JP3725747B2 - Ultrasonic degradation diagnostic equipment for low-voltage cable for railway equipment - Google Patents

Ultrasonic degradation diagnostic equipment for low-voltage cable for railway equipment Download PDF

Info

Publication number
JP3725747B2
JP3725747B2 JP2000001671A JP2000001671A JP3725747B2 JP 3725747 B2 JP3725747 B2 JP 3725747B2 JP 2000001671 A JP2000001671 A JP 2000001671A JP 2000001671 A JP2000001671 A JP 2000001671A JP 3725747 B2 JP3725747 B2 JP 3725747B2
Authority
JP
Japan
Prior art keywords
ultrasonic
coating layer
cable
temperature
deterioration diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000001671A
Other languages
Japanese (ja)
Other versions
JP2001194350A (en
Inventor
毅 池田
勝男 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
East Japan Railway Co
Original Assignee
Mitsubishi Cable Industries Ltd
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, East Japan Railway Co filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2000001671A priority Critical patent/JP3725747B2/en
Publication of JP2001194350A publication Critical patent/JP2001194350A/en
Application granted granted Critical
Publication of JP3725747B2 publication Critical patent/JP3725747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Testing Relating To Insulation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波を用いて電線ケーブルの劣化を診断する技術分野に属するものであり、特に、鉄道設備用の低圧電線ケーブル(以下、「鉄道用低圧ケーブル」または単に「ケーブル」とも呼ぶ)を診断するための診断装置に関するものである。
【0002】
【従来の技術】
鉄道用低圧ケーブルは、線路に沿って多数設けられた設備や機器などに対する電力供給や、これらを制御するための信号電流の供給などのために敷設され、沿線のあらゆる設備に対して重要な役割を果している。沿線の設備としては、例えば、踏み切りなどの信号器・遮断機、ポイントに関係する装置、種々の監視装置や制御機器などが挙げられる。
【0003】
鉄道用低圧ケーブルの被覆層(導線の外周を被覆する有機高分子材料からなる絶縁体層)に、劣化による絶縁不良などの不具合が発生すると、安全で安定した車両の運転や、鉄道設備全体の運営に支障をきたす恐れがある。このため、鉄道用低圧ケーブルに対しては、一般の低圧ケーブルよりも高い頻度で、定期的に絶縁性能試験が実施されている。
【0004】
従来、鉄道用低圧ケーブルに対する絶縁性能試験では、ケーブルの相間(例えば、3相交流の各相に対応するケーブル同士の間)あるいは対地の絶縁抵抗を電気的に測定したり、超低周波電流を重畳通電して漏洩成分を抽出することで絶縁性能を直接測定していた。
【0005】
【発明が解決しようとする課題】
しかし、上記のような従来の診断方法では、測定の際に停電させることが必要である。鉄道設備は、年間を通して24時間稼動状態にあるため、検査員の安全上の問題や、劣化診断に対する時間的制約が多い。このような限られた時間内においてケーブルの劣化診断を正確に行なわねばならないために、検査員は厳しい検査作業を強いられていた。また、測定のためには、電源設備など、大掛かりな設備が必要であるという問題もあった。
【0006】
上記問題点を解決すべく、本発明者等は、先ず、超音波による劣化診断方法を鉄道用低圧ケーブルに適用することによって、活線状態でのケーブルの診断を試みた。しかしそこで、鉄道設備の保守現場における超音波劣化診断の実施の形態をさらに検討したところ、超音波劣化診断であっても、鉄道用途であるがために次のような問題点があることがわかった。
【0007】
▲1▼列車の走行する線路・設備等のすぐ近くあるいは内部で作業するため危険を伴い、長時間作業では作業員の安全確保が難しい。
▲2▼上記▲1▼の理由から保安要員を伴って診断作業するため、長時間になると人件費が高くなる。
▲3▼鉄道線路は長距離にわたっており、特定の区間内でも診断ポイントが非常に多く、1点の診断に時間をかけるような低い効率の作業は好ましくない。
▲4▼沿線の様々な環境のもとで超音波診断を行うには、特定の温度への補正が必要であり、そのため、診断対象となるケーブルの表面温度を測定しなければならない。しかし、電源・電装ボックスなどの制御箱や、トラフ(線路に沿ったコンクリートの溝であって、電線が納まっている部分)内での診断などでは、診断のために制御箱やトラフのふたを開けるが、その際に直射日光や外気などによってケーブル温度が急速に変化する。従って、超音波伝搬特性については迅速に行わないと実態の温度下での伝搬測定ができず、また、ケーブル表面温度についても迅速に測定しないと実態の温度が得られず正確な温度補正ができない。
【0008】
以上のように、鉄道設備の保守現場においては迅速な測定作業が必要であり、特に上記▲4▼の問題に対応するためには、被覆層の表面温度を迅速かつ正確に測定しなければならないことがわかった。
【0009】
本発明の課題は、上記問題を解決し、簡単な設備で、鉄道用低圧ケーブルの劣化を正確にかつ迅速に診断できる、鉄道設備の保守現場での使用に適した超音波劣化診断装置を提供することである。
【0010】
【課題を解決するための手段】
本発明の超音波劣化診断装置は、次の特徴を有するものである。
(1)有機高分子材料からなる被覆層を有する鉄道設備用低圧電線ケーブルを診断対象とする超音波劣化診断装置であって
当該装置は、超音波送信手段と、超音波受信手段と、該送信手段から該受信手段へと超音波が前記被覆層を伝搬するときの伝搬時間を測定する伝搬時間測定手段と、被覆層の表面温度を測定する温度測定手段とを有し、
超音波送信手段、超音波受信手段および温度測定手段は、それぞれ、プローブ部と制御部とに分離しており、
該温度測定手段は、プローブ部として、被覆層の表面と接するための良熱伝導性部材と、該部材に取り付けられた温度センサとを有し、
超音波送信手段、超音波受信手段および温度測定手段の各プローブ部は、合体して1つのプローブ部となっており、
さらに、当該装置は、ケーブル保持具を有し、
該ケーブル保持具は、2つのレバーが支点部でリンク状に結合され、弾性体の復帰力によって上記低圧電線ケーブルを挟み込む構造とされており、
該ケーブルを挟み込む部分には、前記1つに合体したプローブ部と、該ケーブルを受けるための受け部材とが設けられ、該受け部材には溝が設けられ、この溝と前記1つに合体したプローブ部とによって該ケーブルを挟んで保持し得る構造とされ、超音波送信手段、超音波受信手段および温度測定手段の各プローブ部が、1つに合体した状態にて、被覆層の表面に一定荷重で接触し得る構成とされていることを特徴とする、鉄道設備用低圧電線ケーブルのための超音波劣化診断装置。
(2)超音波送信手段は、被覆層の表面上にディレーチップを介して超音波発振子を設置し得る構成とされ、
超音波受信手段は、被覆層の表面上において超音波送信手段から所定の距離だけ離れた位置に、ディレーチップを介して超音波検出素子を設置し得る構成とされ、
上記1つに合体したプローブ部のうち、被覆層に接触する面には、超音波送信手段のディレーチップと、超音波受信手段のディレーチップと、温度測定手段の良熱伝導性部材とが露出している、上記(1)記載の超音波劣化診断装置。
(3)良熱伝導性部材が、銅、銅合金、アルミニウムまたはアルミニウム合金からなるものである上記(1)記載の超音波劣化診断装置。
(4)さらに、演算部を有し、
該演算部は、被覆層の材料に関して超音波伝搬特性と劣化診断特性とが対応した劣化診断用データ群を有し、上記伝搬時間を含む超音波伝搬特性を、温度測定手段で得た温度を用いて温度補正し、前記劣化診断用データ群を用いて被覆層の劣化診断特性を求める演算を行なうものである上記(1)記載の超音波劣化診断装置。
(5)上記溝の表面には、保持すべき低圧電線ケーブルに対する滑り止めが設けられている上記(1)記載の超音波劣化診断装置。
(6)上記滑り止めが、上記溝の表面に粗面化加工が施されてなるものであるか、または、上記溝の表面に弾性材料からなる層が設けられてなるものである上記(5)記載の超音波劣化診断装置。
【0015】
【作用】
超音波によるケーブルの劣化診断方法は、被覆層を構成する有機高分子材料の劣化の程度に応じて、該層の超音波の伝搬特性(伝搬速度、伝搬時間など)が変化することを利用するものであり、伝搬特性を測定し、その値から対応する劣化診断特性を求めるという方法である。
【0016】
被覆層を伝搬する超音波の伝搬特性(伝搬速度、伝搬時間など)は、温度依存性を示し、被覆層の温度に大きく左右される。鉄道用低圧ケーブルのような外気や日光などに曝されているものは、伝搬時間の測定と共に、被覆層の表面温度を正確に測定し、前記伝搬時間の測定結果を、標準の温度での値へと補正しなければならない。しかも上記「発明が解決しようとする課題の説明」で述べたように、温度測定は迅速でなければ正確な測定が困難である。
【0017】
そのため本発明では、ケーブルの被覆層の表面温度を測定し得る構成とすると共に、温度センサの先端に良熱伝導性部材を設け、この部材を介して温度を測定する構成とした。この良熱伝導性部材が被覆層の表面温度に素早く到達するために、温度センサの温度検出部は良熱伝導性部材を介して被覆層表面の温度を早く正確に検知することができる。また、この良熱伝導性部材が適度な熱容量を持つために、日射、風等の外界からの温度擾乱が抑制される。即ち、測定対象に対する高い温度応答性と、外界からの温度擾乱に対する測定の安定性とを両立した温度測定が可能となっている。
【0018】
またさらに、保守現場における検査員の測定作業動作を観察したところ、診断装置をケーブルの被覆層に接触させる際に接触が不安定になりがちであるため、測定値に大きなばらつきが生じ、診断結果の精度が低くなっていることがわかった。本発明では、より好ましい態様として、滑り止めが設けられた溝を有する保持具を用い、超音波送信手段、超音波受信手段、温度測定手段などと、保持具の溝とによって、ケーブルを確実に把持する構成とした。これによって、測定作業が容易になり、また診断装置(特に温度測定手段)とケーブルの被覆層との接触状態は安定し、測定値のばらつきが小さくなった。
【0019】
【発明の実施の形態】
本発明による超音波劣化診断装置は、図1に一例を示すように、超音波送信手段(以下「送信手段」)1と、超音波受信手段(以下「受信手段」)2と、伝搬時間測定手段(図1では制御部5に含まれている)と、温度測定手段3とを少なくとも有する。送信手段1、受信手段2、温度測定手段3は、ケーブルCの被覆層C1の表面に接している。
【0020】
送信手段1は、受信手段2に向かって超音波Wを被覆層C1へ送り出し、受信手段2は、送信手段1から所定距離だけ離れた位置でそれを受ける。伝搬時間測定手段は、超音波Wが送信手段から受信手段まで伝搬するのに要する時間(送信から受信までの時間)を測定する。伝搬時間が得られると、そのままの形でまたは他の伝搬特性の形に変換し、温度補正して、その値から被覆層の劣化診断特性の値を求める。この温度補正を行なうために、被覆層の表面温度を測定する温度測定手段3が設けられている。温度測定手段3は、被覆層に直接接触させるための良熱伝導性部材31と、それに取り付けられた温度センサ32とを有する。このように構成した診断装置によって、上記作用の説明で述べたように、伝搬特性の温度補正が正確にできるようになり、正しい劣化診断が可能となる。
【0021】
診断対象となる鉄道用低圧ケーブルは、電気設備技術基準に規定された直流750V以下、交流600V以下低電圧用の絶縁電線である。該ケーブルは、図1に示すように、中心の導線C2の外側に、有機高分子材料からなる絶縁体層を被覆層として有する。該有機高分子材料としては、ポリエチレンやポリプロピレンなどの熱可塑性樹脂、天然や合成によるゴム、熱可塑性エラストマーなどが用いられている。
【0022】
送信手段、受信手段は、被覆層を伝搬経路として超音波の送信・受信を行なう装置である。送信手段、受信手段は、被覆層に装着される先端のプローブ部だけでなく、各々、超音波を送信、受信するためのシステム全体を指し、超音波振動子(送信)や超音波検出素子(受信)などの変換素子の他に、電気エネルギーの供給や増幅を行なう駆動回路系、該素子と被覆層との間に介在するディレーチップなどが含まれる。
【0023】
図1の例では、診断装置全体の構成が、被覆層に装着されるプローブ部4と、それに有線(無線でもよい)で接続された制御部5とに分離した構成となっており、送信手段1、受信手段2、温度測定手段3も、それぞれプローブ部と、制御部とに分離している。例えば、送信手段1では、ディレーチップ11と変換素子12はプローブ部4に含まれ、その駆動回路系は制御部5に含まれている。しかし、このような分離型の態様だけでなく、駆動回路系とプローブ部とが一体となった態様でもよく、各手段内での一体型・分離型は、各手段毎に自由に選択してよい。また、図1の例では、好ましい操作性の点から、送信手段1、受信手段2、温度測定手段3の各プローブ部が合体し1つのプローブ部4となっているが、温度測定手段3だけを独立させる態様など、各手段同士の一体化・分離化も、自由に選択してよい。
【0024】
超音波の送信、受信の方法は、被覆層表面に垂直に内部方向へ超音波を発射し深層で反射してきた波を同じ位置で受信する方法や、被覆層表面から斜め下方に超音波を発射し深層で反射させて離れた位置で受信する方法など、種々の公知の手法を用いてよい。なかでも、ディレーチップを用いて超音波を被覆層の表面に沿って受信手段まで直接伝搬させる方法は、外部から明確に測定し得る〔時間、直線距離〕という量だけで伝搬速度が算出できる方法である。以下に、送信手段、受信手段、伝搬時間測定手段などについては、ディレーチップを用いて超音波を被覆層の表面に沿って伝搬させる態様を代表として本発明を説明する。
【0025】
図1に示すように、送信手段1では、超音波発振子12が、ディレーチップ11を介して被覆層C1の表面上に設置されている。受信手段2では、超音波検出素子22が、ディレーチップ21を介して被覆層C1の表面上に、送信手段1から所定の距離だけ離れた位置に設置されている。この構成によって、送信手段1から発信された超音波Wは、ディレーチップ11を介して被覆層内に入る。ディレーチップ11は被覆層の材料に対して超音波伝搬速度の点で選択された材料からなり傾斜角度が選択されており、超音波はディレーチップと被覆層との界面で伝搬方向を変え、被覆層の表面に沿って(即ち被覆層の表面および表面付近を通って)受信手段2の位置まで直線的に伝搬し、ディレーチップ21を介して検出素子22で受信される。そのときの伝搬時間は、伝搬時間測定手段によって測定される。
【0026】
ディレーチップは、変換素子と被覆層との間に介在させるものであって、超音波の伝搬方向を屈折させ、被覆層の表面に沿うように送り、また、表面に沿って伝搬して来た超音波を受け入れることができるように構成されたものである。ディレーチップの基本的な構造は従来技術を参照してよい。
【0027】
超音波が伝搬する被覆層の表面および表面付近は、被覆層の表面から3mm程度の深さまでの領域が主となる。従って、被覆層が充分に厚い場合は問題ないが、例えば厚みが1.5mmしかない場合、超音波の一部は、被覆層の下層(ケーブルでは導体など、被覆層下に隣接する次の層)との界面で反射して、あるいは該界面と被覆層表面との間で反射を繰り返して、伝搬することになり、正確な伝搬特性が測定できない場合もある。そこで、より正確に測定するためには、例えば、被覆層の表面および表面から1mm程度までの深さで超音波を伝搬させるなど、下層に達しない深さで、送信手段から受信手段へ直線的に伝搬させるのが好ましい。
【0028】
本発明で使用する超音波の周波数には制限はない。なお、ポリエチレン、ポリ塩化ビニル、エチレン・プロピレン共重合ゴム(EPM)など、ケーブルの被覆層に多用される有機高分子材料では、概して超音波の減衰が大きいので、減衰が比較的少ない0.1〜5MHz程度、特に0.5〜2MHz程度の周波数が好ましい。
【0029】
伝搬特性は、被覆層の材料中に超音波を伝搬させたときの伝搬状態を示す量であってかつ材料の劣化と相関関係を有するものであればよい。例えば、特に有用な伝搬時間や伝搬速度の他にも、超音波の受信感度、超音波波形の周波数変化、超音波波形の形状変化、超音波の減衰特性などが挙げられる。
【0030】
劣化診断特性は、被覆層に用いられる有機高分子材料(以下「被覆層の材料」ともいう)の劣化度を示し得る特性であって伝搬特性と相関関係を有するものであればよい。例えば、材料の表面反発硬度、表面針入硬度、引張強さ、破断伸び率、弾性率、ヤング率、モジュラス、誘電率、誘電正接、体積抵抗率、交流破壊電圧強度、インパルス破壊電圧強度、捩じりトルクや曲げ剛性など、機械的特性や電気的特性が挙げられる。特に、破断伸び率は、ケーブルの被覆層の劣化度を顕著に表し、伝搬特性とも強い相関関係を有するので、劣化診断特性として好ましく用いられる。
【0031】
一般に、ケーブルの被覆層の破断伸び率が50%に近づくと、振動や衝撃によりクラックが発生する傾向にあり、その結果外部からの水の侵入などにより絶縁破壊を起こす可能性がある。従って、ケーブルの取替は破断伸び率が50%程度となるのを目安にして行えば良いと考えられる。但し、劣化の指標の基準は適宜使用者で決定しても良い。
【0032】
伝搬時間測定手段は、送信手段からは受信手段までの伝搬時間を測定し得る装置であればよく、その構成は限定されないが、図1の例のように、送信手段から送信を開始したという信号を受け、受信手段から着信したという信号を受けて、その間の時間をカウントし伝搬時間とする演算が簡易で正確である。ディレーチップの介在などで発生する細かい誤差は必要に応じて補正すればよい。
【0033】
温度測定手段は、被覆層の表面温度を測定するものであり、図1に示すように、被覆層の表面に対して良熱伝導性部材31を接触させ、この部材に温度センサ32を取り付けて、被覆層の表面温度を、良熱伝導性部材31を介して測定する構成である。温度測定手段は、温度を測定するためのシステム全体を指し、送信手段などと同様、先端のプローブ部だけでなく、検出信号の増幅を行なう増幅回路系などが含まれる。
【0034】
良熱伝導性部材は、被覆層の表面温度によく応答し、熱を効率よく温度センサに伝達し得るものであればよく、単一の素材からなる板状や塊状の態様の他に、高い熱伝導率を達成し得るように構成された構造体であってもよい。本発明でいう良熱伝導性とは、常温付近での熱伝導率が概ね100W/m・K以上であることをいう。低コストで簡単に適度な熱容量を持つ部材に形成し得る態様としては、一般に知られている良熱伝導性の金属材料を用い、板状、塊状とする態様が好ましい。そのような金属としては、銅、銅合金、アルミニウムまたはアルミニウム合金が好ましいものとして挙げられる。前記板状の態様には、加工が容易で熱容量を面積で簡単に調節できるという利点があり、一方、円柱状、角柱状、円錐状、角錐状などの塊状の態様には、熱容量を体積で調節でき、ケーブルとの接触面を小さくして全体としてセンサを小型化できるという利点がある。
【0035】
良熱伝導性部材を上記板状とする場合、例えば板面が正方形の場合では大きさは2mm×2mm〜10mm×10mm程度、板厚は0.1mm〜2mm程度が好ましい。また、塊状とする場合、例えば円柱の場合では、接触面の大きさは直径2mm〜10mm程度、円柱の高さは2mm〜10mm程度が好ましい。熱容量を調整するために、上記範囲を外れても問題はなく、また、いかなる形状としてもよい。また、接触面はケーブルに沿うよう湾曲面としてもよい。被覆層と良熱伝導性部材との接触は、計測時だけの接触でも、恒久的な固定であってもよい。
【0036】
温度センサは、特に限定されず、公知の温度測定センサをもちいてよい。例えば、熱電対、白金抵抗測温体、サーミスタ等が挙げられる。上記のとおり、必要な検出に必要な回路部は一体型でも分離型でもよい。
【0037】
送信手段、受信手段、温度測定手段の各プローブ部のケーブルに対する配置関係は限定されないが、超音波を被覆層表面に沿って直線的に伝搬させるには、送信手段、受信手段をケーブルの長手方向に沿って配置するのが好ましい。それらに対して、温度測定手段は、超音波の伝搬の障害にならない程度の近傍に位置するのが好ましい。図1の例では、送信手段、受信手段、温度測定手段は、ケーブルの長手方向に沿って一直線上に配置されている。
【0038】
上記作用の説明で述べたように、超音波によるケーブルの劣化診断方法は、伝搬特性の値から対応する劣化診断特性を求めるという方法である。従って、現場において、即座に劣化度の判定を下すには、ケーブルの種類に応じて異なる種々の被覆層の有機高分子材料について、伝搬特性と劣化診断特性との関係を予め求めておき、その場で伝搬特性から劣化診断特性に変換できるようにしておくべきである。この伝搬特性/診断特性の変換は、相関グラフ等を用いた手作業でもよいが、被覆層の種々の材料に関して伝搬特性と診断特性とが対応した劣化診断用データ群を有する演算部を本発明の装置に設け、伝搬特性から診断特性を自動的に求める構成とするのが迅速で正確である。伝搬特性は手入力であってもよいが、各手段と直結させる態様が好ましい。
【0039】
演算部は、少なくとも伝搬特性を診断特性に変換するものであるが、図1に示すように、送信手段、受信手段、伝搬時間測定手段、温度測定手段をコントロールし、伝搬時間を求め、温度補正し、必要ならば伝搬速度などの他の伝搬特性に変換し、劣化診断用データ群から劣化診断特性を選びだすまでの作業を集中的に行なう制御部そのものであってもよい。装置としてはコンピュータが最適である。
【0040】
劣化診断用データ群は、変換用の実験式を用いるような連続的なものでも、対応データが集合した離散的なものでもよい。また、劣化診断用データ群は、「伝搬特性」と「診断特性」とが2元で対応したものとするだけではなく、これらに「時間の経過」の要素を加え、「時間の経過」と「診断特性」と「伝搬特性」とが3元で対応したデータ群としてもよい。またさらに他の要素を加えて多元で対応したデータ群としてもよい。
【0041】
データ群に「時間の経過」を要素として加えることによって、単に被覆層の機械的特性・電気的特性の値の判定をすることだけでなく、伝搬特性の経時的変化から診断特性の経時的変化を知ることができ、余寿命(残存寿命)の推定など、時間の経過に関係する評価を含めた総合的な診断が可能となる。特に、余寿命の推定は、測定時点までの劣化ではなく、測定時点から後の劣化の進行を診断するものであり、ケーブルなどの設備には有用な劣化診断である。
【0042】
上記作用の説明で述べたように、本発明では、保守現場における検査員の作業性を改善しかつ測定を安定化するために、診断装置の先端部にケーブル保持具を提供している。図2(a)はその一例であって、受け部材7に溝6が設けられ、この溝6とプローブ部4とによってケーブルCを挟んで保持する構成である。
【0043】
図2(a)に示すケーブル保持具のプローブ部4の内部構造は、図1に示すものと同様である。プローブ部4の接触面には、図2(b)に示すように、送信手段、受信手段のディレーチップ11、12、温度測定手段の良熱伝導性部材31が露出している。
【0044】
ケーブル保持具の溝6の表面には、保持すべきケーブルに対する滑り止めを設け、ケーブルの保持を確実にするのが好ましい。該滑り止めの態様は限定されないが、例えば、溝の表面に、グルービング加工、ローレット加工などの各種粗面化加工を施す態様、溝の表面にゴムなどの弾性材料からなる層を設ける態様などが挙げられる。また、溝6を有する受け部材7全体の一部または全部を弾性材料で作成してもよい。弾性材料からなる溝面に上記粗面化加工を施すことも効果的である。
【0045】
溝の断面形状はどのような形でも制限はないが、安定性や各種サイズの電線ケーブルの把持しやすさの点でV字形またはU字形が望ましい。
【0046】
ケーブル保持具全体の構造としては、図2(a)に示すように、弾性体8の復帰力によってプローブ部4と受け部材7とでケーブルを挟み込む構造が好ましい。これによって、送信手段、受信手段、温度センサを、ケーブルの被覆層表面に常に一定荷重で安定して接触させることができる。
【0047】
弾性体は、荷重を容易に設定できる点では種々のバネが好ましいが、ゴムなどの弾性材料の塊状物であってもよい。弾性体の復帰力は、圧縮、引っ張り、捩じり、曲げなどのいずれの変位によるものであってもよい。また、弾性体の力を利用してケーブルを挟み込む機構に特に制限はない。図2(a)の態様では、2つのレバーL1、L2を支点部9でリンク状に結合し、圧縮コイルバネ8の力を作用させて、洗濯バサミの様にケーブルCを挟む構造となっている。
【0048】
被覆層の伝搬特性からその劣化度を求めるという超音波劣化診断の基本的な技術、被覆層を構成する有機高分子材料、伝搬特性と劣化診断特性との関係などについては、特開平7−35372号公報、特開平7−35373号公報、特開平10−54827号公報、特開平10−300731号公報、特開平11−14607号公報を参照してよい。
【0049】
【実施例】
本実施例では、図2に示す態様のケーブル保持具を有する超音波劣化診断装置を製作し、ケーブル保持具の各部の仕様、即ち、▲1▼良熱伝導性部材の材料、▲2▼良熱伝導性部材の形状、▲3▼ケーブル保持具の溝の断面形状、▲4▼溝面の表面材料、▲5▼溝面の表面に対する粗面化加工を、種々に変化させて、ケーブルの被覆層表面の温度測定の応答性、温度測定値の安定性、ケーブルの把持安定性を調べた。
また、比較例として、良熱伝導性部材を除去したもの、良熱伝導性部材の代わりに熱伝導性の悪い材料を用いたもの、溝面の表面材料が固く滑り止めの無いものを製作した。
【0050】
測定対象の鉄道用低圧ケーブルは、JIS C 3342に定められる600V3心ビニル絶縁ビニルシースケーブルVVR5.5mm2 であって、屋外に敷設されたものである。測定時の気温は27℃であった。
【0051】
温度測定手段の良熱伝導性部材の形状は、塊状の一例として直径4mm、高さ4mmの円柱状のものと、外形5mm×5mm、厚さ1mmの板状のものを用いた。温度センサには、白金抵抗測温体を使用した。
【0052】
温度測定の応答性は、判定用の基準とするために別途設置した熱電対温度計の指示値と、温度測定値が一致するまでの時間で評価した。熱電対温度計は、測定点から30mm離れた被覆層表面に絶縁テープで固定し、被覆層の正しい表面温度を示すよう、十分に長い時間を経過させた。
【0053】
温度測定値の安定性は、温度測定値が熱電対温度計の指示値と一致した後、1分間の温度変動幅で評価した。
【0054】
ケーブルの把持安定性は、鉛直方向および水平方向に布設されたケーブルを、ケーブル保持具で把持し、手を離したときに接触部にずれが生じるかどうかを観察した。
【0055】
実施例および比較例として製作した診断装置における、ケーブル保持具の仕様の変更内容を表1に示す。表1中、良熱伝導性部材の材料を示す記号のうち、「Al合金」はJIS規定の展伸用アルミニウム合金(6061)、「SUS」はJIS規定のステンレス鋼(SUS304)、「黄銅」はJIS規定の60/40黄銅(C2801)、「PE」はポリエチレン、「PVC」はポリ塩化ビニルを示す。
また、溝表面に対する粗面化加工では、「R」はローレット加工、「SB」はサンドブラスト加工、「G」はグルービング加工を示す。
【0056】
【表1】

Figure 0003725747
【0057】
実施例および比較例として製作したケーブル保持具の評価を表2に示す。
表2では、温度測定の応答性については、応答に要する秒数を4段階に分け、10秒以内の応答を「◎」、15秒以内を「○」、30秒以内を「△」、31秒以上を「×」で示している。
また、温度測定値の安定性については、温度変動幅を4段階に分け、1℃以内の変動を「◎」、2℃以内を「○」、4℃以内を「△」、5℃以上を「×」で示している。
また、ケーブルの把持安定性については、観察の結果を4段階に分け、ずれ無しを「◎」、僅かなずれを「○」、大きなずれを「△」、落下を「×」で示している。
【0058】
【表2】
Figure 0003725747
【0059】
表2に示すとおり、良熱伝導性部材を設けた本発明の装置の方が、設けない比較例よりも、ケーブルの表面温度に迅速に応答しかつ安定していることが明らかとなった。また、ケーブル保持具の操作性の点では、溝面に滑り止めを施した本実施例のものは、バネの力でケーブルを挟むだけで、手を離しても温度センサが被覆層の表面からずれることがなかった。このことから、高所や狭隘な部分など、診断装置をケーブルに対して手で保持しにくい場所でも、正確な劣化診断が可能であることがわかった。
【0060】
【発明の効果】
以上説明したとおり、本発明の超音波劣化診断装置は、簡単な構成でありながら、鉄道用低圧ケーブルの敷設現場において被覆層の表面温度を正確にかつ迅速に測定できる。従って、測定される超音波伝搬特性に対してその場で正確な温度補正が可能であり、ひいては正確でかつ迅速な劣化診断が可能である。
また、本発明の超音波劣化診断装置は、鉄道設備の保守現場での使用に適したケーブル保持具を備えているから、検査員の作業性を改善し、正確でかつ迅速な劣化診断が可能となっている。
【図面の簡単な説明】
【図1】本発明による超音波劣化診断装置の一構成例を示す模式図である。
【図2】本発明おいて、超音波劣化診断装置に付与されたケーブル保持具の一構成例を示す模式図である。図2(a)は、ケーブルCを挟んだ状態を示している。ケーブルCは紙面と垂直に交わっている。図2(b)は、図2(a)に示すケーブル保持具のプローブ部4の、ケーブルに対する接触面を見せた斜視図である。
【符号の説明】
1 超音波送信手段
2 超音波受信手段
3 温度測定手段
31 良熱伝導性部材
32 温度センサ
4 プローブ部
5 制御部
C 鉄道用低圧ケーブル
C1 被覆層
W 超音波[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of diagnosing deterioration of electric cables using ultrasonic waves, and in particular, low voltage electric cables for railway facilities (hereinafter also referred to as “low voltage cables for railway” or simply “cables”). The present invention relates to a diagnostic apparatus for diagnosing the above.
[0002]
[Prior art]
Low-voltage cables for railways are laid for power supply to a large number of facilities and equipment provided along the track and supply of signal current for controlling them, and play an important role for all facilities along the railway Is fulfilling. Examples of facilities along the railway line include signal devices / breakers such as railroad crossings, devices related to points, various monitoring devices and control devices.
[0003]
If defects such as insulation failure due to deterioration occur in the coating layer of the low-voltage cable for railways (insulator layer made of organic polymer material that coats the outer periphery of the conductor), safe and stable vehicle operation and There is a risk of hindering operations. For this reason, the insulation performance test is regularly implemented with respect to the low voltage cable for railways more frequently than the general low voltage cable.
[0004]
Conventionally, in insulation performance tests for low-voltage cables for railways, the insulation resistance between the cable phases (for example, between the cables corresponding to each phase of three-phase AC) or the ground is electrically measured, or the ultra-low frequency current is measured. The insulation performance was directly measured by extracting the leakage component by applying the superimposed current.
[0005]
[Problems to be solved by the invention]
However, in the conventional diagnostic method as described above, it is necessary to make a power failure during measurement. Since the railway facilities are in operation for 24 hours throughout the year, there are many safety problems for inspectors and time constraints on deterioration diagnosis. Inspectors are forced to carry out strict inspection work in order to accurately diagnose cable deterioration within such a limited time. In addition, there is a problem that large-scale equipment such as power supply equipment is necessary for measurement.
[0006]
In order to solve the above problems, the present inventors first tried to diagnose a cable in a live line state by applying a deterioration diagnosis method using ultrasonic waves to a low-voltage cable for railways. However, further examination of the embodiment of the ultrasonic deterioration diagnosis at the maintenance site of the railway equipment revealed that the ultrasonic deterioration diagnosis has the following problems because it is used for railways. It was.
[0007]
(1) Since the work is performed in the immediate vicinity or inside the train tracks and facilities, it is dangerous, and it is difficult to ensure the safety of workers in long-time work.
(2) Since the diagnosis work is performed with security personnel for the reason of (1) above, the labor cost increases as the time increases.
(3) The railway track is long, and there are many diagnostic points even in a specific section, and it is not preferable to perform a low-efficiency work that takes time to diagnose one point.
(4) In order to perform ultrasonic diagnosis under various environments along the railway, it is necessary to correct to a specific temperature, and therefore, the surface temperature of the cable to be diagnosed must be measured. However, when diagnosing inside a control box such as a power supply / electric box or a trough (a concrete groove along the track where the wire is housed), the control box or trough lid is used for diagnosis. The cable temperature changes rapidly due to direct sunlight or outside air. Therefore, if the ultrasonic propagation characteristics are not performed quickly, propagation measurement cannot be performed under actual temperature, and if the cable surface temperature is not measured quickly, the actual temperature cannot be obtained and accurate temperature correction cannot be performed. .
[0008]
As described above, rapid measurement work is required at the maintenance site of railway facilities. In particular, in order to cope with the problem (4), the surface temperature of the coating layer must be measured quickly and accurately. I understand.
[0009]
An object of the present invention is to provide an ultrasonic degradation diagnosis apparatus suitable for use in a maintenance site of railway facilities, which can accurately and quickly diagnose degradation of low-voltage cables for railways with simple equipment, solving the above problems. It is to be.
[0010]
[Means for Solving the Problems]
  The ultrasonic degradation diagnostic apparatus of the present invention has the following characteristics.
(1) Diagnosis of low-voltage cable for railway facilities having a coating layer made of organic polymer materialAn ultrasonic degradation diagnostic device,
  The device isUltrasonic transmitting means, ultrasonic receiving means, propagation time measuring means for measuring propagation time when ultrasonic waves propagate through the coating layer from the transmitting means to the receiving means, and measuring the surface temperature of the coating layer Temperature measuring means to
The ultrasonic transmission means, the ultrasonic reception means and the temperature measurement means are each separated into a probe part and a control part,
  The temperature measuring meansAs a probe partA heat conductive member for contacting the surface of the coating layer, and a temperature sensor attached to the member.Have
The probe parts of the ultrasonic transmission means, the ultrasonic reception means, and the temperature measurement means are combined into one probe part,
Furthermore, the device has a cable holder,
The cable holder has a structure in which two levers are linked in a link at the fulcrum, and the low-voltage cable is sandwiched by the restoring force of an elastic body,
A probe portion combined with the one and a receiving member for receiving the cable are provided in a portion sandwiching the cable, and a groove is provided in the receiving member, and the groove and the one are combined. The cable is sandwiched between and held by the probe part, and the probe part of the ultrasonic transmission means, the ultrasonic reception means, and the temperature measurement means is fixed on the surface of the coating layer in a state where the probe parts are combined into one. It is configured to contact with loadAn ultrasonic deterioration diagnostic apparatus for low-voltage cable for railway equipment.
(2) The ultrasonic transmission means is configured to be able to install an ultrasonic oscillator on the surface of the coating layer via a delay chip,
The ultrasonic receiving means is configured to be able to install the ultrasonic detection element via a delay chip at a position away from the ultrasonic transmission means by a predetermined distance on the surface of the coating layer.
Of the probe unit combined into one, the surface contacting the coating layer is exposed to the delay chip of the ultrasonic transmission means, the delay chip of the ultrasonic reception means, and the good heat conductive member of the temperature measurement means. The ultrasonic degradation diagnostic apparatus according to (1) above.
(3) The ultrasonic deterioration diagnosis apparatus according to (1), wherein the good heat conductive member is made of copper, copper alloy, aluminum, or aluminum alloy.
(4) Furthermore, it has a calculating part,
The calculation unit has a deterioration diagnosis data group in which the ultrasonic propagation characteristic and the deterioration diagnosis characteristic correspond to the material of the coating layer, and the ultrasonic propagation characteristic including the propagation time is obtained from the temperature obtained by the temperature measuring unit. The ultrasonic deterioration diagnosis apparatus according to (1), wherein the ultrasonic deterioration diagnosis apparatus is configured to perform temperature correction using the deterioration diagnosis data group and obtain a deterioration diagnosis characteristic of the coating layer.
(5) The ultrasonic deterioration diagnosis apparatus according to (1), wherein the surface of the groove is provided with a slip stopper for the low-voltage electric cable to be held.
(6) The above-mentioned anti-slip is one in which a surface of the groove is roughened, or a layer made of an elastic material is provided on the surface of the groove (5) ) Ultrasonic degradation diagnostic device as described.
[0015]
[Action]
The method for diagnosing cable degradation by ultrasonic waves utilizes the fact that the propagation characteristics of ultrasonic waves (propagation speed, propagation time, etc.) of the layer change according to the degree of degradation of the organic polymer material constituting the coating layer. In this method, the propagation characteristic is measured and the corresponding deterioration diagnosis characteristic is obtained from the measured value.
[0016]
Propagation characteristics (propagation speed, propagation time, etc.) of ultrasonic waves propagating through the coating layer show temperature dependence and are greatly influenced by the temperature of the coating layer. For low-voltage cables for railways that are exposed to the outside air or sunlight, measure the propagation temperature and the surface temperature of the coating layer accurately, and measure the propagation time at the standard temperature. Must be corrected. Moreover, as described in the above “Description of Problems to be Solved by the Invention”, accurate measurement is difficult unless the temperature measurement is rapid.
[0017]
Therefore, in this invention, while setting it as the structure which can measure the surface temperature of the coating layer of a cable, it was set as the structure which provided a heat conductive member at the front-end | tip of a temperature sensor, and measured temperature through this member. Since this good heat conductive member quickly reaches the surface temperature of the coating layer, the temperature detection part of the temperature sensor can quickly and accurately detect the temperature of the coating layer surface via the good heat conductive member. In addition, since the heat-conductive member has an appropriate heat capacity, temperature disturbance from the outside such as solar radiation and wind is suppressed. That is, it is possible to perform temperature measurement that achieves both high temperature responsiveness to the measurement object and stability of measurement against temperature disturbance from the outside.
[0018]
Furthermore, when the inspector's measurement work operation at the maintenance site was observed, the contact tends to become unstable when the diagnostic device is brought into contact with the cable coating layer, resulting in large variations in the measured values and the diagnosis result. It was found that the accuracy of was low. In the present invention, as a more preferable aspect, a holding tool having a groove provided with a non-slip is used, and the cable is securely connected by the ultrasonic transmitting means, the ultrasonic receiving means, the temperature measuring means, and the groove of the holding tool. It was set as the structure hold | gripped. This facilitates measurement work, stabilizes the contact state between the diagnostic device (particularly the temperature measurement means) and the cable covering layer, and reduces the variation in measured values.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, an ultrasonic degradation diagnosis apparatus according to the present invention includes an ultrasonic transmission means (hereinafter referred to as “transmission means”) 1, an ultrasonic reception means (hereinafter referred to as “reception means”) 2, and a propagation time measurement. Means (included in the control unit 5 in FIG. 1) and temperature measuring means 3 at least. The transmission unit 1, the reception unit 2, and the temperature measurement unit 3 are in contact with the surface of the covering layer C1 of the cable C.
[0020]
The transmitting means 1 sends out the ultrasonic wave W toward the receiving means 2 to the coating layer C1, and the receiving means 2 receives it at a position away from the transmitting means 1 by a predetermined distance. The propagation time measuring means measures the time required for the ultrasonic wave W to propagate from the transmitting means to the receiving means (time from transmission to reception). When the propagation time is obtained, it is converted as it is or into another form of propagation characteristics, the temperature is corrected, and the value of the deterioration diagnosis characteristic of the coating layer is obtained from the value. In order to perform this temperature correction, temperature measuring means 3 for measuring the surface temperature of the coating layer is provided. The temperature measuring means 3 includes a good heat conductive member 31 for directly contacting the coating layer, and a temperature sensor 32 attached thereto. As described in the above description of the operation, the diagnosis apparatus configured as described above can accurately correct the temperature of the propagation characteristics, and can correctly diagnose deterioration.
[0021]
The railway low-voltage cable to be diagnosed is an insulated wire for DC 750 V or less and AC 600 V or less, which is defined in the electric equipment technical standards. As shown in FIG. 1, the cable has an insulating layer made of an organic polymer material as a coating layer outside the central conductor C2. As the organic polymer material, thermoplastic resins such as polyethylene and polypropylene, natural and synthetic rubbers, thermoplastic elastomers, and the like are used.
[0022]
The transmission unit and the reception unit are devices that transmit and receive ultrasonic waves using the coating layer as a propagation path. The transmission means and the reception means indicate not only the probe portion at the tip attached to the coating layer but also the entire system for transmitting and receiving ultrasonic waves, respectively, an ultrasonic transducer (transmission) and an ultrasonic detection element ( In addition to a conversion element such as (receiver), a drive circuit system for supplying and amplifying electric energy, a delay chip interposed between the element and the covering layer, and the like are included.
[0023]
In the example of FIG. 1, the entire configuration of the diagnostic apparatus is separated into a probe unit 4 attached to the covering layer and a control unit 5 connected to the probe unit 4 by wire (may be wireless). 1, the receiving means 2 and the temperature measuring means 3 are also separated into a probe part and a control part, respectively. For example, in the transmission unit 1, the delay chip 11 and the conversion element 12 are included in the probe unit 4, and the drive circuit system is included in the control unit 5. However, not only such a separate type but also a mode in which the drive circuit system and the probe unit are integrated, and the integrated type / separated type in each means can be freely selected for each means. Good. In the example of FIG. 1, from the viewpoint of preferable operability, the probe units of the transmission unit 1, the reception unit 2, and the temperature measurement unit 3 are combined into one probe unit 4, but only the temperature measurement unit 3 is used. Integration / separation of each means, such as an aspect of making them independent, may be freely selected.
[0024]
The method of transmitting and receiving ultrasonic waves includes a method of emitting ultrasonic waves in the internal direction perpendicular to the surface of the coating layer and receiving waves reflected by the deep layer at the same position, and an ultrasonic wave obliquely downward from the surface of the coating layer. However, various known methods such as a method of reflecting at a deep layer and receiving at a distant position may be used. Among them, the method of directly propagating ultrasonic waves along the surface of the coating layer to the receiving means using the delay chip is a method that can calculate the propagation velocity only by the amount of [time, linear distance] that can be clearly measured from the outside. It is. In the following, the present invention will be described with respect to a mode in which ultrasonic waves are propagated along the surface of the coating layer using a delay chip for the transmitting means, receiving means, propagation time measuring means, and the like.
[0025]
As shown in FIG. 1, in the transmission unit 1, the ultrasonic oscillator 12 is installed on the surface of the coating layer C <b> 1 via the delay chip 11. In the reception unit 2, the ultrasonic detection element 22 is installed on the surface of the coating layer C <b> 1 via the delay chip 21 at a position away from the transmission unit 1 by a predetermined distance. With this configuration, the ultrasonic wave W transmitted from the transmission unit 1 enters the coating layer via the delay chip 11. The delay chip 11 is made of a material selected in terms of ultrasonic propagation speed with respect to the material of the coating layer, and the inclination angle is selected. The ultrasonic wave changes the propagation direction at the interface between the delay chip and the coating layer, and the coating is performed. It propagates linearly along the surface of the layer (that is, through the surface of the covering layer and near the surface) to the position of the receiving means 2 and is received by the detection element 22 via the delay chip 21. The propagation time at that time is measured by the propagation time measuring means.
[0026]
The delay chip is interposed between the conversion element and the coating layer, refracts the propagation direction of ultrasonic waves, sends it along the surface of the coating layer, and propagates along the surface. It is comprised so that an ultrasonic wave can be received. For the basic structure of the delay chip, reference may be made to the prior art.
[0027]
An area from the surface of the coating layer to a depth of about 3 mm is mainly on the surface of the coating layer where the ultrasonic wave propagates and in the vicinity of the surface. Therefore, there is no problem when the covering layer is sufficiently thick, but for example, when the thickness is only 1.5 mm, a part of the ultrasonic wave is a layer below the covering layer (a conductor in a cable, the next layer adjacent to the bottom of the covering layer). ) Or the reflection between the interface and the surface of the coating layer to propagate, and there are cases where accurate propagation characteristics cannot be measured. Therefore, in order to measure more accurately, for example, the ultrasonic wave is propagated at a depth of about 1 mm from the surface of the coating layer and the surface is linearly transmitted from the transmitting means to the receiving means at a depth that does not reach the lower layer. It is preferable to propagate it.
[0028]
There is no restriction | limiting in the frequency of the ultrasonic wave used by this invention. Organic polymer materials such as polyethylene, polyvinyl chloride, and ethylene / propylene copolymer rubber (EPM) that are frequently used for cable coating layers generally have a large attenuation of ultrasonic waves, so that the attenuation is relatively small. A frequency of about ˜5 MHz, particularly about 0.5 to 2 MHz is preferred.
[0029]
The propagation characteristic may be an amount indicating a propagation state when ultrasonic waves are propagated in the material of the coating layer and has a correlation with deterioration of the material. For example, in addition to the particularly useful propagation time and propagation speed, there are ultrasonic reception sensitivity, frequency change of the ultrasonic waveform, shape change of the ultrasonic waveform, ultrasonic attenuation characteristics, and the like.
[0030]
The deterioration diagnosis characteristic may be any characteristic that can indicate the degree of deterioration of the organic polymer material (hereinafter also referred to as “coating layer material”) used for the coating layer and has a correlation with the propagation characteristic. For example, surface rebound hardness, surface penetration hardness, tensile strength, elongation at break, elastic modulus, Young's modulus, modulus, dielectric constant, dielectric loss tangent, volume resistivity, AC breakdown voltage strength, impulse breakdown voltage strength, screw Examples include mechanical characteristics and electrical characteristics such as torsional torque and bending rigidity. In particular, the elongation at break indicates the degree of deterioration of the cable coating layer and has a strong correlation with the propagation characteristics, and is therefore preferably used as a deterioration diagnosis characteristic.
[0031]
Generally, when the elongation at break of the cable covering layer approaches 50%, cracks tend to occur due to vibration or impact, and as a result, there is a possibility of causing dielectric breakdown due to water intrusion from the outside. Therefore, it is considered that the replacement of the cable may be carried out with reference to the elongation at break of about 50%. However, the criterion of the degradation index may be determined by the user as appropriate.
[0032]
The propagation time measuring means may be any device that can measure the propagation time from the transmitting means to the receiving means, and its configuration is not limited. However, as in the example of FIG. 1, a signal indicating that transmission has started from the transmitting means. In response to a signal indicating that the incoming signal has arrived from the receiving means, the calculation of the time between them as a propagation time is simple and accurate. Minor errors that occur due to the interposition of a delay chip may be corrected as necessary.
[0033]
The temperature measuring means measures the surface temperature of the coating layer. As shown in FIG. 1, a good heat conductive member 31 is brought into contact with the surface of the coating layer, and a temperature sensor 32 is attached to this member. In this configuration, the surface temperature of the coating layer is measured via the heat conductive member 31. The temperature measurement means refers to the entire system for measuring temperature, and includes not only the probe section at the tip but also an amplification circuit system that amplifies the detection signal, as with the transmission means.
[0034]
The good heat conductive member may be any material that responds well to the surface temperature of the coating layer and can efficiently transfer heat to the temperature sensor. It may be a structure configured to achieve thermal conductivity. The good thermal conductivity in the present invention means that the thermal conductivity in the vicinity of room temperature is approximately 100 W / m · K or more. As a mode that can be easily formed into a member having an appropriate heat capacity at a low cost, a mode in which a generally known heat conductive metal material is used and a plate shape or a lump shape is preferable. As such a metal, copper, a copper alloy, aluminum, or an aluminum alloy is preferable. The plate-like embodiment has an advantage that it can be easily processed and the heat capacity can be easily adjusted by area, while the bulk-like embodiment such as a columnar shape, a prismatic shape, a conical shape, or a pyramid shape has a heat capacity by volume. There is an advantage that the sensor can be adjusted and the sensor can be reduced in size as a whole by reducing the contact surface with the cable.
[0035]
In the case where the heat conductive member has the above plate shape, for example, when the plate surface is square, the size is preferably about 2 mm × 2 mm to 10 mm × 10 mm, and the plate thickness is preferably about 0.1 mm to 2 mm. In the case of a lump, for example, in the case of a cylinder, the size of the contact surface is preferably about 2 mm to 10 mm in diameter, and the height of the cylinder is preferably about 2 mm to 10 mm. In order to adjust the heat capacity, there is no problem even if it is out of the above range, and any shape may be used. The contact surface may be a curved surface along the cable. The contact between the coating layer and the good heat conductive member may be a contact only at the time of measurement or a permanent fixation.
[0036]
The temperature sensor is not particularly limited, and a known temperature measurement sensor may be used. For example, a thermocouple, a platinum resistance thermometer, a thermistor, etc. are mentioned. As described above, a circuit unit necessary for necessary detection may be an integrated type or a separated type.
[0037]
The arrangement relation of the probe means of the transmitting means, the receiving means, and the temperature measuring means to the cable is not limited, but in order to propagate ultrasonic waves linearly along the surface of the coating layer, the transmitting means and the receiving means are arranged in the longitudinal direction of the cable. It is preferable to arrange | position along. On the other hand, it is preferable that the temperature measuring means is located in the vicinity so as not to obstruct the propagation of ultrasonic waves. In the example of FIG. 1, the transmission means, the reception means, and the temperature measurement means are arranged on a straight line along the longitudinal direction of the cable.
[0038]
As described in the above description of the operation, the cable deterioration diagnosis method using ultrasonic waves is a method of obtaining a corresponding deterioration diagnosis characteristic from the value of the propagation characteristic. Therefore, in order to immediately determine the degree of deterioration at the site, the relationship between the propagation characteristics and the deterioration diagnosis characteristics is obtained in advance for various organic polymer materials of different coating layers depending on the type of cable. It should be possible to convert from propagation characteristics to degradation diagnosis characteristics in the field. The conversion of the propagation characteristics / diagnostic characteristics may be performed manually using a correlation graph or the like, but an arithmetic unit having a deterioration diagnosis data group corresponding to propagation characteristics and diagnostic characteristics for various materials of the coating layer is provided. It is quick and accurate to provide a configuration in which the diagnostic characteristics are automatically obtained from the propagation characteristics. The propagation characteristics may be manually input, but a mode in which the propagation characteristics are directly connected to each means is preferable.
[0039]
The calculation unit converts at least the propagation characteristic into the diagnostic characteristic. As shown in FIG. 1, the calculation unit controls the transmission unit, the reception unit, the propagation time measurement unit, and the temperature measurement unit to obtain the propagation time, and corrects the temperature. However, if necessary, the control unit itself may be configured to perform the operation until conversion to other propagation characteristics such as propagation speed and selection of deterioration diagnosis characteristics from the deterioration diagnosis data group. A computer is the most suitable device.
[0040]
The degradation diagnosis data group may be continuous such that an empirical formula for conversion is used, or may be discrete that is a collection of corresponding data. In addition, the deterioration diagnosis data group is not only that the “propagation characteristics” and the “diagnosis characteristics” correspond to each other in a binary manner, but adds an element of “elapsed time” to these, and “elapsed time” A data group in which “diagnostic characteristics” and “propagation characteristics” correspond three-way may be used. Furthermore, a data group corresponding to multiple factors may be added by adding other elements.
[0041]
By adding “time passage” as an element to the data group, it is not only possible to determine the mechanical and electrical characteristics of the coating layer, but also to change the diagnostic characteristics over time from changes in the propagation characteristics over time. And comprehensive diagnosis including evaluation related to the passage of time, such as estimation of remaining life (residual life). In particular, the estimation of the remaining life is not a deterioration up to the time of measurement, but a diagnosis of the progress of the deterioration after the time of measurement, and is a useful deterioration diagnosis for equipment such as cables.
[0042]
As described in the above description of the operation, in the present invention, in order to improve the workability of the inspector at the maintenance site and stabilize the measurement, a cable holder is provided at the distal end portion of the diagnostic apparatus. FIG. 2A is an example thereof, and a groove 6 is provided in the receiving member 7, and the cable C is sandwiched and held between the groove 6 and the probe portion 4.
[0043]
The internal structure of the probe portion 4 of the cable holder shown in FIG. 2A is the same as that shown in FIG. As shown in FIG. 2B, the transmitter chip, the delay chips 11 and 12 of the receiving means, and the heat conductive member 31 of the temperature measuring means are exposed on the contact surface of the probe unit 4.
[0044]
It is preferable to provide a slip stopper for the cable to be held on the surface of the groove 6 of the cable holder to ensure the holding of the cable. The mode of the anti-slip is not limited, but, for example, a mode in which various surface roughening processes such as grooving and knurling are performed on the surface of the groove, a mode in which a layer made of an elastic material such as rubber is provided on the surface of the groove, etc. Can be mentioned. Further, a part or the whole of the receiving member 7 having the groove 6 may be made of an elastic material. It is also effective to perform the roughening process on the groove surface made of an elastic material.
[0045]
The cross-sectional shape of the groove is not limited in any shape, but is preferably V-shaped or U-shaped in terms of stability and ease of gripping of various sizes of electric cables.
[0046]
As a structure of the entire cable holder, as shown in FIG. 2A, a structure in which the cable is sandwiched between the probe portion 4 and the receiving member 7 by the restoring force of the elastic body 8 is preferable. As a result, the transmission means, the reception means, and the temperature sensor can always be brought into stable contact with the surface of the cable covering layer with a constant load.
[0047]
The elastic body is preferably various springs in that the load can be easily set, but may be a mass of an elastic material such as rubber. The restoring force of the elastic body may be due to any displacement such as compression, pulling, twisting and bending. Moreover, there is no restriction | limiting in particular in the mechanism which clamps a cable using the force of an elastic body. 2A, the two levers L1 and L2 are coupled in a link shape at the fulcrum portion 9, and the force of the compression coil spring 8 is applied to sandwich the cable C like a clothespin. .
[0048]
Regarding the basic technique of ultrasonic deterioration diagnosis for obtaining the degree of deterioration from the propagation characteristics of the coating layer, the organic polymer material constituting the coating layer, the relationship between the propagation characteristics and the deterioration diagnosis characteristics, etc. Reference may be made to JP-A-7-35373, JP-A-10-54827, JP-A-10-300731, and JP-A-11-14607.
[0049]
【Example】
In this embodiment, an ultrasonic deterioration diagnosis apparatus having the cable holder of the mode shown in FIG. 2 is manufactured, and specifications of each part of the cable holder, that is, (1) material of a good heat conductive member, (2) good The shape of the heat conductive member, (3) the cross-sectional shape of the groove of the cable holder, (4) the surface material of the groove surface, and (5) the roughening of the groove surface, The responsiveness of temperature measurement on the surface of the coating layer, the stability of the temperature measurement value, and the cable gripping stability were investigated.
In addition, as a comparative example, a material with a good heat conductive member removed, a material with poor heat conductivity instead of a good heat conductive member, and a groove surface material that is hard and non-slip were manufactured. .
[0050]
The low-voltage cable for railway to be measured is a 600V 3-core vinyl insulated vinyl sheath cable VVR 5.5 mm as defined in JIS C 3342.2However, it was laid outdoors. The temperature at the time of measurement was 27 ° C.
[0051]
As the shape of the good heat conductive member of the temperature measuring means, a cylindrical shape having a diameter of 4 mm and a height of 4 mm and a plate shape having an outer shape of 5 mm × 5 mm and a thickness of 1 mm were used as an example of a lump. A platinum resistance thermometer was used for the temperature sensor.
[0052]
The responsiveness of the temperature measurement was evaluated by the time until the indicated value of the thermocouple thermometer separately installed to make the temperature measurement value coincide with the reference for determination. The thermocouple thermometer was fixed to the surface of the coating layer 30 mm away from the measurement point with an insulating tape, and a sufficiently long time was allowed to pass so as to show the correct surface temperature of the coating layer.
[0053]
The stability of the temperature measurement value was evaluated based on the temperature fluctuation range for 1 minute after the temperature measurement value matched the indicated value of the thermocouple thermometer.
[0054]
With respect to the stability of gripping the cable, the cable laid in the vertical direction and the horizontal direction was gripped by the cable holder, and it was observed whether or not the contact portion was displaced when the hand was released.
[0055]
Table 1 shows the changes in the specifications of the cable holders in the diagnostic devices manufactured as examples and comparative examples. In Table 1, among the symbols indicating the material of the heat conductive member, “Al alloy” is the aluminum alloy for extension (6061) specified by JIS, “SUS” is stainless steel (SUS304) specified by JIS, and “Brass” Represents JIS-defined 60/40 brass (C2801), “PE” represents polyethylene, and “PVC” represents polyvinyl chloride.
In the roughening process on the groove surface, “R” indicates knurling, “SB” indicates sand blasting, and “G” indicates grooving.
[0056]
[Table 1]
Figure 0003725747
[0057]
Table 2 shows the evaluation of cable holders manufactured as examples and comparative examples.
In Table 2, regarding the responsiveness of the temperature measurement, the number of seconds required for the response is divided into four stages, the response within 10 seconds is “」 ”, the response within 15 seconds is“ ◯ ”, the response within 30 seconds is“ △ ”, 31 Seconds or more are indicated by “x”.
Also, regarding the stability of temperature measurement values, the temperature fluctuation range is divided into four stages: “◎” for fluctuations within 1 ° C, “O” for 2 ° C or less, “△” for 4 ° C or less, 5 ° C or more. It is indicated by “x”.
Regarding the cable gripping stability, the observation results are divided into four stages, with no deviation indicated by “ず れ”, slight deviation indicated by “◯”, large deviation indicated by “△”, and drop indicated by “×”. .
[0058]
[Table 2]
Figure 0003725747
[0059]
As shown in Table 2, it was found that the device of the present invention provided with a good heat conductive member responded more promptly to the surface temperature of the cable and was more stable than the comparative example not provided. In addition, in terms of the operability of the cable holder, in the embodiment of the present invention in which the groove surface is provided with a non-slip, the temperature sensor is removed from the surface of the coating layer even if the hand is released by simply pinching the cable with the force of the spring. There was no deviation. From this, it was found that accurate deterioration diagnosis is possible even in places where it is difficult to hold the diagnostic device by hand with respect to the cable, such as high places and narrow parts.
[0060]
【The invention's effect】
As described above, the ultrasonic degradation diagnosis apparatus of the present invention can measure the surface temperature of the coating layer accurately and quickly at the site where a low-voltage cable for railways is laid, although it has a simple configuration. Therefore, accurate temperature correction can be performed on the spot with respect to the measured ultrasonic wave propagation characteristics, and hence accurate and rapid deterioration diagnosis can be performed.
In addition, since the ultrasonic degradation diagnosis apparatus of the present invention is equipped with a cable holder suitable for use at the maintenance site of railway facilities, it improves the workability of the inspector and enables accurate and rapid degradation diagnosis. It has become.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration example of an ultrasonic deterioration diagnosis apparatus according to the present invention.
FIG. 2 is a schematic diagram showing a configuration example of a cable holder attached to the ultrasonic deterioration diagnosis apparatus in the present invention. FIG. 2A shows a state in which the cable C is sandwiched. The cable C intersects perpendicularly with the paper surface. FIG.2 (b) is the perspective view which showed the contact surface with respect to the cable of the probe part 4 of the cable holder shown to Fig.2 (a).
[Explanation of symbols]
1 Ultrasonic transmission means
2 Ultrasonic wave receiving means
3 Temperature measurement means
31 Good thermal conductive material
32 Temperature sensor
4 Probe section
5 Control unit
C Low-voltage cable for railway
C1 coating layer
W Ultrasound

Claims (6)

有機高分子材料からなる被覆層を有する鉄道設備用低圧電線ケーブルを診断対象とする超音波劣化診断装置であって
当該装置は、超音波送信手段と、超音波受信手段と、該送信手段から該受信手段へと超音波が前記被覆層を伝搬するときの伝搬時間を測定する伝搬時間測定手段と、被覆層の表面温度を測定する温度測定手段とを有し、
超音波送信手段、超音波受信手段および温度測定手段は、それぞれ、プローブ部と制御部とに分離しており、
該温度測定手段は、プローブ部として、被覆層の表面と接するための良熱伝導性部材と、該部材に取り付けられた温度センサとを有し、
超音波送信手段、超音波受信手段および温度測定手段の各プローブ部は、合体して1つのプローブ部となっており、
さらに、当該装置は、ケーブル保持具を有し、
該ケーブル保持具は、2つのレバーが支点部でリンク状に結合され、弾性体の復帰力によって上記低圧電線ケーブルを挟み込む構造とされており、
該ケーブルを挟み込む部分には、前記1つに合体したプローブ部と、該ケーブルを受けるための受け部材とが設けられ、該受け部材には溝が設けられ、この溝と前記1つに合体したプローブ部とによって該ケーブルを挟んで保持し得る構造とされ、超音波送信手段、超音波受信手段および温度測定手段の各プローブ部が、1つに合体した状態にて、被覆層の表面に一定荷重で接触し得る構成とされていることを特徴とする、鉄道設備用低圧電線ケーブルのための超音波劣化診断装置。
An ultrasonic degradation diagnosis device for diagnosing a low-voltage electric cable for railway equipment having a coating layer made of an organic polymer material,
The apparatus includes: an ultrasonic transmission unit; an ultrasonic reception unit; a propagation time measurement unit that measures a propagation time when ultrasonic waves propagate through the coating layer from the transmission unit to the reception unit; Temperature measuring means for measuring the surface temperature,
The ultrasonic transmission means, the ultrasonic reception means and the temperature measurement means are each separated into a probe part and a control part,
The temperature measuring means has, as a probe part , a heat conductive member for contacting the surface of the coating layer, and a temperature sensor attached to the member ,
The probe parts of the ultrasonic transmission means, the ultrasonic reception means, and the temperature measurement means are combined into one probe part,
Furthermore, the device has a cable holder,
The cable holder has a structure in which two levers are linked in a link at the fulcrum, and the low-voltage cable is sandwiched by the restoring force of an elastic body,
A probe portion combined with the one and a receiving member for receiving the cable are provided in a portion sandwiching the cable, and a groove is provided in the receiving member, and the groove and the one are combined. The structure is such that the cable can be held between the probe portion and the probe portion of the ultrasonic transmission means, the ultrasonic reception means, and the temperature measurement means, and the probe portion is fixed on the surface of the coating layer in a state where they are united together. An ultrasonic deterioration diagnosis device for a low-voltage electric cable for railway equipment, characterized in that it can be contacted by a load .
超音波送信手段は、被覆層の表面上にディレーチップを介して超音波発振子を設置し得る構成とされ、  The ultrasonic transmission means is configured to be able to install an ultrasonic oscillator on the surface of the coating layer via a delay chip,
超音波受信手段は、被覆層の表面上において超音波送信手段から所定の距離だけ離れた位置に、ディレーチップを介して超音波検出素子を設置し得る構成とされ、  The ultrasonic receiving means is configured to be able to install an ultrasonic detection element via a delay chip at a position away from the ultrasonic transmitting means by a predetermined distance on the surface of the coating layer,
上記1つに合体したプローブ部のうち、被覆層に接触する面には、超音波送信手段のディレーチップと、超音波受信手段のディレーチップと、温度測定手段の良熱伝導性部材とが露出している、請求項1記載の超音波劣化診断装置。  Of the probe unit combined into one, the surface contacting the coating layer is exposed to the delay chip of the ultrasonic transmission means, the delay chip of the ultrasonic reception means, and the good heat conductive member of the temperature measurement means. The ultrasonic deterioration diagnostic apparatus according to claim 1.
良熱伝導性部材が、銅、銅合金、アルミニウムまたはアルミニウム合金からなるものである請求項1記載の超音波劣化診断装置。  2. The ultrasonic deterioration diagnosis apparatus according to claim 1, wherein the good heat conductive member is made of copper, a copper alloy, aluminum, or an aluminum alloy. さらに、演算部を有し、
該演算部は、被覆層の材料に関して超音波伝搬特性と劣化診断特性とが対応した劣化診断用データ群を有し、上記伝搬時間を含む超音波伝搬特性を、温度測定手段で得た温度を用いて温度補正し、前記劣化診断用データ群を用いて被覆層の劣化診断特性を求める演算を行なうものである請求項1記載の超音波劣化診断装置。
Furthermore, it has a calculation part,
The calculation unit has a deterioration diagnosis data group in which the ultrasonic propagation characteristic and the deterioration diagnosis characteristic correspond to the material of the coating layer, and the ultrasonic propagation characteristic including the propagation time is obtained from the temperature obtained by the temperature measuring unit. 2. The ultrasonic deterioration diagnosis apparatus according to claim 1, wherein the ultrasonic deterioration diagnosis apparatus performs temperature correction using the deterioration diagnosis data group and calculates a deterioration diagnosis characteristic of the coating layer.
上記溝の表面には、保持すべき低圧電線ケーブルに対する滑り止めが設けられている請求項1記載の超音波劣化診断装置。 The ultrasonic deterioration diagnosis apparatus according to claim 1, wherein the groove has a non-slip against the low-voltage electric cable to be held on the surface of the groove. 上記滑り止めが、上記溝の表面に粗面化加工が施されてなるものであるか、または、上記溝の表面に弾性材料からなる層が設けられてなるものである請求項記載の超音波劣化診断装置。The cleat, or those formed by roughened processing is given to the surface of the groove, or, according to claim 5 wherein in which the layer of resilient material on the surface of the groove is provided Ultra Sonic deterioration diagnosis device.
JP2000001671A 2000-01-07 2000-01-07 Ultrasonic degradation diagnostic equipment for low-voltage cable for railway equipment Expired - Fee Related JP3725747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000001671A JP3725747B2 (en) 2000-01-07 2000-01-07 Ultrasonic degradation diagnostic equipment for low-voltage cable for railway equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000001671A JP3725747B2 (en) 2000-01-07 2000-01-07 Ultrasonic degradation diagnostic equipment for low-voltage cable for railway equipment

Publications (2)

Publication Number Publication Date
JP2001194350A JP2001194350A (en) 2001-07-19
JP3725747B2 true JP3725747B2 (en) 2005-12-14

Family

ID=18530872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000001671A Expired - Fee Related JP3725747B2 (en) 2000-01-07 2000-01-07 Ultrasonic degradation diagnostic equipment for low-voltage cable for railway equipment

Country Status (1)

Country Link
JP (1) JP3725747B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633392A (en) * 2018-12-30 2019-04-16 国网北京市电力公司 Transformer insulated test method and device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103995056B (en) * 2014-05-14 2016-05-18 国核电站运行服务技术有限公司 Measuring axial acoustic velocity of cable sheath fixture and device
JP7037295B2 (en) * 2017-07-31 2022-03-16 ブラザー工業株式会社 Tool holding arm and machine tool
CN112313609B (en) * 2018-06-20 2022-09-16 华为技术有限公司 Method and apparatus for integrating swipe and touch on input device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163943U (en) * 1987-04-15 1988-10-26
JPH105123A (en) * 1996-06-26 1998-01-13 Toshiba Home Technol Corp Rice cooker
JPH1064653A (en) * 1996-08-23 1998-03-06 Sumitomo Wiring Syst Ltd Solder type link device for coated wire
JPH11271288A (en) * 1998-03-23 1999-10-05 Mitsubishi Cable Ind Ltd Device for ultrasonic measurement
JP3387825B2 (en) * 1998-06-03 2003-03-17 三菱電線工業株式会社 Method for estimating remaining life of coated cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633392A (en) * 2018-12-30 2019-04-16 国网北京市电力公司 Transformer insulated test method and device
CN109633392B (en) * 2018-12-30 2021-08-20 国网北京市电力公司 Transformer insulation test method and device

Also Published As

Publication number Publication date
JP2001194350A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
US20020130668A1 (en) Parallel arc fault diagnostic for aircraft wiring
CN109931896B (en) Method, equipment and system for detecting wall thickness of high-temperature or low-temperature detected pipeline
US20060265175A1 (en) Low-cost multi-span conductor temperature measurement system
JP2001141683A (en) Method and apparatus for monitoring crack
US6450036B1 (en) Method and device for diagnosing deterioration of an article having at least a covering layer organic polymer material
CN102721725B (en) Device and method for measuring corroding and cleaning effects on line in chemical cleaning process of power station boiler
CN113654702B (en) Method for detecting residual stress of GIS basin-type insulator
JP3725747B2 (en) Ultrasonic degradation diagnostic equipment for low-voltage cable for railway equipment
CN110231547B (en) Nondestructive testing evaluation method for cable state evaluation
US9651974B2 (en) Electrical power transmission line length measurement and average temperature estimation
CN105973992A (en) Tiny pore defect ultrasonic-wavelet detection method for epoxy casting insulator
CN106053603A (en) Ultrasonic time-domain detection method for pore defect of epoxy casting insulation part
JP2003107030A (en) Crack detection system
NO158157B (en) PROCEDURE AND APPARATUS FOR DETECTION OF A CORONA DISPLAY SOURCE IN AN ELECTRIC APPLIANCE.
JP2008064580A (en) Deterioration diagnosis method of electrical apparatus insulation material
CN208688452U (en) Cable fault detection device based on ultrasonic transducer
CN106885542A (en) A kind of sonigauge for possessing temperature detecting function
JP3691477B2 (en) Soundness diagnosis method for concrete structures
JP3081734B2 (en) Degradation diagnosis device for cable coating material
JP2003185643A (en) Crack detecting system
CN108775880A (en) Cable fault detection device based on ultrasonic transducer and application method
JP2004333181A (en) Method for detecting crack width in concrete structure, and method for monitoring crack
JP3081735B2 (en) Diagnosis method for deterioration of cable coating material
Liwei et al. Key technology of nondestructive testing of solid insulating materials in power equipment
WO2004065954A1 (en) Ultrasonic probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050922

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees