12 months from February 2005 to January 2006, the offshore distance D 1 (km) between the target point P 0 and the first point P 1 and the three target points P 0 The measured value of the amount of flying salt (mdd), the proportional number of land wind energy at the three target points (average value for one year), and the measured value of corrosion amount of the weather-resistant steel (mm) (average value of the upper and lower flanges) are shown.

Figure 0007020448000002
Figure 0007020448000002

表1の地点Bおよび地点Cのように、陸風エネルギー比例数がほぼ同じ、すなわち陸風による腐食抑制効果がほぼ同じ条件では、飛来塩分量が多いほど腐食量実測値も大きくなる。一方、地点Aのように、陸風エネルギー比例数が大きい場合には、陸風によって耐候性鋼が乾燥されることで腐食が抑制され、腐食量実測値が小さくなることがわかる。 As in points B and C in Table 1, under the condition that the proportional number of land breeze energy is almost the same, that is, the effect of suppressing corrosion by the land breeze is almost the same, the larger the amount of flying salt, the larger the measured corrosion amount. On the other hand, when the proportional number of land breeze energy is large as in point A, it can be seen that the weathering steel is dried by the land breeze, so that corrosion is suppressed and the measured corrosion amount becomes small.

ステップS21では、ステップS20で算出された腐食量推定値t(mm/年)が、腐食量許容腐食量以下であるか否かを判定する。耐候性鋼の腐食量許容上限値としては、例えば0.03(mm/年)、0.3mm/50年、または0.5mm/100年等と設定すると好ましい。 In step S21, it is determined whether or not the corrosion amount estimated value t (mm / year) calculated in step S20 is equal to or less than the corrosion amount allowable corrosion amount. The upper limit of the allowable corrosion amount of the weathering steel is preferably set to, for example, 0.03 (mm / year), 0.3 mm / 50 years, 0.5 mm / 100 years, or the like.

ステップS21で腐食量推定値t(mm/年)が許容上限値以下であると判定された場合(Yes)には、ステップS22において、対象地点PではステップS11で選定された鋼種が適用可と判定される。ステップS21で、飛来塩分量推定値Cpが許容上限値を超えると判定された場合(No)には、ステップS23において、対象地点PではステップS11で選定された鋼種は適用不可と判定される。以上で、第2実施形態の耐候性鋼の適用可否判定方法が終了する。 When it is determined in step S21 that the estimated corrosion amount t (mm / year) is equal to or less than the allowable upper limit value (Yes), the steel grade selected in step S11 can be applied at the target point P0 in step S22. Is determined. If it is determined in step S21 that the estimated flying salt content Cp exceeds the allowable upper limit value (No), it is determined in step S23 that the steel grade selected in step S11 is not applicable at the target point P0 . .. This completes the method for determining the applicability of the weathering steel of the second embodiment.

なお、本発明の飛来塩分量の推定方法および耐候性鋼の適用可否判定方法は、例えば、汎用パーソナルコンピュータに、上述の第1実施形態や第2実施形態の処理フローを実行可能なプログラムをインストールすることにより実施可能である。 In the method for estimating the amount of flying salt and the method for determining the applicability of weathering steel of the present invention, for example, a program capable of executing the processing flow of the above-mentioned first embodiment and the second embodiment is installed in a general-purpose personal computer. It can be carried out by doing.

対象地点(建設予定地)
第1地点
第2地点
第3地点
第4地点
第1地点から対象地点への直線距離
第2地点から対象地点への直線距離
第3地点から対象地点への直線距離
第4地点から対象地点への直線距離
対象地点における風速
第1地点における風速
第2地点における風速
第3地点における風速
第4地点における風速
θ 対象地点における風向
θ 第1地点における風向
θ 第2地点における風向
θ 第3地点における風向
θ 第4地点における風向
L 陸
SL 海岸線
P0 target point (planned construction site)
P 1 1st point P 2 2nd point P 3 3rd point P 4 4th point D 1 Straight line distance from 1st point to target point D 2 Straight line distance from 2nd point to target point D 3 From 3rd point Straight line distance to the target point D 4 Straight line distance from the 4th point to the target point W 0 Wind speed at the target point W 1 Wind speed at the 1st point W 2 Wind speed at the 2nd point W 3 Wind speed at the 3rd point W 4 4th point Wind direction θ 0 Wind direction at the target point θ 1 Wind direction at the first point θ 2 Wind direction at the second point θ 3 Wind direction at the third point θ 4 Wind direction at the fourth point L Land SL coastline

Claims (7)

海上から陸上の対象地点に飛来する飛来塩分量の推定方法であって、
前記対象地点と、海岸線上で前記対象地点に最も近接する第1地点と、前記対象地点から前記第1地点に向かう方角とは+90度をなす方角に延びる直線が前記海岸線と交わる第2地点と、前記対象地点から前記第1地点に向かう方角とは+180度をなす方角に延びる直線が前記海岸線と交わる第3地点と、前記対象地点から前記第1地点に向かう方角とは+270度をなす方角に延びる直線が前記海岸線と交わる第4地点とを含む、5以上の地点における風速・風向データを用いて、前記対象地点への海風エネルギー比例数を計算し、
該海風エネルギー比例数を用いて、前記飛来塩分量の推定値を計算すること
を特徴とする飛来塩分量の推定方法。
It is a method of estimating the amount of flying salt that comes from the sea to the target point on land.
The target point , the first point closest to the target point on the coastline, and the second point where a straight line extending in a direction extending at +90 degrees from the target point to the first point intersects the coastline. The direction from the target point to the first point is +180 degrees, and the direction from the target point to the first point is +270 degrees with the third point where the straight line extending in the direction intersects the coastline. Using the wind velocity / direction data at 5 or more points including the 4th point where the straight line extending to the coastline intersects the coastline , the sea breeze energy proportional number to the target point is calculated.
A method for estimating the amount of flying salt, which comprises calculating the estimated value of the amount of flying salt using the sea breeze energy proportional number.
前記風速・風向データとして、メソ気象モデルによる気象解析から得られる風速・風向データを用いること
を特徴とする請求項に記載の飛来塩分量の推定方法。
The method for estimating the amount of flying salt according to claim 1 , wherein the wind speed / wind direction data obtained from the meteorological analysis by the meso meteorological model is used as the wind speed / direction data.
前記対象地点で用いられる耐候性鋼の適用可否判定方法であって、
請求項1または2に記載の飛来塩分量の推定方法により計算される前記飛来塩分量の推定値が、前記耐候性鋼の鋼種毎に定められる飛来塩分量の許容上限値以下となる場合に、前記鋼種を適用可と判定すること
を特徴とする耐候性鋼の適用可否判定方法。
It is a method for determining the applicability of weathering steel used at the target point.
When the estimated value of the amount of flying salt calculated by the method for estimating the amount of flying salt according to claim 1 or 2 is equal to or less than the allowable upper limit value of the amount of flying salt determined for each weathering steel type. A method for determining applicability of weathering steel, which comprises determining that the steel type is applicable.
耐候性鋼が用いられる対象地点および該対象地点の周囲4地点を含む、5以上の地点における風速・風向データを用いて、前記対象地点への海風エネルギー比例数を計算し、
該海風エネルギー比例数を用いて、海上から陸上の対象地点に飛来する飛来塩分量の推定値を計算し、
前記風速・風向データを用いて、前記対象地点における陸風エネルギー比例数を計算し、
該陸風エネルギー比例数を用いて、前記耐候性鋼の腐食抑制量を計算し、
前記耐候性鋼の鋼種毎に定められる耐食性と前記飛来塩分量の推定値と、前記腐食抑制量とを用いて、前記耐候性鋼の腐食量の推定値を計算し、
前記腐食量の推定値が許容上限値以下となる場合に、前記鋼種を適用可と判定すること
を特徴とする耐候性鋼の適用可否判定方法。
Using the wind speed and wind direction data at 5 or more points including the target point where weathering steel is used and 4 points around the target point, the sea breeze energy proportional number to the target point is calculated.
Using the sea breeze energy proportional number, the estimated value of the amount of flying salt flying from the sea to the target point on land was calculated.
Using the wind speed / direction data, the land wind energy proportional number at the target point is calculated.
Using the land breeze energy proportional number, the amount of corrosion suppression of the weathering steel was calculated.
Using the corrosion resistance determined for each type of weathering steel, the estimated value of the amount of flying salt, and the amount of corrosion suppression, the estimated value of the amount of corrosion of the weathering steel is calculated.
A method for determining applicability of weathering steel, which comprises determining that the steel grade is applicable when the estimated value of the amount of corrosion is equal to or less than the allowable upper limit value.
前記周囲4地点は、The four surrounding points are
海岸線上で前記対象地点に最も近接する第1地点、The first point on the coastline that is closest to the target point,
前記対象地点から前記第1地点に向かう方角とは+90度をなす方角に延びる直線が、前記海岸線と交わる第2地点、A second point where a straight line extending in a direction forming +90 degrees from the target point toward the first point intersects the coastline.
前記対象地点から前記第1地点に向かう方角とは+180度をなす方角に延びる直線が、前記海岸線と交わる第3地点、およびA straight line extending in a direction of +180 degrees from the target point toward the first point intersects with the coastline at the third point, and
前記対象地点から前記第1地点に向かう方角とは+270度をなす方角に延びる直線が、前記海岸線と交わる第4地点A fourth point where a straight line extending in a direction forming +270 degrees from the target point toward the first point intersects the coastline.
からなることを特徴とする請求項4に記載の耐候性鋼の適用可否判定方法。The method for determining applicability of a weathering steel according to claim 4, wherein the steel is made of.
前記風速・風向データとして、メソ気象モデルによる気象解析から得られる風速・風向データを用いることAs the wind speed / direction data, the wind speed / wind direction data obtained from the meteorological analysis by the meso meteorological model is used.
を特徴とする請求項4または5に記載の耐候性鋼の適用可否判定方法。The method for determining applicability of a weathering steel according to claim 4 or 5.
前記耐候性鋼は、前記対象地点に建設される鋼製橋梁に用いられるものであること
を特徴とする請求項3~6のいずれかに記載の耐候性鋼の適用可否判定方法。
The method for determining applicability of a weathering steel according to any one of claims 3 to 6 , wherein the weathering steel is used for a steel bridge constructed at the target point.
JP2019063397A 2019-03-28 2019-03-28 Method for estimating the amount of flying salt and method for determining the applicability of weathering steel Active JP7020448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019063397A JP7020448B2 (en) 2019-03-28 2019-03-28 Method for estimating the amount of flying salt and method for determining the applicability of weathering steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019063397A JP7020448B2 (en) 2019-03-28 2019-03-28 Method for estimating the amount of flying salt and method for determining the applicability of weathering steel

Publications (2)

Publication Number Publication Date
JP2020165661A JP2020165661A (en) 2020-10-08
JP7020448B2 true JP7020448B2 (en) 2022-02-16

Family

ID=72714425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019063397A Active JP7020448B2 (en) 2019-03-28 2019-03-28 Method for estimating the amount of flying salt and method for determining the applicability of weathering steel

Country Status (1)

Country Link
JP (1) JP7020448B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001816A (en) 1998-01-28 2000-01-07 Nkk Corp Decision method of applicability to bridge of weather- resistant steel
JP2001152413A (en) 1999-09-16 2001-06-05 Nkk Corp Method for judging suitability of construction of weatherproofing steel bridge
JP2006317460A (en) 2006-06-26 2006-11-24 Central Res Inst Of Electric Power Ind Method of creating contour diagram of physical quantity, and method of estimating physical quantity
JP2011112445A (en) 2009-11-25 2011-06-09 Kobe Steel Ltd Method for estimating thickness reduction quantity of steel material
JP2012251847A (en) 2011-06-02 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> Sea salt particle amount estimation device and method
JP2015075828A (en) 2013-10-07 2015-04-20 中国電力株式会社 Damage prediction device, damage prediction method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001816A (en) 1998-01-28 2000-01-07 Nkk Corp Decision method of applicability to bridge of weather- resistant steel
JP2001152413A (en) 1999-09-16 2001-06-05 Nkk Corp Method for judging suitability of construction of weatherproofing steel bridge
JP2006317460A (en) 2006-06-26 2006-11-24 Central Res Inst Of Electric Power Ind Method of creating contour diagram of physical quantity, and method of estimating physical quantity
JP2011112445A (en) 2009-11-25 2011-06-09 Kobe Steel Ltd Method for estimating thickness reduction quantity of steel material
JP2012251847A (en) 2011-06-02 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> Sea salt particle amount estimation device and method
JP2015075828A (en) 2013-10-07 2015-04-20 中国電力株式会社 Damage prediction device, damage prediction method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
崎原 康平 他,飛来塩分輸送状況予測システムの構築に関する基礎的研究,日本建築学会構造系論文集,2016年09月,第81巻,第727号,1403-1412頁

Also Published As

Publication number Publication date
JP2020165661A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
Zhang et al. Optimal sustainable life cycle maintenance strategies for port infrastructures
Pezza et al. Severe heat waves in Southern Australia: synoptic climatology and large scale connections
JP3909057B2 (en) Corrosion prediction method for weathering steel
JP4143018B2 (en) Method for predicting corrosion depletion amount of weathering steel, prediction device, and method for selecting steel grade applicable to steel structure
Kihira et al. Advancements of weathering steel technologies in Japan
JP2010129003A (en) Disaster prevention comprehensive plan support system and program of the same
JP2004069478A (en) Lightning prediction method
Kim et al. Effect of island topography and surface roughness on the estimation of annual energy production of offshore wind farms
JP7020448B2 (en) Method for estimating the amount of flying salt and method for determining the applicability of weathering steel
JP2005264716A (en) Flying salt amount evaluating method and steel structure
JP2007039970A (en) Predicting method for rusting level of non-painted atmospheric corrosion-resistant steel bridge
Guma et al. A field study of outdoor atmospheric corrosion rates of mild steel around Kaduna metropolis
JP2000001816A (en) Decision method of applicability to bridge of weather- resistant steel
EP4317942A1 (en) Method for predicting amount of corrosion in steel material, system for predicting amount of corrosion in steel material, program for predicting amount of corrosion in steel material, and method for proposing steel material
Ozkan et al. Prediction of atmospheric corrosion of carbon steel bridge components in a changing climate
Nadal-Caraballo et al. Statistical analysis and storm sampling approach for Lakes Michigan and St. Clair
Horvath et al. ASSESSING RAINFALL EROSIVITY FROM MONTHLY PRECIPITATION DATA.
Kvamme et al. Marine operation windows offshore norway
JP2001152413A (en) Method for judging suitability of construction of weatherproofing steel bridge
Silver et al. Facilities Environmental Severity Classification Study
Dowdy et al. Diagnosing indicators of large-scale forcing of east-coast cyclogenesis
Jalali et al. Modelling coastal development and environmental impacts: A case study across two regional towns in Australia
Usman et al. Atmospheric corrosion map for service life prediction of lattice steel tower using air pollution data and meteorological data
Kihira et al. 3% Ni-Advanced weathering steel and its applicability assessing method
Sanny Effects of Nonuniform Corrosion on the Structural Failure of Galvanized Steel Lattice Transmission Towers in Hurricanes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7020448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150