JP2005264716A - Flying salt amount evaluating method and steel structure - Google Patents

Flying salt amount evaluating method and steel structure Download PDF

Info

Publication number
JP2005264716A
JP2005264716A JP2005029406A JP2005029406A JP2005264716A JP 2005264716 A JP2005264716 A JP 2005264716A JP 2005029406 A JP2005029406 A JP 2005029406A JP 2005029406 A JP2005029406 A JP 2005029406A JP 2005264716 A JP2005264716 A JP 2005264716A
Authority
JP
Japan
Prior art keywords
salt
amount
salinity
steel structure
flying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005029406A
Other languages
Japanese (ja)
Inventor
Shinji Kato
真志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2005029406A priority Critical patent/JP2005264716A/en
Publication of JP2005264716A publication Critical patent/JP2005264716A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate the influences of the geography of a mountain located on the windward side of a bridge building point and a salt deposition amount for every bridge cross section by using an objective and simple method without performing simulation and one-year long observation of flying salt. <P>SOLUTION: This flying salt amount evaluating method uses a flying salt amount predicting function for an open geography for predicting the flying salt amount on a specified portion of a steel structure located within a predetermined offshore distance from a seacoast. A geography reducing coefficient for the flying salt based on geographic factors between the seacoast and the steel structure and a portion reducing coefficient for the flying salt on the specified portion of the steel structure are previously quantified from a simulated value or a measured value. The geography reducing coefficient is multiplied by a predicted value for the flying salt amount using the flying salt amount predicting function for the open geography to predict the flying salt amount on the steel structure. Then, the portion reducing coefficient is multiplied by the predicted value for the flying salt amount on the steel structure to predict the flying salt amount on the specified portion of the steel structure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、飛来塩分量評価方法及び鋼構造物に係り、特に、飛来塩分量の高い地域における耐候性鋼材の橋梁への適用の可否を判断する際に用いるのに好適な、地形や鋼構造物断面部位毎の影響を考慮した飛来塩分量評価方法、及び、該飛来塩分量評価方法を利用した鋼構造物に関する。   The present invention relates to a method for evaluating the amount of salt salinity and a steel structure, and particularly suitable for use in determining whether or not to apply a weather-resistant steel material to a bridge in an area where the amount of salt salinity is high. The present invention relates to a flying salt content evaluation method that takes into account the influence of each cross-section of the object, and a steel structure using the flying salt content evaluation method.

近年、塗装が不要な耐候性鋼材を用いた橋梁(以下、耐候性鋼橋梁と称する)が注目を浴びている。   In recent years, bridges using weathering steel materials that do not require painting (hereinafter referred to as weathering steel bridges) have attracted attention.

この耐候性鋼橋梁は、初期には赤錆が見られるものの、十数年後には保護性さび層が形成される耐候性鋼を使用するため、塗装が不要であり、通常数年毎に行なわれる塗替作業も省略可能となり、よって、結果的にライフサイクルコストの低減に極めて有効である。   This weather-resistant steel bridge does not require painting because it uses a weather-resistant steel in which a protective rust layer is formed after a few decades, although red rust is initially seen, and is usually done every few years The repainting operation can also be omitted, and as a result, it is extremely effective in reducing the life cycle cost.

この耐候性鋼は、大気曝露環境において、ニッケル、銅、燐、クロム等の有効元素が富化した防食性の高い安定錆が表面を覆うことにより、著しく腐食の進展を遅くする。しかしながら、耐候性鋼は、塩分濃度の高い環境下においては、保護性さび層が形成され難いことが判っており、そのため、非特許文献1では、図14に示す如く、日本列島をいくつかの地域区分に分割し、飛来塩分量が0.05mg/dm2/day(以下mddと略す)となる離岸距離より更に内陸側では、耐候性鋼材の裸使用を認めている。一方、飛来塩分量が0.05mddとなる離岸距離より海側では、原則として耐候性鋼材の裸使用(裸仕様とも称する)を認めておらず、これを実現するためには、対象とする橋梁建設地点において、1年以上飛来塩分量の観測を行ない、飛来塩分量が0.05mdd以下であることを示す必要がある。 This weathering steel significantly slows the progress of corrosion in an environment exposed to the atmosphere by covering the surface with stable anticorrosive rust enriched with effective elements such as nickel, copper, phosphorus and chromium. However, it has been found that a weather-resistant steel is difficult to form a protective rust layer in an environment with a high salinity. Therefore, in Non-Patent Document 1, as shown in FIG. The use of weather-resistant steel is permitted on the inland side, which is divided into the regional divisions, and further on the inland side than the separation distance where the incoming salt content is 0.05 mg / dm 2 / day (hereinafter abbreviated as mdd). On the other hand, on the sea side from the separation distance where the amount of incoming salt becomes 0.05 mdd, as a rule, the use of bare weather-resistant steel (also referred to as bare specifications) is not permitted. At the bridge construction point, it is necessary to observe the amount of salinity for one year or more and indicate that the amount of salt salinity is 0.05 mdd or less.

なお、非特許文献1においては、飛来塩分量を離岸距離の−0.6乗で近似している。つまり、任意の離岸距離に対して飛来塩分量を表わすようしているが、これはあくまで開けた地形を前提としたものである。   In Non-Patent Document 1, the amount of incoming salt is approximated by the −0.6 power of the shore separation distance. In other words, the amount of incoming salt is shown for an arbitrary rip-off distance, but this is based on open terrain.

一方、特許文献1には、飛来塩分量を算定した後、橋梁建設地点を含めた風の流れ解析/塩分解析を行ない、より詳細に地形の影響を考慮した飛来塩分量を評価して、耐候性鋼橋梁の建設適否を判定することが記載されている。この結果により、非特許文献1では耐候性鋼材の裸使用が認められない、湾岸距離の短い地域でも、裸使用を可能とすることができる。更に、橋梁断面周りの流れ解析/塩分解析を行ない、橋梁断面部位毎に耐候性鋼材の適用性を判定し、最適鋼種を選定することも記載されている。   On the other hand, in Patent Document 1, after calculating the amount of salinity, the wind flow analysis / salinity analysis including the construction point of the bridge is performed, and the amount of incoming salinity considering the influence of topography is evaluated in more detail. It is described that the construction suitability of the steel bridge is judged. According to this result, it is possible to make naked use possible even in an area where the coastal distance is short, in which non-patent literature 1 does not permit the use of weathering steel. Further, it is described that flow analysis / salinity analysis around the bridge section is performed, applicability of the weathering steel material is determined for each bridge section, and the optimum steel type is selected.

建設省土木研究所、(株)鋼材倶楽部、(社)日本橋梁建設協会:“耐候性鋼材の橋梁への適用に関する共同研究報告書(XX)−無塗装耐候性橋梁の設計・施行要領(改定案)−、1993年3月”Ministry of Construction Public Works Research Institute, Steel Club Co., Ltd., Japan Bridge Construction Association: “Joint Research Report on the Application of Weatherproof Steel to Bridges (XX)-Design and Implementation Guidelines for Unpainted Weatherproof Bridges (Revised) Draft-March 1993 " 特開2001−152413号公報JP 2001-152413 A

しかしながら、非特許文献1では、例えば図14(A)に示した日本海沿岸部Iであれば、離岸距離20kmまでは耐候性鋼材を裸使用できないという前提がある。又、開けた地形から得られた、任意の離岸距離における飛来塩分量も、単純に離岸距離の−0.6乗で近似されるため、実際に生じる、山の存在等の地形の影響による飛来塩分量の低下等が評価されない。   However, in Non-Patent Document 1, for example, in the Sea of Japan coastal region I shown in FIG. 14 (A), there is a premise that weathering steel cannot be used barely up to a separation distance of 20 km. In addition, the amount of salinity at any rip-off distance obtained from open terrain is simply approximated by the -0.6 power of the rip-off distance. The decrease in the amount of incoming salt due to is not evaluated.

又、非特許文献1によれば、耐候性鋼材の裸使用が認められない地域においては、1年間以上の長期観測を行ない、飛来塩分量が0.05mdd以下であることを実証すれば、耐候性鋼材の裸使用が認められるが、そのような長期の観測は、時間的にも経済的にも負担が大きい。   In addition, according to Non-Patent Document 1, if a long-term observation of one year or more is performed in an area where the bare use of weathering steel is not permitted, it is proved that the amount of incoming salt is 0.05 mdd or less. However, such long-term observation is burdensome both in terms of time and economy.

一方、特許文献1に記載されているように、流れ解析/塩分解析を行ない、各地点における飛来塩分量を解析的に得る方法や、橋梁断面部位周りの流れ解析/塩分解析を行ない、部位毎の飛来塩分量を詳細に予測する方法では、塩分の移流拡散を含めた流れの数値解析を行なう必要があるため、データ作成、計算、結果の評価手法等、専門的知識が要求され、時間的にも経済的にも負担がかかるという問題点を有していた。   On the other hand, as described in Patent Document 1, a flow analysis / salinity analysis is performed, and a method of analytically obtaining the amount of incoming salinity at each point, or a flow analysis / salinity analysis around a bridge cross-section is performed. In order to predict the amount of salinity in detail, it is necessary to perform numerical analysis of the flow including advection and diffusion of salinity. Therefore, specialized knowledge such as data creation, calculation, and evaluation method of results is required. However, it has a problem that it is economically burdensome.

本発明は、前記従来の問題点を解決するべくなされたもので、鋼構造物建設地点の風上側に位置する山等の地形の影響による飛来塩分量の低減を、飛来塩分シュミレーションや1年間の長期観測を行わずに、客観的且つ簡便な方法により評価することを第1の課題とする。   The present invention has been made in order to solve the above-mentioned conventional problems, and it is possible to reduce the amount of salinity due to the influence of topography such as mountains located on the windward side of the steel structure construction site. The first problem is to evaluate by an objective and simple method without performing long-term observation.

本発明は、更に、鋼構造物断面部位毎の塩分付着量(ミクロな飛来塩分量)を、同じく飛来塩分シュミレーションや1年間の長期観測を行わずに、客観的且つ簡便な方法により評価することを第2の課題とする。   The present invention further evaluates the amount of adhered salt (micro amount of flying salt) for each cross section of the steel structure by an objective and simple method without carrying out flying salt simulation and long-term observation for one year. Is a second problem.

本発明は、海岸から一定離岸距離内に位置する鋼構造物への飛来塩分量を、開けた地形での飛来塩分量予測関数を用いて予測する飛来塩分量評価方法であって、海岸と該鋼構造物間の地形因子に基づく飛来塩分の地形低減係数をシミュレーション値又は測定値から予め定量化しておき、該地形低減係数を、前記開けた地形での飛来塩分予測関数を用いた飛来塩分量予測値に乗じて該鋼構造物への飛来塩分量を予測するようにして、前記第1の課題を解決したものである。   The present invention is a salt salinity evaluation method for predicting the amount of salt salvage from a coast to a steel structure located within a certain separation distance by using a salt salinity prediction function in open terrain, The terrain reduction coefficient of the flying salinity based on the terrain factor between the steel structures is quantified in advance from a simulation value or a measured value, and the terrain reduction coefficient is calculated using the flying salinity prediction function in the opened terrain. The first problem is solved by multiplying the amount predicted value to predict the amount of salinity in the steel structure.

又、海岸から一定離岸距離内に位置する鋼構造物の特定部位への飛来塩分量を、開けた地形での飛来塩分量予測関数を用いて予測する飛来塩分量評価方法であって、海岸と該鋼構造物間の地形因子に基づく飛来塩分の地形低減係数、及び、該鋼構造物の特定部位への飛来塩分の部位低減係数を、シミュレーション値又は測定値から予め定量化しておき、該地形低減係数を、前記開けた地形での飛来塩分予測関数を用いた飛来塩分量予測値に乗じて該鋼構造物への飛来塩分量を予測し、次いで、前記部位低減係数を、該鋼構造物への飛来塩分量予測値に乗じて該鋼構造物の特定部位への飛来塩分量を予測するようにして、前記第2の課題を解決したものである。   Also, a method for evaluating the amount of salt salinity for predicting the amount of salt salient to a specific part of a steel structure located within a certain separation distance from the coast using a salt salinity prediction function in an open terrain, And the landform reduction coefficient of the flying salt based on the landform factor between the steel structure and the part reduction coefficient of the flying salt to the specific part of the steel structure are quantified in advance from simulation values or measured values, Multiplying the terrain reduction coefficient by the predicted salt concentration using the predicted salinity function in the open terrain to predict the amount of salt flow to the steel structure, and then calculating the part reduction factor to the steel structure The second problem is solved by predicting the amount of salt salvage to a specific part of the steel structure by multiplying the predicted amount of salt salinity to the object.

前記鋼構造物は橋梁とすることができる。   The steel structure may be a bridge.

又、前記地形因子は少なくとも山とすることができる。   The topographic factor may be at least a mountain.

又、前記地形因子が山の高さであり、山の無い場合に対して山の高さに応じた飛来塩分の地形低減係数が、二次元地形による地形低減係数を下限とし、三次元地形による低減係数を上限とすることができる。   In addition, the topographic factor is the height of the mountain, and when there is no mountain, the landform reduction coefficient of the salinity corresponding to the height of the mountain is the lower limit of the topography reduction coefficient by the two-dimensional landform, and the three-dimensional landform The reduction factor can be set as the upper limit.

又、前記地形低減係数を、
山の高さ(m) 地形低減係数
0 1.0
200 0.2 −0.9
400 0.05−0.5
600 0.04−0.3
1,000 0.01−0.02
で囲まれる範囲内とすることができる。
Also, the terrain reduction coefficient is
Mountain height (m) Topography reduction factor
0 1.0
200 0.2 -0.9
400 0.05-0.5
600 0.04-0.3
1,000 0.01-0.02
It can be within the range surrounded by.

本発明は、又、鋼構造物において、前記の飛来塩分量評価方法で予測された飛来塩分量が一定値以下の場合に、該一定値以下となった鋼構造物又は該鋼構造物の特定部位の耐候性鋼を、飛来塩分量の予測値に応じた仕様の耐候性鋼としたものである。   The present invention also provides a steel structure in which the amount of flying salt predicted by the above method for evaluating the amount of flying salt is less than a certain value, or the steel structure that is less than or equal to the certain value. The weathering steel of the part is made into a weathering steel having specifications according to the predicted value of the amount of incoming salt.

本発明においては、例えば図2(a)に示すような、実際の複雑な地形での、例えばJISZ2381に規定された、風向風速計12及びガーゼ14を用いた回収法による、短期間(1週間程度)の塩分観測で得られたデータ、あるいは数値シュミレーションによる流れ解析/塩分解析のデータを基に、これらを比較(キャリブレーション)することによって、海風に乗った塩分が、山10を通過するときに山に奪われる塩分量を、図2(b)に示す如く評価する。あるいは、一般的なパラメータスタディを行ない、山の高さ、山の樹木の状態を種々変化させた、いくつかの標準的地形の流れ解析/塩分解析を予め行なっておき、海風が山を通過したときに奪われる塩分量を評価する。以上のデータを基に、海風が山を越えるときに奪われる塩分量を、図2(c)に示す非特許文献1の開けた地形の飛来塩分量予測値に対する地形低減係数として、図3に示す如く、一般化して評価する。なお、この地形低減係数はデータバンク化することも可能である。   In the present invention, for example, as shown in FIG. 2 (a), a short period (one week) by a recovery method using an anemometer 12 and a gauze 14 defined in JISZ2381, for example, in an actual complex terrain. When the salinity on the sea breeze passes through the mountain 10 by comparing (calibrating) these data based on the data obtained by the salinity observation of the degree) or the flow analysis / salinity analysis data by numerical simulation. The amount of salt taken by the mountain is evaluated as shown in FIG. Or, a general parameter study was conducted, and some standard topographical flow / salinity analyzes were performed in advance, and the sea breeze passed through the mountains. Assess the amount of salt that is sometimes taken away. Based on the above data, the amount of salinity deprived when the sea breeze crosses the mountain is shown in FIG. 3 as a topographical reduction factor for the predicted topographical salinity of the topography opened in Non-Patent Document 1 shown in FIG. Generalize and evaluate as shown. Note that this terrain reduction coefficient can be converted into a data bank.

又、図4(a)に示すような、橋梁20の断面周りの数値シュミレーションによる流れ解析/塩分解析、あるいは、図4(b)に示すような、回収法による実際の短期の塩分観測データの比較から、橋梁断面部位毎の飛来塩分量を分析し、図5に例示するような部位低減係数として評価する。なお、この部位低減係数もデータバンク化することが可能である。   Also, flow analysis / salinity analysis by numerical simulation around the cross section of the bridge 20 as shown in FIG. 4 (a), or actual short-term salinity observation data by the recovery method as shown in FIG. 4 (b). From the comparison, the amount of incoming salt for each bridge cross-section part is analyzed and evaluated as a part reduction coefficient as illustrated in FIG. Note that this part reduction coefficient can also be made into a data bank.

橋梁建設地点の飛来塩分量に対しては、非特許文献1で評価される飛来塩分量に、前記地形低減係数を乗じることにより地形の影響を考慮する。又、橋梁断面部位毎の飛来塩分量に対しては、橋梁建設地点の飛来塩分量に対し、部位塩分低減係数を考慮することにより評価する。   For the amount of salinity at the bridge construction site, the influence of topography is taken into consideration by multiplying the amount of salinity evaluated in Non-Patent Document 1 by the topography reduction factor. Also, the amount of salinity at each bridge cross-section is evaluated by considering the salinity reduction factor for the amount of salinity at the bridge construction site.

なお、地形低減係数、部位低減係数の評価、更にはデータバンク化のため、ある程度の飛来塩分量解析や短期の現地観測は必要である。   In order to evaluate the topography reduction factor and the site reduction factor, and to make it a data bank, a certain amount of salt salinity analysis and short-term field observation are required.

本発明によれば、鋼構造物建設地点の風上側に位置する山等の地形の影響による飛来塩分量の低減を、飛来塩分シュミレーションや1年間の長期観測を行わずに、客観的且つ簡便な方法により評価することが可能となる。又、鋼構造物断面部位毎の塩分付着量(ミクロな飛来塩分量)を、同じく、飛来塩分シュミレーションや1年間の長期観測を行わずに、客観的且つ簡便な方法により評価することが可能となる。   According to the present invention, it is possible to reduce the amount of salinity due to the influence of topography such as a mountain located on the windward side of the steel structure construction site, without objective salinity simulation or long-term observation for one year. It becomes possible to evaluate by the method. In addition, it is possible to evaluate the amount of salt adhesion (micro amount of flying salt) for each cross-section of the steel structure by an objective and simple method without performing flying salt simulation or long-term observation for one year. Become.

以下、非特許文献1の飛来塩分量と離岸距離の関係に対し、橋梁建設地点の飛来塩分量を、山等により塩分が奪われる影響を評価した地形低減係数を参照して低減させ、更に、橋梁断面部位毎の飛来塩分量を部位低減係数として評価し、橋梁建設地点の、更には断面部位毎の飛来塩分量に対応した鋼材選定を的確に行なうようにした、本発明の実施形態について説明する。   Hereinafter, with respect to the relationship between the amount of salinity and the berthing distance in Non-Patent Document 1, the amount of salt salvage at the bridge construction site is reduced with reference to the topographical reduction factor that evaluates the effect of deprivation of salt by mountains, etc. In the embodiment of the present invention, the amount of salinity in each cross-sectional part of the bridge is evaluated as a part reduction coefficient, and the steel material corresponding to the amount of salinity in the cross-section part is further accurately selected at the bridge construction point. explain.

非特許文献1によれば、図14(a)に示される日本海Iの地域区分では、離岸距離20kmが飛来塩分量0.05mddとなる規定沿岸距離であり、20km以外の離岸距離X(km)における飛来塩分量S(mdd)のLog10SはX-0.6により表わされる。このとき、離岸距離20km以内では、飛来塩分量が0.05mdd以上となるので、耐候性鋼材を裸使用できない。耐候性鋼材を裸使用するためには、非特許文献1に記載されているように、飛来塩分の長期観測を行ない、飛来塩分量が0.05mdd以下であることを実証しなければならない。 According to Non-Patent Document 1, in the region of Japan Sea I shown in FIG. 14 (a), the shoreline distance 20km is the prescribed coastal distance at which the incoming salt content is 0.05 mdd, and the shoreline distance X other than 20km. Log 10 S of the incoming salt content S (mdd) at (km) is represented by X −0.6 . At this time, if the shore distance is within 20 km, the amount of incoming salt becomes 0.05 mdd or more. In order to use a weather-resistant steel material barely, as described in Non-Patent Document 1, it is necessary to perform long-term observation of flying salt content and prove that the flying salt content is 0.05 mdd or less.

しかし、実際には種々の高さの山に対して、それを乗り越える海風により運ばれる飛来塩分量は、山の表面により図6に示すように奪われて減少する。本発明では、この塩分の損失分を地形低減係数によりデータバンク化しているので、橋梁建設地点風上側の山の位置において、例えば山の高さ、あるいは山の表面の状態に対応した地形低減係数(図3参照)による飛来塩分量の低減を見込むことができる。又、橋梁建設地点の飛来塩分量に対して、実際の断面に到達する飛来塩分量の低減を、部位低減係数(図5参照)により見込むことができる。   However, in reality, the amount of incoming salinity carried by the sea breeze over the mountain of various heights is deprived by the surface of the mountain as shown in FIG. In the present invention, since the salinity loss is converted into a data bank using the terrain reduction coefficient, the terrain reduction coefficient corresponding to the height of the mountain or the state of the mountain surface, for example, at the mountain position on the windward side of the bridge construction point. Reduction of the amount of incoming salt due to (see FIG. 3) can be expected. In addition, it is possible to expect a reduction in the amount of salinity that reaches the actual cross section with respect to the amount of salinity at the bridge construction point by using a site reduction coefficient (see FIG. 5).

図1の例では、非特許文献1により飛来塩分量S(km)のLog10Sは、離岸距離X-0.6により表わされるため、A点の様に、離岸距離X=20kmで飛来塩分量S=0.05mddとすると、離岸距離と飛来塩分の関係は、次式に示すような図1中の曲線1で表わされる。 In the example of FIG. 1, according to Non-Patent Document 1, Log 10 S having an incoming salinity amount S (km) is represented by a rip- off distance X- 0.6. When the amount S is 0.05 mdd, the relationship between the shore separation distance and the incoming salinity is represented by the curve 1 in FIG.

Log10S=Log10-0.6−0.5204 …(1) Log 10 S = Log 10 X −0.6 −0.5204 (1)

この(1)式を前提とすれば、山の位置である離岸距離X=5kmの飛来塩分量は、B点の0.115mddとなる。山の位置、山の表面の状態から、この場合の地形低減係数が0.8であるとすれば、山の存在により、飛来塩分量Sは、C点の
0.115×0.8=0.092mdd
となる。従って、山を通過した後の飛来塩分量は、新たな曲線として、図1中、曲線2のような(2)式で表わされる。
Assuming this equation (1), the amount of incoming salinity at the rip-off distance X = 5 km, which is the mountain position, is 0.115 mdd at point B. If the topography reduction coefficient in this case is 0.8 from the position of the mountain and the surface state of the mountain, the amount of incoming salt S is 0.115 × 0.8 = 0 at point C due to the presence of the mountain. .092 mdd
It becomes. Therefore, the amount of incoming salt after passing through the mountain is represented by equation (2) as curve 2 in FIG. 1 as a new curve.

Log10S=Log10-0.6−0.6168 …(2) Log 10 S = Log 10 X −0.6 −0.6168 (2)

橋梁建設地点の離岸距離X=10kmとすれば、(2)式により、飛来塩分量はE点のように0.061mddとなる。山が無い場合の橋梁建設地点の飛来塩分量は、(1)式からD点のように0.076mddと算定されるため、飛来塩分量が2割減少するという評価が可能である。なお、この例では離岸距離10kmの橋梁建設地点において、飛来塩分量は0.05mddを下回ってはいないが、非常に高い山や豊富な樹木に覆われた山等においては0.05mddを下回る可能性もある。   If the separation distance X = 10 km at the bridge construction point, the amount of incoming salt will be 0.061 mdd as shown by point E according to equation (2). When there is no mountain, the amount of salinity at the bridge construction point is calculated as 0.076 mdd as shown by point D from equation (1), so it is possible to evaluate that the amount of salinity is reduced by 20%. In this example, the amount of incoming salt is not less than 0.05 mdd at the bridge construction site with a shore separation distance of 10 km, but it is less than 0.05 mdd in a very high mountain or a mountain covered with abundant trees. There is a possibility.

次に、橋梁部位毎の飛来塩分量を評価する手法について説明する。図7に示すように、飛来塩分量が風上側で1.0であるとする。これは、橋梁建設地点のマクロな意味での飛来塩分量である。風は橋梁断面の各部位に対し、均等に塩分量を配分することはなく、断面周りで形成される流れのパターンによって複雑な挙動を示す。例えば、橋梁断面の上部、下部では、流れの剥離によって流れが収束するところでは塩分量が多くなるが、桁の内側では、桁下側から剥離した流れが桁下空間に入り込まない限り、塩分量は高くならない。桁の外側では、雨が当たり塩分の雨洗が期待できるが、鋼橋では埃や塩分が溜まる閉ざされた桁下空間の腐食が最も問題となる。図7は、桁下空間の下流側の桁で部位低減係数を0.4とした例である。この例では、湾岸距離10kmにおける橋梁建設地点の飛来塩分量は、曲線2に移行しているため、(2)式によりE点の0.061mddとなる。従って、下流側の桁位置における飛来塩分量は、F点の
0.061×0.4=0.024mdd
となり、規定値の0.05mddを下回ることになる。
Next, a method for evaluating the amount of incoming salt for each bridge site will be described. As shown in FIG. 7, it is assumed that the amount of incoming salt is 1.0 on the windward side. This is the amount of salinity in the macro sense at the bridge construction site. The wind does not distribute the salinity evenly to each part of the bridge cross section, and exhibits complex behavior depending on the flow pattern formed around the cross section. For example, at the upper and lower parts of the bridge cross section, the amount of salinity increases where the flow converges due to flow separation, but inside the beam, the amount of salt is reduced unless the flow separated from the beam under the beam enters the beam under the beam. Will not be high. Outside the girders, rain hits and salt washing can be expected, but in steel bridges, corrosion of closed under-girder spaces where dust and salt accumulate is the most problematic. FIG. 7 is an example in which the part reduction coefficient is set to 0.4 in the downstream side of the under-sparing space. In this example, the amount of incoming salt at the bridge construction point at the shore distance of 10 km has shifted to the curve 2 and is 0.061 mdd at the point E according to the equation (2). Therefore, the amount of incoming salt at the downstream girder position is 0.061 × 0.4 = 0.024mdd at the F point.
Thus, it falls below the specified value of 0.05 mdd.

このようにして、非特許文献1では耐候性鋼材の裸使用が認められない場所でも、0.05mdd以下の飛来塩分量になり、耐候性鋼材の裸使用が可能となる。   In this way, even in a place where non-patent use of the weather-resistant steel material is not permitted in Non-Patent Document 1, the amount of incoming salt is 0.05 mdd or less, and the weather-resistant steel material can be used naked.

仮に飛来塩分量が0.05mddを上回ったとしても、一般耐候性能鋼材より耐塩性能の高いNi系高耐候性鋼材の使用が可能となる場合が考えられる。あるいは、一般耐候性鋼材に、飛来塩分量に応じた塗装を施すことにより、耐候性鋼材を、より飛来塩分量が高く、広い地域で適用することができる。   Even if the amount of incoming salt exceeds 0.05 mdd, it may be possible to use Ni-based high weathering steel having higher salt resistance than general weathering steel. Alternatively, by applying coating on the general weathering steel material in accordance with the amount of incoming salt, the weathering steel can be applied in a wider area with a higher amount of incoming salt.

以上の結果により、橋梁建設地点、あるいは橋梁断面部位毎の飛来塩分量の評価を、低減係数がある程度のデータ量によりデータバンク化されていれば、高速計算機を必要とすることなく、机上の電卓の上で、しかも短時間で実施することができる。   Based on the above results, it is possible to evaluate the amount of salt salinity at each bridge construction site or bridge cross-section by using a calculator on a desk without the need for a high-speed computer if the reduction factor is made into a data bank with a certain amount of data. In addition, it can be carried out in a short time.

なお、前記実施形態においては、山が1つの例が示されていたが、山の数は1つに限定されず、図8に示す如く、山が複数(図では2つ)である場合にも同様に適用可能である。図8において、海側の山は高さ300mで低減率50%(低減係数0.5)、陸側の山は高さ150mで低減率20%(低減係数0.8)としている。   In the embodiment, the example of one mountain is shown, but the number of mountains is not limited to one, and as shown in FIG. 8, there are a plurality of mountains (two in the figure). Is equally applicable. In FIG. 8, the mountain on the sea side has a height of 300 m and a reduction rate of 50% (reduction factor of 0.5), and the mountain on the land side has a height of 150 m and a reduction rate of 20% (reduction factor of 0.8).

本発明を、橋梁を建設する際の飛来塩分量評価に適用した場合には、次のような効果が得られる。   When the present invention is applied to the evaluation of the amount of incoming salt when constructing a bridge, the following effects can be obtained.

(1)非特許文献1の規定に従えば、耐候性鋼材の裸使用が認められない離岸距離の短い地域においても、山等による飛来塩分量の低下を地形低減係数として見込むことができ、耐候性鋼材の裸使用を可能にすることができる。   (1) According to the provisions of Non-Patent Document 1, even in areas where the stripping distance is short where bare use of weathering steel is not permitted, a decrease in the amount of salinity due to mountains etc. can be expected as a topographical reduction factor, The bare use of weathering steel can be made possible.

(2)橋梁建設地点の橋梁断面部位毎の飛来塩分量を、部位低減係数として見込むことができ、断面部位毎に、耐候性鋼材の裸使用を可能にすることができる。   (2) The amount of salt flow in each bridge section at the bridge construction point can be estimated as a part reduction coefficient, and the weathering steel can be used barely for each section.

(3)本発明で予測した飛来塩分量が0.05mddを上回る場合でも、耐候性鋼材の裸使用は不可能であるが、飛来塩分量が予測できるため、飛来塩分量に応じて、より耐塩性の高いNi系高耐候性鋼材や、一般耐候性鋼材に塗装することにより、耐候性鋼材を使用することが可能である。   (3) Even when the amount of flying salt predicted in the present invention exceeds 0.05 mdd, it is impossible to use bare weather-resistant steel, but the amount of flying salt can be predicted. It is possible to use a weather-resistant steel material by painting on a highly resistant Ni-based high weather-resistant steel material or a general weather-resistant steel material.

(4)地形低減係数や部位低減係数を、実験値や解析値によりデータバンク化する等、一般化できれば、地形を考慮した大規模な流れ解析/塩分解析を高速計算機で実施することなく、概略的に、極めて短時間に橋梁建設地点、橋梁断面部位毎の飛来塩分量を評価することができる。   (4) If generalization of the terrain reduction coefficient and the site reduction coefficient by using data such as experimental values and analysis values is possible, it will be possible to perform a large-scale flow analysis / salinity analysis considering the terrain without using a high-speed computer. In particular, it is possible to evaluate the amount of salinity in each bridge construction point and bridge cross section in a very short time.

(5)本発明による橋梁建設地点、橋梁断面部位毎の飛来塩分量を求める方法は、電卓を使用する程度で短時間に実施可能である。しかも、手法が極めて簡単であるため、誰でも容易に、何時でも飛来塩分量を評価することができる。   (5) The method for obtaining the amount of salt salinity for each bridge construction point and bridge cross-section according to the present invention can be implemented in a short time by using a calculator. In addition, since the method is extremely simple, anyone can easily evaluate the amount of incoming salt at any time.

(6)流れ解析/塩分解析による飛来塩分量の数値解析的評価は、使用するパラメータや解析モデル、使用する計算ソフト等の違いにより、誰が実施しても同じような結果になるとは限らないが、本発明は、客観的な低減係数を用いるため、評価する人によらず、結果は同じになる。   (6) Although numerical analysis evaluation of the amount of incoming salinity by flow analysis / salinity analysis is not necessarily the same regardless of who implements it due to differences in parameters, analysis models, calculation software used, etc. Since the present invention uses an objective reduction factor, the result is the same regardless of the person evaluating.

(a)観測値による地形低減係数
観測値を求めるため、千葉県の高さ259.5mのA山、高さ349.5mのB山に着目し、海風に対して山の風上側と風下側で同時に飛来塩分の観測を実施した。A山、B山ともに風上側観測点と風下側観測点では離岸距離が異なるため、まず、図9のように風下側観測点における飛来塩分量Jを、風上側飛来塩分量から離岸距離(km)の−0.6乗で低下するとして計算した。即ち、山が存在しなくても離間距離により低下する分を考慮して飛来塩分量Jを評価し、その値に対する実際の観測値Iの比率I/Jを観測値による地形低減係数と定義した。計算に用いた実際の値は表1のとおりである。
(A) Topographical reduction factor based on observed values To obtain the observed values, focus on the 259.5m high mountain A and the 349.5m high mountain B in Chiba Prefecture. At the same time, flying salt was observed. Since the rip-off distance is different between the leeward observation point and the leeward observation point for both A and B, first, as shown in Fig. 9, the flying salinity J at the leeward observation point is separated from the leeward flying salinity. It was calculated as decreasing with the power of (km) to -0.6. That is, the amount of incoming salinity J was evaluated in consideration of the amount that decreases due to the separation distance even when no mountain exists, and the ratio I / J of the actual observed value I to that value was defined as the terrain reduction coefficient by the observed value. . The actual values used for the calculation are shown in Table 1.

Figure 2005264716
Figure 2005264716

その結果、高さ259.5mのA山で0.81、高さ349.5mのB山で0.57という地形低減係数が得られた。観測値による地形低減係数を後出図11に▲印で示す。   As a result, a topography reduction factor of 0.81 was obtained at A mountain with a height of 259.5 m and 0.57 at B mountain with a height of 349.5 m. The terrain reduction factor based on the observed values is shown by ▲ in Fig. 11.

(b)解析値による地形低減係数
一方、解析値を求めるため、図10に示すように、まず山が無い状態での地表面の飛来塩分量を計算し、山の風下側位置で飛来塩分量Cを得た。次に山の高さHにおける飛来塩分量を計算し、同じく山の風下側位置での飛来塩分量Cを得た。この場合、解析値の精度は、観測値の比較等により十分信頼できるものである必要がある。
(B) Topographical reduction coefficient based on analysis value On the other hand, in order to obtain the analysis value, as shown in FIG. 10, first, the amount of salinity on the ground surface without a mountain is calculated, and the amount of salt salinity at the leeward side of the mountain is calculated. C 0 was obtained. Then calculate the over all amount of salt height H of the mountains, and also give the airborne salt amount C H at the leeward side position of the mountain. In this case, the accuracy of the analysis value needs to be sufficiently reliable by comparing the observation values.

同様な解析を、山の高さHをパラメータとして実施した結果、図11の●印のような結果が得られた。解析は図12のように2次元的な山であり、図13に示すような3次元的な風の回り込みが無いため、山の影響による低減は最大限に近いところで評価している可能性がある。一方で、観測を実施したA山、B山は丸い形状をしており、典型的な3次元的形状の山であることから、図13のように山の背後への風の回り込みが生じており、山の影響による塩分の低減は最小限に近いところで評価している可能である。従って、解析値による二次元的な地形低減係数、観測値による三次元的な地形低減係数を、それぞれ地形低減係数の下限と上限とすることができる。   A similar analysis was performed using the height H of the mountain as a parameter, and as a result, a result as indicated by ● in FIG. 11 was obtained. Since the analysis is a two-dimensional mountain as shown in FIG. 12 and there is no three-dimensional wind wraparound as shown in FIG. 13, there is a possibility that the reduction due to the influence of the mountain is evaluated at the maximum. is there. On the other hand, Mt. A and M. B, where the observations were made, are round and have a typical three-dimensional shape. As a result, wind wraps around the back of the mountain as shown in FIG. Therefore, it is possible to evaluate the reduction of salinity due to the influence of mountains in a place near the minimum. Therefore, the two-dimensional terrain reduction coefficient based on the analysis value and the three-dimensional terrain reduction coefficient based on the observation value can be used as the lower limit and the upper limit of the terrain reduction coefficient, respectively.

前記実施形態においては、地形因子が山、鋼構造物が橋梁とされていたが、地形因子や鋼構造物の種類は、これらに限定されず、例えば飛来塩分を低減させるフィルタ効果のある植生帯を地形因子としたり、植生帯の有無等の山の表面状態の違いにより、山の地形低減係数を変えることも可能である。又、送電塔やモニュメント等、橋梁以外の鋼構造物を対象とすることも可能である。   In the above embodiment, the topographic factor is a mountain and the steel structure is a bridge. However, the type of topographic factor and the steel structure is not limited to these, for example, a vegetation zone having a filter effect to reduce incoming salt content. It is also possible to change the topography reduction factor of the mountain according to the difference in the surface condition of the mountain such as the presence or absence of vegetation zone. It is also possible to target steel structures other than bridges such as power transmission towers and monuments.

本発明による飛来塩分量と地形、部位の塩分低減方法を示す線図Diagram showing the amount of salinity, landform and salinity reduction method according to the present invention 地形低減係数の求め方を示す図Diagram showing how to calculate the terrain reduction factor 同じく地形低減係数の例を示す図The figure which similarly shows the example of the terrain reduction coefficient 部位低減係数の求め方を示す断面図Sectional view showing how to calculate the part reduction coefficient 同じく部位低減係数の例を示す断面図Cross-sectional view showing an example of the part reduction coefficient 飛来塩分量に対する山の影響の例を示す説明図Explanatory diagram showing an example of the effect of mountains on the amount of incoming salt 橋梁断面への飛来塩分量比率の例を示す断面図Cross-sectional view showing an example of the salt content ratio of flying salt to the bridge section 本発明の他の適用例を示す図The figure which shows the other example of application of this invention 観測値による地形低減係数の求め方の例を示す説明図Explanatory diagram showing an example of how to calculate the terrain reduction coefficient based on observed values 解析値による地形低減係数の求め方の例を示す説明図Explanatory drawing showing an example of how to obtain the terrain reduction coefficient by analysis value 観測値による地形低減係数と解析値による地形低減係数を示す図The figure which shows the terrain reduction coefficient by observation value and the terrain reduction coefficient by analysis value 2次元的な山の風の流れを示す図A diagram showing the flow of a two-dimensional mountain wind 3次元的な山の風の流れを示す図A diagram showing the flow of a three-dimensional mountain wind 非特許文献1に記載された地域区分を示す図The figure which shows the area division described in nonpatent literature 1.

符号の説明Explanation of symbols

10…山
12…風向風速計
14…ガーゼ
20…橋梁
10 ... Mountain 12 ... Wind direction anemometer 14 ... Gauze 20 ... Bridge

Claims (7)

海岸から一定離岸距離内に位置する鋼構造物への飛来塩分量を、開けた地形での飛来塩分量予測関数を用いて予測する飛来塩分量評価方法であって、
海岸と該鋼構造物間の地形因子に基づく飛来塩分の地形低減係数をシミュレーション値又は測定値から予め定量化しておき、
該地形低減係数を、前記開けた地形での飛来塩分予測関数を用いた飛来塩分量予測値に乗じて該鋼構造物への飛来塩分量を予測することを特徴とする飛来塩分量評価方法。
A method for evaluating the amount of salinity salinity that predicts the amount of salt salinity to a steel structure located within a certain separation distance from the shore using a salinity salt amount prediction function in open terrain,
Preliminarily quantify the landform reduction coefficient of the incoming salinity based on the landform factor between the coast and the steel structure from the simulation value or measured value,
A flying salinity evaluation method characterized by predicting a flying salt amount to the steel structure by multiplying the landform reduction coefficient by a flying salt amount prediction value using a flying salt prediction function in the open terrain.
海岸から一定離岸距離内に位置する鋼構造物の特定部位への飛来塩分量を、開けた地形での飛来塩分量予測関数を用いて予測する飛来塩分量評価方法であって、
海岸と該鋼構造物間の地形因子に基づく飛来塩分の地形低減係数、及び、該鋼構造物の特定部位への飛来塩分の部位低減係数を、シミュレーション値又は測定値から予め定量化しておき、
該地形低減係数を、前記開けた地形での飛来塩分予測関数を用いた飛来塩分量予測値に乗じて該鋼構造物への飛来塩分量を予測し、
次いで、前記部位低減係数を、該鋼構造物への飛来塩分量予測値に乗じて該鋼構造物の特定部位への飛来塩分量を予測することを特徴とする飛来塩分量評価方法。
A method for evaluating salt salinity, which predicts the amount of salt salvage to a specific part of a steel structure located within a certain separation distance from the coast, using a function for predicting salt salinity in open terrain,
The landform reduction coefficient of the incoming salinity based on the landform factor between the coast and the steel structure, and the part reduction coefficient of the incoming salinity to the specific part of the steel structure are quantified in advance from a simulation value or a measured value,
Multiplying the landform reduction coefficient by the salt salinity prediction value using the salt salinity prediction function in the open landform to predict the amount of salt salinity to the steel structure,
Next, the method for evaluating a salinity of salt in a portion of the steel structure is predicted by multiplying the part reduction coefficient by a predicted value of the amount of salt in the steel structure.
前記鋼構造物が橋梁であることを特徴とする請求項1又は2に記載の飛来塩分量評価方法。   The method for evaluating salt content according to claim 1 or 2, wherein the steel structure is a bridge. 前記地形因子が、少なくとも山であることを特徴とする請求項1乃至3のいずれかに記載の飛来塩分量評価方法。   The method for evaluating salt content according to any one of claims 1 to 3, wherein the topographic factor is at least a mountain. 前記地形因子が山の高さであり、山の無い場合に対して山の高さに応じた飛来塩分の地形低減係数が、二次元地形による地形低減係数を下限とし、三次元地形による低減係数を上限とするものであることを特徴とする請求項1乃至4のいずれかに記載の飛来塩分量評価方法。   The topographic factor is the height of the mountain, and when there is no mountain, the topographical reduction factor of the salinity corresponding to the height of the mountain is the lower limit of the topographical reduction factor due to the two-dimensional topography, and the reduction factor due to the three-dimensional topography. The amount of incoming salt content evaluation method according to any one of claims 1 to 4, wherein the upper limit is the upper limit. 前記地形低減係数が、
山の高さ(m) 地形低減係数
0 1.0
200 0.2 −0.9
400 0.05−0.5
600 0.04−0.3
1,000 0.01−0.02
で囲まれる範囲内であることを特徴とする請求項6に記載の飛来塩分量評価方法。
The terrain reduction factor is
Mountain height (m) Topography reduction factor
0 1.0
200 0.2 -0.9
400 0.05-0.5
600 0.04-0.3
1,000 0.01-0.02
7. The method for evaluating the amount of incoming salt according to claim 6, wherein the amount of incoming salt is within a range surrounded by.
請求項1乃至6のいずれかに記載の飛来塩分量評価方法で予測された飛来塩分量が一定値以下の場合に、該一定値以下となった鋼構造物又は該鋼構造物の特定部位の耐候性鋼を、飛来塩分量の予測値に応じた仕様の耐候性鋼としたことを特徴とする鋼構造物。   When the flying salt content predicted by the flying salt content evaluation method according to any one of claims 1 to 6 is less than a certain value, the steel structure or a specific part of the steel structure that has become the certain value or less. A steel structure characterized in that the weather-resistant steel is a weather-resistant steel having specifications according to the predicted value of the amount of incoming salt.
JP2005029406A 2004-02-17 2005-02-04 Flying salt amount evaluating method and steel structure Pending JP2005264716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005029406A JP2005264716A (en) 2004-02-17 2005-02-04 Flying salt amount evaluating method and steel structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004039498 2004-02-17
JP2005029406A JP2005264716A (en) 2004-02-17 2005-02-04 Flying salt amount evaluating method and steel structure

Publications (1)

Publication Number Publication Date
JP2005264716A true JP2005264716A (en) 2005-09-29

Family

ID=35089548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005029406A Pending JP2005264716A (en) 2004-02-17 2005-02-04 Flying salt amount evaluating method and steel structure

Country Status (1)

Country Link
JP (1) JP2005264716A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267121A (en) * 2007-03-29 2008-11-06 Jfe Steel Kk Method for evaluating rust forming influence factor of steel bridge
JP2008308846A (en) * 2007-06-13 2008-12-25 Jfe Steel Kk Partial anticorrosion method for steel bridge, and steel bridge
JP2012163374A (en) * 2011-02-03 2012-08-30 Jfe Steel Corp Estimation method of incoming salt amount
JP2015021796A (en) * 2013-07-17 2015-02-02 国際航業株式会社 Multidirectional airborne salt collector, and multidirectional airborne salt survey method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001816A (en) * 1998-01-28 2000-01-07 Nkk Corp Decision method of applicability to bridge of weather- resistant steel
JP2001152413A (en) * 1999-09-16 2001-06-05 Nkk Corp Method for judging suitability of construction of weatherproofing steel bridge
WO2003006957A1 (en) * 2001-07-12 2003-01-23 Nippon Steel Corporation Method for predicting degree of corrosion of weather-resistant steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001816A (en) * 1998-01-28 2000-01-07 Nkk Corp Decision method of applicability to bridge of weather- resistant steel
JP2001152413A (en) * 1999-09-16 2001-06-05 Nkk Corp Method for judging suitability of construction of weatherproofing steel bridge
WO2003006957A1 (en) * 2001-07-12 2003-01-23 Nippon Steel Corporation Method for predicting degree of corrosion of weather-resistant steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267121A (en) * 2007-03-29 2008-11-06 Jfe Steel Kk Method for evaluating rust forming influence factor of steel bridge
JP2008308846A (en) * 2007-06-13 2008-12-25 Jfe Steel Kk Partial anticorrosion method for steel bridge, and steel bridge
JP2012163374A (en) * 2011-02-03 2012-08-30 Jfe Steel Corp Estimation method of incoming salt amount
JP2015021796A (en) * 2013-07-17 2015-02-02 国際航業株式会社 Multidirectional airborne salt collector, and multidirectional airborne salt survey method

Similar Documents

Publication Publication Date Title
Zhang et al. Potential effects of climate change on rainfall erosivity in the Yellow River basin of China
Badenko et al. Ecological aspect of dam design for flood regulation and sustainable urban development
Monbaliu et al. Risk assessment of estuaries under climate change: Lessons from Western Europe
Kang et al. Evaluation of farmland losses from sea level rise and storm surges in the Pearl River Delta region under global climate change
Wang et al. Dynamic modeling of sea-level rise impact on coastal flood hazard and vulnerability in New York City's built environment
Salami et al. Trend analysis of hydro-meteorological variables in the coastal area of Lagos using Mann-Kendall trend and Standard Anomaly Index methods
JP2005264716A (en) Flying salt amount evaluating method and steel structure
Li et al. Early warning signals for landscape connectivity and resilient conservation solutions
JP2000001816A (en) Decision method of applicability to bridge of weather- resistant steel
Sundo et al. Flood risk assessment of major river basins in the philippines
JP7020448B2 (en) Method for estimating the amount of flying salt and method for determining the applicability of weathering steel
Salathé et al. Climate Change, Heavy Precipitation and Flood Risk in the Western United States
Lacerda et al. Guidelines for the strategic management of flood risks in industrial plant oil in the Brazilian coast: adaptive measures to the impacts by relative sea level rise
Nadal-Caraballo et al. Statistical analysis and storm sampling approach for Lakes Michigan and St. Clair
Androulidakis et al. Storm surges during IANOS Medicane
Burn Northern Canada after Climate Equilibrium
Tasnim et al. Numerical Simulation of cyclonic storm surges over the Bay of Bengal using a meteorology-wave-surge-tide coupled model
Butler et al. Cyclone risk from wind, flood, and storm surge perils in Australia: a comprehensive model
Lin Deterioration Effects on Progressive Collapse of Bridges
Jalali et al. Modelling coastal development and environmental impacts: A case study across two regional towns in Australia
Lam et al. Climate Adaptation of Sea-Level Rise in Hong Kong
Nyaupane Statistical Evaluation of Hydrological Extremes on Stormwater Systems
Kholoptsev et al. Current Trends of Inter-year Variability of Fire Risk in Eastern Siberia, and Ice and Surface Salinity of Its Seas During the Summer Months
Riley A process for assessing the impact of climate change on new developments
Reza Evaluation of flood mitigation alternatives using hydrological modeling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Effective date: 20090107

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091215

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518