JP3730509B2 - Pipe joint structure - Google Patents

Pipe joint structure Download PDF

Info

Publication number
JP3730509B2
JP3730509B2 JP2000350742A JP2000350742A JP3730509B2 JP 3730509 B2 JP3730509 B2 JP 3730509B2 JP 2000350742 A JP2000350742 A JP 2000350742A JP 2000350742 A JP2000350742 A JP 2000350742A JP 3730509 B2 JP3730509 B2 JP 3730509B2
Authority
JP
Japan
Prior art keywords
pipe joint
joint structure
pipe
tube
insertion port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000350742A
Other languages
Japanese (ja)
Other versions
JP2002156079A (en
Inventor
哲二 下保
一仁 花野
義徳 吉田
直岐 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2000350742A priority Critical patent/JP3730509B2/en
Publication of JP2002156079A publication Critical patent/JP2002156079A/en
Application granted granted Critical
Publication of JP3730509B2 publication Critical patent/JP3730509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、常時は、抜け出し方向において、受口への挿し口の挿入位置を所定に維持し、さらに、地震等の大きな抜け出し力に対してもその力に抗するようにした管継手構造に関するものである。
【0002】
【従来の技術】
管路は、一の管の受口に他の管の挿し口を挿入した管継手を管路方向に順々に構成して施設され、一般に、その管継手の伸縮と屈曲(受口に対する挿し口の抜き差しと屈曲)によってある程度の地震や地盤沈下などに順応する柔構造とされている。この柔構造管路において、さらなる柔構造をなすものとして、さらに大きな伸縮余裕代と離脱防止機能(抜け止め機能)を管継手に付与した鎖構造が採用される。この鎖構造の管路は、大きな地盤変動に対して、ちょうど地中に埋没された鎖のように継手が伸縮・屈曲しながら追従し、さらに限界まで伸び出した後は、離脱防止構造によって管路を維持する。
【0003】
その離脱防止及び伸縮機能を有する継手として、例えば、図10に示すNS形継手、図11に示すSII形継手及びS継手等がある。そのNS形継手は、同図に示すように、一の管1の受口1aの内面に一ツ割開き勝手のロックリング2を心出しゴム2aを介して設け、他の管3の挿し口3aの外面には突起4を設けて、挿し口3aを、その突起4を心出しゴム2aを収縮させながらロックリング2を拡径させてロックリング2を乗り越えさせて受口1に挿し込んだ構成である。この構成においては、挿し口3aが受口1aにさらに入り込むことにより、両管1、3間の収縮が吸収され、突起4がロックリング2に係止することにより、両管1、3の伸長、すなわち抜け出しを阻止する。図中、5はシール用ゴム輪であり、一定以上の止水面圧を確保し、水圧が上昇すれば、その水圧によってより強固に受口内面及び挿し口外面に圧接して、面圧が上昇するセルフシール機能を発揮する。
【0004】
SII形継手は、図11に示すように、他の管13の挿し口13aの外面に突起14を設けて、一の管11の受口11aに挿し込み、その受口11a内面に一ツ割開き勝手のロックリング12を設けた後、シール用ゴム輪15を受口11aと挿し口13aの間に介在し、そのゴム輪15を押し輪16でもって押し込み、その押し込みは、押し輪16と受口11aのフランジ間に挿通したT字ボルト・ナット17の締め付けによって行う構成である。この構成においても、挿し口13aが受口11にさらに入り込むことにより、両管11、13間の収縮が吸収され、突起14がロックリング12に係止することにより、両管11、13の抜け出しが阻止される。図中、18はバックアップリングである。
【0005】
これらのNS形継手、SII形継手も含めて、受口に対し挿し口が抜き挿し(伸縮)する継手は、その伸縮性により、小さな地盤変動に対応して管路を確保する。特に、NS形継手、SII形継手は、地震発生時や不同沈下時などの地盤変動に対して、その伸縮機構、屈曲機構により、管や継手部に大きな応力が生じること無く、管路が地盤変動に順応するとともに、抜け出しを防止する。
【0006】
また、両管の伸縮機能を有するのみで、抜け出し防止機能を有しない管継手において、管外面にその抜け出し防止機能を付加した技術として、特開平10−122466号公報に記載のものがある。この技術は、受口と挿し口に亘る筒状部材を管継手外周に嵌め、その筒状部材の両端の突片を受口と挿し口に係止させて、両者の抜けを防止する。
【0007】
さらに、特開2000−17987号公報には、受口と挿し口間に発泡樹脂を介在し、この発泡樹脂によって、挿し口の所定の押し込み力(挿入力)以下の場合、受口と挿し口の挿入位置を一定に維持し、その圧以上の押し込み力に対しては、発泡樹脂が潰れて(収縮して)、挿し口と受口の伸縮を許容する技術が開示されている。
【0008】
【発明が解決しようとする課題】
上述のような伸縮機能を有する管継手構造において、管路施工時の継手部の漏水の確認を行う水圧試験は、施設管路の埋め戻しを行ってその土圧(受動土圧)で管路の移動を阻止した状態で行っている。仮に、埋め戻しを行わずに水圧を負荷すると、その水圧により、挿し口が抜け出し方向に移動して管路が蛇行し、最悪の場合には、受口から挿し口が抜けてしまうからである。
【0009】
しかし、水圧試験時に、継手部に漏水が生じて水圧が低下した場合、土中であるため、その漏水個所の発見が容易でないうえに、埋め戻した土を取り除いて漏水を確認して改修する必要があり、施工工程に深刻な影響を与えている。
【0010】
また、図14に示すように、管路のわん曲部(同図(a))や分岐部(同(b))においては、各種の異形管20が採用されるが、これらの管路部分には、同図P矢印のごとく、水圧により不平均力が働き、管継手をなす受口と挿し口に対し、その抜け出し方向又は屈曲方向の力が加わる。このとき、受口に対し挿し口を不動にする(剛構造の)管継手を採用して、上記不平均力Pに抗するようにする。
【0011】
例えば、図12に示すように、直管受口1aに異形管20の挿し口23を挿入した管継手にあっては、受口1a内面に、心出し用ゴム6を介してライナ7を設け、このライナ7により挿し口23aの差し込みを阻止するとともに、ロックリング2に対する突起24の移動幅を少なくして剛構造管継手としている。図中、8は屈曲防止突部である。また、図13に示すように、異形管受口21aに直管挿し口3aを挿入した管継手にあっては、同じく、ロックリング2に対する突起4の移動幅を少なくし、屈曲防止リング9をセットボルト9aにより挿し口3a外面に圧接して剛構造管継手としている。
【0012】
しかし、これらの剛構造管継手が管路のごく一部であれば、支障はないが、輻輳する管路では、曲がり配管等が連続するため、隣り合う異形管の剛構造部分が連続してしまい、管路全体が剛構造となって上述の鎖構造が非常に難しくなっている。剛構造の管路は耐震性が低く、地震によって破損し易く、破損すれば、ライフラインの欠損となって問題となる。
【0013】
この発明は、伸縮可能な管継手構造であっても、埋め戻しすることなく水圧試験を行うことができ、また、異形管であっても、伸縮機能をもった管継手を施工できるようにすることを課題とする。
【0014】
【課題を解決するための手段】
上記の課題を解決するため、この発明は、上述の特開2000−17987号公報に記載の所定の押し込み力に抗する技術に着目し、受口と挿し口の間に挿し口の抜け出し方向の移動を阻止する部材を設け、この部材は所定以下の抜け出し力では収縮せず、その所定以上の抜け出し力では収縮するようにしたのである。
【0015】
この発明において、上記所定抜け出し力を水圧試験による水圧によって生じる力より高く設定しておけば、埋め戻しをすることなく水圧試験を行っても、受口に対する挿し口の移動が生じることがない。この埋め戻しを行わないことは、管路が露出していることであり、漏洩個所の発見も容易であり、その改修も容易である。
【0016】
また、異形管の継手部においても、上記所定抜け出し力を不平均力より高く設定しておけば、その不平均力による管路変形を阻止できる。
【0017】
そして、いずれの場合にも、地震等により、上記所定抜け出し力以上の抜け出し力が働けば、阻止部材が圧縮されて継手部の縮み方向の伸縮量を確保する。
【0018】
【発明の実施の形態】
この発明の実施形態としては、上記特開平10−122466号公報記載技術を参考にして、一の管の受口に他の管の挿し口を伸縮可能に挿入した管継手構造において、前記両管の一方外面にその一方の管と一体に動くように部材を設け、この部材は他の管の外面に至ってその外面に向かう突片を有し、この突片より前記一方の管側の他方の管外面に突片を設け、その両突片間に、挿し口の抜け出し方向の移動を阻止する部材を設け、この部材は、所定以下の抜け出し力では収縮せず、その所定以上の抜け出し力では収縮する構成を採用する。
【0019】
この構成においては、両突片間の介在部材の破損等による最大収縮によって両突片が係止し、この係止によって挿し口の抜け止め作用が行われる。
【0020】
この構成において、上記他方の管外面の突片は挿し口側に設けることが好ましい。一般に受口の開口外周縁はフランジ状の突部となっており、その突部に一方の管と一体に動く部材を一体に動くようにし得るからである(図1の実施例参照)。
【0021】
また、これらの構成は、上記受口内面にロックリングを設けるとともに、上記挿し口外面に突起を設けて、そのロックリングと突起の係止により上記両管の抜け止めを行う、いわゆる耐震継手に採用し得る。
【0022】
この構成では上述の両突片の当接とロックリングと突起の係止の両者によって、挿し口の抜け止め作用が行われ、その当接と係止はどちらが早く生じるようにしてもよい。その設定は、通常時の両突片間、及びロックリングと突起の間の距離調整によって行う。なお、ロックリングと突起の係止を、両突片間の介在部材の最大収縮時に行われるようにすれば、両突片の当接とロックリングと突起の係止による挿し口抜け止め作用が同時に行われることとなり、別々に行う場合に比べれば、その効果は高いものとなる。
【0023】
上記両突片間に介在する部材としては、上述の作用をし得るものならいずれでもよく、例えば、ばね、金属又は樹脂などの、例えばハニカム状の多孔部材を採用でき、樹脂部材では発泡樹脂、例えば、発泡ポリスチレン、発泡ポリプロピレン等を採用でき、さらに、金属又は樹脂製の中空体、自己破砕コンクリートなども採用できる。
【0024】
上記各実施形態は、直管同士のみならず、直管と異形管、異形管同士の各種の管継手構造に採用でき、このため、異形管路においても、鎖構造のものとし得る。
【0025】
【実施例】
一実施例を図1乃至図3に示し、この実施例は、図10に示したダクタイル鋳鉄製NS形管継手構造において、挿し口3aと受口1aに亘ってリング30が被せられている。このリング30は、図1(b)に示すように、二ツ割りとなっており、その分割部分のフランジ31をボルト・ナット32で締結することにより一体化する。リング30の両側端縁はそれぞれフランジ33、34を有し、一方のフランジ33は受口1aの開口縁の突条(フランジ)1cに係止する。リング30の素材は、その作用に合ったものであれば、いずれでも良く、例えば金属、エンジニアプラスチックなどを採用する。
【0026】
一方、リング30の他方のフランジ34より内側の挿し口3a外周面にはフランジ35が溶接により固着され、このフランジ35とリング30のフランジ34との間に、発泡ポリスチレンからなる環状部材36がテープ巻き付け、接着などによって介設されている。この環状部材36は、2分割、3分割などと周方向で分割されており、リング30の取付前にセットされる。また、環状部材36は、水圧試験の水圧、又は不平均力によっては弾性変形内に収まって管1と3の伸縮を招かずに、破損しない程度の強さを有する。
【0027】
なお、フランジ34、35が請求の範囲でいう突片に相当し、このため、フランジ34、35は全周に連続するものでなくとも、間欠的な突片の連続したもの、又は突片一つでもよく、要は、部材36を保持すればよい。
【0028】
この実施例は以上の構成であり、図2(a)から(b)に示すように、従来と同様にして、受口1aに挿し口3aを挿し込んで環状部材36を嵌め、その後、リング30を取付ける(同図(c))。
【0029】
そして、通常時には、図3(a)に示すように、図10で示した状態と同じように、挿し口3aの先端(突起4)がロックリング2と受口内面段部1bの間のほぼ中程に位置し、それらの間隙内の挿し口3aの移動を許容して小さな地盤変形等に対応する。また、配管施工時の水圧試験においては、環状部材36がその水圧に抗して管の抜け出しを阻止する。
【0030】
この状態において、地震等による大きな地盤変動があると、伸びに対しては、図3(b)のごとく、環状部材36が潰れて(塑性変形して)、両フランジ34、35が当接するとともに、ロックリング2に突起4が係止して抜け止めがなされる。一方、縮みに対しては、同図(c)のごとく、挿し口3aが受口内面段部1bに向かい入り込んで吸収する。このようにして、耐震機能を発揮する。
【0031】
図4乃至図9には他の各実施例を示し、図4の実施例はリング30のフランジ33に代えて、セットボルト37を周方向に等間隔に設け、このセットボルト37と受口1aの突条1cを係止するようにして、リング30を抜け出し方向に受口1aと一体に移動するようにしたものである。図5の実施例は、挿し口3a側フランジ35を、割リング38で形成したものであり、その分割数は任意であって、その分割部はボルト・ナット締結する。割リング38は挿し口3aの溝39に嵌めて移動止めする。図6に示す実施例は図11のSII形の管継手構造にこの発明を採用したものであり、図4のセットボルト37、図5の割リング38の態様を採用し得る。
【0032】
図7乃至図9に示す実施例は、環状部材36を受口1a側に設けたものであり、このとき、受口1a側の部材36の支持部材として、適宜なフランジ40を溶接等によって設けることができる。リング30は、図9のごとく、挿し口3a側に溶接してもよい。
【0033】
上記各実施例は、従来における直管同士の管継手構造の場合であるが、図12、13等で示した異形管の管継手構造においても、上記各実施例と同様にして、伸縮機能及び耐震機能を有するものとし得る。また、この発明は、ロックリング2と突起4の係止による抜け止め機能を有しない管継手にも採用し得る。
【0034】
【発明の効果】
この発明は、以上のように抜き止め部材により抜き出し力に対し所定の力までは抗するようにしたので、埋め戻しをすることなく、水圧試験を行うことができ、また、異形管に伸縮機能を持たせ得るので、異形管による鎖管路の構築が容易となる。
【図面の簡単な説明】
【図1】(a)は一実施例の上部切断部分正面図、(b)は同リングの左側面図
【図2】同実施例の組立て作用図
【図3】同実施例の機能作用図
【図4】他の実施例の要部切断端面図
【図5】(a)は他の実施例の要部切断端面図、(b)は同フランジの右側面図、(c)は同切断図
【図6】他の実施例の要部切断端面図
【図7】他の実施例の要部切断端面図
【図8】他の実施例の要部切断端面図
【図9】他の実施例の要部切断端面図
【図10】従来例の要部切断端面図
【図11】従来例の要部切断端面図
【図12】従来例の要部切断端面図
【図13】従来例の要部切断端面図
【図14】配管説明図
【符号の説明】
1、11、3、13 管
1a、11a、21a 受口
2、12 ロックリング
3a、13a、23a 挿し口
4、14 抜け止め突起
5 シール用ゴム輪
20 異形管
30 リング
34、35 フランジ(突片)
36 環状部材(移動阻止部材、介在部材)
[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pipe joint structure that normally maintains a predetermined insertion position of an insertion port in a withdrawal direction in a withdrawal direction and further resists the force against a large withdrawal force such as an earthquake. Is.
[0002]
[Prior art]
A pipe line is a facility that consists of a pipe joint in which the insertion hole of another pipe is inserted into the receiving hole of one pipe in order in the pipe line direction. Generally, the pipe joint is expanded and contracted (inserted into the receiving hole). It is a flexible structure that adapts to earthquakes and land subsidence to some extent by inserting and removing the mouth and bending. In this flexible structure pipe, a chain structure in which a larger expansion allowance and a detachment prevention function (prevention function) are added to the pipe joint is used as a further flexible structure. This chain-structure pipe line follows a large ground change, just like a chain buried in the ground, while the joint expands / contracts and bends, and after extending to the limit, the pipe is separated by a separation prevention structure. Maintain the road.
[0003]
Examples of the joint having the separation prevention and expansion / contraction function include an NS joint shown in FIG. 10, an SII joint and an S joint shown in FIG. As shown in the figure, the NS type joint is provided with a lock ring 2 that can be split open on the inner surface of a receiving port 1a of one tube 1 via a centering rubber 2a, and an insertion port for another tube 3 A projection 4 is provided on the outer surface of 3a, and the insertion port 3a is inserted into the receiving port 1 by centering the projection 4 and expanding the diameter of the lock ring 2 while contracting the rubber 2a so as to get over the lock ring 2. It is a configuration. In this configuration, when the insertion port 3a further enters the receiving port 1a, the contraction between the two tubes 1 and 3 is absorbed, and the protrusion 4 is engaged with the lock ring 2 so that both the tubes 1 and 3 are extended. That is, it prevents the exit. In the figure, reference numeral 5 denotes a rubber ring for sealing. When the water pressure rises above a certain level and the water pressure rises, the water pressure presses against the inner surface of the receiving port and the outer surface of the insertion port, and the surface pressure increases. Demonstrate self-sealing function.
[0004]
As shown in FIG. 11, the SII type joint is provided with a protrusion 14 on the outer surface of the insertion port 13a of the other tube 13, inserted into the receiving port 11a of one tube 11, and divided into the inner surface of the receiving port 11a. After providing the self-opening lock ring 12, a sealing rubber ring 15 is interposed between the receiving port 11 a and the insertion port 13 a, and the rubber ring 15 is pushed in with the push ring 16. In this configuration, T-bolts and nuts 17 inserted between the flanges of the receiving port 11a are tightened. Also in this configuration, when the insertion opening 13a further enters the receiving opening 11, the contraction between both the pipes 11 and 13 is absorbed, and the protrusion 14 engages with the lock ring 12 so that the both pipes 11 and 13 come out. Is blocked. In the figure, 18 is a backup ring.
[0005]
The joints, including these NS joints and SII joints, in which the insertion port is inserted into and removed from the receiving port (expandable), ensure a pipe line corresponding to small ground fluctuations due to its elasticity. In particular, NS type joints and SII type joints are suitable for ground fluctuations such as when an earthquake occurs or during subsidence, and the expansion and contraction mechanisms and bending mechanisms prevent the pipes and joints from generating large stresses. Adapt to fluctuations and prevent slipping out.
[0006]
Japanese Patent Laid-Open No. 10-122466 discloses a technique in which a pipe joint that has only the expansion and contraction function of both pipes and does not have a pull-out prevention function is added to the pipe outer surface. In this technique, a cylindrical member extending between the receiving port and the insertion port is fitted to the outer periphery of the pipe joint, and the protruding pieces at both ends of the cylindrical member are engaged with the receiving port and the insertion port to prevent the both from coming off.
[0007]
Furthermore, in Japanese Patent Laid-Open No. 2000-17987, a foamed resin is interposed between the receiving port and the insertion port, and when this foamed resin is less than a predetermined pushing force (insertion force) of the insertion port, the receiving port and the insertion port. A technique is disclosed in which the insertion position is maintained constant and the foaming resin is crushed (contracted) with respect to the pushing force exceeding the pressure, and the insertion port and the receiving port are allowed to expand and contract.
[0008]
[Problems to be solved by the invention]
In the pipe joint structure having the expansion and contraction function as described above, the water pressure test to confirm the leakage of the joint at the time of pipe construction is performed by refilling the facility pipe and using the earth pressure (passive earth pressure). It is done in a state where the movement of is blocked. If water pressure is applied without performing backfilling, the water pressure causes the insertion port to move in the direction of withdrawal and the pipe meanders, and in the worst case, the insertion port comes out of the receiving port. .
[0009]
However, if water leakage occurs at the joint due to water leakage during the water pressure test, it is in the soil, so it is not easy to find the location of the water leakage, and the backfilled soil is removed to check for water leakage and repair. It is necessary and has a serious impact on the construction process.
[0010]
Further, as shown in FIG. 14, various deformed pipes 20 are employed in the curved part (the same figure (a)) and the branch part (the same (b)) of the pipe line. As shown by an arrow P in the figure, a non-average force is exerted by water pressure, and a force in the withdrawal direction or bending direction is applied to the receiving port and the insertion port forming the pipe joint. At this time, a pipe joint (with a rigid structure) that makes the insertion port immovable with respect to the receiving port is employed so as to resist the above-mentioned non-average force P.
[0011]
For example, as shown in FIG. 12, in the pipe joint in which the insertion port 23 of the deformed tube 20 is inserted into the straight tube receiving port 1a, the liner 7 is provided on the inner surface of the receiving port 1a via the centering rubber 6. The liner 7 prevents the insertion opening 23a from being inserted, and the movement width of the protrusion 24 with respect to the lock ring 2 is reduced to form a rigid structure pipe joint. In the figure, 8 is a bending prevention protrusion. Further, as shown in FIG. 13, in the pipe joint in which the straight pipe insertion port 3a is inserted into the deformed pipe receiving port 21a, similarly, the movement width of the projection 4 with respect to the lock ring 2 is reduced, and the bending prevention ring 9 is provided. A rigid structure pipe joint is formed by pressure contact with the outer surface of the insertion port 3a by a set bolt 9a.
[0012]
However, there is no problem if these rigid structure pipe joints are a small part of the pipe line, but in the congested pipe line, bent pipes and the like continue, so the rigid structure part of the adjacent deformed pipes continues. As a result, the entire pipeline becomes a rigid structure, making the above-described chain structure very difficult. Rigid pipes have low seismic resistance and are easily damaged by earthquakes. If damaged, lifelines are lost and become a problem.
[0013]
The present invention enables a water pressure test to be performed without backfilling even if the pipe joint structure can be expanded and contracted, and enables the construction of a pipe joint having an expansion and contraction function even if it is a deformed pipe. This is the issue.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention focuses on the technology against the predetermined pushing force described in the above-mentioned Japanese Patent Application Laid-Open No. 2000-17987, and in the direction in which the insertion opening comes out between the receiving opening and the insertion opening. A member for preventing movement is provided, and this member is not contracted by a pull-out force less than a predetermined value, and is contracted by a pull-out force greater than a predetermined value.
[0015]
In the present invention, if the predetermined pull-out force is set higher than the force generated by the water pressure in the water pressure test, the insertion port does not move with respect to the receiving port even if the water pressure test is performed without backfilling. The fact that this backfilling is not performed means that the pipeline is exposed, and it is easy to find the leaking part and to repair it.
[0016]
Further, in the joint portion of the deformed pipe, if the predetermined pull-out force is set higher than the non-average force, pipe deformation due to the non-average force can be prevented.
[0017]
In any case, if an exit force greater than the predetermined exit force is applied due to an earthquake or the like, the blocking member is compressed to secure the amount of expansion and contraction in the contraction direction of the joint portion.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
As an embodiment of the present invention, referring to the technique described in the above-mentioned Japanese Patent Application Laid-Open No. 10-122466, in a pipe joint structure in which an insertion port of another tube is inserted into a receiving port of one tube so as to expand and contract, A member is provided on one outer surface of the tube so as to move integrally with the one tube, and the member has a projecting piece that reaches the outer surface of the other tube and faces the outer surface. Protruding pieces are provided on the outer surface of the pipe, and a member is provided between the protruding pieces to prevent the insertion port from moving in the pulling-out direction. Employs a contracting configuration.
[0019]
In this configuration, the protrusions are locked by the maximum contraction due to the breakage of the interposition member between the protrusions, and the engagement of the insertion port is prevented by this locking.
[0020]
In this configuration, it is preferable that the protruding piece on the other pipe outer surface is provided on the insertion opening side. This is because, in general, the outer peripheral edge of the opening of the receiving port is a flange-like protrusion, and a member that moves integrally with one pipe can be moved integrally with the protrusion (see the embodiment of FIG. 1).
[0021]
In addition, these structures provide a so-called earthquake-resistant joint in which a lock ring is provided on the inner surface of the receiving port, and a protrusion is provided on the outer surface of the insertion port, and the both pipes are prevented from coming off by locking the lock ring and the protrusion. Can be adopted.
[0022]
In this configuration, both the above-described contact of the two projecting pieces and the locking of the lock ring and the projections prevent the insertion port from coming off, and either of the contact or locking may occur earlier. The setting is performed by adjusting the distance between the projecting pieces in the normal state and between the lock ring and the projection. Note that if the locking ring and the protrusion are locked when the interposition member between the two protruding pieces is contracted to the maximum, the contact between the protruding pieces and the locking ring and the protrusion are locked to prevent the insertion hole from being removed. It is performed at the same time, and the effect is high compared to the case where it is performed separately.
[0023]
As the member interposed between the two projecting pieces, any member can be used as long as it can perform the above-described action.For example, a honeycomb-shaped porous member such as a spring, metal, or resin can be employed. For example, foamed polystyrene, foamed polypropylene, or the like can be employed, and a metal or resin hollow body, self-crushing concrete, or the like can also be employed.
[0024]
Each of the above embodiments can be employed not only for straight pipes but also for various pipe joint structures of straight pipes and deformed pipes, and deformed pipes. For this reason, even deformed pipes can have a chain structure.
[0025]
【Example】
FIGS. 1 to 3 show an embodiment. In this embodiment, in the NS type pipe joint structure made of ductile cast iron shown in FIG. 10, a ring 30 is covered over the insertion port 3a and the receiving port 1a. As shown in FIG. 1B, the ring 30 is divided into two parts, and is integrated by fastening the flange 31 of the divided part with bolts and nuts 32. Both side edges of the ring 30 have flanges 33 and 34, respectively, and one flange 33 is engaged with a protrusion (flange) 1c at the opening edge of the receiving port 1a. The material of the ring 30 may be any material as long as it matches the action, and for example, metal, engineer plastic, or the like is adopted.
[0026]
On the other hand, a flange 35 is fixed to the outer peripheral surface of the insertion port 3a inside the other flange 34 of the ring 30 by welding, and an annular member 36 made of expanded polystyrene is taped between the flange 35 and the flange 34 of the ring 30. It is interposed by winding or bonding. The annular member 36 is divided in the circumferential direction, such as in two, three, etc., and is set before the ring 30 is attached. Further, the annular member 36 has such a strength that it does not break without contracting the elastic deformation of the pipes 1 and 3 depending on the hydraulic pressure or non-average force of the hydraulic test.
[0027]
Note that the flanges 34 and 35 correspond to the protruding pieces referred to in the claims, and therefore, the flanges 34 and 35 are not continuous on the entire circumference, but are continuous ones of the intermittent protruding pieces or the protruding pieces. What is necessary is just to hold | maintain the member 36.
[0028]
In this embodiment, as shown in FIGS. 2 (a) to 2 (b), as in the prior art, the insertion port 3a is inserted into the receiving port 1a and the annular member 36 is fitted. 30 is attached ((c) of the figure).
[0029]
In the normal state, as shown in FIG. 3A, the tip (projection 4) of the insertion port 3a is substantially between the lock ring 2 and the receiving inner surface step 1b, as in the state shown in FIG. It is located in the middle and allows the movement of the insertion port 3a in the gap to cope with small ground deformations. Moreover, in the water pressure test at the time of piping construction, the annular member 36 resists the water pressure and prevents the pipe from coming out.
[0030]
In this state, if there is a large ground change due to an earthquake or the like, as shown in FIG. 3B, the annular member 36 is crushed (plastically deformed), and both flanges 34 and 35 come into contact with each other. The protrusion 4 is engaged with the lock ring 2 to prevent the lock ring 2 from coming off. On the other hand, for the shrinkage, as shown in FIG. 5C, the insertion port 3a enters into the receiving inner surface step portion 1b and absorbs it. In this way, the seismic function is exhibited.
[0031]
4 to 9 show other embodiments. In the embodiment shown in FIG. 4, set bolts 37 are provided at equal intervals in the circumferential direction instead of the flange 33 of the ring 30, and the set bolt 37 and the receiving port 1a are provided. The protrusions 1c are locked so that the ring 30 moves in the pull-out direction and moves integrally with the receiving port 1a. In the embodiment of FIG. 5, the insertion port 3a side flange 35 is formed by a split ring 38, the number of divisions is arbitrary, and the divided portions are fastened with bolts and nuts. The split ring 38 is fitted in the groove 39 of the insertion port 3a and stopped. The embodiment shown in FIG. 6 employs the present invention in the SII type pipe joint structure of FIG. 11, and can adopt the form of the set bolt 37 of FIG. 4 and the split ring 38 of FIG.
[0032]
In the embodiment shown in FIGS. 7 to 9, the annular member 36 is provided on the receiving port 1a side. At this time, an appropriate flange 40 is provided as a support member for the member 36 on the receiving port 1a side by welding or the like. be able to. The ring 30 may be welded to the insertion port 3a side as shown in FIG.
[0033]
Although each said Example is a case of the pipe joint structure of the straight pipes in the past, also in the pipe joint structure of a deformed pipe shown in FIG. It may have an earthquake resistance function. The present invention can also be applied to a pipe joint that does not have a retaining function by locking the lock ring 2 and the protrusion 4.
[0034]
【The invention's effect】
As described above, the present invention is designed to resist the pulling force up to a predetermined force with the retaining member as described above, so that a water pressure test can be performed without backfilling. Therefore, it is easy to construct a chain channel using a deformed tube.
[Brief description of the drawings]
FIG. 1A is a front view of an upper cut portion of an embodiment, FIG. 1B is a left side view of the ring, FIG. 2 is an assembly operation diagram of the embodiment, and FIG. 4 is a cut end view of the main part of another embodiment. FIG. 5A is a cut end view of the main part of another embodiment, FIG. 4B is a right side view of the flange, and FIG. FIG. 6 is a cut end view of a main part of another embodiment. FIG. 7 is a cut end view of a main part of another embodiment. FIG. 8 is a cut end view of a main part of another embodiment. Cutaway end view of the main part of the example. FIG. 10 Cut end view of the main part of the conventional example. FIG. 11 Cut end view of the main part of the conventional example. FIG. Cutaway end view of main part [Fig. 14] Illustration of piping [Explanation of symbols]
1, 11, 3, 13 Tubes 1a, 11a, 21a Receiving port 2, 12 Lock ring 3a, 13a, 23a Insertion port 4, 14 Retaining projection 5 Seal rubber ring 20 Deformed tube 30 Ring 34, 35 Flange (projection piece )
36 annular member (movement blocking member, interposition member)

Claims (6)

一の管1、11、20の受口1a、11a、21aに他の管3、13、23の挿し口3a、13a、23aを抜き出し・挿し込みされるように伸縮可能に挿入した管継手構造において、
上記両管の一方外面にその一方の管と上記抜き出し時に一方の管と一体に動くように部材30を設け、この部材30は、上記受口端面を跨いで他の管の外面に至ってその外面に向かう突片34、33を有し、この突片34、33と前記受口端面の間の前記他方の管外面に突片35、40を設け、その両突片間に部材36を介在し、この介在部材36は、所定以下の抜け出し力では収縮せず、その所定以上の抜け出し力では収縮することを特徴とする管継手構造。
A pipe joint structure in which the insertion ports 3a, 13a, and 23a of the other tubes 3, 13, and 23 are inserted into the receiving ports 1a, 11a, and 21a of the one tube 1, 11, and 20 so as to be extendable and retractable so that they can be inserted and removed. In
A member 30 is provided on one outer surface of each of the two tubes so that the one tube and the one tube move together with each other at the time of extraction , and this member 30 straddles the receiving end surface and reaches the outer surface of the other tube. It has a protruding piece 34, 33 toward the projecting pieces 35, 40 provided, the member 36 interposed between the both projecting pieces to the other tube outer surface between the projecting pieces 34, 33 and the socket end face The pipe joint structure is characterized in that the interposition member 36 does not contract with a pull-out force less than a predetermined value and contracts with a pull-out force greater than a predetermined value.
上記他方の管外面の突片35を挿し口側に設けたことを特徴とする請求項に記載の管継手構造。2. The pipe joint structure according to claim 1 , wherein the projecting piece 35 on the other pipe outer surface is provided on the insertion port side. 上記両管の一方外面が挿し口13a外面であって、上記突片34、33と受口端面の間の他方の管外面に設けた突片35、40を、受口端部のフランジとしたことを特徴とする請求項1に記載の管継手構造。  One outer surface of the two tubes is the outer surface of the insertion port 13a, and the projecting pieces 35 and 40 provided on the other tube outer surface between the projecting pieces 34 and 33 and the receiving end surface are used as flanges of the receiving end portion. The pipe joint structure according to claim 1. 上記両突片間の介在部材36を発泡樹脂としたことを特徴とする請求項1乃至3の何れかに記載の管継手構造。The pipe joint structure according to any one of claims 1 to 3, wherein the interposition member 36 between the two projecting pieces is made of foamed resin. 上記受口内面にロックリング2、12を設けるとともに、上記挿し口外面に突起4、14を設けて、そのロックリング2、12と突起4、14の係止により上記両管の抜け止めを行ない、かつ、そのロックリング2、12と突起4、14の係止は、上記両突片間の介在部材36の最大収縮時に行われることを特徴とする請求項乃至4のいずれかに記載の管継手構造。The lock rings 2 and 12 are provided on the inner surface of the receiving port, and the projections 4 and 14 are provided on the outer surface of the insertion port. The locking rings 2 and 12 and the projections 4 and 14 are locked to prevent the pipes from coming off. and the lock ring 2, 12 and the projection 4, 14 locking is according to any one of claims 1 to 4, characterized in that is performed when the maximum contraction of the intervening member 36 between the both projecting pieces Pipe joint structure. 上記両管の少なくとも一方が異形管20であることを特徴とする請求項1乃至5のいずれかに記載の管継手構造。  The pipe joint structure according to claim 1, wherein at least one of the two pipes is a deformed pipe 20.
JP2000350742A 2000-11-17 2000-11-17 Pipe joint structure Expired - Fee Related JP3730509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000350742A JP3730509B2 (en) 2000-11-17 2000-11-17 Pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000350742A JP3730509B2 (en) 2000-11-17 2000-11-17 Pipe joint structure

Publications (2)

Publication Number Publication Date
JP2002156079A JP2002156079A (en) 2002-05-31
JP3730509B2 true JP3730509B2 (en) 2006-01-05

Family

ID=18823914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000350742A Expired - Fee Related JP3730509B2 (en) 2000-11-17 2000-11-17 Pipe joint structure

Country Status (1)

Country Link
JP (1) JP3730509B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948884B2 (en) * 2006-04-27 2012-06-06 コスモ工機株式会社 Means for preventing movement of fluid pipe
EP2607766B1 (en) * 2011-12-19 2016-04-27 M & G Group Europe B.V. Clamping device for flue gas pipes
JP2015021606A (en) * 2013-07-23 2015-02-02 株式会社栗本鐵工所 Pipe joint and liner used therefor
US11306849B2 (en) 2016-06-17 2022-04-19 United States Pipe And Foundry Company, Llc Separation-resistant pipe joint with enhanced ease of assembly
JP7054518B2 (en) * 2018-05-09 2022-04-14 株式会社水道技術開発機構 Detachment prevention pipe joint and method to prevent disengagement of pipe joint
JP6937521B2 (en) * 2019-04-16 2021-09-22 株式会社川西水道機器 Union nut pipe joint pipe disconnection prevention device

Also Published As

Publication number Publication date
JP2002156079A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
US9052051B2 (en) Apparatus and method for internal repair of conduits
US4856561A (en) Seal construction for bell and spigot pipe
US7922179B2 (en) Cast-in-place gasket for pipe joints
US6948718B2 (en) Gasket
JP3730509B2 (en) Pipe joint structure
JP6005862B2 (en) One-touch three-stage fastening device for joint pipe for pressure pipe connection and pressure pipe construction method using the same
JP2001330185A (en) Aseismatic joint and aseismatic pipeline
KR100621651B1 (en) Non-excavating repair materials of a pipe
JP3710391B2 (en) Sheath pipe propulsion method and pipe joint structure used for it
JP2010236303A (en) Structure and method for connecting manhole and regeneration pipe
JPH11148582A (en) Plastic pipe fitting
JP3402171B2 (en) Captive fittings
JP3436864B2 (en) Captive fittings
JP6557529B2 (en) Seismic structure at the connection between manhole side wall and pipe
JP2002013669A (en) Pipe line structure and deformed pipe used in the pipe line structure
JP3185858B2 (en) Captive fittings
JP3514563B2 (en) Seismic fluid piping system
JP3275298B2 (en) Captive fittings
JP6340733B2 (en) Anti-seismic joint
JPH0720476Y2 (en) Liquid inflow prevention plug
JPH0257176B2 (en)
JP4741093B2 (en) Pipe line structure with deformed pipe
JP2003278967A (en) Earthquake resistant fitting
JPH09329280A (en) Flexible pipe joint
JPH1122879A (en) Slip-on type antiseismic pipe fitting and its fitting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees