JP3731043B2 - Planting seedlings, their production methods, and mycorrhizal fungus inoculation methods in trees. - Google Patents

Planting seedlings, their production methods, and mycorrhizal fungus inoculation methods in trees. Download PDF

Info

Publication number
JP3731043B2
JP3731043B2 JP2001246544A JP2001246544A JP3731043B2 JP 3731043 B2 JP3731043 B2 JP 3731043B2 JP 2001246544 A JP2001246544 A JP 2001246544A JP 2001246544 A JP2001246544 A JP 2001246544A JP 3731043 B2 JP3731043 B2 JP 3731043B2
Authority
JP
Japan
Prior art keywords
spore suspension
seedling
viscosity
tree
planting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001246544A
Other languages
Japanese (ja)
Other versions
JP2003052243A (en
Inventor
民央 明間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forestry and Forest Products Research Institute
Original Assignee
Forestry and Forest Products Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forestry and Forest Products Research Institute filed Critical Forestry and Forest Products Research Institute
Priority to JP2001246544A priority Critical patent/JP3731043B2/en
Publication of JP2003052243A publication Critical patent/JP2003052243A/en
Application granted granted Critical
Publication of JP3731043B2 publication Critical patent/JP3731043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mushroom Cultivation (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、樹木における菌根菌の接種技術に関し、詳しくは目的の菌のみを効率良く高い確度で樹木の根に接種する技術、これを利用した植林用苗木およびその生産方法に関するものである。
【0002】
【発明の背景】
マツ科、ブナ科、フトモモ科等の植物の根には菌類(菌根菌)が共生し、これら植物は菌から無機物(肥料分)、水分等を摂取し、さらには菌根により土壌病原菌からの保護されており、これら樹木の成育に菌根菌は不可欠である。
したがって、前記マツ科、ブナ科、フトモモ科等の、いわゆる菌根性樹種の人工造林に際しては、これら樹木と菌根菌との適正な共生を促進することが極めて重要である。また、菌根菌の中には食用きのこも存在し、このような菌根性食用きのこの生産にあたっては、当該菌根菌を対象樹木の根に効率良く接種することが生産性向上の見地から肝要である。
【0003】
造林技術としての菌根菌の接種技術については、従来から種々の研究がなされてきている。しかしながら、目的が造林であることから、特に海外で開発され普及している胞子を用いる菌類の接種技術は、例えば、破砕したきのこによる胞子懸濁液を樹木の苗畑地表に散布するといった粗放な態様によるものである。
【0004】
このため、接種効率が良好とは言えず、また、接種源として多量のきのこを要することから、食用きのこの生産技術としてはコストの点から、現実的意義を有していないのが実情である。 すなわち、菌根性食用きのこを生産するためには、可能なかぎり少量のきのこの消費で効率的に接種を行う必要がある。
また、造林用の接種を行う場合でも、原料の消費効率が悪いという問題がある。 また、このような従来技術にあっては、接種対象となる菌根菌と他の既存菌根菌との間に競合が生じ接種確率が低下するという不都合もある。
【0005】
なお、上記従来技術の他に、胞子をカプセル化したものや、胞子とミズゴケを押し固めてペレット状にしたものを埋設する方法等も実施されているが、接種対象となる菌根菌と他の既存菌根菌との間の競合による接種確率低下といった問題点を解消し得ないでいる。
【0006】
【発明の概要】
本願発明は、菌根が形成されていない樹木の根を菌根菌の胞子を分散して有する保持手段により包持してなる植林用苗木であって、前記保持手段は感染力維持処理をなした胞子懸濁液と増粘材とからなる生分解性高粘度液体であり、前記感染力維持処理は子実体を腐敗液化処理して子実体における胞子を成熟させるとともに微生物の繁殖により余剰の易分解成分を消費させて多様な微生物下でも胞子が高い感染力を維持できるようにしてなる植林用苗木を提供して、上記従来の課題を解決しようとするものである。
【0007】
上記植林用苗木において、樹木はマツ科の樹木実生であり、菌根菌の胞子はショウロ属、ヌメリイグチ属又はこれらの近縁に属する食用キノコから選択することがある。
【0008】
また、上記いずれかの植林用苗木において、生分解性高粘度液体は穏和な化学処理により固化する性質を有するもので構成することがある。
【0009】
さらに、上記の植林用苗木において、胞子懸濁液と混合して生分解性高粘度液体を構成する増粘材は天然高分子および / 又は合成水溶性高分子で構成し、この生分解性高粘度液体を酸性処理することにより瞬間的に固化可能に構成することがある。
【0010】
さらにまた、上記いずれか記載の植林用苗木において、生分解性高粘度液体の外表面を微細粒で被覆して生分解性高粘度液体の崩落を防止するようになすことがある。
【0011】
本願発明はさらに、
(a)菌根菌の胞子を液中に懸濁させるとともに、この胞子懸濁液に感染力維持処理をなして多様な微生物の存在下にあっても該胞子に高い感染力を保持させるようになす工程であり、前記感染力維持処理は子実鯛を腐敗液化処理して子実体における胞子を成熟させるとともに微生物の繁殖により余剰の易分解成分を消費させて多様な微生物下でも胞子が高い感染力を維持できるようにした処理で構成される工程、
(b)前記胞子懸濁液を増粘材と混合して高粘度化する工程、
(c)菌根が形成されていない樹木の根を高粘度化された胞子懸濁液中に浸漬して、前記感染力維持処理をなした高粘度化胞子懸濁液を樹木の根において塗布包持させる工程、
(d)樹木の根に塗布包持された前記高粘度化胞子懸濁液の崩落を防止するために、該高粘度化胞子懸濁液の全部または外表面を固化させる工程、
(e)次いで、工程(d)を経た樹木を目的外の菌根菌を有しない培土で育苗して目的の菌根菌に係る菌根の形成された苗木を得る工程。
以上の工程からなる植林用苗木の生産方法を提供して、上記従来の課題を解決しようとするものである。
【0012】
上記生産方法において、樹木はマツ科の樹木実生であり、菌根菌の胞子はショウロ属、ヌメリイグチ属又はこれらの近縁に属する食用キノコから選択したもので構成することがある。
【0013】
さらに、上記いずれか記載の植林用苗木の生産方法において、前記高粘度化胞子懸濁液は穏和な化学処理により固化する性質を有するとともに、この化学処理により高粘度化胞子懸濁液を固化するように構成することがある。
【0014】
また、上記の植林用苗木の生産方法において、胞子懸濁液と混合して前記高粘度化胞子懸濁液を構成する前記増粘材は天然高分子および / 又は合成水溶性高分子で構成し、この高粘度化胞子懸濁液を酸性処理することにより瞬間的に固化可能に構成することがある。
【0015】
上記いずれか記載の植林用苗木の生産方法において、前記高粘度化胞子懸濁液の外表面の固化は、外表面を微細粒で被覆してなすように構成することがある。
【0016】
本願発明はまた、菌根菌の胞子懸濁液を生成し、この胞子懸濁液に子実体を腐敗液化処理して子実体における胞子を成熟させるとともに微生物の繁殖により余剰の易分解成分を消費させて多様な微生物下でも胞子が高い感染力を維持できるようにする感染力維持処理をなし、次いで、前記胞子懸濁液に増粘材を添加して高粘度化し、この高粘度化胞子懸濁液中に菌根が形成されていない樹木実生の根を浸漬させて前記胞子を付着し、さらに根に付着した高粘度化胞子懸濁液の全部または外表面を固化させるようにしてなる菌根菌の接種方法を提供して、上記従来の課題を解決しようとするものである。
【0017】
また、上記の菌根菌の接種方法において、樹木はマツ科の樹木実生であり、菌根菌の胞子はショウロ属、ヌメリイグチ属又はこれらの近縁に属する食用キノコから選択したもので構成することがある。
【0018】
さらに、上記いずれかの菌根菌の接種方法において、前記高粘度化胞子懸濁液は、穏和な化学処理により固化する性質を有するとともに、この化学処理により高粘度胞子懸濁液を固化するように構成することがある。
【0019】
また、上記の菌根菌の接種方法において、胞子懸濁液に添加して前記高粘度化胞子懸濁液を構成する前記増粘材は天然高分子および / 又は合成水溶性高分子で構成し、この高粘度化胞子懸濁液を酸性処理することにより瞬間的に固化可能に構成することがある。
【0020】
そして、上記いずれかの菌根菌の接種方法において、前記高粘度化胞子懸濁液の外表面の固化は、外表面を微細粒で被覆してなすように構成することがある。
【0021】
【発明の実施形態】
本実施形態では、接種する菌根菌としてショウロを採用する一方、この菌を接種すべき対象として発芽後間もないマツ(実生)を選択した。
この菌根菌接種対象としてのマツの実生苗は、目的外の菌根菌、すなわちショウロ以外の菌根菌が一切定着していないものを用いる。このような実生苗の吸収根をショウロ胞子を分散配合した生分解性の高粘度胞子懸濁液中に浸漬して、前記吸収根に高粘度胞子懸濁液を塗布抱持させる。 これにより、吸収根に胞子が直接付着することになる。
【0022】
分散配合するショウロ胞子の生成に関しては、新鮮なショウロの破砕物を用いると害菌が発生しやすいため、成熟腐敗したものを用いるのが望ましい。生分解性高粘度液体としては、アルギン酸ナトリウム、ペクチンのような天然高分子、カルボキシメチルセルロ−ス等の半合成物質、その他の各種合成水溶性高分子を単独または複数混合して生成できるが、特にアルギン酸ナトリウム等、穏和な化学処理で固化する性質のものが望ましい。該実施形態では、酸性条件下で瞬間的に固化させたが、塩化カルシウム水溶液に浸して固化することも可能である。
このような固化処理は、根からの崩落、流亡を防止するためである。
なお、高粘度液体自体の固化が困難な場合には、外表面に粉炭、微粒砂、バ−ミキュライト微粒等を塗布付着させて根からの崩落、流亡を防止することができる。
【0023】
成熟腐敗したショウロの破砕物に水を加えて、多様な微生物の存在下でも感染力を保持するショウロ胞子懸濁液を生成し、これに上記のアルギン酸ナトリウムを加えて粘性を付与し、これに前記実生苗の吸収根を浸漬する。
ついで、付着した高粘度液体の崩落、流亡を防止する処理をなす。すなわち、根に付着した高粘度胞子懸濁液を塩酸等により瞬間的に固化させて、一連の菌根菌接種作業は完了する。
【0024】
接種作業の完了した苗木は、野生菌根菌を含まない培土で所定期間育成してショウロ菌を定着させて菌根の形成をみた後、植林その他の用に供することになる。
【0025】
該実施形態では、接種する菌根菌としてショウロを用いたが、これはショウロが食用きのことしての市場価値が高いこと、懸濁液中での生存性が良好なこと等に着目した結果である。因に、ショウロは懸濁液中で2年以上の保存が可能であり、該実施形態における接種確率は極めて高い。
ショウロ以外に、ヌメリイグチ属又はこれらの近縁に属する食用キノコを用いることができ、例えばカラマツと共生するハナイグチ、クロマツと共生するチチアワタケ等を使用できる。
【0026】
【発明の実施例】
実験結果に基づいて、本願発明の1実施例を説明する。
本実施例において、接種用の樹木実生は、消毒したクロマツの種子を土壌に接触させることなくバーミキュライト上で発芽させることによって得たが、具体的には播種後1カ月齢の無菌根苗を使用した。
【0027】
胞子懸濁液は、採集したショウロをプラスチックバッグ内において、常温で2週間放置し、完全に成熟して分解液化の進行したものから生成した。この腐敗液化処理は、胞子を成熟させるとともに余剰な易分解成分を消費させ、多様な微生物下でも感染力を失わないようにする処理として有効である。
すなわち、分解液化したショウロを同重量の水道水と混合してミキサ−により2〜3分前後粉砕処理をなし、多様な微生物下でも感染力を維持できる濃厚胞子懸濁液とした。
【0028】
次いで、前記濃厚胞子懸濁液を水で10倍に希釈して、胞子懸濁液を得た。この胞子懸濁液はそのままでは根における保持性に欠け、容易に流亡してしまうので、懸濁液を高粘度化して保持性を高める必要がある。このため、本実施例では、前記胞子懸濁液に重合度約650のアルギン酸ナトリウムを1%加えて、ショウロ胞子が分散配合された高粘度液体を生成した。
【0029】
樹木実生への接種は、根系を高粘度液体に浸漬してこれを付着させることによって行った。高粘度液体を介することにより根における胞子の接触は良好となるが、高粘度液体そのものが崩落、剥離する虞れは依然として存在する。
このため、高粘度液体そのものの固化処理を行った。
すなわち、樹木実生の根系を高粘度液体に浸漬した後、直ちに濃度0.1規定の希塩酸に浸して高粘度液体を瞬間的に固化させた。
【0030】
次いで、その根系にショウロ胞子を接種した樹木実生を他の菌根菌を含まない培土で所定期間育成を行い、ショウロ菌の定着した苗木を得た。
この過程で、胞子の保持手段としての高粘度液体は、微生物の作用により常温で数日で分解された。
【0031】
以上、本願発明の内容につき詳述したが、さらに本願発明の趣旨について附記する。
菌根性食用きのこ類には、従来、純粋培養によりきのこを形成させる技術の開発されていないものが多く、その人工的な生産技術が需められているところである。 また、森林利用の高度化による山林振興の見地から、林地に付加価値を与える技術も需められている。本願発明は、前記両需要に応える目的、効果を有している。
【0032】
例えば、ショウロの生産は、これまでそのほとんどを天然品の採集に依存してきたが、本願発明により人為的にショウロの発生地を形成し、計画的な生産が可能となる。 そして同時に、従来は防災機能のみに着目されてきたマツ林に食用きのこ生産林としての機能を付加することが可能である。
また、胞子の林地への散布によるといった従来の方法でショウロを接種して人為的に発生させるとなると、大量の原料きのこを必要とするが、本願発明では原料きのこ量を1/10以下に抑制することができる。
【0033】
【発明の効果】
本願発明は、以上説明した構成作用により、次のような効果を得ることができる。
(1)宿主植物の根に菌根菌の胞子をあらかじめ付着させておくことにより、菌根定着の場となる吸収根が形成されると必ず菌根菌に接触するから、効率的な接種が可能になる。
(2)菌根の形成されていない実生と菌根菌を含まない培土で育苗するので、目的外の菌根菌との競生を回避でき目的とする菌根菌による菌根を有する樹木実生を効率良く生産できる。
(3)したがって、接種する菌根菌の選定により、例えば、食用きのこの生産に適する苗木、特定の造林地に適する苗木等を自在に生産することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for inoculating mycorrhizal fungi in trees, and more particularly to a technique for efficiently inoculating only the target fungus into tree roots with high accuracy, a planting seedling using the technique, and a production method thereof.
[0002]
BACKGROUND OF THE INVENTION
Fungi (mycorrhizal fungi) are symbiotic to the roots of plants such as pine, beech, and myrtaceae, and these plants take minerals (fertilizer), water, etc. from the fungi, and from soil pathogens by mycorrhiza Mycorrhizal fungi are indispensable for the growth of these trees.
Therefore, in the artificial reforestation of so-called mycorrhizal tree species such as the above-mentioned pine family, beech family, and myrtaceae, it is extremely important to promote proper symbiosis between these trees and mycorrhizal fungi. In addition, some mycorrhizal fungi also have edible mushrooms. In producing such mycorrhizal edible mushrooms, it is important to efficiently inoculate the roots of the target tree with the mycorrhizal fungi from the viewpoint of improving productivity. is there.
[0003]
Various studies have been made on mycorrhizal fungus inoculation technology as a reforestation technology. However, because the purpose is afforestation, the fungus inoculation technology using spores that has been developed and spread overseas, for example, is a loose technique, such as spraying a spore suspension from crushed mushrooms onto the surface of a tree nursery. According to the embodiment.
[0004]
For this reason, it cannot be said that the inoculation efficiency is good, and since a large amount of mushroom is required as an inoculation source, the actual situation is that it has no practical significance as an edible mushroom production technique from the viewpoint of cost. . In other words, in order to produce mycorrhizal edible mushrooms, it is necessary to efficiently inoculate with as little mushroom consumption as possible.
Moreover, even when inoculating for afforestation, there is a problem that the consumption efficiency of raw materials is poor. Moreover, in such a prior art, there exists a problem that competition arises between mycorrhizal fungi to be inoculated and other existing mycorrhizal fungi, and the inoculation probability decreases.
[0005]
In addition to the above-mentioned conventional techniques, a method of embedding a spore-encapsulated spore and a spore and sphagnum squeezed into a pellet form, etc. has also been implemented. The problem of lowering the inoculation probability due to competition with existing mycorrhizal fungi cannot be solved.
[0006]
SUMMARY OF THE INVENTION
The invention of the present application is a planting seedling that is formed by holding a root of a tree in which mycorrhiza is not formed by holding means having dispersed mycorrhizal spores, the holding means performing infectivity maintenance processing It is a biodegradable high-viscosity liquid consisting of a spore suspension and a thickening material, and the infectivity maintenance treatment causes the fruit body to undergo septic liquefaction and matures the spores in the fruit body, and excessively easily decomposes by propagation of microorganisms. An object of the present invention is to solve the above-mentioned conventional problems by providing seedlings for planting in which components are consumed so that spores can maintain high infectivity even under various microorganisms .
[0007]
In the above planting seedlings, the trees are tree seedlings of the pine family, and the mycorrhizal fungi spores may be selected from the genus Shoro, Numerii, or edible mushrooms belonging to these species.
[0008]
In any of the above planting seedlings, the biodegradable high-viscosity liquid may be composed of a material that has a property of solidifying by a mild chemical treatment .
[0009]
Furthermore, in the above planting seedlings, the thickening material mixed with the spore suspension to form a biodegradable high-viscosity liquid is composed of a natural polymer and / or a synthetic water-soluble polymer. The viscous liquid may be instantly solidified by acid treatment.
[0010]
Furthermore, in afforestation seedling described above either may make to the outer surface of the biodegradable high viscosity liquid to prevent the collapse of the coating to the biodegradable high viscosity liquid fine particle.
[0011]
The present invention further includes
(A) Suspension of mycorrhizal fungi is suspended in the liquid, and the spore suspension is subjected to infectivity maintenance treatment so that the spore retains high infectivity even in the presence of various microorganisms. The infectivity maintenance process is a process of liquefying the seed pods to maturate the spores in the fruiting bodies and consume excess readily degradable components by the propagation of microorganisms, and the spores are high even under various microorganisms. A process consisting of treatments that can maintain infectivity,
(B) mixing the spore suspension with a thickener to increase the viscosity;
(C) The root of a tree in which mycorrhiza is not formed is immersed in a highly viscous spore suspension, and the highly viscous spore suspension subjected to the infectivity maintenance treatment is applied and wrapped in the root of the tree. The process of
(D) To prevent the collapse of the high viscosity spore suspension coated embraced the roots of trees, solidifying all or outer surface of the viscosity increasing spore suspension,
(E) Next, the step of obtaining the seedling in which the mycorrhiza related to the target mycorrhizal fungus is formed by raising the tree that has undergone the step (d) in a culture medium that does not have an untargeted mycorrhizal fungus.
The present invention aims to solve the above-mentioned conventional problems by providing a method for producing planting seedlings comprising the above steps.
[0012]
In the above production method, the tree may be a tree seedling of a pine family, and the mycorrhizal fungus spores may be selected from a genus Shoro, a genus Muryi, or an edible mushroom belonging to these species.
[0013]
Furthermore, in the method for producing a seedling for planting according to any one of the above, the high-viscosity spore suspension has a property of solidifying by a mild chemical treatment, and the high-viscosity spore suspension is solidified by this chemical treatment. It may be configured as follows.
[0014]
Further, in the above method for producing planting seedlings, the thickening material mixed with a spore suspension to constitute the high-viscosity spore suspension is composed of a natural polymer and / or a synthetic water-soluble polymer. In some cases, the highly viscous spore suspension may be instantly solidified by acid treatment.
[0015]
In any one of the above methods for producing a seedling for planting, the outer surface of the high-viscosity spore suspension may be solidified by coating the outer surface with fine particles.
[0016]
The present invention also produces a spore suspension of mycorrhizal fungi, and sap liquefaction treatment of the fruiting body to this spore suspension causes the spores in the fruiting body to mature, and consumption of surplus readily degradable components by the propagation of microorganisms The infectivity is maintained so that the spores can maintain high infectivity even under various microorganisms , and then a thickener is added to the spore suspension to increase the viscosity. A fungus formed by immersing roots of tree seedlings in which mycorrhiza is not formed in a suspension to attach the spores, and further solidifying all or the outer surface of the highly viscous spore suspension attached to the roots. It is an object of the present invention to provide a method for inoculating root fungi to solve the above-mentioned conventional problems.
[0017]
Also, in the above mycorrhizal fungus inoculation method, the tree is a tree seedling of a pine family, and the mycorrhizal fungus spore is selected from the genus Shoro, Numerii, or edible mushrooms belonging to these species. There is.
[0018]
Further, in any of the above mycorrhizal fungus inoculation methods, the highly viscous spore suspension has a property of solidifying by a mild chemical treatment, and the high viscosity spore suspension is solidified by the chemical treatment. May be configured.
[0019]
In the above mycorrhizal inoculation method, the thickening material added to a spore suspension to constitute the thickened spore suspension is composed of a natural polymer and / or a synthetic water-soluble polymer. In some cases, the highly viscous spore suspension may be instantly solidified by acid treatment.
[0020]
In any of the above mycorrhizal inoculation methods, the outer surface of the highly viscous spore suspension may be solidified by coating the outer surface with fine particles.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
In this embodiment, while using shoro as the mycorrhizal fungus to be inoculated, pine (seedling) that has just been germinated was selected as the subject to be inoculated with this fungus.
The seedling seedlings of pine as the mycorrhizal fungi inoculation are those that are not colonized with mycorrhizal fungi other than the target, ie, mycorrhizal fungi other than shoro. The absorption roots of such seedlings are dipped in a biodegradable high-viscosity spore suspension in which spore spores are dispersed and mixed, and the high-viscosity spore suspension is applied to and held by the absorption roots. Thereby, a spore adheres directly to the absorption root.
[0022]
With respect to the production of the spore spores to be dispersed and blended, it is desirable to use matured rots since fresh crushed pulverized products tend to cause harmful bacteria. Biodegradable high-viscosity liquids can be produced by combining natural polymers such as sodium alginate and pectin, semi-synthetic substances such as carboxymethyl cellulose, and other various synthetic water-soluble polymers, alone or in combination. In particular, it is desirable to have a property of solidifying by a mild chemical treatment such as sodium alginate. In this embodiment, although it was solidified instantaneously under acidic conditions, it is also possible to solidify by dipping in an aqueous calcium chloride solution.
Such a solidification treatment is to prevent the collapse from the roots and the runoff.
When it is difficult to solidify the high-viscosity liquid itself, pulverized coal, fine sand, vermiculite fine particles, etc. can be applied and adhered to the outer surface to prevent collapse or runoff from the roots.
[0023]
Water is added to the shattered mature roasted shochu to produce a shoro spore suspension that retains infectivity even in the presence of various microorganisms, and the above sodium alginate is added to this to impart viscosity, The absorption roots of the seedlings are dipped.
Next, treatment is performed to prevent the adhering high-viscosity liquid from collapsing and flowing away. That is, the high-viscosity spore suspension adhering to the root is solidified instantaneously with hydrochloric acid or the like to complete a series of mycorrhizal fungus inoculation operations.
[0024]
The seedlings that have been inoculated are cultivated in a soil that does not contain wild mycorrhizal fungi for a predetermined period of time, and then the fungus is fixed and the mycorrhiza formation is observed before being used for planting or other purposes.
[0025]
In this embodiment, shoro was used as the mycorrhizal fungus to be inoculated, and this is the result of paying attention to the fact that shoro has a high market value as an edible mushroom and has good survival in suspension. . Incidentally, shoro can be stored in suspension for over 2 years, and the inoculation probability in this embodiment is very high.
In addition to shoro, edible mushrooms belonging to the genus Numeiguchi or closely related to them can be used, for example, hanaiguchi coexisting with larch, chichiwatake coexisting with black pine, and the like.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
One embodiment of the present invention will be described based on experimental results.
In this example, the seedlings for inoculation were obtained by germinating disinfected black pine seeds on vermiculite without contacting the soil. Specifically, aseptic seedlings one month after sowing were used. .
[0027]
The spore suspension was produced from the collected ginger in a plastic bag that was allowed to stand at room temperature for 2 weeks, completely matured and decomposed and liquefied. This septic liquefaction treatment is effective as a treatment for maturating spores and consuming excess readily decomposable components so as not to lose infectivity even under various microorganisms.
That is, the decomposed liquefied shochu was mixed with the same weight of tap water and pulverized for about 2 to 3 minutes with a mixer to obtain a concentrated spore suspension capable of maintaining infectivity even under various microorganisms.
[0028]
Next, the concentrated spore suspension was diluted 10 times with water to obtain a spore suspension. If this spore suspension is left as it is, it will lack retention at the roots and will be easily washed away, so it is necessary to increase the viscosity of the suspension to increase retention. Therefore, in this example, 1% sodium alginate having a polymerization degree of about 650 was added to the spore suspension to produce a high-viscosity liquid in which spore spores were dispersed and blended.
[0029]
Inoculation of tree seedlings was carried out by immersing the root system in a highly viscous liquid and attaching it. Although the contact of the spores in the roots becomes good by passing through the high-viscosity liquid, there is still a possibility that the high-viscosity liquid itself collapses and peels.
For this reason, the high viscosity liquid itself was solidified.
That is, after the tree seedling root system was immersed in a high-viscosity liquid, it was immediately immersed in dilute hydrochloric acid having a concentration of 0.1 N to instantly solidify the high-viscosity liquid.
[0030]
Next, the seedlings in which the root system was inoculated with spore spores were grown for a predetermined period of time in a soil that did not contain other mycorrhizal fungi, thereby obtaining seedlings in which the spore fungus had settled.
In this process, the high-viscosity liquid as a spore holding means was decomposed in a few days at room temperature by the action of microorganisms.
[0031]
Although the contents of the present invention have been described in detail above, the gist of the present invention will be further described.
Many mycorrhizal edible mushrooms have not been developed as a technique for forming mushrooms by pure culture, and artificial production techniques are in demand. In addition, from the standpoint of promoting forests through the advancement of forest use, technologies that add value to forests are also in demand. The present invention has the purpose and effect of meeting both the demands.
[0032]
For example, the production of shoro has so far mostly depended on the collection of natural products, but the present invention artificially forms a place where shoro occurs and enables planned production. At the same time, it is possible to add a function as an edible mushroom production forest to a pine forest that has traditionally focused only on disaster prevention functions.
In addition, a large amount of raw material mushrooms are required when artificially inoculated with ginger by conventional methods such as by spraying spores on forest land, but in the present invention, the amount of raw material mushrooms is suppressed to 1/10 or less. can do.
[0033]
【The invention's effect】
According to the present invention, the following effects can be obtained by the configuration and operation described above.
(1) By attaching the mycorrhizal fungus spores to the roots of the host plant in advance, it will come into contact with the mycorrhizal fungi whenever an absorption root that becomes a place for mycorrhizal colonization is formed. It becomes possible.
(2) Tree seedlings with mycorrhizal fungi that can avoid competition with undesired mycorrhizal fungi because seedlings are grown in culture medium that does not contain mycorrhizal fungi and seedlings that do not contain mycorrhizal fungi. Can be produced efficiently.
(3) Therefore, by selecting the mycorrhizal fungi to be inoculated, for example, seedlings suitable for the production of edible mushrooms, seedlings suitable for a specific plantation can be freely produced.

Claims (15)

菌根が形成されていない樹木の根を菌根菌の胞子を分散して有する保持手段により包持してなる植林用苗木であって、前記保持手段は感染力維持処理をなした胞子懸濁液と増粘材とからなる生分解性高粘度液体であり、前記感染力維持処理は子実体を腐敗液化処理して子実体における胞子を成熟させるとともに微生物の繁殖により余剰の易分解成分を消費させて多様な微生物下でも胞子が高い感染力を維持できるようにしたことを特徴とする植林用苗木。A seedling for plantation in which a root of a tree in which mycorrhiza is not formed is held by holding means having dispersed mycorrhizal spore, wherein the holding means is a spore suspension subjected to infectivity maintenance treatment The biodegradable high-viscosity liquid consisting of a thickener and the infectivity maintenance treatment causes the fruit body to undergo septic liquefaction to mature spores in the fruit body and consume excess readily degradable components through the propagation of microorganisms. A planting seedling characterized in that spores can maintain high infectivity even under various microorganisms. 請求項1記載の植林用苗木において、樹木はマツ科の樹木実生であり、菌根菌の胞子はショウロ属、ヌメリイグチ属又はこれらの近縁に属する食用キノコから選択したものであることを特徴とする植林用苗木。  The seedling for planting according to claim 1, wherein the tree is a tree seedling of a pine family, and the mycorrhizal fungus spore is selected from a genus Shoro, a genus Muryi or a related edible mushroom. Planting seedlings. 請求項1又は2いずれか記載の植林用苗木において、生分解性高粘度液体は穏和な化学処理により固化する性質を有するものであることを特徴とする植林用苗木。The seedling for planting according to claim 1 or 2, wherein the biodegradable high-viscosity liquid has a property of solidifying by a mild chemical treatment. 請求項3記載の植林用苗木において、胞子懸濁液と混合して生分解性高粘度液体を構成する増粘材は天然高分子および4. The planting seedling according to claim 3, wherein the thickening material mixed with the spore suspension to constitute the biodegradable high-viscosity liquid is a natural polymer and // 又は合成水溶性高分子で構成し、この生分解性高粘度液体を酸性処理することにより瞬間的に固化可能にしたことを特徴とする植林用苗木。Alternatively, a seedling for planting which is composed of a synthetic water-soluble polymer and can be solidified instantaneously by acid treatment of the biodegradable high-viscosity liquid. 請求項1又は2いずれか記載の植林用苗木において、生分解性高粘度液体の外表面を微細粒で被覆して生分解性高粘度液体の崩落を防止するようにしたことを特徴とする植林用苗木。The afforestation seedling according to claim 1 or 2, wherein the outer surface of the biodegradable high-viscosity liquid is coated with fine particles to prevent the biodegradable high-viscosity liquid from collapsing. Saplings. 以下の工程からなる植林用苗木の生産方法。
(a)菌根菌の胞子を液中に懸濁させるとともに、この胞子懸濁液に感染力維持処理をなして多様な微生物の存在下にあっても該胞子に高い感染力を保持させるようになす工程であり、前記感染力維持処理は子実体を腐敗液化処理して子実体における胞子を成熟させるとともに微生物の繁殖により余剰の易分解成分を消費させて多様な微生物下でも胞子が高い感染力を維持できるようにした処理で構成される工程、
(b)前記胞子懸濁液を増粘材と混合して高粘度化する工程、
(c)菌根が形成されていない樹木の根を高粘度化された胞子懸濁液中に浸漬して、前記感染力維持処理をなした高粘度化胞子懸濁液を樹木の根において塗布包持させる工程、
(d)樹木の根に塗布包持された前記高粘度化胞子懸濁液の崩落を防止するために、該高粘度化胞子懸濁液の全部または外表面を固化させる工程、
(e)次いで、工程(d)を経た樹木を目的外の菌根菌を有しない培土で育苗して目的の菌根菌に係る菌根の形成された苗木を得る工程。
A planting seedling production method comprising the following steps.
(A) Suspension of mycorrhizal fungi is suspended in the liquid, and the spore suspension is subjected to infectivity maintenance treatment so that the spore retains high infectivity even in the presence of various microorganisms. The infectivity maintenance treatment is a process in which the fruit body is subjected to septic liquefaction to mature the spores in the fruit body, and excess fragile components are consumed by the propagation of microorganisms, and the spores are highly infected even under various microorganisms. A process consisting of processes that can maintain power,
(B) mixing the spore suspension with a thickener to increase the viscosity;
(C) The root of a tree in which mycorrhiza is not formed is immersed in a highly viscous spore suspension, and the highly viscous spore suspension subjected to the infectivity maintenance treatment is applied and wrapped in the root of the tree. The process of
(D) a step of solidifying all or the outer surface of the high-viscosity spore suspension in order to prevent collapse of the high-viscosity spore suspension coated and held on the roots of the tree;
(E) Next, the step of obtaining the seedling in which the mycorrhiza related to the target mycorrhizal fungus is formed by raising the tree that has undergone the step (d) in a culture medium that does not have an untargeted mycorrhizal fungus.
請求項6記載の植林用苗木の生産方法において、樹木はマツ科の樹木実生であり、菌根菌の胞子はショウロ属、ヌメリイグチ属又はこれらの近縁に属する食用キノコから選択したものであることを特徴とする植林用苗木の生産方法。 7. The method for producing a seedling for planting according to claim 6, wherein the tree is a tree seedling of a pine family, and the mycorrhizal fungus spore is selected from a genus Shoro, a genus Muryi or a related edible mushroom. A method for producing seedlings for plantation. 請求項6または7いずれか記載の植林用苗木の生産方法において、前記高粘度化胞子懸濁液は穏和な化学処理により固化する性質を有するとともに、この化学処理により高粘度化胞子懸濁液を固化するようにしたことを特徴とする植林用苗木の生産方法。 The method for producing a seedling for planting according to claim 6 or 7, wherein the high-viscosity spore suspension has a property of solidifying by a mild chemical treatment, and the high-viscosity spore suspension is obtained by this chemical treatment. A method for producing planting seedlings, characterized by solidifying. 請求項8記載の植林用苗木の生産方法において、胞子懸濁液と混合して前記高粘度化胞子懸濁液を構成する前記増粘材は天然高分子および9. The method for producing a seedling for planting according to claim 8, wherein the thickening material mixed with a spore suspension to constitute the high-viscosity spore suspension is a natural polymer and // 又は合成水溶性高分子で構成し、この高粘度化胞子懸濁液を酸性処理することにより瞬間的に固化可能にしたことを特徴とする植林用苗木の生産方法。Alternatively, a method for producing a seedling for planting, characterized in that it is composed of a synthetic water-soluble polymer and can be solidified instantaneously by acid treatment of this highly viscous spore suspension. 請求項6または7いずれか記載の植林用苗木の生産方法において、前記高粘度化胞子懸濁液の外表面の固化は、外表面を微細粒で被覆してなすようにしたことを特徴とする植林用苗木の生産方法。The method for producing a seedling for planting according to claim 6 or 7, wherein the solidification of the outer surface of the high-viscosity spore suspension is performed by coating the outer surface with fine particles. Production methods for planting seedlings. 菌根菌の胞子懸濁液を生成し、この胞子懸濁液に子実体を腐敗液化処理して子実体における胞子を成熟させるとともに微生物の繁殖により余剰の易分解成分を消費させて多様な微生物下でも胞子が高い感染力を維持できるようにする感染力維持処理をなし、次いで、前記胞子懸濁液に増粘材を添加して高粘度化し、この高粘度化胞子懸濁液中に菌根が形成されていない樹木実生の根を浸漬させて前記胞子を付着し、さらに根に付着した高粘度化胞子懸濁液の全部または外表面を固化させるようにしたことを特徴とする菌根菌の接種方法。A spore suspension of mycorrhizal fungi is produced, and the fruit body is septic liquefied in this spore suspension to mature spores in the fruit body, and excess microorganisms are consumed by the proliferation of microorganisms, and various microorganisms are consumed. An infectivity maintenance treatment is performed so that the spores can maintain high infectivity even under a low pressure . Next, a thickener is added to the spore suspension to increase the viscosity, and the spore suspension contains bacteria. Mycorrhiza characterized in that roots of tree seedlings without roots are immersed to attach the spores, and further, all or the outer surface of the highly viscous spore suspension adhering to the roots is solidified. How to inoculate bacteria. 請求項11記載の菌根菌の接種方法において、樹木はマツ科の樹木実生であり、菌根菌の胞子はショウロ属、ヌメリイグチ属又はこれらの近縁に属する食用キノコから選択したものであることを特徴とする菌根菌の接種方法。12. The method of inoculating mycorrhizal fungi according to claim 11, wherein the tree is a tree seedling of a pine family, and the mycorrhizal fungus spore is selected from a genus Shoro, a genus Muryi or a related edible mushroom. A method of inoculating mycorrhizal fungi characterized by 請求項11又は請求項12記載の菌根菌の接種方法において、前記高粘度化胞子懸濁液は、穏和な化学処理により固化する性質を有するとともに、この化学処理により高粘度胞子懸濁液を固化するようにしたことを特徴とする菌根菌の接種方法。13. The inoculation method of mycorrhizal fungi according to claim 11 or claim 12, wherein the high-viscosity spore suspension has a property of solidifying by a mild chemical treatment, and the high-viscosity spore suspension is obtained by this chemical treatment. A method of inoculating mycorrhizal fungi characterized by solidifying. 請求項13記載の菌根菌の接種方法において、胞子懸濁液に添加して前記高粘度化胞子懸濁液を構成する前記増粘材は天然高分子および14. The method of inoculating mycorrhizal fungi according to claim 13, wherein the thickening material added to a spore suspension to constitute the thickened spore suspension comprises a natural polymer and // 又は合成水溶性高分子で構成し、この高粘度化胞子懸濁液を酸性処理することにより瞬間的に固化可能にしたことを特徴とする菌根菌の接種方法。Alternatively, an inoculation method of mycorrhizal fungi characterized in that it is composed of a synthetic water-soluble polymer and can be solidified instantaneously by subjecting this highly viscous spore suspension to an acidic treatment. 請求項11または12いずれか記載の菌根菌の接種方法において、前記高粘度化胞子懸濁液の外表面の固化は、外表面を微細粒で被覆してなすようにしたことを特徴とする菌根菌の接種方法。13. The method of inoculating a mycorrhizal fungus according to claim 11 or 12, wherein the solidification of the outer surface of the high-viscosity spore suspension is performed by coating the outer surface with fine particles. How to inoculate mycorrhizal fungi.
JP2001246544A 2001-08-15 2001-08-15 Planting seedlings, their production methods, and mycorrhizal fungus inoculation methods in trees. Expired - Lifetime JP3731043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246544A JP3731043B2 (en) 2001-08-15 2001-08-15 Planting seedlings, their production methods, and mycorrhizal fungus inoculation methods in trees.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246544A JP3731043B2 (en) 2001-08-15 2001-08-15 Planting seedlings, their production methods, and mycorrhizal fungus inoculation methods in trees.

Publications (2)

Publication Number Publication Date
JP2003052243A JP2003052243A (en) 2003-02-25
JP3731043B2 true JP3731043B2 (en) 2006-01-05

Family

ID=19076071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246544A Expired - Lifetime JP3731043B2 (en) 2001-08-15 2001-08-15 Planting seedlings, their production methods, and mycorrhizal fungus inoculation methods in trees.

Country Status (1)

Country Link
JP (1) JP3731043B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045757A (en) * 2005-08-10 2007-02-22 Takinou Filter Kk Planting material
JP5754684B2 (en) * 2010-10-08 2015-07-29 国立大学法人鳥取大学 Fruit body production technology by inoculating mycelium mycelium
JP6567915B2 (en) * 2015-08-04 2019-08-28 国立大学法人鳥取大学 Salt-tolerant Shoro strain

Also Published As

Publication number Publication date
JP2003052243A (en) 2003-02-25

Similar Documents

Publication Publication Date Title
CN105861315B (en) A method of optimizing cultivating seedlings using Applying Ectomycorrhizal Fungi
KR890000109B1 (en) Method for treating plants
CN104584829A (en) High-yield cultivation method for pollution-free eggplants
CN104446767A (en) Method for preparing seaweed-containing special fertilizer for flowers and plants
CN109400397B (en) Water-retention controlled-release biological compound fertilizer and preparation method thereof
CN107155432A (en) A kind of beta glucan content for improving crops and the method for improveing salt-soda soil
Yangyuoru et al. Effects of natural and synthetic soil conditioners on soil moisture retention and maize yield
CN111248051A (en) Multipurpose creative succulent cohesive nutrient soil
JP3430026B2 (en) Vegetation base materials such as slopes and greening method
JP3731043B2 (en) Planting seedlings, their production methods, and mycorrhizal fungus inoculation methods in trees.
CN110586645B (en) Heavy metal contaminated soil remediation agent suitable for acidic farmland soil
CN108605812A (en) A kind of preparation method of the special seedling medium of citrus
CN109721444B (en) Soil phosphorus activator and preparation method, application method and application thereof
CN107200650A (en) Navel orange upgrading synergy fertilizing method
CN110963860A (en) Rod-shaped selenium-rich fertilizer and preparation method thereof
CN105746520B (en) Application of the nanometer chitin in terms of tobacco production and quality is improved
Tran et al. Study on evaluating the effectiveness of compost fertilizer from jackfruit peel and fiber with various local agricultural materials on Green Mustard (Brassica juncea)
CN104291979A (en) Special chemical fertilizer for pear tree and preparation method of special chemical fertilizer
CN108012808B (en) Nutrient soil for artificial cultivation of potentilla anserina and preparation method thereof
CN110012769A (en) A kind of teak Mycorrhizal Light media container seedling culture method
JPH05227836A (en) Granular culture soil for agriculture and horticulture
CN108738970A (en) A kind of cultural method of blueberry
CN108083923A (en) Composite organic-inorganic fertilizer containing bacterium and preparation method thereof
CN106472276A (en) A kind of ecological cultivation matrix with water conservation, pollution treatment and trophic function
NL2027070B9 (en) Compound material for promoting root growth of vegetables and preventing premature aging and method for cultivating vegetables using compound material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3731043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term