JP3729115B2 - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP3729115B2
JP3729115B2 JP2001316416A JP2001316416A JP3729115B2 JP 3729115 B2 JP3729115 B2 JP 3729115B2 JP 2001316416 A JP2001316416 A JP 2001316416A JP 2001316416 A JP2001316416 A JP 2001316416A JP 3729115 B2 JP3729115 B2 JP 3729115B2
Authority
JP
Japan
Prior art keywords
resin
battery
electrode
separator
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001316416A
Other languages
Japanese (ja)
Other versions
JP2003123722A (en
Inventor
潤二 中島
純一 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001316416A priority Critical patent/JP3729115B2/en
Publication of JP2003123722A publication Critical patent/JP2003123722A/en
Application granted granted Critical
Publication of JP3729115B2 publication Critical patent/JP3729115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、電極およびセパレータ一体の電池に関するものである。
【0002】
【従来の技術】
これまでリチウムイオン電池をはじめとする電池においては、微多孔性を有するポリエチレンやポリプロピレンからなるセパレータを、正負極間に積層あるいは捲回することにより電極群を構成している。
【0003】
ここでセパレータは、正負極電極間の電子的接触を防止しつつイオンを通過させるスペーサーとして用いられている。また、電池短絡による異常電流、急激な内圧上昇および温度上昇を防ぐという観点から、電池の安全性を担っており、電池が何らかの原因で短絡を引き起こした場合、大電流が流れることにより発生するジュール熱により異常に温度が上昇する危険性があるが、その際にセパレータの微多孔膜の空孔が融点近くにおいて閉塞されるため、電極間のイオンの通過を阻止し、電流を遮断し、温度上昇を抑制するものである。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のセパレータにおいては非水電解液で膨潤または湿潤する性質を持ち、電池を組み立てた後に電解液を注液するとセパレータ自体が膨潤するために正負極間でシワが生じることにより、セパレータの厚さが場所によって異なり、電流分布が不均一となった。
【0005】
またセパレータ挿入時において、電極群を構成する際に電極に密着していないためにシワが生じ、活物質の充填が難しくなり、安定して電池を作製することが容易ではなくなり、歩留まりを落とすことになっていた。
【0006】
さらに、電池を釘刺し試験や外部短絡試験に供した場合、温度上昇によってセパレータが中央部に収縮し、正極と負極間の周辺部にセパレータが存在しない部分が生じて短絡が起こるという課題を有していた。
【0007】
なお、電池においてセパレータと電極が別体ではなく、電極の少なくとも片面に多孔質の樹脂層を一体的に積層してセパレータとすることで電極群の組立性を改善したもの(特開平11−345606号公報)が知られているが、充分な効果が得られるものではなかった。
【0008】
本発明は、上記課題を解決し、製造上安定したものを得、電池温度が上昇しても正負極間の短絡を防ぐことができる電池を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明は、少なくとも一方の電極上に多孔質樹脂を一体的に形成してなるリチウムイオン電池において、前記多孔質樹脂はスポンジ状の連続孔を有する、ブチルイソシアネートを含む吸熱性絶縁樹脂が積層されていることを特徴とし、本発明の構成により電池特性、信頼性、安全性を向上させることができる。
【0010】
また、電極表面の樹脂がスポンジ状構造で電極と付着しているため、電解液の保液力も良く、寿命を延ばすものとなり、さらに複雑な(蛇行した)孔形状であるため、デンドライトによる不良を抑制することができる。
【0011】
【発明の実施の形態】
本発明の請求項1に記載の発明は、少なくとも一方の電極上に多孔質樹脂を一体的に形成してなる電池において、前記多孔質樹脂はスポンジ状の連続孔を有する、ブチルイソシアネートを含む吸熱性絶縁樹脂が積層されていることを特徴とするものである。
【0013】
本発明の請求項に記載の発明は、請求項1に記載の多孔質樹脂が蛇行した連続孔を有することを特徴とするものである。
【0015】
このように本発明の電池は、多孔質で吸熱性を有す絶縁樹脂膜を形成することで、従来のセパレータをなくすことができるものである。
【0016】
すなわち、イオンの移動は樹脂膜中の多孔質の連続孔を通って成され、セパレータのもう一つの役目である安全性については、前記したように電極上に塗膜形成した樹脂膜が温度上昇と共に吸熱反応を起こし、温度上昇を和らげ、発火温度に達し難くし、更に、温度上昇を続けると溶融し、耐熱樹脂として存在し、酸素遮断効果を発揮する。この2段階の安全システムによって、さらなる安全性を有することが可能となる。
【0017】
また、電極面上に固着されていることで、セパレータのシワ問題も無くなり、安定した特性を得ることができ、更に、釘さし試験での安全確認でも問題なく、従来電池の課題を解決できるものが得られた。安全で製造上安定した電池を得ることができるわけである。極板の電極未塗工部にも樹脂層を形成することによって、振動試験で従来の電池の場合電極やセパレータがずれて短絡してしまうことがあったが、それを防止することができた。これによって、更なる安全性を得ることができた。
【0018】
また、セパレータの工程を削減でき、コストダウンができ、歩留まりを向上させる効果を得ることができる。
【0020】
また本発明による電池は、一方の電極の表面に多孔質吸熱性樹脂を一体的に塗膜形成され、その樹脂膜がセパレータの役目を有すものであり、正極、負極および両方に形成してもよい。
【0021】
なお、樹脂膜の厚みは薄すぎると正極及び負極間における短絡の危険性を有し、厚すぎると正極負極の極板距離が長くなり、内部抵抗が高くなるため、最適な膜厚がそれぞれの電池設計において必要となる。
【0022】
なお、多孔性(多孔化度)は、最終製品の用途に応じて適宜調整すれば良く、調整方法としては発泡剤量・種類、樹脂の架橋度・分子量、乾燥温度、乾燥時昇温レート等によってなすことができる。
【0023】
なお、樹脂材料は、用いる電解液と樹脂との組み合わせによっては、樹脂が膨潤する場合が有るので、プロピレンカーボネート等のカーボネート類に対しては、ブチルゴム、エチレンプロピレンジエンゴム、ブチルイソシアネート、スチレン、SBR、PVdF、PTFE等、多孔化が実現でき、吸熱性を有す絶縁樹脂を選択するのが好ましい。
【0024】
なお、本多孔質吸熱性樹脂に用いる溶剤としては、用いる樹脂を溶解できるもので有れば特に制限されず、樹脂の種類などに応じて溶剤の中から適宜選択使用すれば良い。例えば、ブチルゴム、エチレンプロピレンジエンゴム、ブチルイソシアネート、スチレン、SBR等は一般的にトルエン、キシレン、エチルシクロヘキサン等をそれぞれ溶剤として用いることができる。
【0025】
また、樹脂溶液の樹脂固形分濃度は特に制限されるものではなく、形成する膜厚等の設計上適宜設定されるものであり、更に必要に応じて、接着増強剤、樹脂劣化防止剤、樹脂架橋剤、樹脂架橋促進剤、酸化防止剤、消化剤、発泡剤等の各種添加物を配合しても良い。
【0026】
なお、樹脂膜の形成方法は、塗布(刷毛塗り、スプレー、ローラー、スクリーン印刷等)、ドクターブレード法、ディッピング(浸漬)、パイロゾル法(吹き付け)等の方法を適宜採用することができる。塗膜する膜厚は、最終製品の用途等によって適宜設定されるのであり、好ましくは5μm以上100μm以下である。
【0027】
なお、多孔質化は樹脂溶液に予め発泡剤を添加しておいて、樹脂膜乾燥時に又は架橋時の加熱処理によって自己発泡させることで得られる。発泡剤としては、スルホン酸ヒドラジド、ベンゼンスルホニルヒドラジド、4,4’−オキシビスベンゼンスルホニルヒドラジド、パラトルエンスルホニルヒドラジド、ジアゾ系、カルボン酸アミド等が挙げられる。発泡剤の添加量は、最終製品の用途等によって適宜設定されるものである。
【0028】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
【0029】
(実施例1)
図1に示されるように、負極は集電体である銅箔3(厚み10μm)に、黒鉛及び樹脂からなる活物質層2(厚み約30μm)を形成し、前記活物質層2の上に多孔質樹脂膜を塗膜形成したものである。
【0030】
これらの形成方法は次の通りである。人造黒鉛粉末(平均粒径10μm程度)と結着剤としてのポリフッ化ビニリデン(PVdF)とn−メチルピロリドン(NMP)を混合したペースト状の混合物(質量比で人造黒鉛:PVdF=100:9.0)を用い、塗工機により混合物を集電体3の両面に塗工し、その後、溶媒を気化させるために乾燥機で乾燥(140℃、1時間)させて負極電極を得る。
【0031】
次にブチルイソシアネート樹脂95質量%、スチレン樹脂3質量%、ブチルゴム2質量%を混合したものを樹脂材料とし、更に発泡剤であるスルホン酸ヒドラジドを前記樹脂材料に対して1質量%加えてこれらをトルエン溶剤に溶かして粘度450mPa・sで固形分量約5質量%とし、負極電極上両面に塗工機により塗工し、乾燥機で溶媒を気化及び発泡剤を発泡(125℃、30分)させることによって、多孔質の樹脂層を負極電極上に形成させた。
【0032】
なお、この樹脂膜は負極電極内の表面に形成され、孔の形状構造は、電極と反対側である対面の樹脂表面から電極表面に至る連続孔を有し、更に、無数の孔により先の電極と反対面から電極面方向とは垂直方向にも連続孔があり、この樹脂膜が三次元的に縦横に連続孔を有すスポンジ状の構造である。また、連続孔の中には蛇行したものがあり、孔の径は2μm〜15μmであった。
【0033】
ここで、樹脂膜形成負極電極に対して加温していくと、130℃から155℃において樹脂膜が吸熱反応を起こし前記電極の温度上昇が抑制され、更に160℃で瞬時に樹脂膜が溶融して孔が塞がり、更に約280℃まで耐熱性樹脂として酸素遮断(酸素吸入しても酸素濃度計から酸素を通さない)をし続けた。
【0034】
一方、マンガン酸リチウム(LiMn24)と導電剤としてのアセチレンブラック(AB)の混合粉末と、結着剤としてのPVdFとNMP溶液を用い、質量比でLiMn24:AB:PVdF=100:2.5:4.0となるように混合したものをアルミ箔(厚さ20μm)の両面に塗工し、乾燥、圧延を行い、所定の大きさに切断して正極電極を得た。
【0035】
次いで、このようにして得られた多孔質樹脂膜形成負極電極と正極電極とを渦巻き状に巻回し、極板群を構成し(図2参照)、極板群の上部にポリプロピレン製の上部絶縁板を、極板群の下部にポリプロピレン製の下部絶縁板を取り付け、鉄にニッケルメッキした電池ケースに納入した。
【0036】
電解液には、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを30:56:14の体積比で混合した溶媒に1.0mol/lのLiPF6を溶解したものを用い、これを注液した後、開口部を封口板により封口して電池Aとした。
【0037】
(実施例2)
実施例1において、正極をコバルト酸リチウム(LiCoO2)70質量%、AB6質量%、PVdF9質量%、NMP15質量%を混合したペーストを集電体であるアルミ箔(厚さ20μm)上両面に塗布し、150℃、1時間乾燥してNMPを蒸発させ、圧延し、所定の大きさに切断して得られた電池を電池Bとした。
【0038】
(実施例3)
実施例1において、正極を市販のリチウムニッケルコバルトアルミ複合酸化物(Li1.05Ni0.8Co0.15Al0.052)75質量%、AB20質量%、ポリテトラフルオロエチレン(PTFE)5質量%、NMP溶剤を混合したペーストを集電体であるアルミ箔(厚さ20μm)上両面に塗布し、150℃、1時間乾燥してNMPを蒸発させ、圧延し、所定の大きさに切断して得られた電池を電池Cとした。
【0039】
(比較例1)
実施例1の電池において、樹脂膜を形成せず従来の微多孔性を有するポリプロピレンからなるセパレータフィルムを挟んだ構造とした電池を電池Dとした。
【0040】
(比較例2)
実施例2の電池において、樹脂膜を形成せず従来の微多孔性を有するポリプロピレンからなるセパレータフィルムを挟んだ構造とした電池を電池Eとした。
【0041】
(比較例3)
実施例3の電池において、樹脂膜を形成せず従来の微多孔性を有するポリプロピレンからなるセパレータフィルムを挟んだ構造とした電池を電池Fとした。
【0042】
電池A〜Fの保存特性(保持率)、500サイクル特性維持率、振動試験合格割合、過充電での安全性試験合格割合、釘刺し試験合格割合(SBA安全性評価基準ガイドライン参照)を表1に示す。
【0043】
【表1】

Figure 0003729115
【0044】
これらより、本発明の構造により電池特性が大きく改善し、安全性を得ることが明らかである。樹脂膜中の孔が蛇行した構造を有すことで材料析出(デンドライト)によるセパレータの孔を塞ぐような現象が生じないため、保存特性が向上し、セパレータフィルムのようにサイクル試験や振動試験でずれが生じることはこのような塗膜構造をとることで防ぐことができる。
【0045】
安全性試験は樹脂の吸熱性により、過充電試験および釘刺し試験での温度上昇を抑制することができる。
【0046】
更に、一般的な樹脂を容易に塗膜形成して使用できるためコストダウンがはかれる。
【0053】
【発明の効果】
以上のように本発明によれば、電池特性、信頼性、安全性を格段に向上させることができ、さらに構成上の歩留まりも向上し、コストダウンを図ることができる。
【図面の簡単な説明】
【図1】本発明の実施例における電池構造断面図
【図2】本発明の実施例における電池の模式図
【図3】本発明における連続孔の説明図
【符号の説明】
1 吸熱性絶縁樹脂膜
2 負極電極
3 銅箔(集電体)
4 孔
5 正極
6 負極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery integrated with an electrode and a separator.
[0002]
[Prior art]
Until now, in batteries including lithium ion batteries, an electrode group is formed by laminating or winding separators made of polyethylene or polypropylene having microporosity between positive and negative electrodes.
[0003]
Here, the separator is used as a spacer that allows ions to pass through while preventing electronic contact between the positive and negative electrodes. Also, from the viewpoint of preventing abnormal current due to battery short circuit, sudden rise in internal pressure and temperature rise, it is responsible for battery safety, and when the battery causes a short circuit for some reason, it generates Joules that are generated due to large current flowing. There is a danger that the temperature will rise abnormally due to heat, but the pores of the microporous membrane of the separator are closed near the melting point at that time, so that the passage of ions between the electrodes is blocked, the current is cut off, and the temperature It suppresses the rise.
[0004]
[Problems to be solved by the invention]
However, the conventional separator has a property of swelling or wetting with a non-aqueous electrolyte, and when the electrolyte is injected after the battery is assembled, the separator itself swells, so that wrinkles are generated between the positive and negative electrodes. The thickness was different depending on the location, and the current distribution became non-uniform.
[0005]
In addition, when the separator is inserted, the electrode group is not closely attached to the electrode, so that wrinkles occur, making it difficult to fill the active material, making it difficult to stably manufacture the battery, and reducing the yield. It was.
[0006]
In addition, when the battery is subjected to a nail penetration test or an external short circuit test, the separator shrinks to the center due to temperature rise, and there is a problem that a short circuit occurs due to a portion where the separator does not exist in the periphery between the positive electrode and the negative electrode. Was.
[0007]
In the battery, the separator and the electrode are not separated from each other, and a porous resin layer is integrally laminated on at least one surface of the electrode to form a separator (Japanese Patent Laid-Open No. 11-345606). However, a sufficient effect was not obtained.
[0008]
An object of the present invention is to provide a battery that solves the above-described problems, is stable in production, and can prevent a short circuit between positive and negative electrodes even when the battery temperature rises.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a lithium ion battery in which a porous resin is integrally formed on at least one electrode, wherein the porous resin contains butyl isocyanate having continuous spongy pores. The heat-absorbing insulating resin is laminated, and the battery characteristics, reliability, and safety can be improved by the configuration of the present invention.
[0010]
In addition, since the resin on the electrode surface has a sponge-like structure and adheres to the electrode, the electrolyte retains well, prolongs the service life, and has a more complicated (meandering) hole shape. Can be suppressed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention is a battery in which a porous resin is integrally formed on at least one of the electrodes, wherein the porous resin has a sponge-like continuous hole and contains endothermic butyl isocyanate. It is characterized in that a conductive insulating resin is laminated.
[0013]
The invention according to claim 2 of the present invention is characterized in that the porous resin according to claim 1 has meandering continuous pores.
[0015]
Thus, the battery of this invention can eliminate the conventional separator by forming a porous insulating resin film having endothermic properties.
[0016]
In other words, the movement of ions is made through the porous continuous pores in the resin film, and for the safety that is another role of the separator, as described above, the temperature of the resin film formed on the electrode increases. At the same time, it undergoes an endothermic reaction, moderates the temperature rise, makes it difficult to reach the ignition temperature, and further melts as the temperature rises and exists as a heat-resistant resin, exhibiting an oxygen blocking effect. This two-stage safety system makes it possible to have further safety.
[0017]
In addition, since it is fixed on the electrode surface, the problem of the wrinkle of the separator is eliminated, stable characteristics can be obtained, and further, the problem of the conventional battery can be solved without any problem in the safety check in the nail cutting test. Things were obtained. A safe and stable battery can be obtained. By forming a resin layer on the electrode uncoated part of the electrode plate, in the case of a conventional battery in the vibration test, the electrode or separator may be displaced and short-circuited, but this could be prevented. . As a result, further safety could be obtained.
[0018]
Moreover, the process of a separator can be reduced, cost can be reduced, and the effect which improves a yield can be acquired.
[0020]
Further, the battery according to the present invention has a porous heat-absorbing resin integrally formed on the surface of one electrode, and the resin film serves as a separator, and is formed on the positive electrode, the negative electrode, and both. Also good.
[0021]
If the thickness of the resin film is too thin, there is a risk of short circuit between the positive electrode and the negative electrode.If the resin film is too thick, the electrode plate distance of the positive electrode and the negative electrode becomes longer and the internal resistance becomes higher. Required in battery design.
[0022]
The porosity (degree of porosity) may be adjusted as appropriate according to the use of the final product. The adjustment methods include the amount and type of foaming agent, the degree of crosslinking and molecular weight of the resin, the drying temperature, and the temperature rise rate during drying. Can be made.
[0023]
The resin material, depending on the combination of the electrolyte and resin are use, because when the resin swells there, for the carbonates such as propylene carbonate, butyl rubber, ethylene propylene diene rubber, butyl isocyanate, styrene, It is preferable to select an insulating resin that can be made porous and has endothermic properties, such as SBR, PVdF, and PTFE.
[0024]
The solvent used in the present porous endothermic resin is not particularly limited as long as it can dissolve the resin to be used, and may be appropriately selected and used from among the solvents according to the type of the resin. For example, butyl rubber, ethylene propylene diene rubber, butyl isocyanate, styrene, SBR, etc. can generally use toluene, xylene, ethylcyclohexane, etc. as the solvent.
[0025]
Further, the resin solid content concentration of the resin solution is not particularly limited, and is appropriately set in the design such as the film thickness to be formed. Further, if necessary, an adhesion enhancer, a resin deterioration preventing agent, a resin You may mix | blend various additives, such as a crosslinking agent, a resin crosslinking accelerator, antioxidant, a digestive agent, and a foaming agent.
[0026]
As a method for forming the resin film, a method such as coating (brush coating, spraying, roller, screen printing, etc.), doctor blade method, dipping (immersion), pyrosol method (spraying), or the like can be appropriately employed. The film thickness to be applied is appropriately set depending on the use of the final product and is preferably 5 μm or more and 100 μm or less.
[0027]
The porous structure can be obtained by adding a foaming agent to the resin solution in advance and self-foaming by heat treatment during drying of the resin film or crosslinking. Examples of the foaming agent include sulfonic acid hydrazide, benzenesulfonyl hydrazide, 4,4′-oxybisbenzenesulfonyl hydrazide, paratoluenesulfonyl hydrazide, diazo series, and carboxylic acid amide. The addition amount of the foaming agent is appropriately set depending on the use of the final product.
[0028]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0029]
(Example 1)
As shown in FIG. 1, an active material layer 2 (thickness: about 30 μm) made of graphite and resin is formed on a copper foil 3 (thickness: 10 μm) as a current collector, and the negative electrode is formed on the active material layer 2. A porous resin film is formed by coating.
[0030]
These forming methods are as follows. Artificial graphite powder (average particle size of about 10 μm), a mixture in the form of a paste in which polyvinylidene fluoride (PVdF) as a binder and n-methylpyrrolidone (NMP) are mixed (artificial graphite: PVdF = 100: 9. 0), the mixture is applied on both sides of the current collector 3 by a coating machine, and then dried by a dryer (140 ° C., 1 hour) to vaporize the solvent to obtain a negative electrode.
[0031]
Next, a mixture of 95% by mass of butyl isocyanate resin, 3% by mass of styrene resin, and 2% by mass of butyl rubber is used as a resin material, and 1% by mass of sulfonic acid hydrazide as a foaming agent is added to the resin material. Dissolve in toluene solvent to a viscosity of 450 mPa · s and a solid content of about 5% by mass. Apply on both sides of the negative electrode with a coating machine, evaporate the solvent and foam the foaming agent (125 ° C, 30 minutes) with a dryer. As a result, a porous resin layer was formed on the negative electrode.
[0032]
This resin film is formed on the surface inside the negative electrode, and the shape of the hole has continuous holes from the opposite resin surface opposite to the electrode to the electrode surface, and the number of holes leads to the tip of the resin film. There is a continuous hole in the direction perpendicular to the electrode surface direction from the surface opposite to the electrode, and this resin film has a sponge-like structure having continuous holes in three dimensions vertically and horizontally. Some of the continuous holes meandered, and the diameter of the holes was 2 μm to 15 μm.
[0033]
Here, if the resin film-forming negative electrode is heated, the resin film undergoes an endothermic reaction from 130 ° C. to 155 ° C., and the temperature rise of the electrode is suppressed, and the resin film melts instantaneously at 160 ° C. Then, the hole was closed, and further, oxygen was blocked as a heat-resistant resin up to about 280 ° C. (even if oxygen was inhaled, oxygen was not passed from the oximeter).
[0034]
On the other hand, using a mixed powder of lithium manganate (LiMn 2 O 4 ) and acetylene black (AB) as a conductive agent, PVdF and NMP solution as a binder, LiMn 2 O 4 : AB: PVdF = A mixture of 100: 2.5: 4.0 was applied on both sides of an aluminum foil (thickness 20 μm), dried and rolled, and cut into a predetermined size to obtain a positive electrode. .
[0035]
Subsequently, the porous resin film-forming negative electrode and the positive electrode thus obtained are wound in a spiral shape to form an electrode plate group (see FIG. 2), and an upper insulation made of polypropylene is formed on the electrode plate group. The plate was delivered to a battery case in which a lower insulating plate made of polypropylene was attached to the bottom of the electrode plate group and nickel was plated on iron.
[0036]
The electrolyte used was a solution prepared by dissolving 1.0 mol / l LiPF 6 in a solvent in which ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate were mixed at a volume ratio of 30:56:14. The opening was sealed with a sealing plate to obtain a battery A.
[0037]
(Example 2)
In Example 1, a paste in which 70% by mass of lithium cobaltate (LiCoO 2 ), 6% by mass of AB, 9% by mass of PVdF, and 15% by mass of NMP were mixed was applied to both surfaces on an aluminum foil (thickness 20 μm) as a current collector. The battery obtained by drying at 150 ° C. for 1 hour to evaporate NMP, rolling, and cutting into a predetermined size was designated as battery B.
[0038]
(Example 3)
In Example 1, the positive electrode was made of a commercially available lithium nickel cobalt aluminum composite oxide (Li 1.05 Ni 0.8 Co 0.15 Al 0.05 O 2 ) 75% by mass, AB 20% by mass, polytetrafluoroethylene (PTFE) 5% by mass, and NMP solvent. A battery obtained by applying the mixed paste on both sides of an aluminum foil (thickness 20 μm) as a current collector, drying at 150 ° C. for 1 hour to evaporate NMP, rolling, and cutting to a predetermined size Was designated as Battery C.
[0039]
(Comparative Example 1)
In the battery of Example 1, a battery having a structure in which a separator film made of polypropylene having a conventional microporosity without sandwiching a resin film was sandwiched was designated as battery D.
[0040]
(Comparative Example 2)
In the battery of Example 2, a battery E having a structure in which a separator film made of polypropylene having a conventional microporosity without sandwiching a resin film was sandwiched was designated as battery E.
[0041]
(Comparative Example 3)
In the battery of Example 3, a battery having a structure in which a conventional separator film made of polypropylene having microporosity was sandwiched without forming a resin film was designated as battery F.
[0042]
Table 1 shows the storage characteristics (retention ratio) of batteries A to F, the maintenance ratio of 500 cycle characteristics, the vibration test pass rate, the safety test pass rate with overcharge, and the nail penetration test pass rate (see the SBA Safety Evaluation Criteria Guidelines). Shown in
[0043]
[Table 1]
Figure 0003729115
[0044]
From these, it is clear that the battery characteristics are greatly improved and the safety is obtained by the structure of the present invention. Since the resin film has a serpentine structure, the phenomenon of plugging the separator holes due to material deposition (dendrites) does not occur, so the storage characteristics are improved, and cycle tests and vibration tests like separator films are possible. Deviation can be prevented by taking such a coating structure.
[0045]
In the safety test, the temperature rise in the overcharge test and the nail penetration test can be suppressed by the endothermic property of the resin.
[0046]
Furthermore, since a general resin can be used by easily forming a coating film, the cost can be reduced.
[0053]
【The invention's effect】
According to the present invention as described above, batteries characteristics, reliability, safety and can be remarkably improved, also improves further configured on the yield, cost reduction can be achieved.
[Brief description of the drawings]
1 is a cross-sectional view of a battery structure in an embodiment of the present invention. FIG. 2 is a schematic view of a battery in an embodiment of the present invention. FIG. 3 is an explanatory view of continuous holes in the present invention.
1 Endothermic insulating resin film 2 Negative electrode 3 Copper foil (current collector)
4 hole 5 positive electrode 6 negative electrode

Claims (2)

少なくとも一方の電極上に多孔質樹脂を一体的に形成してなるリチウムイオン電池において、前記多孔質樹脂はスポンジ状の連続孔を有する、ブチルイソシアネートを含む吸熱性絶縁樹脂が積層されていることを特徴とするリチウムイオン電池。In a lithium ion battery in which a porous resin is integrally formed on at least one electrode, the porous resin has a sponge-like continuous hole and is laminated with a heat-absorbing insulating resin containing butyl isocyanate. A featured lithium-ion battery. 少なくとも多孔質樹脂が蛇行した連続孔を有することを特徴とする請求項1に記載のリチウムイオン電池。The lithium ion battery according to claim 1, wherein at least the porous resin has continuous pores meandering.
JP2001316416A 2001-10-15 2001-10-15 Lithium ion battery Expired - Fee Related JP3729115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001316416A JP3729115B2 (en) 2001-10-15 2001-10-15 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001316416A JP3729115B2 (en) 2001-10-15 2001-10-15 Lithium ion battery

Publications (2)

Publication Number Publication Date
JP2003123722A JP2003123722A (en) 2003-04-25
JP3729115B2 true JP3729115B2 (en) 2005-12-21

Family

ID=19134438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001316416A Expired - Fee Related JP3729115B2 (en) 2001-10-15 2001-10-15 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP3729115B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3955202B2 (en) * 2001-11-27 2007-08-08 松下電器産業株式会社 Battery separator manufacturing method, battery separator and battery using the same
KR100647966B1 (en) * 2004-02-24 2006-11-23 가부시키가이샤 도모에가와 세이시쇼 Separator for electronic components and process for producing the same
CN114441977B (en) * 2021-12-31 2024-04-05 重庆特斯联智慧科技股份有限公司 Robot battery safety monitoring system and monitoring method

Also Published As

Publication number Publication date
JP2003123722A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
US10622611B2 (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
KR100573358B1 (en) Separator for lithium-ion secondary battery and lithium-ion secondary battery comprising the same
US10193117B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
EP2696394B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
EP1191622B1 (en) Lithium ion secondary cell, separator, cell pack, and charging method
US7687202B2 (en) Non-aqueous electrolyte secondary battery
JP4109522B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery using the same
EP2696393B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
US9692028B2 (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US20060019151A1 (en) Non-aqueous electrolyte battery
US9882189B2 (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
EP2696391A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP2015211004A (en) Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP3631407B2 (en) Nonaqueous electrolyte secondary battery
JP2016004657A (en) Positive electrode, method of manufacturing positive electrode, and nonaqueous electrolyte secondary battery
JP2005011614A (en) Separator for nonaqueous system secondary battery and nonaqueous system secondary battery
JP4099969B2 (en) Battery and manufacturing method thereof
JP3729115B2 (en) Lithium ion battery
JP3931413B2 (en) Method for producing positive electrode for lithium secondary battery
JP2015210846A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte battery
JP3794283B2 (en) Non-aqueous electrolyte battery
JP2004241222A (en) Manufacturing method of nonaqueous electrolytic solution battery
JP2000223159A (en) Nonaqueous electrolyte secondary battery, and its manufacture
JP4016631B2 (en) Method for manufacturing lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees