JP3726656B2 - Capacitor sorting method and capacitor sorting device - Google Patents

Capacitor sorting method and capacitor sorting device Download PDF

Info

Publication number
JP3726656B2
JP3726656B2 JP2000247586A JP2000247586A JP3726656B2 JP 3726656 B2 JP3726656 B2 JP 3726656B2 JP 2000247586 A JP2000247586 A JP 2000247586A JP 2000247586 A JP2000247586 A JP 2000247586A JP 3726656 B2 JP3726656 B2 JP 3726656B2
Authority
JP
Japan
Prior art keywords
capacitor
temperature
sorted
measured
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000247586A
Other languages
Japanese (ja)
Other versions
JP2002064041A (en
Inventor
和宏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000247586A priority Critical patent/JP3726656B2/en
Publication of JP2002064041A publication Critical patent/JP2002064041A/en
Application granted granted Critical
Publication of JP3726656B2 publication Critical patent/JP3726656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンデンサ選別方法及びコンデンサ選別装置に関する。
【0002】
【従来の技術】
近年、パーソナルコンピュータや携帯電話などの携帯機器の普及に伴い、それに使用される電子部品の需要も急速に拡大しており、これに対応するため、電子部品の製造メーカでは、製造工程の自動化ばかりでなく、検査、選別工程の自動化を図り、電子部品の製造から検査および選別までの工程を合理化することが行われている。
【0003】
例えばコンデンサの場合、製造工程から送られてきた製品は、選別工程にて、静電容量、誘電損失および絶縁抵抗等が予め定められた偏差内にあるか否かを、検査して不良品と製品とに自動選別している。
【0004】
従来のこの種のコンデンサ選別装置の一例を図9に示す。該コンデンサ選別装置30は、製造されたコンデンサを整列して供給する整列供給部31、該整列供給部31から供給されたコンデンサの静電容量、誘電損失および絶縁抵抗等を測定する特性測定部32、特性測定部32にて測定された測定値が予めセットされた所定の許容誤差範囲内にあるか否かを判定するメータ33、メータ33での判定結果に基づいて良品と不良品とに選別する特性選別部34とから構成されている。
【0005】
ところで、コンデンサの静電容量、誘電損失および絶縁抵抗等は、その値が一般に温度により変化するので、整列供給部31、特性測定部32、メータ33及び特性選別部34は、内部の温度が規定の温度となるように厳密に制御された専用ブース35内に配置するか、専用の空調設備により規定の温度に厳密に制御された専用の部屋にまとめて設置するようにしていた。
【0006】
【発明が解決しようとする課題】
前記のように、従来のコンデンサ選別装置30では、温度が厳密に制御された専用ブース35や専用の部屋およびその空調設備を必要とするので、製品の検査および選別のための設備コストやその維持管理のための運用コストが高くなり、それに伴って製品の単価も高くなり、合理化が進まないという問題があった。
【0007】
そこで、本発明の目的は、製品の選別コストの削減を図ることができるコンデンサ選別方法及びコンデンサ選別装置を提供することにある。
【0008】
【課題を解決するための手段及び作用】
前記目的を達成するため、本発明に係るコンデンサ選別方法は、
被選別コンデンサの温度や、被選別コンデンサの所定の電気特性を測定するための測定端子の温度や、該測定端子近傍の温度のいずれか一つの温度を測定する工程と、
コンデンサの温度特性データと測定された前記温度とに基づいて、前記被選別コンデンサの所定の電気特性の選別しきい値を設定する工程と、
前記被選別コンデンサの所定の電気特性を測定する工程と、
前記被選別コンデンサの電気特性の測定数値と前記選別しきい値との比較に基づいて、前記被選別コンデンサを選別する工程と、
を有するコンデンサ選別方法であって、
前記被選別コンデンサの所定の電気特性の選別しきい値を設定する工程は、前記コンデンサの温度特性データに基づき、温度特性傾きに応じたステップ幅で複数の温域を設定するステップと、前記温域ごとに前記コンデンサの温度特性データに基づき上限値および下限値を設定して、選別しきい値とするステップとを備えていること、
を特徴とする。
【0009】
ここに、前記温度の測定は、被選別コンデンサの所定の電気特性を測定する前や、被選別コンデンサの所定の電気特性を測定しながら行うことが好ましい。また、被選別コンデンサの所定の電気特性としては、静電容量特性、誘電損失特性、あるいは絶縁抵抗特性などがある。
【0010】
以上の方法により、測定された前記温度と、コンデンサの温度特性データとに基づいて選別しきい値を設定し、この設定された選別しきい値を基準にしてコンデンサを選別する。これにより、温度が厳密に制御された専用ブースや部屋および専用の空調設備が不要になる。
【0011】
さらに、前記温度の測定を常時行い、測定された前記温度に応じてリアルタイムで選別しきい値を設定したり、あるいは、前記温度の測定を所定の間隔毎に行い、測定された前記温度に応じて所定の間隔で選別しきい値を設定してもよい。これにより、選別しきい値の更新のタイミングを、適切に選択することができる。
【0012】
また、本発明に係るコンデンサ選別装置は、
被選別コンデンサの温度、被選別コンデンサの所定の電気特性を測定するための測定端子の温度及び該測定端子近傍の温度のいずれか一つの温度を測定する温度測定器と、
コンデンサの温度特性データを予め記憶するための記憶装置と、
前記コンデンサの温度特性データと前記温度測定器によって測定された前記温度とに基づいて、前記被選別コンデンサの所定の電気特性の選別しきい値を自動設定する演算処理装置と、
前記被選別コンデンサの所定の電気特性を測定する電気特性測定部と、
前記被選別コンデンサの電気特性の測定数値と前記選別しきい値との比較に基づいて、前記被選別コンデンサを選別する特性選別部と、
を有するコンデンサ選別装置であって、
前記被選別コンデンサの所定の電気特性の選別しきい値を設定する演算処理装置は、前記コンデンサの温度特性データに基づき、温度特性傾きに応じたステップ幅で複数の温域を設定し、前記温域ごとに前記コンデンサの温度特性データに基づき上限値および下限値を設定して、選別しきい値とすること、
を特徴とする。
【0013】
以上の構成により、選別しきい値が自動設定され、測定温度の変化による選別しきい値の修正が自動で行われるため、人手による選別しきい値の設定および修正作業が不要になる。また、前記温度測定器に非接触式温度計を用いるようにすれば、温度計の設置位置の自由度が高くなり、温度測定も簡単かつ確実になる
【0014】
【発明の実施の形態】
以下、本発明に係るコンデンサ選別方法及びコンデンサ選別装置の実施の形態について添付の図面を参照して説明する。
【0015】
[第1実施形態、図1〜図5]
本発明に係るコンデンサ選別装置の一つの実施形態の構成を図1に示す。該コンデンサ選別装置10は、製造されたコンデンサを整列して供給する整列供給部11と、該整列供給部11から供給されるコンデンサの静電容量、誘電損失および絶縁抵抗等の測定項目を測定する特性測定部12と、該特性測定部12にて測定された測定結果に基づいてコンデンサを不良品と製品(良品)に選別する特性選別部13と、コンデンサの温度を測定する温度測定器21と、演算処理装置22と、ハードディスク等の記憶装置23と、メータ、プリンタ、CRTディスプレイ等の出力装置24とからなる。
【0016】
温度測定器21としては、たとえば熱電対を使用した接触式の温度センサや、赤外線強度を温度に変換する赤外線放射温度計等の非接触式の温度センサを使用することができ、これら温度センサの中から温度に対する応答性や設置スペース上の制約等を考慮して選択される。
【0017】
温度測定器21の配置例を図2に示す。図2には、熱電対21aを使用した接触式の温度測定器21が示されている。該温度測定器21は、振動により被選別コンデンサwを整列させるパーツフィーダ(整列供給部)11内に配置されている。そして、被選別コンデンサwの搬送の妨げにならないように、熱電対21aの先端部をパーツフィーダ11内の被選別コンデンサwの山の中に配置して、被選別コンデンサwの温度を測定する。温度測定器21で測定された温度データは、図1の演算処理装置22に読み込まれる。
【0018】
ところで、既に述べたように、コンデンサは温度によりその静電容量、誘電損失、絶縁抵抗等が変化する。このため、本実施形態では、前記のように被選別コンデンサwの温度を測定し、その結果に基づいて、記憶装置23に予め記憶させておいたコンデンサの温度特性データを参照して、選別しきい値を設定するようにしている。
【0019】
ここに、記憶装置23に記憶されている温度特性データは次のようにして求められる。すなわち、製品からたとえば50〜100個のサンプルを抽出し、各サンプルについてその静電容量の温度特性、誘電体損失の温度特性、絶縁抵抗の温度特性をそれぞれ測定し、その測定結果を統計処理する。この統計処理により得られた静電容量の温度特性曲線L1の例を図3に示す。
【0020】
次に、この温度特性曲線L1に基づいて、温度毎の狙いセンター値を決定する。例えば、曲線L1より、温度がt1℃のときは静電容量の狙いセンター値をC1とし、温度がt2℃のときは狙いセンター値をC2とする。こうして、常温域(5〜35℃程度)に渡って、各温度に対応する静電容量の狙いセンター値を求め、温度特性データとして記憶装置23に記憶させる。
【0021】
さらに、選別しきい値を算出さるための係数α,βの値も温度特性データとして記憶装置23に記憶させる。この係数α、βは、被選別コンデンサの仕様によって決められるものであり、百分率(%)で表される。そして、静電容量の狙いセンター値がCであるときの、上限および下限の選別しきい値Ca,Cbは、係数α,βを用いて以下の(1)式,(2)式で算出される。
Ca=C×(1+α)…(1)
Cb=C×(1―β)…(2)
【0022】
同様にして、誘電損失や絶縁抵抗についてもそれぞれ、温度毎の狙いセンター値と、選別しきい値を算出するための係数とを、温度特性データとして記憶装置23に記憶させる。
【0023】
さて、演算処理装置22は、温度測定器21から出力される被選別コンデンサwの温度データを予め設定された所定のタイミングで読み込む。演算処理装置22は、静電容量の温度特性データ、誘電体損失の温度特性データ、絶縁抵抗の温度特性データのそれぞれについて、読み込んだ被選別コンデンサwの温度に対応する前記狙いセンター値と選別しきい値を算出するための係数とを記憶装置から呼び出す。そして、呼び出した狙いセンター値と係数を用いて、前記(1)式および(2)式から上限および下限の選別しきい値を算出し、その数値を自動的に設定する。例えば、被選別コンデンサwの測定温度がt1℃のときには、静電容量の狙いセンター値はC1であるから、上限の選別しきい値はCa=C1×(1+α)となり、下限の選別しきい値はCb=C1×(1―β)となる(図3参照)。
【0024】
一方、被選別コンデンサwは、特性測定部12にて静電容量、誘電損失および絶縁抵抗が測定され、それぞれの測定数値は演算処理装置22に読み込まれる。演算処理装置22は、特性測定部12で測定されたそれぞれの数値が、前記算出した上限および下限の選別しきい値の範囲内であるかどうかを判定し、判定結果を特性選別部13に伝送する。特性選別部13は、判定結果に基づいて、測定数値が選別しきい値の範囲内にある被選別コンデンサwを製品(良品)とし、それ以外のものを不良品として排除する。
【0025】
なお、被選別コンデンサwの前記温度の読込みのタイミングやその間隔は、特性測定部12に供給される被選別コンデンサwを取り巻く雰囲気温度の変化状態を考慮して決定される。例えば、温度の測定を常時行い、測定された前記温度に応じてリアルタイムで選別しきい値を設定してもよい。あるいは、任意に設定した選別処理数もしくは処理時間内に、任意に設定した回数もしくはスパンで前記温度を測定してもよい。例えば、コンデンサを10万個選別する間に1万個毎にコンデンサの温度を測定したり、コンデンサ選別装置が1時間稼動する間に10分毎にコンデンサの温度を測定する。また、測定時間や測定処理数を均等割りする必要はなく、例えばコンデンサ選別装置が1時間稼動する間に、1分毎に10回、コンデンサの温度を測定するものであってもよい。
【0026】
次に、得られた測定温度データに対して、平均化や、最大値と最小値を除いた残りのデータの平均化などの統計処理が行われる。統計値は、任意に設定した選別処理数もしくは処理時間内の代表値として扱い、この統計値に基づいて選別しきい値の設定更新を行う。従って、この場合、選別しきい値の設定更新は、任意に設定した選別処理数もしくは処理時間毎に行われることになる。測定温度データの統計処理により、選別しきい値の精度が高くなり、より精度の高い選別を行うことができるようになる。
【0027】
また、温度特性データを求める際には、図4に示すように、温度特性曲線L1に基づいて、温度が例えば5℃変化する毎に、狙いセンター値を決定するようにしてもよい。図4では、温度が15℃以上20℃未満のときは静電容量の狙いセンター値をC1とし、温度が20℃以上25℃未満のときは狙いセンター値をC2としている。これにより、被選別コンデンサwの測定温度が例えば20℃以上25℃未満の範囲内のときには、静電容量の狙いセンター値はC2であるから、上限の選別しきい値はCa=C2×(1+α)となり、下限の選別しきい値はCb=C2×(1−β)となる。このようにして、選別しきい値を段階的にシフトさせるようにしてもよい。
【0028】
あるいは、図5に示すように、高温側と低温側とで温度特性の傾きが異なるときには、温度域によってステップ幅を段階的に変化させるようにしてもよい。つまり、変化が小さい領域ではステップ幅を広くとり、変化が大きい領域ではステップ幅を狭くとる。このように、測定温度データに対して予め設定された幅で選別しきい値を段階的にシフトするようにすれば、選別しきい値の設定や演算が簡単化され、それに必要とされる演算処理装置22等のソフトウエアも簡単化されるとともに、信頼性も向上する。
【0029】
このような構成を有するコンデンサ選別装置10にあっては、静電容量の温度特性、誘電損失の温度特性、絶縁抵抗の温度特性のそれぞれについて、被選別コンデンサwの温度データにそれぞれ対応する狙いセンター値から選別しきい値をそれぞれ設定(更新)し、この設定された選別しきい値に基づいて被選別コンデンサwを選別するようにしている。従って、従来のコンデンサ選別装置30(図9参照)のように、温度が厳密に制御された専用ブース35や部屋および専用の空調設備が不要であり、製品の検査および選別のための設備コストやその維持管理のための運用コストを引き下げることができ、それに伴って製品の単価も大幅に引き下げることが可能になる。
【0030】
また、周囲温度に影響されないで、コンデンサの選別を行うことができ、前後に熱源をもつ工程と連結しても、簡単な熱遮断の対策を施す程度でよく、工程設計の自由度が大きくなる。さらに、以上の構成により、選別しきい値が自動設定され、測定温度の変化による選別しきい値の設定が自動で行われるため、人手による選別しきい値の設定および更新作業が不要になり、選別工程の自動化を図ることができる。
【0031】
[第2実施形態、図6〜図8]
本発明に係るコンデンサ選別装置のいま一つの実施形態の構成を図6に示す。該コンデンサ選別装置10aは、図1〜図5を参照して説明した第1実施形態のコンデンサ選別装置10において、温度測定器21を図7もしくは図8に示すように配置して被選別コンデンサwの温度を間接測定するようにしたものである。すなわち、図7に示すものでは、特性測定部12が固定の測定端子T1とバネ付き測定端子T2とを備えている。そして、温度測定器21の熱電対21aが、測定端子T1を支持している機械部品26に接触して、機械部品26の温度(言い換えると、測定端子T1の近傍の温度、従って、測定端子T1の雰囲気温度であってもよい)を被選別コンデンサwの温度の代わりに測定している。
【0032】
また、図8に示すものでは、特性測定部12が一対の平行配置された測定端子T1,T2を備えている。被選別コンデンサwは、テープ状の搬送用ホルダ27に整列して配置され、そのリード端子がテーピングされている。一方、温度測定器21は、赤外線放射温度計が用いられ、測定端子T1,T2の温度を被選別コンデンサwの温度の代わりに測定している。なお、図6において、図1に対応する部分には対応する符号を付して示し、重複した説明は省略する。
【0033】
このような構成であれば、被選別コンデンサwの電気特性を測定しながら、前記温度を測定することができるので、測定された前記温度に応じてリアルタイムで選別しきい値を設定することができ、より精度の高い選別が可能となる。さらに、被選別コンデンサwに温度測定器21を直接接触させてその温度を測定する必要がなく、温度測定器21の設置の自由度が高くなる。これにより、コンデンサ選別装置10aの設計の自由度も増し、コンデンサ選別装置10aの小型化も容易になる。
【0034】
[他の実施形態]
本発明は前記実施形態に限定するものではなく、その要旨の範囲内で種々に変更することができる。例えば第1実施形態および第2実施形態は、専用のコンピュータシステムを採用することもできるが、市販の安価なパーソナルコンピュータを使用することもできる。
【0035】
【発明の効果】
以上の説明からも明らかなように、本発明によれば、測定された被選別コンデンサの温度と、コンデンサの温度特性データとに基づいて選別しきい値を設定し、この設定された選別しきい値を基準にしてコンデンサを選別するようにしたので、温度が厳密に制御された専用ブースや部屋および専用の空調設備が不要になり、製品の検査および選別のための設備コストやその維持管理のための運用コストを引き下げることができ、それに伴って製品の単価も大幅に引き下げることが可能になる。
【図面の簡単な説明】
【図1】本発明に係るコンデンサ選別装置の第1実施形態を示す概略構成図。
【図2】図1に示した温度測定器の配置例を示す斜視図。
【図3】コンデンサの静電容量の温度特性と選別しきい値の設定を示すグラフ。
【図4】選別しきい値の設定の変形例を示すグラフ。
【図5】いま一つの選別しきい値の設定の変形例を示すグラフ。
【図6】本発明に係るコンデンサ選別装置の第2実施形態を示す概略構成図。
【図7】図6に示した温度測定器の配置例を示す平面図。
【図8】図6に示した温度測定器のいま一つの配置例を示す平面図。
【図9】従来のコンデンサ選別装置を示す概略構成図。
【符号の説明】
10,10a…コンデンサ選別装置
11…整列供給部
12…特性測定部
13…特性選別部
21…温度測定器
22…演算処理装置
23…記憶装置
24…出力装置
w…被選別コンデンサ
T1,T2…測定端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a capacitor sorting method and a capacitor sorting device.
[0002]
[Prior art]
In recent years, with the widespread use of portable devices such as personal computers and mobile phones, the demand for electronic components used in such devices has also increased rapidly. Instead, the inspection and sorting processes are automated to streamline the process from electronic component manufacturing to inspection and sorting.
[0003]
For example, in the case of a capacitor, a product sent from the manufacturing process is inspected as a defective product by checking whether the capacitance, dielectric loss, insulation resistance, etc. are within a predetermined deviation in the sorting process. Automatic sorting into products.
[0004]
An example of this type of conventional capacitor sorting apparatus is shown in FIG. The capacitor selection device 30 includes an alignment supply unit 31 that supplies manufactured capacitors in an aligned manner, and a characteristic measurement unit 32 that measures the capacitance, dielectric loss, insulation resistance, and the like of the capacitors supplied from the alignment supply unit 31. The meter 33 for determining whether or not the measured value measured by the characteristic measuring unit 32 is within a predetermined allowable error range set in advance, and classifying the product into a non-defective product and a defective product based on the determination result of the meter 33 And a characteristic selection unit 34 that performs the above operation.
[0005]
By the way, since the values of the capacitance, dielectric loss, insulation resistance, etc. of the capacitor generally change depending on the temperature, the alignment supply unit 31, the characteristic measurement unit 32, the meter 33, and the characteristic selection unit 34 have internal temperatures defined. It is arranged in a dedicated booth 35 that is strictly controlled so that the temperature becomes the same temperature, or is installed in a dedicated room that is strictly controlled to a specified temperature by a dedicated air conditioning equipment.
[0006]
[Problems to be solved by the invention]
As described above, the conventional capacitor sorting device 30 requires a dedicated booth 35, a dedicated room, and an air conditioning system for which the temperature is strictly controlled. There was a problem that the operational cost for management was increased, and the unit price of the product was increased accordingly, and rationalization did not progress.
[0007]
Therefore, an object of the present invention is to provide a capacitor selection method and a capacitor selection device that can reduce the product selection cost.
[0008]
[Means and Actions for Solving the Problems]
In order to achieve the above object, a capacitor selection method according to the present invention includes:
Measuring the temperature of the capacitor to be sorted, the temperature of the measuring terminal for measuring a predetermined electrical characteristic of the capacitor to be sorted, and the temperature in the vicinity of the measuring terminal; and
Setting a selection threshold value of a predetermined electrical characteristic of the capacitor to be selected based on the temperature characteristic data of the capacitor and the measured temperature;
Measuring predetermined electrical characteristics of the sorted capacitors;
Selecting the capacitor to be sorted based on a comparison between the measured value of the electrical characteristics of the capacitor to be sorted and the threshold value to be sorted;
A capacitor selection method comprising:
The step of setting the selection threshold value of the predetermined electrical characteristic of the capacitor to be selected includes a step of setting a plurality of temperature ranges with a step width corresponding to a temperature characteristic inclination based on the temperature characteristic data of the capacitor, and the temperature A step of setting an upper limit value and a lower limit value based on the temperature characteristic data of the capacitor for each region and setting as a selection threshold value,
It is characterized by.
[0009]
Here, the temperature is preferably measured before measuring the predetermined electrical characteristics of the capacitor to be sorted or while measuring the predetermined electrical characteristics of the capacitor to be sorted. The predetermined electrical characteristics of the capacitor to be sorted include capacitance characteristics, dielectric loss characteristics, or insulation resistance characteristics.
[0010]
By the above method, the selection threshold is set based on the measured temperature and the temperature characteristic data of the capacitor, and the capacitor is selected based on the set selection threshold. This eliminates the need for a dedicated booth or room with a strictly controlled temperature and dedicated air conditioning equipment.
[0011]
Further, the temperature is constantly measured, and a selection threshold is set in real time according to the measured temperature, or the temperature is measured at predetermined intervals, and the temperature is measured. The selection threshold value may be set at a predetermined interval. Thereby, the update timing of the selection threshold can be appropriately selected.
[0012]
In addition, the capacitor selection device according to the present invention,
A temperature measuring device for measuring any one of a temperature of a capacitor to be sorted, a temperature of a measuring terminal for measuring predetermined electrical characteristics of the capacitor to be sorted, and a temperature in the vicinity of the measuring terminal;
A storage device for storing temperature characteristic data of the capacitor in advance;
An arithmetic processing unit that automatically sets a selection threshold value of a predetermined electrical characteristic of the capacitor to be selected based on the temperature characteristic data of the capacitor and the temperature measured by the temperature measuring device;
An electrical characteristic measuring unit for measuring predetermined electrical characteristics of the capacitor to be sorted;
Based on a comparison between the measured numerical value of the electrical characteristics of the capacitor to be selected and the selection threshold, a characteristic selecting unit for selecting the capacitor to be selected;
A capacitor sorting device comprising:
An arithmetic processing unit that sets a selection threshold value of a predetermined electrical characteristic of the capacitor to be selected sets a plurality of temperature ranges with a step width corresponding to a temperature characteristic inclination based on the temperature characteristic data of the capacitor, and the temperature Set an upper limit value and a lower limit value based on the temperature characteristic data of the capacitor for each region, and set as a selection threshold,
It is characterized by.
[0013]
With the above configuration, the selection threshold value is automatically set, and the selection threshold value is automatically corrected by changing the measured temperature, so that manual selection threshold setting and correction operations are not necessary. If a non-contact type thermometer is used for the temperature measuring device, the degree of freedom of the installation position of the thermometer becomes high, and the temperature measurement becomes simple and reliable .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a capacitor sorting method and a capacitor sorting apparatus according to the present invention will be described below with reference to the accompanying drawings.
[0015]
[First Embodiment, FIGS. 1 to 5]
FIG. 1 shows the configuration of one embodiment of a capacitor sorting apparatus according to the present invention. The capacitor sorting device 10 measures the measurement items such as the capacitance, dielectric loss, and insulation resistance of the capacitors supplied from the alignment supply unit 11 and the alignment supply unit 11 that supplies the manufactured capacitors in an aligned manner. A characteristic measuring unit 12, a characteristic selecting unit 13 for selecting a capacitor into a defective product and a product (non-defective product) based on the measurement result measured by the characteristic measuring unit 12, and a temperature measuring device 21 for measuring the temperature of the capacitor. , An arithmetic processing unit 22, a storage device 23 such as a hard disk, and an output device 24 such as a meter, printer, CRT display.
[0016]
As the temperature measuring device 21, for example, a contact-type temperature sensor using a thermocouple or a non-contact-type temperature sensor such as an infrared radiation thermometer that converts infrared intensity into temperature can be used. It is selected in consideration of temperature responsiveness and restrictions on installation space.
[0017]
An arrangement example of the temperature measuring device 21 is shown in FIG. FIG. 2 shows a contact-type temperature measuring device 21 using a thermocouple 21a. The temperature measuring device 21 is disposed in a parts feeder (alignment supply unit) 11 that aligns the capacitors to be sorted w by vibration. Then, the tip of the thermocouple 21a is placed in the crest of the capacitor to be sorted w in the parts feeder 11 so as not to hinder the conveyance of the capacitor to be sorted w, and the temperature of the capacitor to be sorted w is measured. The temperature data measured by the temperature measuring device 21 is read into the arithmetic processing unit 22 shown in FIG.
[0018]
By the way, as already mentioned, the capacitance, dielectric loss, insulation resistance, etc. of a capacitor vary with temperature. For this reason, in this embodiment, the temperature of the capacitor to be sorted w is measured as described above, and based on the result, the temperature characteristic data of the capacitor stored in advance in the storage device 23 is referred to and sorted. The threshold is set.
[0019]
Here, the temperature characteristic data stored in the storage device 23 is obtained as follows. That is, for example, 50 to 100 samples are extracted from the product, the temperature characteristics of the capacitance, the temperature characteristics of the dielectric loss, and the temperature characteristics of the insulation resistance are measured for each sample, and the measurement results are statistically processed. . An example of the capacitance temperature characteristic curve L1 obtained by this statistical processing is shown in FIG.
[0020]
Next, a target center value for each temperature is determined based on the temperature characteristic curve L1. For example, from the curve L1, when the temperature is t1 ° C., the target center value of the capacitance is C1, and when the temperature is t2 ° C., the target center value is C2. Thus, the target center value of the capacitance corresponding to each temperature is obtained over the normal temperature range (about 5 to 35 ° C.), and is stored in the storage device 23 as temperature characteristic data.
[0021]
Further, the values of the coefficients α and β for calculating the selection threshold are also stored in the storage device 23 as temperature characteristic data. These coefficients α and β are determined by the specifications of the capacitors to be sorted and are expressed as percentages (%). Then, when the target center value of the capacitance is C, the upper and lower selection thresholds Ca and Cb are calculated by the following equations (1) and (2) using the coefficients α and β. The
Ca = C × (1 + α) (1)
Cb = C × (1−β) (2)
[0022]
Similarly, for the dielectric loss and insulation resistance, the target center value for each temperature and the coefficient for calculating the selection threshold value are stored in the storage device 23 as temperature characteristic data.
[0023]
Now, the arithmetic processing unit 22 reads the temperature data of the capacitor to be sorted w output from the temperature measuring device 21 at a predetermined timing set in advance. The arithmetic processing unit 22 sorts each of the temperature characteristic data of the capacitance, the temperature characteristic data of the dielectric loss, and the temperature characteristic data of the insulation resistance from the target center value corresponding to the read temperature of the capacitor w to be sorted. A coefficient for calculating the threshold value is called from the storage device. Then, using the called center value and coefficient, the upper and lower selection thresholds are calculated from the equations (1) and (2), and the numerical values are automatically set. For example, when the measured temperature of the capacitor to be sorted w is t1 ° C., the target center value of the capacitance is C1, so the upper sorting threshold is Ca = C1 × (1 + α), and the lower sorting threshold is Is Cb = C1 × (1−β) (see FIG. 3).
[0024]
On the other hand, the capacitance to be sorted w is measured by the characteristic measuring unit 12 for capacitance, dielectric loss, and insulation resistance, and the measured values are read into the arithmetic processing unit 22. The arithmetic processing unit 22 determines whether each numerical value measured by the characteristic measurement unit 12 is within the range of the calculated upper and lower selection thresholds, and transmits the determination result to the characteristic selection unit 13. To do. Based on the determination result, the characteristic selection unit 13 excludes the capacitor to be selected w whose measured numerical value is within the range of the selection threshold as a product (non-defective product) and the other as a defective product.
[0025]
Note that the timing of reading the temperature of the capacitor to be selected w and the interval thereof are determined in consideration of the change in the ambient temperature surrounding the capacitor to be selected w supplied to the characteristic measuring unit 12. For example, the temperature may be constantly measured, and the selection threshold value may be set in real time according to the measured temperature. Alternatively, the temperature may be measured at an arbitrarily set number of times or span within an arbitrarily set number of sorting processes or processing time. For example, the temperature of the capacitor is measured every 10,000 while the 100,000 capacitors are being sorted, or the temperature of the capacitor is measured every 10 minutes while the capacitor sorting device is operating for 1 hour. Further, it is not necessary to equally divide the measurement time and the number of measurement processes. For example, the capacitor temperature may be measured 10 times per minute while the capacitor selection device operates for one hour.
[0026]
Next, statistical processing such as averaging and averaging of the remaining data excluding the maximum value and the minimum value is performed on the obtained measured temperature data. The statistical value is handled as a representative value within an arbitrarily set number of selection processes or processing time, and the selection threshold value is updated based on the statistical value. Accordingly, in this case, the selection threshold value setting update is performed for each arbitrarily selected number of selection processes or processing time. By the statistical processing of the measured temperature data, the accuracy of the selection threshold is increased, and it becomes possible to perform the selection with higher accuracy.
[0027]
Further, when obtaining the temperature characteristic data, as shown in FIG. 4, the target center value may be determined every time the temperature changes by 5 ° C., for example, based on the temperature characteristic curve L1. In FIG. 4, when the temperature is 15 ° C. or higher and lower than 20 ° C., the target center value of the capacitance is C1, and when the temperature is 20 ° C. or higher and lower than 25 ° C., the target center value is C2. Thus, when the measured temperature of the capacitor to be sorted w is within a range of, for example, 20 ° C. or more and less than 25 ° C., the target center value of the capacitance is C2, and therefore the upper selection threshold value is Ca = C2 × (1 + α ), And the lower selection threshold is Cb = C2 × (1-β). In this way, the selection threshold value may be shifted stepwise.
[0028]
Alternatively, as shown in FIG. 5, when the gradient of the temperature characteristic differs between the high temperature side and the low temperature side, the step width may be changed stepwise depending on the temperature range. That is, the step width is increased in the region where the change is small, and the step width is decreased in the region where the change is large. In this way, if the selection threshold value is shifted step by step with respect to the measured temperature data, the setting and calculation of the selection threshold value can be simplified, and the calculation required for it. Software such as the processing device 22 is simplified, and reliability is improved.
[0029]
In the capacitor sorting apparatus 10 having such a configuration, the aim center corresponding to the temperature data of the capacitor to be sorted w with respect to the temperature characteristic of the capacitance, the temperature characteristic of the dielectric loss, and the temperature characteristic of the insulation resistance, respectively. A selection threshold value is set (updated) based on the value, and the selection capacitor w is selected based on the set selection threshold value. Therefore, unlike the conventional capacitor sorting device 30 (see FIG. 9), a dedicated booth 35, a room, and a dedicated air-conditioning system with strictly controlled temperatures are not required. The operation cost for the maintenance management can be reduced, and the unit price of the product can be greatly reduced accordingly.
[0030]
Capacitors can be selected without being affected by the ambient temperature. Even if connected to a process with a heat source before and after, it is only necessary to take measures against heat insulation, increasing the degree of freedom in process design. . Furthermore, with the above configuration, the selection threshold is automatically set, and the selection threshold is automatically set according to the change in the measured temperature. The sorting process can be automated.
[0031]
[Second Embodiment, FIGS. 6 to 8]
The configuration of another embodiment of the capacitor sorting apparatus according to the present invention is shown in FIG. The capacitor sorting device 10a is the same as the capacitor sorting device 10 of the first embodiment described with reference to FIGS. 1 to 5, but the temperature measuring device 21 is arranged as shown in FIG. The temperature is measured indirectly. That is, in what is shown in FIG. 7, the characteristic measurement part 12 is provided with the fixed measurement terminal T1 and the measurement terminal T2 with a spring. Then, the thermocouple 21a of the temperature measuring device 21 comes into contact with the mechanical component 26 supporting the measurement terminal T1, and the temperature of the mechanical component 26 (in other words, the temperature in the vicinity of the measurement terminal T1, and thus the measurement terminal T1). May be used instead of the temperature of the capacitor to be sorted w.
[0032]
In the configuration shown in FIG. 8, the characteristic measuring unit 12 includes a pair of measuring terminals T1 and T2 arranged in parallel. The capacitor to be sorted w is arranged in alignment with the tape-shaped transport holder 27, and its lead terminal is taped. On the other hand, the temperature measuring device 21 uses an infrared radiation thermometer, and measures the temperature of the measurement terminals T1 and T2 instead of the temperature of the sorted capacitor w. In FIG. 6, portions corresponding to those in FIG. 1 are denoted by corresponding reference numerals, and redundant description is omitted.
[0033]
With such a configuration, since the temperature can be measured while measuring the electrical characteristics of the capacitor to be sorted w, the sorting threshold can be set in real time according to the measured temperature. Therefore, sorting with higher accuracy is possible. Furthermore, it is not necessary to measure the temperature by directly contacting the temperature measuring device 21 with the capacitor to be sorted w, and the degree of freedom of installation of the temperature measuring device 21 is increased. Thereby, the freedom degree of design of the capacitor | condenser selection apparatus 10a increases, and size reduction of the capacitor | condenser selection apparatus 10a becomes easy.
[0034]
[Other Embodiments]
The present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the gist. For example, in the first embodiment and the second embodiment, a dedicated computer system can be adopted, but a commercially available inexpensive personal computer can also be used.
[0035]
【The invention's effect】
As is clear from the above description, according to the present invention, the selection threshold is set based on the measured temperature of the capacitor to be selected and the temperature characteristic data of the capacitor, and the set selection threshold is set. Since the capacitors are sorted based on the value, there is no need for a dedicated booth or room with a strictly controlled temperature and a dedicated air conditioning system. Therefore, the operation cost can be reduced, and accordingly, the unit price of the product can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a first embodiment of a capacitor sorting apparatus according to the present invention.
FIG. 2 is a perspective view showing an arrangement example of the temperature measuring device shown in FIG.
FIG. 3 is a graph showing temperature characteristics of capacitance of a capacitor and setting of a selection threshold value.
FIG. 4 is a graph showing a modification example of setting a selection threshold value.
FIG. 5 is a graph showing a modified example of another selection threshold value setting.
FIG. 6 is a schematic configuration diagram showing a second embodiment of a capacitor sorting device according to the present invention.
7 is a plan view showing an arrangement example of the temperature measuring device shown in FIG. 6. FIG.
8 is a plan view showing another arrangement example of the temperature measuring device shown in FIG. 6. FIG.
FIG. 9 is a schematic configuration diagram showing a conventional capacitor selection device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10,10a ... Capacitor selection apparatus 11 ... Alignment supply part 12 ... Characteristic measurement part 13 ... Characteristic selection part 21 ... Temperature measuring device 22 ... Processing unit 23 ... Storage device 24 ... Output device w ... Sorted capacitor T1, T2 ... Measurement Terminal

Claims (9)

被選別コンデンサの温度を測定する工程と、
コンデンサの温度特性データと測定された前記温度とに基づいて、前記被選別コンデンサの所定の電気特性の選別しきい値を設定する工程と、
前記被選別コンデンサの所定の電気特性を測定する工程と、
前記被選別コンデンサの電気特性の測定数値と前記選別しきい値との比較に基づいて、前記被選別コンデンサを選別する工程と、
を有するコンデンサ選別方法であって、
前記被選別コンデンサの所定の電気特性の選別しきい値を設定する工程は、前記コンデンサの温度特性データに基づき、温度特性傾きに応じたステップ幅で複数の温域を設定するステップと、前記温域ごとに前記コンデンサの温度特性データに基づき上限値および下限値を設定して、選別しきい値とするステップとを備えていること、
を特徴とするコンデンサ選別方法。
Measuring the temperature of the capacitor to be sorted;
Setting a selection threshold value of a predetermined electrical characteristic of the capacitor to be selected based on the temperature characteristic data of the capacitor and the measured temperature;
Measuring predetermined electrical characteristics of the sorted capacitors;
Selecting the capacitor to be sorted based on a comparison between the measured value of the electrical characteristics of the capacitor to be sorted and the threshold value to be sorted;
A capacitor selection method comprising:
The step of setting the selection threshold value of the predetermined electrical characteristic of the capacitor to be selected includes a step of setting a plurality of temperature ranges with a step width corresponding to a temperature characteristic inclination based on the temperature characteristic data of the capacitor, and the temperature A step of setting an upper limit value and a lower limit value based on the temperature characteristic data of the capacitor for each region and setting as a selection threshold value,
Capacitor selection method characterized by
被選別コンデンサの所定の電気特性を測定するための測定端子の温度又は該測定端子近傍の温度のいずれか一つの温度を測定する工程と、
コンデンサの温度特性データと測定された前記温度とに基づいて、前記被選別コンデンサの所定の電気特性の選別しきい値を設定する工程と、
前記被選別コンデンサの所定の電気特性を測定する工程と、
前記被選別コンデンサの電気特性の測定数値と前記選別しきい値との比較に基づいて、前記被選別コンデンサを選別する工程と、
を有するコンデンサ選別方法であって、
前記被選別コンデンサの所定の電気特性の選別しきい値を設定する工程は、前記コンデンサの温度特性データに基づき、温度特性傾きに応じたステップ幅で複数の温域を設定するステップと、前記温域ごとに前記コンデンサの温度特性データに基づき上限値および下限値を設定して、選別しきい値とするステップとを備えていること、
を特徴とするコンデンサ選別方法。
A step of measuring any one of a temperature of a measurement terminal for measuring a predetermined electrical characteristic of the capacitor to be sorted or a temperature in the vicinity of the measurement terminal;
Setting a selection threshold value of a predetermined electrical characteristic of the capacitor to be selected based on the temperature characteristic data of the capacitor and the measured temperature;
Measuring predetermined electrical characteristics of the sorted capacitors;
Selecting the capacitor to be sorted based on a comparison between the measured value of the electrical characteristics of the capacitor to be sorted and the threshold value to be sorted;
A capacitor selection method comprising:
The step of setting the selection threshold value of the predetermined electrical characteristic of the capacitor to be selected includes a step of setting a plurality of temperature ranges with a step width corresponding to a temperature characteristic inclination based on the temperature characteristic data of the capacitor, and the temperature A step of setting an upper limit value and a lower limit value based on the temperature characteristic data of the capacitor for each region and setting as a selection threshold value,
Capacitor selection method characterized by
被選別コンデンサの所定の電気特性を測定する前に、前記温度を測定することを特徴とする請求項1又は請求項2記載のコンデンサ選別方法。  3. The capacitor selection method according to claim 1, wherein the temperature is measured before measuring predetermined electrical characteristics of the capacitor to be selected. 被選別コンデンサの所定の電気特性を測定しながら、前記温度を測定することを特徴とする請求項1又は請求項2記載のコンデンサ選別方法。  3. The capacitor selection method according to claim 1, wherein the temperature is measured while measuring predetermined electrical characteristics of the capacitor to be selected. 前記温度の測定を非接触式温度計により行うことを特徴とする請求項1ないし請求項4記載のコンデンサ選別方法。  5. The capacitor selection method according to claim 1, wherein the temperature is measured by a non-contact type thermometer. 前記温度の測定を常時行い、測定された前記温度に応じてリアルタイムで前記選別しきい値を設定することを特徴とする請求項1ないし請求項5記載のコンデンサ選別方法。  6. The capacitor selection method according to claim 1, wherein the temperature is constantly measured, and the selection threshold is set in real time according to the measured temperature. 前記温度の測定を所定の間隔毎に行い、測定された前記温度に応じて所定の間隔で前記選別しきい値を設定することを特徴とする請求項1ないし請求項5記載のコンデンサ選別方法。  6. The capacitor selection method according to claim 1, wherein the temperature is measured at predetermined intervals, and the selection threshold value is set at predetermined intervals according to the measured temperature. 前記被選別コンデンサの所定の電気特性が、静電容量特性、誘電損失特性および絶縁抵抗特性の少なくともいずれか一つであることを特徴とする請求項1ないし請求項記載のコンデンサ選別方法。Said predetermined electrical characteristic of the screening capacitor, the capacitance characteristics, dielectric loss characteristics and claims 1 to 7 capacitor selection method according to characterized in that the least one of the insulation resistance characteristics. 被選別コンデンサの温度、被選別コンデンサの所定の電気特性を測定するための測定端子の温度及び該測定端子近傍の温度のいずれか一つの温度を測定する温度測定器と、
コンデンサの温度特性データを予め記憶するための記憶装置と、
前記コンデンサの温度特性データと前記温度測定器によって測定された前記温度とに基づいて、前記被選別コンデンサの所定の電気特性の選別しきい値を自動設定する演算処理装置と、
前記被選別コンデンサの所定の電気特性を測定する電気特性測定部と、
前記被選別コンデンサの電気特性の測定数値と前記選別しきい値との比較に基づいて、前記被選別コンデンサを選別する特性選別部と、
を有するコンデンサ選別装置であって、
前記被選別コンデンサの所定の電気特性の選別しきい値を設定する演算処理装置は、前記コンデンサの温度特性データに基づき、温度特性傾きに応じたステップ幅で複数の温域を設定し、前記温域ごとに前記コンデンサの温度特性データに基づき上限値および下限値を設定して、選別しきい値とすること、
を特徴とするコンデンサ選別装置。
A temperature measuring device for measuring any one of a temperature of a capacitor to be sorted, a temperature of a measuring terminal for measuring predetermined electrical characteristics of the capacitor to be sorted, and a temperature in the vicinity of the measuring terminal;
A storage device for storing temperature characteristic data of the capacitor in advance;
An arithmetic processing unit that automatically sets a selection threshold value of a predetermined electrical characteristic of the capacitor to be selected based on the temperature characteristic data of the capacitor and the temperature measured by the temperature measuring device;
An electrical characteristic measuring unit for measuring predetermined electrical characteristics of the capacitor to be sorted;
Based on a comparison between the measured numerical value of the electrical characteristics of the capacitor to be selected and the selection threshold, a characteristic selecting unit for selecting the capacitor to be selected;
A capacitor sorting device comprising:
An arithmetic processing unit that sets a selection threshold value of a predetermined electrical characteristic of the capacitor to be selected sets a plurality of temperature ranges with a step width corresponding to a temperature characteristic inclination based on the temperature characteristic data of the capacitor, and the temperature Set an upper limit value and a lower limit value based on the temperature characteristic data of the capacitor for each region, and set as a selection threshold,
Capacitor sorting device characterized by
JP2000247586A 2000-08-17 2000-08-17 Capacitor sorting method and capacitor sorting device Expired - Lifetime JP3726656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000247586A JP3726656B2 (en) 2000-08-17 2000-08-17 Capacitor sorting method and capacitor sorting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000247586A JP3726656B2 (en) 2000-08-17 2000-08-17 Capacitor sorting method and capacitor sorting device

Publications (2)

Publication Number Publication Date
JP2002064041A JP2002064041A (en) 2002-02-28
JP3726656B2 true JP3726656B2 (en) 2005-12-14

Family

ID=18737650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000247586A Expired - Lifetime JP3726656B2 (en) 2000-08-17 2000-08-17 Capacitor sorting method and capacitor sorting device

Country Status (1)

Country Link
JP (1) JP3726656B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063676A1 (en) 2014-10-23 2016-04-28 株式会社村田製作所 Electronic component test device

Also Published As

Publication number Publication date
JP2002064041A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
US6996491B2 (en) Method and system for monitoring and profiling an integrated circuit die temperature
JP5116307B2 (en) Integrated circuit device abnormality detection device, method and program
EP1479025A2 (en) Methods and apparatus for semiconductor testing
KR101951892B1 (en) Temperature controlled test apparatus and method
US20210215545A1 (en) Temperature threshold determining device, temperature abnormality determining system, temperature threshold determining method
JP2004528565A (en) Method and apparatus for contactless testing of unmounted antennas
US7212950B2 (en) Methods and apparatus for equipment matching and characterization
JP3726656B2 (en) Capacitor sorting method and capacitor sorting device
US7498795B2 (en) Electrostatic discharge device testing system and method
CN117113102B (en) Electronic component life prediction method
US7184924B1 (en) Method, apparatus and computer program product for implementing thermal integrity screening
CN116577638A (en) Intelligent circuit board testing system, method, device and medium
KR100950333B1 (en) Supporting apparatus for testing electronic device and sorting method of tested electronic device
CN115639804A (en) Method, apparatus and computer readable storage medium for detecting vehicle thermal management system
CN112114009B (en) Humidity sensor chip with self-diagnosis function and self-diagnosis method of humidity sensor chip
CN112213128B (en) Test method for rapidly improving reliability of instrument and equipment
JP5018474B2 (en) Semiconductor device test apparatus and semiconductor device test method
CN106679849A (en) Testing method and device of MCU temperature sensor
EP2793018A1 (en) Thermal conductivity based gas sensor
CN117472126B (en) Chuck cleaning method and related device
US20230288394A1 (en) Crop condition monitoring system and crop condition monitoring method using the same
US20200326293A1 (en) Integrated, miniaturized, wireless sensing electronic platform for high resolution gas sensing
US20230418268A1 (en) Information processing apparatus, storage medium, and analysis method
CN118112401A (en) Method and system for detecting thermal faults of circuit breaker based on YOLOX algorithm
JPH07227578A (en) Method for selecting electronic parts and device therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3726656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

EXPY Cancellation because of completion of term