JP3730113B2 - Blood upper-layer liquid continuous separation and recovery device - Google Patents

Blood upper-layer liquid continuous separation and recovery device Download PDF

Info

Publication number
JP3730113B2
JP3730113B2 JP2000367379A JP2000367379A JP3730113B2 JP 3730113 B2 JP3730113 B2 JP 3730113B2 JP 2000367379 A JP2000367379 A JP 2000367379A JP 2000367379 A JP2000367379 A JP 2000367379A JP 3730113 B2 JP3730113 B2 JP 3730113B2
Authority
JP
Japan
Prior art keywords
separation
tube
pipe
blood
layer liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000367379A
Other languages
Japanese (ja)
Other versions
JP2002168857A (en
Inventor
歩 森井
Original Assignee
歩 森井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歩 森井 filed Critical 歩 森井
Priority to JP2000367379A priority Critical patent/JP3730113B2/en
Publication of JP2002168857A publication Critical patent/JP2002168857A/en
Application granted granted Critical
Publication of JP3730113B2 publication Critical patent/JP3730113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の技術分野】
この発明は、多数の血液を連続的に上層液と細胞成分に分離する装置に関する。
【0002】
【従来の技術】
血液の細胞成分と上層液(血液)を自動的に分離する装置は、既に本願発明者によって提案されている(特願平9−359012号)。この装置は、U字形分離管内に血液を注入して遠心分離した後、上層液を吸引して回収するようにしたものである。
【0003】
【発明の課題】
しかしながら、多数の血液を自動的に分離するためには、回転駆動されるケーシングの半径方向に取り付けた分離管に、血液を注入して所定時間遠心分離し、上層液を吸引し、さらに細胞成分を排出し、分離管を洗浄し、乾燥する操作を1サイクルとし、次の血液を注入して同様の1サイクル操作を行なう必要がある。1個の分離管をケーシングに取り付けて上記のサイクルを行なうならば、特に支障はないが、複数の分離管を取り付けた場合、個々に血液を注入するためには、それぞれ別個の注入口がなければ血液が混合してしまい使用することができず、また複数の上層液吸引口も必要となり、実際上装置としては成り立たない。一方1個の分離管だけでは分離回収装置として極めて非効率的である。
【0004】
そこで、この発明の課題は、複数の分離管を用いて効率よく血液を分離できる装置を提供することである。
【0005】
【課題の解決手段】
上記の課題を解決するために、この発明においては、血液の供給管と上層液の回収管と細胞成分及び洗浄液の排出管とを設けた上ケーシングと、複数の遠心分離管と洗浄液溜を交互に設けた下ケーシングがインデックス動作可能に回転駆動され、前記分離管による血液の分離、分離管からの上層液の吸引回収、分離管の洗浄・乾燥時には前記上ケーシングの供給管が分離管の一端、回収管が分離管の一端部に挿入された上層液吸引管、排出管が分離管の他端にそれぞれ接続され、前記供給管の洗浄時には供給管が前記洗浄液溜に接続されるようにしたのである。
【0006】
前記遠心分離管はほぼU字形をなし、そのU字形屈曲部が下ケーシングの半径方向の外側になるように取り付け、前記分離管の一端を血液の供給口とし、この供給口から前記屈曲部に至る管の適所に上層液吸引管を挿入し、かつ上層液の分離検出手段を設け、前記屈曲部から延びる管の他端を排出口とし、前記屈曲部の排出口側に、血液の遠心分離中は管を閉鎖し、遠心分離が終了すると管を開放できる開閉手段を設け、前記検出手段が上層液の分離を検出すると前記吸引管と回収管によって上層液を吸引回収し、前記開閉手段を開いて排出口から前記排出管を介して細胞成分を排出するようにしておくことができる。
【0007】
前記供給管及び回収管の一端を上ケーシングの回転中心軸に一致して上ケーシングの上面に開口させ、他端を上ケーシング下面の半径方向外周側に開口させ、前記排出管の一端を適宜の容器内に挿入し、他端を上ケーシングの中心軸に沿って上方に延ばし上ケーシング下面の半径方向外周側に開口させ、前記供給管、回収管、排出管の他端開口を上ケーシングの下面で半径方向に一列に配置し、前記下ケーシングに設けられた分離管の一端開口と上層液吸引管の一端開口及び分離管の他端開口を前記上ケーシングの他端開口にそれぞれ対応して下ケーシングの上面に開口させておくのがよい。
【0008】
【実施の形態】
以下、この発明の実施形態を添付図面に基づいて説明する。図1に示すように、血液の上層液分離回収装置は、それぞれ別個に回転駆動される中空円板状上ケーシング10と、中空円板状下ケーシング20より成る。前記上ケーシング10は、その中心軸がパイプ11になっており、下ケーシング20を回転可能に貫通して延びその下端部にプーリ12が固定され,変速機Vのプーリ13との間にタイミングベルトが掛け渡され、変速機Vを介してモータによりケーシング10が回転駆動されるようになっている。また下部ケーシング20の中心軸もパイプ21になっており、前記上ケーシング10のパイプ11に外嵌され、その下端部にはプーリ22が固定されている。このプーリ22はモータのプーリ23とタイミングベルトで連結され、ケーシング20がモータによって回転駆動されるようになっている。
【0009】
前記上ケーシング10には、一端開口14aがケーシング10の中心軸に一致しさらに下方に延びる供給管14と、同様に一端開口15aがケーシング10の中心軸に一致しさらに下方に延びる回収管15が設けられ、上記供給管14及び回収管15はケーシング10の外周方向に延びてケーシング10の下面に開口し、他端開口14b、15bが形成されている。また、前記パイプ11内を全長にわたって排出管16が延び、その一端部はさらにケーシング10の外周方向に延びて下面に開口し、細胞成分などの排出用開口16bとなり、他端16aは適当な容器17等に挿入されている。これらのケーシング10の下面に設けられた開口16b、14b、15bは一列に並んでいる。
【0010】
前記下ケーシング20には、図4乃至図6に示すように、等間隔で複数(図では4個)のU字形分離管30が配置され、隣接する分離管30、30の間にはそれぞれ洗浄液溜40が設けられている。そして分離管30及び洗浄液溜40は、前記上ケーシング10の下面に設けられた前記開口15b、14b、16bと対応してそれぞれに接続される吸引口25b、注入口24b、排出口26bと、連結口25c、24c、26cを有し、それぞれ下ケーシング20の上面に開口している。
【0011】
前記分離管30は、図1及び図4に示すように、血液の注入口24bに連通する第1の液溜31と、この第1の液溜31に短い導管31aを介して隣接する第2の液溜32と、U字形導管32aを介して設けられた第3の液溜33と、この液溜33から延びる排出用導管33aより成る。これらの液溜31、32、33は、ほぼ紡錘形をしており、他の導管31a、32a、33aと径を異ならせてあるが、大径部は全体の管長を短くするほか、他の管を挿入したり、弁機構を設けるためであり、小径部は後述する検出精度を高めるため等である。
【0012】
前記第1の液溜31には、上層液の吸引管25が挿入されている。また第3の液溜33内には、ガイド筒34が取り付けられており、このガイド筒34内には、スライド弁35がスライド可能に収納されている。スライド弁35は、図1の右端に位置している場合には、U字形導管32aと第3の液溜33との間を遮断し、ガイド筒34の左端に移動すると、ガイド筒34に設けられた貫通孔34aを介してU字形導管32aと第3の液溜33が連通する。さらに、前記第1の液溜31と第2の液溜32をつなぐ導管31aの部分には、例えば投光器と受光器から成る光センサ等の検出器36が配置されている。
【0013】
上記のような分離管30のみの作用を図7及び図8を参照して説明する。まず、採取した血液に抗凝固剤を混合し、分離管30の注入口24bに投入する。このときすでにケーシング20は回転しているものとする。そのため、適当な重量を持つスライド弁35は、図7(イ)のように遠心力でガイド筒34の入口34bに密着し、血液Aは第1、第2の液溜31、32及びU字形導管32aに充満し保留される。なおスライド弁35の密閉性を良好にするため、その先端をテーパ状にし、ガイド筒34の入口34bにスライド弁35の先端と対応するテーパ面を形成しておくのが好ましい。
【0014】
分離管30が高速回転すると、図7(ロ)のように、次第に軽い液成分Bが血液Aから分離してくる。そして液成分Bの分離が進み、図7(ハ)のようにその量が増加して狭隘な導管31aの部分に達すると、検出器36がこれを検出する。液成分Bは透明性が高いので光センサ等によって容易に検出可能である。検出信号によって第1のポンプを駆動し、図7(ニ)のように液成分B即ち上層液を吸引管25で吸い出す。一定時間吸い出したことをタイマで検出するか、或は細胞成分A’が細い導管31aに逆流してきたことを検出器36で検出すると(細胞成分A’は光を透過し難いので検出器36がオンからオフに状態が変化する)、第1のポンプを停止し続いて第2のポンプの駆動信号を発する。第2のポンプは排出用導管33aから第3の液溜32、33内を吸引する。この吸引力は、スライド弁35をガイド筒34の入口34bに密着させている遠心力よりも大にしてあるので、スライド弁35は、図8(ホ)のようにガイド筒34の入口34bを離れて後端のストッパ34cに当るまで吸引され、貫通孔34aを介してU字形導管32aと第3の液溜33が連通し、細胞成分A’は排出用導管33aを通って排出される。細胞成分A’が排出されたことをタイマ等によって検出すると第2のポンプを停止する。これによってスライド弁35は、再び遠心力でガイド筒34の入口34bの方向に移動し、入口34bを閉鎖する。
【0015】
なお、血液が濃くて細胞成分が多く、液成分Bが少ないために遠心分離によっても検出器36の部分に達せず検出不能の場合がある。その場合には、例えばタイマによって遠心分離開始から充分な時間が経過したことを検出し、先に第2のポンプを作動させてスライド弁34を吸引しわずかに排出用導管33aの方向に移動させると、細胞成分A’と液成分Bは共に液溜33の方向に移動するので、液成分Bが導管31aの部分に達し、検出器36が作動する。そこで第2のポンプを停止し上述と同じ動作で液成分Bを回収すればよい。
【0016】
次に、第3のポンプを駆動して洗浄液Cを図8(ヘ)に示すように分離管30に送り込む。この時例えば第2のポンプで第3の液溜33を吸引してスライド弁35を吸引して、図8(ト)のようにスライド弁35をガイド筒34のストッパ34cの位置まで移動させ、分離管30は全管を連通させ、かつ洗浄液Cが充満させると、洗浄液Cは第2のポンプによって吸引され流動するので分離管30は完全に洗浄される。洗浄後は適当な手段で分離管30を乾燥する。
【0017】
上記のように、分離管30に血液を供給し、上層液を分離回収し、洗浄乾燥するプロセスを複数の分離管30によって連続自動的に行なう方法について説明する。いま、図9に示すように、下部ケーシング20に収納された分離管30及び洗浄液溜40にそれぞれ時計回りに1、2、3、4の番号を付す。まず、上ケーシング10の下面に設けられた開口15b、14b、16b(図2、図3)を、下ケーシング20に設けられた分離管30−1と連通する吸引口25b、注入口24b、排出口26bに接続する。これらの開口は液密に接続可能になっている。図10にその状態を示す。これによって、上ケーシング10の血液供給管14と上層液回収管15はそれぞれ下ケーシング20に設けられた分離管30の第1液溜31と吸引管25に連通し、排出管16は排出用導管33aに接続される。この状態で上ケーシング10と下ケーシング20はモータMにより同期して回転駆動される。そして採取した血液に抗凝固剤を混合したもの(以下採取血液という)を開口14aから供給する。一定量供給後、変速機Vを切り換え、上ケーシング10を急速回転させて、上ケーシング10の開口15b、14b、16bを下ケーシング20の連結口25c、24c、26cに一致させ(インデックスし)、同時に変速機Vを切り換えて下ケーシング20の回転速度に同調させる。これによって上ケーシング10の血液供給管14と回収管15及び排出管16は、下ケーシング20の洗浄液溜40−1に連通する。そこで、再び上下ケーシング10、20を同調回転させ、供給管14に付着した前記採取血液を洗浄するため、洗浄液を供給管14の一端開口14aから供給し、液溜40を経て排出管16から排出し、さらに供給管14を乾燥する。その後、上ケーシング10を急速回転し、上ケーシングの開口15b、14b、16bを分離管30−2の吸引口25b、注入口24b、排出口26bにインデックスし、同時に上下ケーシング10と20を同調回転し、次の採取血液を分離管30−2に供給する。
【0018】
このようにして、最初の1サイクルでは、下ケーシング20に設けられた分離管30−1、洗浄液溜40−1、分離管30−2、液溜40−2、分離管30−3、液溜40−3、分離管30−4、液溜40−4のそれぞれの開口に上ケーシング10の下面に設けられた開口15b、14b、16bが順次インデックスし、採取血液の分離管への供給と供給管14の洗浄及び乾燥を行なう。
【0019】
そして、上ケーシング10の下面開口15b、14b、16bが再び分離管30−1に達したとき、先に供給した採取血液は既に遠心分離されているように回転速度とタイミングを制御しておく。そこで、前述のように、分離管30に設けられた吸引管25から上層液Bを吸引し(図7(ハ)、(ニ))、回収管15から回収する。さらに前述と同様にして(図8)、分離管30−1から細胞成分A’を排出し、分離管30−1を洗浄する。このとき洗浄液は上ケーシング10の供給管14、15から供給されるので、これらの管14、15も洗浄され、同時に乾燥も行なわれる。従って分離管30−1には新たな採取血液を供給することができる。次いで洗浄溜り40−1にインデックスし、供給管14を洗浄し、再び分離管30−2にインデックスし、上層液の回収、洗浄、乾燥を行ないさらに新たな採取血液を供給し、液溜40−2にインデックスして供給管14を洗浄する。即ち2回目以後のサイクルでは、それぞれの分離管30−1、30−2、30−3、30−4で上層液の回収、洗浄、乾燥、新たな採取血液の供給が行なわれる。この操作を繰返して採取血液の複数の分離管による連続分離を行なうことができる。
【0020】
なお、分離管の数は図示に限定されない。また、回収した上層液や細胞成分は適当な分析装置にそのまま供給することができる。
【0021】
【発明の効果】
この発明によれば、以上のように、採取した血液を連続的に供給しながら上層液と細胞成分に自動的に分離できるようにしたので、血液分析の大幅な時間短縮をはかることができ、また省人化にも大きく貢献することができ、さらに、血液形態学測定、生化学分析及び免疫学分析等を同時に行なうことができる。
【図面の簡単な説明】
【図1】この発明の分離回収装置の一例を示す縦断面図
【図2】同上の上ケーシングを示す縦断面図
【図3】上ケーシングの下面図
【図4】下ケーシングを示す縦断面図
【図5】下ケーシングの他の面の縦断面図
【図6】下ケーシングの上面図
【図7】分離管の作用を示す縦断面図
【図8】分離管の作用を示す縦断面図
【図9】下ケーシングの上面図
【図10】分離回収装置の作用を示す縦断面図
【図11】分離回収装置の作用を示す縦断面図
【符号の説明】
A 血液
A’ 細胞成分
B 上層液
C 洗浄液
M モータ
V 変速機
10 上ケーシング
11 パイプ
12、13 プーリ
14 供給管
14a、14b 開口
15 回収管
15a、15b 開口
16 排出管
16a 排出管の他端
16b 開口
17 容器
20 下ケーシング
21 パイプ
22、23 プーリ
24b 注入口
24c 連結口
25 吸引管
25b 吸引口
25c 連結口
26b 排出口
26c 連結口
30 分離管
31 第1の液溜
31a 導管
32 第2の液溜
32a U字形導管
33 第3の液溜
33a 排出用導管
34 ガイド筒
34a 貫通穴
34b 入口
35 マライド弁
36 検出器
40 洗浄液溜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for continuously separating a large number of blood into an upper layer liquid and a cell component.
[0002]
[Prior art]
An apparatus for automatically separating cell components of blood and upper layer fluid (blood) has already been proposed by the present inventor (Japanese Patent Application No. 9-359012). In this apparatus, blood is injected into a U-shaped separation tube and centrifuged, and then the upper layer liquid is sucked and collected.
[0003]
[Problems of the Invention]
However, in order to automatically separate a large number of blood, blood is injected into a separation tube attached in the radial direction of a casing that is driven to rotate, centrifuged for a predetermined period of time, the upper layer liquid is sucked, and further, cell components It is necessary to perform the same one-cycle operation by injecting the next blood into one cycle and discharging the blood, washing the separation tube, and drying. If the above cycle is carried out with one separation tube attached to the casing, there is no particular problem. However, when multiple separation tubes are attached, there must be a separate inlet for injecting blood individually. If blood is mixed, it cannot be used, and a plurality of upper layer liquid suction ports are also required, which is not practical as an apparatus. On the other hand, only one separation tube is extremely inefficient as a separation and recovery device.
[0004]
Accordingly, an object of the present invention is to provide an apparatus that can efficiently separate blood using a plurality of separation tubes.
[0005]
[Means for solving problems]
In order to solve the above problems, in the present invention, an upper casing provided with a blood supply pipe, an upper layer liquid recovery pipe, a cell component and a washing liquid discharge pipe, a plurality of centrifuge tubes and a washing liquid reservoir are alternately arranged. The lower casing provided on the upper casing is rotationally driven so as to be able to perform index operation, and when the blood is separated by the separation tube, the upper layer liquid is sucked and collected from the separation tube, and the separation tube is washed and dried, the supply pipe of the upper casing is one end of the separation tube. The recovery pipe is inserted into one end of the separation pipe, the upper liquid suction pipe, the discharge pipe is connected to the other end of the separation pipe, and the supply pipe is connected to the cleaning liquid reservoir when the supply pipe is cleaned. It is.
[0006]
The centrifuge tube is substantially U-shaped, and is attached so that the U-shaped bent portion is on the outer side in the radial direction of the lower casing. One end of the separation tube is used as a blood supply port, and the supply port is connected to the bent portion. An upper layer liquid suction tube is inserted at an appropriate position of the tube, and an upper layer liquid separation detecting means is provided. The other end of the tube extending from the bent portion is used as a discharge port, and blood is centrifuged on the discharge port side of the bent portion. The tube is closed, and an opening / closing means is provided that can open the tube when the centrifugal separation is completed. When the detection means detects the separation of the upper layer liquid, the upper layer liquid is sucked and collected by the suction tube and the collection tube, and the opening / closing means is opened. The cell component can be discharged from the discharge port through the discharge pipe.
[0007]
One end of the supply pipe and the recovery pipe is opened on the upper surface of the upper casing so as to coincide with the rotation center axis of the upper casing, the other end is opened on the radially outer peripheral side of the lower surface of the upper casing, and one end of the discharge pipe is appropriately connected Insert into the container, extend the other end upward along the central axis of the upper casing and open it to the radially outer peripheral side of the lower surface of the upper casing. The one end opening of the separation tube, the one end opening of the upper layer liquid suction tube and the other end opening of the separation tube provided in the lower casing respectively correspond to the other end opening of the upper casing. It is good to make it open on the upper surface of a casing.
[0008]
Embodiment
Embodiments of the present invention will be described below with reference to the accompanying drawings. As shown in FIG. 1, the upper-layer liquid separation and recovery device for blood includes a hollow disk-shaped upper casing 10 and a hollow disk-shaped lower casing 20 that are individually driven to rotate. The upper casing 10 has a pipe 11 at its central axis, extends rotatably through the lower casing 20, and a pulley 12 is fixed to a lower end portion of the upper casing 10. A timing belt is provided between the upper casing 10 and the pulley 13 of the transmission V. The casing 10 is rotated by the motor M via the transmission V. The central axis of the lower casing 20 is also a pipe 21, which is fitted on the pipe 11 of the upper casing 10, and a pulley 22 is fixed to the lower end thereof. The pulley 22 is connected to the pulley 23 of the motor M by a timing belt, and the casing 20 is rotationally driven by the motor M.
[0009]
The upper casing 10 has a supply pipe 14 whose one end opening 14a coincides with the central axis of the casing 10 and extends further downward, and similarly, a recovery pipe 15 whose one end opening 15a coincides with the central axis of the casing 10 and extends further downward. The supply pipe 14 and the recovery pipe 15 are provided so as to extend in the outer peripheral direction of the casing 10 and open to the lower surface of the casing 10, and other end openings 14 b and 15 b are formed. Further, a discharge pipe 16 extends over the entire length of the pipe 11, one end of which extends further in the outer peripheral direction of the casing 10 and opens on the lower surface to become an opening 16b for discharging cellular components, and the other end 16a is a suitable container. 17 etc. The openings 16b, 14b, 15b provided on the lower surface of the casing 10 are arranged in a line.
[0010]
As shown in FIGS. 4 to 6, a plurality (four in the figure) of U-shaped separation pipes 30 are arranged in the lower casing 20 at equal intervals, and a cleaning liquid is provided between adjacent separation pipes 30, 30. A reservoir 40 is provided. The separation tube 30 and the cleaning liquid reservoir 40 are connected to the suction port 25b, the injection port 24b, and the discharge port 26b connected to the openings 15b, 14b, and 16b provided on the lower surface of the upper casing 10, respectively. Openings 25c, 24c, and 26c are provided on the upper surface of the lower casing 20, respectively.
[0011]
As shown in FIGS. 1 and 4, the separation tube 30 includes a first liquid reservoir 31 communicating with the blood inlet 24b, and a second liquid reservoir adjacent to the first liquid reservoir 31 via a short conduit 31a. Liquid reservoir 32, a third liquid reservoir 33 provided via a U-shaped conduit 32a, and a discharge conduit 33a extending from the liquid reservoir 33. These liquid reservoirs 31, 32, 33 are substantially spindle-shaped and have different diameters from the other conduits 31a, 32a, 33a, but the large diameter portion shortens the overall tube length and other tubes. The small-diameter portion is for increasing detection accuracy to be described later.
[0012]
An upper layer liquid suction tube 25 is inserted into the first liquid reservoir 31. A guide cylinder 34 is attached in the third liquid reservoir 33, and a slide valve 35 is slidably accommodated in the guide cylinder 34. When the slide valve 35 is located at the right end of FIG. 1, the slide valve 35 is provided between the U-shaped conduit 32 a and the third liquid reservoir 33 and moved to the left end of the guide cylinder 34. The U-shaped conduit 32a and the third liquid reservoir 33 communicate with each other through the formed through hole 34a. Further, a detector 36 such as an optical sensor composed of a projector and a light receiver is disposed at a portion of the conduit 31a that connects the first liquid reservoir 31 and the second liquid reservoir 32.
[0013]
The operation of only the separation tube 30 as described above will be described with reference to FIGS. First, an anticoagulant is mixed with the collected blood and put into the inlet 24 b of the separation tube 30. At this time, the casing 20 has already been rotated. Therefore, the slide valve 35 having an appropriate weight is brought into close contact with the inlet 34b of the guide tube 34 by centrifugal force as shown in FIG. 7 (a), and the blood A is in the first and second liquid reservoirs 31, 32 and the U-shape. The conduit 32a is filled and held. In order to improve the sealing performance of the slide valve 35, it is preferable that the tip thereof is tapered and a tapered surface corresponding to the tip of the slide valve 35 is formed at the inlet 34 b of the guide tube 34.
[0014]
When the separation tube 30 rotates at a high speed, the lighter liquid component B is gradually separated from the blood A as shown in FIG. Then, when the separation of the liquid component B proceeds and the amount increases as shown in FIG. 7 (c) and reaches the narrow portion of the conduit 31a, the detector 36 detects this. Since the liquid component B is highly transparent, it can be easily detected by an optical sensor or the like. The first pump is driven by the detection signal, and the liquid component B, that is, the upper layer liquid is sucked out by the suction pipe 25 as shown in FIG. When it is detected by a timer that it has sucked out for a certain period of time, or when it is detected by the detector 36 that the cell component A ′ has flowed back to the thin conduit 31a (the cell component A ′ is difficult to transmit light, the detector 36 The state changes from on to off), the first pump is stopped and then the second pump drive signal is issued. The second pump sucks the inside of the third liquid reservoirs 32 and 33 from the discharge conduit 33a. Since this suction force is greater than the centrifugal force that causes the slide valve 35 to be in close contact with the inlet 34b of the guide cylinder 34, the slide valve 35 is configured so that the inlet 34b of the guide cylinder 34 is moved as shown in FIG. The U-shaped conduit 32a and the third liquid reservoir 33 communicate with each other through the through hole 34a, and the cell component A ′ is discharged through the discharge conduit 33a. When it is detected by a timer or the like that the cell component A ′ has been discharged, the second pump is stopped. As a result, the slide valve 35 again moves in the direction of the inlet 34b of the guide tube 34 by centrifugal force, and closes the inlet 34b.
[0015]
In addition, since blood is dark and has many cell components, and there are few liquid components B, it may be undetectable even if it does not reach the part of the detector 36 even by centrifugation. In that case, for example, a timer detects that a sufficient time has passed since the start of the centrifugation, and the second pump is first operated to suck the slide valve 34 and move it slightly in the direction of the discharge conduit 33a. Then, since both the cell component A ′ and the liquid component B move in the direction of the liquid reservoir 33, the liquid component B reaches the portion of the conduit 31a and the detector 36 operates. Therefore, the second pump may be stopped and the liquid component B may be recovered by the same operation as described above.
[0016]
Next, the third pump is driven to feed the cleaning liquid C into the separation tube 30 as shown in FIG. At this time, for example, the third liquid reservoir 33 is sucked by the second pump and the slide valve 35 is sucked, and the slide valve 35 is moved to the position of the stopper 34c of the guide cylinder 34 as shown in FIG. When the separation pipe 30 communicates with all the pipes and the cleaning liquid C is filled, the cleaning liquid C is sucked and flows by the second pump, so that the separation pipe 30 is completely cleaned. After washing, the separation tube 30 is dried by an appropriate means.
[0017]
As described above, a method for continuously and automatically performing the process of supplying blood to the separation tube 30, separating and recovering the upper layer liquid, and washing and drying by the plurality of separation tubes 30 will be described. Now, as shown in FIG. 9, numbers 1, 2, 3, and 4 are assigned clockwise to the separation tube 30 and the cleaning liquid reservoir 40 housed in the lower casing 20, respectively. First, the openings 15b, 14b, 16b (FIGS. 2 and 3) provided on the lower surface of the upper casing 10 are connected to the suction port 25b, the injection port 24b, the exhaust port communicating with the separation pipe 30-1 provided in the lower casing 20. Connect to outlet 26b. These openings can be connected in a liquid-tight manner. FIG. 10 shows the state. Thus, the blood supply pipe 14 and the upper layer liquid recovery pipe 15 of the upper casing 10 communicate with the first liquid reservoir 31 and the suction pipe 25 of the separation pipe 30 provided in the lower casing 20, respectively, and the discharge pipe 16 is a discharge conduit. 33a. In this state, the upper casing 10 and the lower casing 20 are rotationally driven by the motor M in synchronization. Then, the collected blood mixed with an anticoagulant (hereinafter referred to as collected blood) is supplied from the opening 14a. After a certain amount of supply, the transmission V is switched, the upper casing 10 is rotated rapidly, and the openings 15b, 14b, 16b of the upper casing 10 are aligned (indexed) with the connection ports 25c, 24c, 26c of the lower casing 20, At the same time, the transmission V is switched to synchronize with the rotational speed of the lower casing 20. As a result, the blood supply pipe 14, the recovery pipe 15, and the discharge pipe 16 of the upper casing 10 communicate with the cleaning liquid reservoir 40-1 of the lower casing 20. Therefore, in order to rotate the upper and lower casings 10 and 20 again in synchronism and wash the collected blood adhering to the supply pipe 14, the cleaning liquid is supplied from one end opening 14 a of the supply pipe 14 and discharged from the discharge pipe 16 through the liquid reservoir 40. Further, the supply pipe 14 is dried. Thereafter, the upper casing 10 is rapidly rotated, and the openings 15b, 14b, and 16b of the upper casing are indexed to the suction port 25b, the injection port 24b, and the discharge port 26b of the separation tube 30-2, and the upper and lower casings 10 and 20 are simultaneously rotated. Then, the next collected blood is supplied to the separation tube 30-2.
[0018]
Thus, in the first cycle, the separation pipe 30-1, the cleaning liquid reservoir 40-1, the separation pipe 30-2, the liquid reservoir 40-2, the separation pipe 30-3, the liquid reservoir provided in the lower casing 20 are stored. Openings 15b, 14b, and 16b provided on the lower surface of the upper casing 10 are sequentially indexed to the respective openings of the 40-3, the separation tube 30-4, and the liquid reservoir 40-4, and supply and supply of the collected blood to the separation tube The tube 14 is cleaned and dried.
[0019]
When the lower surface openings 15b, 14b, 16b of the upper casing 10 reach the separation tube 30-1, the rotation speed and timing are controlled so that the previously collected blood is already centrifuged. Therefore, as described above, the upper layer liquid B is sucked from the suction tube 25 provided in the separation tube 30 (FIGS. 7C and 7D) and recovered from the recovery tube 15. Further, in the same manner as described above (FIG. 8), the cell component A ′ is discharged from the separation tube 30-1, and the separation tube 30-1 is washed. At this time, since the cleaning liquid is supplied from the supply pipes 14 and 15 of the upper casing 10, these pipes 14 and 15 are also cleaned and simultaneously dried. Therefore, a new blood sample can be supplied to the separation tube 30-1. Next, indexing into the washing reservoir 40-1, washing the supply tube 14, indexing again into the separation tube 30-2, collecting, washing and drying the upper layer liquid and supplying new collected blood to the reservoir 40- The supply pipe 14 is washed by indexing to 2. That is, in the second and subsequent cycles, the upper layer liquid is collected, washed, dried, and freshly collected blood is supplied in the respective separation tubes 30-1, 30-2, 30-3, and 30-4. By repeating this operation, the collected blood can be continuously separated by a plurality of separation tubes.
[0020]
The number of separation tubes is not limited to the illustration. Further, the recovered upper layer liquid and cell components can be supplied as they are to an appropriate analyzer.
[0021]
【The invention's effect】
According to the present invention, as described above, since the collected blood can be automatically separated into the upper layer liquid and the cell component while continuously supplying the blood, the time required for blood analysis can be greatly reduced. In addition, it can greatly contribute to labor saving, and blood morphology measurement, biochemical analysis, immunological analysis, and the like can be performed simultaneously.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of a separation and recovery apparatus according to the present invention. FIG. 2 is a longitudinal sectional view showing an upper casing. FIG. 3 is a bottom view of the upper casing. 5 is a longitudinal sectional view of the other surface of the lower casing. FIG. 6 is a top sectional view of the lower casing. FIG. 7 is a longitudinal sectional view showing the operation of the separation pipe. FIG. 9 is a top view of the lower casing. FIG. 10 is a longitudinal sectional view showing the operation of the separation and recovery apparatus. FIG. 11 is a longitudinal sectional view showing the operation of the separation and recovery apparatus.
A Blood A 'Cell component B Upper layer liquid C Washing liquid M Motor V Transmission 10 Upper casing 11 Pipe 12, 13 Pulley 14 Supply pipe 14a, 14b Opening 15 Recovery pipe 15a, 15b Opening 16 Exhaust pipe 16a Other end 16b of the exhaust pipe Opening 17 Container 20 Lower casing 21 Pipe 22, 23 Pulley 24b Inlet 24c Connection port 25 Suction tube 25b Suction port 25c Connection port 26b Discharge port 26c Connection port 30 Separation tube 31 First liquid reservoir 31a Conduit 32 Second liquid reservoir 32a U-shaped conduit 33 Third liquid reservoir 33a Discharge conduit 34 Guide tube 34a Through hole 34b Inlet 35 Malide valve 36 Detector 40 Cleaning liquid reservoir

Claims (3)

血液の供給管と上層液の回収管と細胞成分及び洗浄液の排出管とを設けた上ケーシングと、複数の遠心分離管と洗浄液溜を交互に設けた下ケーシングがインデックス動作可能に回転駆動され、前記分離管による血液の分離、分離管からの上層液の回収、分離管の洗浄・乾燥時には前記上ケーシングの供給管が分離管の一端、回収管が分離管の一端部に挿入された吸引管、排出管が分離管の他端にそれぞれ接続され、前記供給管の洗浄時には前記供給管が前記洗浄液溜に接続されるようにした血液の上層液連続分離回収装置。An upper casing provided with a blood supply pipe, an upper layer liquid recovery pipe, a cell component and a washing liquid discharge pipe, and a lower casing provided with a plurality of centrifuge tubes and a washing liquid reservoir alternately are rotationally driven so that an index operation is possible. Separation of blood by the separation tube, recovery of the upper layer liquid from the separation tube, and cleaning / drying of the separation tube, the supply pipe of the upper casing is one end of the separation tube, and the suction tube is inserted into one end of the separation tube The blood upper layer liquid continuous separation and recovery apparatus, wherein the discharge pipe is connected to the other end of the separation pipe, and the supply pipe is connected to the washing liquid reservoir when the supply pipe is washed. 前記遠心分離管はほぼU字形をなし、そのU字形屈曲部が下ケーシングの半径方向の外側になるように取り付け、前記分離管の一端を血液の供給口とし、この供給口から前記屈曲部に至る管の適所に前記上層液吸引管を挿入し、かつ上層液の分離検出手段を設け、前記屈曲部から延びる管の他端を排出口とし、前記屈曲部の排出口側に、血液の遠心分離中は管を閉鎖し、遠心分離が終了すると管を開放できる開閉手段を設け、前記検出手段が上層液の分離を検出すると前記吸引管と回収管によって上層液を吸引回収し、前記開閉手段を開いて排出口から排出管を介して細胞成分を排出するようにした請求項1に記載の血液の上層液連続分離回収装置。The centrifuge tube is substantially U-shaped, and is attached so that the U-shaped bent portion is on the outer side in the radial direction of the lower casing. One end of the separation tube is used as a blood supply port, and the supply port is connected to the bent portion. The upper layer liquid suction tube is inserted at an appropriate position of the tube, and an upper layer liquid separation detection means is provided. The other end of the tube extending from the bent portion is used as a discharge port, and the blood centrifuge is placed on the discharge port side of the bent portion. An opening / closing means is provided that closes the tube during separation and can open the tube when centrifugation is completed. When the detection means detects the separation of the upper layer liquid, the upper layer liquid is sucked and collected by the suction tube and the collection tube, and the opening / closing means is provided. The apparatus for continuously separating and recovering the upper layer liquid of blood according to claim 1, wherein cell components are discharged from the discharge port through the discharge pipe. 前記供給管及び回収管の一端は上ケーシングの回転中心軸に一致して上ケーシングの上面に開口し、他端は上ケーシング下面の半径方向外周側に開口し、前記排出管の一端は適宜の容器内に開口し、他端は上ケーシングの中心軸を上方に延びて上ケーシング下面の半径方向外周側に開口し、前記供給管、回収管、排出管の他端開口が上ケーシングの下面で半径方向に一列に配置され、前記下ケーシングに設けられた分離管の一端開口と上層液吸引管の一端開口及び分離管の他端開口が前記上ケーシングの他端開口にそれぞれ対応して下ケーシングの上面に開口していることを特徴とする請求項1に記載の血液の上層液連続分離装置。One end of the supply pipe and the recovery pipe coincides with the rotation center axis of the upper casing and opens on the upper surface of the upper casing, the other end opens on the radially outer peripheral side of the lower surface of the upper casing, and one end of the discharge pipe is appropriately Opened in the container, the other end extends upward in the center axis of the upper casing and opens to the radially outer side of the lower surface of the upper casing, and the other end opening of the supply pipe, the recovery pipe, and the discharge pipe is the lower surface of the upper casing. One end opening of the separation pipe, one end opening of the upper layer liquid suction pipe, and the other end opening of the separation pipe arranged in a row in the radial direction correspond to the other end opening of the upper casing, respectively. The blood upper layer liquid continuous separation device according to claim 1, wherein the blood upper layer liquid is separated from the upper surface of the blood.
JP2000367379A 2000-12-01 2000-12-01 Blood upper-layer liquid continuous separation and recovery device Expired - Fee Related JP3730113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000367379A JP3730113B2 (en) 2000-12-01 2000-12-01 Blood upper-layer liquid continuous separation and recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000367379A JP3730113B2 (en) 2000-12-01 2000-12-01 Blood upper-layer liquid continuous separation and recovery device

Publications (2)

Publication Number Publication Date
JP2002168857A JP2002168857A (en) 2002-06-14
JP3730113B2 true JP3730113B2 (en) 2005-12-21

Family

ID=18837813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000367379A Expired - Fee Related JP3730113B2 (en) 2000-12-01 2000-12-01 Blood upper-layer liquid continuous separation and recovery device

Country Status (1)

Country Link
JP (1) JP3730113B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101466762B1 (en) * 2014-03-28 2014-11-28 이준석 Central seperator and central seperating method and bowl for central seperator

Also Published As

Publication number Publication date
JP2002168857A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
US5656154A (en) Method and apparatus for separating a fluid into components and for washing a material
JP4095886B2 (en) Chemical analysis device and genetic diagnosis device
EP2012931A1 (en) Centrifugal separation system
JP2009128367A (en) Analytical system and method for analyzing analyte contained in body fluid
KR101986464B1 (en) Chip for Sample Analysis and Device for Sample Analysis containing the same, and Catridge Mounted on chip for Sample Analysis
WO2006007245A1 (en) Probe washing cups and methods
KR102162253B1 (en) Preparation apparatus and operation method thereof
KR20190022423A (en) Chip for Sample Analysis and Device for Sample Analysis containing the same, and Catridge Mounted on chip for Sample Analysis
JPH08248035A (en) Device for cleaning probe used in analyzer
CN105324665A (en) Switching valve for flow-type analysis device
CN109425505A (en) A kind of municipal sewage detection sampler and its method
JP3730113B2 (en) Blood upper-layer liquid continuous separation and recovery device
KR101587975B1 (en) System and Controlling Method Forautomatic Cell Smear
JP2001242181A (en) Auto injector
KR20190021828A (en) Chip for Sample Analysis and Device for Sample Analysis containing the same, and Catridge Mounted on chip for Sample Analysis
JP3218212B2 (en) Automatic upper layer liquid separation and recovery device for blood
CN210347276U (en) Animal blood preparation device is used in laboratory
JP2003232787A (en) Simultaneously and continuously analyzing measurement device for blood
CN114460323A (en) Full-automatic blood sample detection equipment and detection method thereof
JPS5857226B2 (en) Centrifugal rotor for separating, fractionating, and discharging liquid components
CN110308296A (en) A kind of on piece laboratory
CN114236129B (en) In-vitro immunodiagnosis reagent background luminescence processing system
JP2004012290A (en) Diagnostic system for gene
JPH0343587B2 (en)
JPH10332660A (en) Liquid chromatograph and method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees