JP2001194350A - Ultrasonic degradation diagnostic apparatus for low voltage electric cable for railway facilities - Google Patents

Ultrasonic degradation diagnostic apparatus for low voltage electric cable for railway facilities

Info

Publication number
JP2001194350A
JP2001194350A JP2000001671A JP2000001671A JP2001194350A JP 2001194350 A JP2001194350 A JP 2001194350A JP 2000001671 A JP2000001671 A JP 2000001671A JP 2000001671 A JP2000001671 A JP 2000001671A JP 2001194350 A JP2001194350 A JP 2001194350A
Authority
JP
Japan
Prior art keywords
ultrasonic
temperature
coating layer
cable
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000001671A
Other languages
Japanese (ja)
Other versions
JP3725747B2 (en
Inventor
Takeshi Ikeda
毅 池田
Katsuo Kawabe
勝男 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
East Japan Railway Co
Original Assignee
Mitsubishi Cable Industries Ltd
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, East Japan Railway Co filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2000001671A priority Critical patent/JP3725747B2/en
Publication of JP2001194350A publication Critical patent/JP2001194350A/en
Application granted granted Critical
Publication of JP3725747B2 publication Critical patent/JP3725747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic degradation diagnostic apparatus capable of accurately and quickly diagnosing the degradation of a low voltage cable for railway facilities with a simple configuration, and suitable for the use at a maintenance site of the railway facilities. SOLUTION: This ultrasonic degradation diagnostic apparatus diagnoses the degradation of the low voltage wire cable C for the railway facilities having a covering layer C1 formed of an organic polymer using the ultrasonic wave. The apparatus comprises an ultrasonic wave transmitting means 1, an ultrasonic wave receiving means 2, a propagation time measuring means (included in a control unit 5 in Fig.1) to measure the propagation time from the transmitting means 1 to the receiving means 2 when the ultrasonic wave W is propagated through the covering layer, and a temperature measuring means 3 to measure the surface temperature of the covering layer. The temperature measuring means 3 comprises a good heat conductor 31 in contact with the surface of the covering layer and a temperature sensor 32 mounted on the member 31. The ultrasonic wave propagation characteristic and the rapid and correct temperature can be measured. A cable holder having slip-proof grooves is used for preferably holding the cable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を用いて電
線ケーブルの劣化を診断する技術分野に属するものであ
り、特に、鉄道設備用の低圧電線ケーブル(以下、「鉄
道用低圧ケーブル」または単に「ケーブル」とも呼ぶ)
を診断するための診断装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of diagnosing deterioration of electric wires and cables using ultrasonic waves, and particularly to a low-voltage cable for railway equipment (hereinafter referred to as "low-voltage cable for railway" or (Also called simply "cable")
The present invention relates to a diagnostic device for diagnosing.

【0002】[0002]

【従来の技術】鉄道用低圧ケーブルは、線路に沿って多
数設けられた設備や機器などに対する電力供給や、これ
らを制御するための信号電流の供給などのために敷設さ
れ、沿線のあらゆる設備に対して重要な役割を果してい
る。沿線の設備としては、例えば、踏み切りなどの信号
器・遮断機、ポイントに関係する装置、種々の監視装置
や制御機器などが挙げられる。
2. Description of the Related Art A low-voltage railway cable is laid to supply electric power to a large number of facilities and equipment provided along a track, and to supply a signal current for controlling these cables. Playing an important role. Examples of facilities along the railway line include traffic lights and circuit breakers such as railroad crossings, devices related to points, various monitoring devices, control devices, and the like.

【0003】鉄道用低圧ケーブルの被覆層(導線の外周
を被覆する有機高分子材料からなる絶縁体層)に、劣化
による絶縁不良などの不具合が発生すると、安全で安定
した車両の運転や、鉄道設備全体の運営に支障をきたす
恐れがある。このため、鉄道用低圧ケーブルに対して
は、一般の低圧ケーブルよりも高い頻度で、定期的に絶
縁性能試験が実施されている。
[0003] If a problem such as insulation failure due to deterioration occurs in a coating layer of a low-voltage cable for a railway (an insulating layer made of an organic polymer material covering the outer periphery of a conductor), a safe and stable operation of a vehicle or a railway There is a risk that the operation of the entire facility will be affected. For this reason, insulation performance tests are regularly performed on railway low-voltage cables at a higher frequency than general low-voltage cables.

【0004】従来、鉄道用低圧ケーブルに対する絶縁性
能試験では、ケーブルの相間(例えば、3相交流の各相
に対応するケーブル同士の間)あるいは対地の絶縁抵抗
を電気的に測定したり、超低周波電流を重畳通電して漏
洩成分を抽出することで絶縁性能を直接測定していた。
Conventionally, in an insulation performance test for a low-voltage railway cable, the insulation resistance between cables (for example, between cables corresponding to each phase of three-phase alternating current) or the ground is measured electrically, The insulation performance was directly measured by extracting a leakage component by superimposing a frequency current.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記のような
従来の診断方法では、測定の際に停電させることが必要
である。鉄道設備は、年間を通して24時間稼動状態に
あるため、検査員の安全上の問題や、劣化診断に対する
時間的制約が多い。このような限られた時間内において
ケーブルの劣化診断を正確に行なわねばならないため
に、検査員は厳しい検査作業を強いられていた。また、
測定のためには、電源設備など、大掛かりな設備が必要
であるという問題もあった。
However, in the conventional diagnostic method as described above, it is necessary to stop the power during the measurement. Since railway equipment is in operation for 24 hours a year, there are many safety problems for inspectors and time constraints for deterioration diagnosis. In order to accurately diagnose the deterioration of the cable within such a limited time, the inspector is required to perform strict inspection work. Also,
There is also a problem that a large-scale facility such as a power supply facility is required for the measurement.

【0006】上記問題点を解決すべく、本発明者等は、
先ず、超音波による劣化診断方法を鉄道用低圧ケーブル
に適用することによって、活線状態でのケーブルの診断
を試みた。しかしそこで、鉄道設備の保守現場における
超音波劣化診断の実施の形態をさらに検討したところ、
超音波劣化診断であっても、鉄道用途であるがために次
のような問題点があることがわかった。
In order to solve the above problems, the present inventors have
First, an attempt was made to diagnose a cable in a live state by applying a deterioration diagnosis method using ultrasonic waves to a low-voltage cable for railways. However, when further examining the embodiment of ultrasonic degradation diagnosis at the maintenance site of railway equipment,
It has been found that the ultrasonic degradation diagnosis has the following problems because it is used for railways.

【0007】列車の走行する線路・設備等のすぐ近く
あるいは内部で作業するため危険を伴い、長時間作業で
は作業員の安全確保が難しい。 上記の理由から保安要員を伴って診断作業するた
め、長時間になると人件費が高くなる。 鉄道線路は長距離にわたっており、特定の区間内でも
診断ポイントが非常に多く、1点の診断に時間をかける
ような低い効率の作業は好ましくない。 沿線の様々な環境のもとで超音波診断を行うには、特
定の温度への補正が必要であり、そのため、診断対象と
なるケーブルの表面温度を測定しなければならない。し
かし、電源・電装ボックスなどの制御箱や、トラフ(線
路に沿ったコンクリートの溝であって、電線が納まって
いる部分)内での診断などでは、診断のために制御箱や
トラフのふたを開けるが、その際に直射日光や外気など
によってケーブル温度が急速に変化する。従って、超音
波伝搬特性については迅速に行わないと実態の温度下で
の伝搬測定ができず、また、ケーブル表面温度について
も迅速に測定しないと実態の温度が得られず正確な温度
補正ができない。
[0007] Working near or inside train tracks and facilities is dangerous, and it is difficult to ensure the safety of workers during long hours of work. For the above reasons, the diagnosis work is performed with security personnel, so that the labor cost increases when the time is long. The railway track extends over a long distance, and the number of diagnostic points is extremely large even within a specific section. In order to perform ultrasonic diagnostics in various environments along the railway, correction to a specific temperature is required, and therefore, the surface temperature of a cable to be diagnosed must be measured. However, in a control box such as a power supply / electrical box, or in a trough (concrete groove along the railroad track where the electric wires are stored), the control box or trough lid must be closed for diagnosis. The cable temperature changes rapidly due to direct sunlight or outside air. Therefore, if the ultrasonic wave propagation characteristics are not promptly measured, the propagation measurement at the actual temperature cannot be performed. Also, if the cable surface temperature is not measured promptly, the actual temperature cannot be obtained and accurate temperature correction cannot be performed. .

【0008】以上のように、鉄道設備の保守現場におい
ては迅速な測定作業が必要であり、特に上記の問題に
対応するためには、被覆層の表面温度を迅速かつ正確に
測定しなければならないことがわかった。
As described above, a rapid measuring operation is required at the maintenance site of railway equipment, and in particular, in order to cope with the above problem, the surface temperature of the coating layer must be measured quickly and accurately. I understand.

【0009】本発明の課題は、上記問題を解決し、簡単
な設備で、鉄道用低圧ケーブルの劣化を正確にかつ迅速
に診断できる、鉄道設備の保守現場での使用に適した超
音波劣化診断装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to diagnose the deterioration of a low-voltage cable for railways accurately and quickly with a simple facility. It is to provide a device.

【0010】[0010]

【課題を解決するための手段】本発明の超音波劣化診断
装置は、次の特徴を有するものである。 (1)有機高分子材料からなる被覆層を有する鉄道設備
用低圧電線ケーブルを診断対象とし、超音波送信手段
と、超音波受信手段と、該送信手段から該受信手段へと
超音波が前記被覆層を伝搬するときの伝搬時間を測定す
る伝搬時間測定手段と、被覆層の表面温度を測定する温
度測定手段とを有し、該温度測定手段が、被覆層の表面
と接するための良熱伝導性部材と、該部材に取り付けら
れた温度センサとを有することを特徴とする、鉄道設備
用低圧電線ケーブルのための超音波劣化診断装置。
The ultrasonic degradation diagnosis apparatus of the present invention has the following features. (1) A low-voltage cable for railway equipment having a coating layer made of an organic polymer material is diagnosed, and an ultrasonic transmitting means, an ultrasonic receiving means, and an ultrasonic wave covering the transmitting means to the receiving means. A propagation time measuring means for measuring a propagation time when propagating through the layer; and a temperature measuring means for measuring a surface temperature of the coating layer, wherein the temperature measuring means has good heat conduction for contacting the surface of the coating layer. An ultrasonic degradation diagnostic apparatus for a low-voltage cable for railway equipment, comprising: a flexible member; and a temperature sensor attached to the member.

【0011】(2)良熱伝導性部材が、銅、銅合金、ア
ルミニウムまたはアルミニウム合金からなるものである
上記(1)記載の超音波劣化診断装置。
(2) The ultrasonic deterioration diagnosis apparatus according to the above (1), wherein the good heat conductive member is made of copper, copper alloy, aluminum or aluminum alloy.

【0012】(3)さらに、演算部を有し、該演算部
は、被覆層の材料に関して超音波伝搬特性と劣化診断特
性とが対応した劣化診断用データ群を有し、上記伝搬時
間を含む超音波伝搬特性を、温度測定手段で得た温度を
用いて温度補正し、前記劣化診断用データ群を用いて被
覆層の劣化診断特性を求める演算を行なうものである上
記(1)記載の超音波劣化診断装置。
(3) The computer further comprises an operation unit, the operation unit having a deterioration diagnosis data group corresponding to the ultrasonic wave propagation characteristics and the deterioration diagnosis characteristics with respect to the material of the coating layer, and including the propagation time. The supersonic wave according to the above (1), wherein the ultrasonic propagation characteristics are temperature-corrected using the temperature obtained by the temperature measuring means, and the calculation for obtaining the deterioration diagnosis characteristics of the coating layer is performed using the deterioration diagnosis data group. Sound wave deterioration diagnosis device.

【0013】(4)さらに、ケーブル保持具を有し、該
ケーブル保持具は、上記低圧電線ケーブルの保持に用い
得る溝を有し、かつ、上記超音波送信手段、超音波受信
手段、温度測定手段と、前記溝とによって低圧電線ケー
ブルを挟んで保持し得る構造であり、前記溝の表面に
は、保持すべき低圧電線ケーブルに対する滑り止めが設
けられている上記(1)記載の超音波劣化診断装置。
(4) A cable holder is provided, the cable holder having a groove which can be used for holding the low-voltage cable, and the ultrasonic transmitting means, the ultrasonic receiving means, and the temperature measuring device. The ultrasonic degradation according to the above (1), wherein the low-voltage cable is held between the means and the groove, and a non-slip for the low-voltage cable to be held is provided on the surface of the groove. Diagnostic device.

【0014】(5)上記滑り止めが、上記溝の表面に粗
面化加工が施されてなるものであるか、または、上記溝
の表面に弾性材料からなる層が設けられてなるものであ
る上記(4)記載の超音波劣化診断装置。
(5) The non-slip is obtained by subjecting a surface of the groove to a roughening process, or by providing a layer made of an elastic material on the surface of the groove. The ultrasonic deterioration diagnosis apparatus according to the above (4).

【0015】[0015]

【作用】超音波によるケーブルの劣化診断方法は、被覆
層を構成する有機高分子材料の劣化の程度に応じて、該
層の超音波の伝搬特性(伝搬速度、伝搬時間など)が変
化することを利用するものであり、伝搬特性を測定し、
その値から対応する劣化診断特性を求めるという方法で
ある。
According to the method for diagnosing deterioration of a cable using ultrasonic waves, the propagation characteristics (propagation speed, propagation time, etc.) of ultrasonic waves in the coating layer change according to the degree of deterioration of the organic polymer material constituting the coating layer. Is used to measure the propagation characteristics,
This is a method of obtaining a corresponding deterioration diagnosis characteristic from the value.

【0016】被覆層を伝搬する超音波の伝搬特性(伝搬
速度、伝搬時間など)は、温度依存性を示し、被覆層の
温度に大きく左右される。鉄道用低圧ケーブルのような
外気や日光などに曝されているものは、伝搬時間の測定
と共に、被覆層の表面温度を正確に測定し、前記伝搬時
間の測定結果を、標準の温度での値へと補正しなければ
ならない。しかも上記「発明が解決しようとする課題の
説明」で述べたように、温度測定は迅速でなければ正確
な測定が困難である。
The propagation characteristics (propagation speed, propagation time, etc.) of the ultrasonic wave propagating through the coating layer show temperature dependence and are greatly influenced by the temperature of the coating layer. Those exposed to the outside air or sunlight, such as low-voltage cables for railways, measure the propagation time, and accurately measure the surface temperature of the coating layer.The measurement result of the propagation time is a value at a standard temperature. Must be corrected. In addition, as described in the "Description of Problems to be Solved by the Invention", accurate temperature measurement is difficult unless temperature measurement is quick.

【0017】そのため本発明では、ケーブルの被覆層の
表面温度を測定し得る構成とすると共に、温度センサの
先端に良熱伝導性部材を設け、この部材を介して温度を
測定する構成とした。この良熱伝導性部材が被覆層の表
面温度に素早く到達するために、温度センサの温度検出
部は良熱伝導性部材を介して被覆層表面の温度を早く正
確に検知することができる。また、この良熱伝導性部材
が適度な熱容量を持つために、日射、風等の外界からの
温度擾乱が抑制される。即ち、測定対象に対する高い温
度応答性と、外界からの温度擾乱に対する測定の安定性
とを両立した温度測定が可能となっている。
Therefore, in the present invention, a configuration is adopted in which the surface temperature of the coating layer of the cable can be measured, a good heat conductive member is provided at the tip of the temperature sensor, and the temperature is measured via this member. Since the good heat conductive member quickly reaches the surface temperature of the coating layer, the temperature detection unit of the temperature sensor can quickly and accurately detect the temperature of the surface of the coating layer via the good heat conductive member. Further, since the good heat conductive member has an appropriate heat capacity, temperature disturbance from the outside such as solar radiation and wind is suppressed. That is, it is possible to perform temperature measurement that achieves both high temperature responsiveness to the object to be measured and stability of measurement against temperature disturbance from the outside.

【0018】またさらに、保守現場における検査員の測
定作業動作を観察したところ、診断装置をケーブルの被
覆層に接触させる際に接触が不安定になりがちであるた
め、測定値に大きなばらつきが生じ、診断結果の精度が
低くなっていることがわかった。本発明では、より好ま
しい態様として、滑り止めが設けられた溝を有する保持
具を用い、超音波送信手段、超音波受信手段、温度測定
手段などと、保持具の溝とによって、ケーブルを確実に
把持する構成とした。これによって、測定作業が容易に
なり、また診断装置(特に温度測定手段)とケーブルの
被覆層との接触状態は安定し、測定値のばらつきが小さ
くなった。
Further, when the operator inspects the measuring operation at the maintenance site, the contact tends to become unstable when the diagnostic device comes into contact with the coating layer of the cable. It was found that the accuracy of the diagnostic results was low. In the present invention, as a more preferred embodiment, using a holder having a groove provided with a non-slip, the ultrasonic transmission means, the ultrasonic receiving means, the temperature measuring means and the like, and the groove of the holder, the cable is securely secured. It was configured to be gripped. This facilitates the measurement operation, stabilizes the contact state between the diagnostic device (particularly, the temperature measuring means) and the coating layer of the cable, and reduces the dispersion of measured values.

【0019】[0019]

【発明の実施の形態】本発明による超音波劣化診断装置
は、図1に一例を示すように、超音波送信手段(以下
「送信手段」)1と、超音波受信手段(以下「受信手
段」)2と、伝搬時間測定手段(図1では制御部5に含
まれている)と、温度測定手段3とを少なくとも有す
る。送信手段1、受信手段2、温度測定手段3は、ケー
ブルCの被覆層C1の表面に接している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultrasonic degradation diagnostic apparatus according to the present invention, as shown in FIG. 1, shows an ultrasonic transmitting means (hereinafter referred to as "transmitting means") 1 and an ultrasonic receiving means (hereinafter referred to as "receiving means"). ) 2, a propagation time measuring unit (included in the control unit 5 in FIG. 1), and a temperature measuring unit 3. The transmitting means 1, the receiving means 2, and the temperature measuring means 3 are in contact with the surface of the coating layer C1 of the cable C.

【0020】送信手段1は、受信手段2に向かって超音
波Wを被覆層C1へ送り出し、受信手段2は、送信手段
1から所定距離だけ離れた位置でそれを受ける。伝搬時
間測定手段は、超音波Wが送信手段から受信手段まで伝
搬するのに要する時間(送信から受信までの時間)を測
定する。伝搬時間が得られると、そのままの形でまたは
他の伝搬特性の形に変換し、温度補正して、その値から
被覆層の劣化診断特性の値を求める。この温度補正を行
なうために、被覆層の表面温度を測定する温度測定手段
3が設けられている。温度測定手段3は、被覆層に直接
接触させるための良熱伝導性部材31と、それに取り付
けられた温度センサ32とを有する。このように構成し
た診断装置によって、上記作用の説明で述べたように、
伝搬特性の温度補正が正確にできるようになり、正しい
劣化診断が可能となる。
The transmitting means 1 sends out the ultrasonic wave W to the coating layer C1 toward the receiving means 2, and the receiving means 2 receives it at a position separated from the transmitting means 1 by a predetermined distance. The propagation time measuring means measures the time required for the ultrasonic wave W to propagate from the transmitting means to the receiving means (time from transmission to reception). When the propagation time is obtained, it is converted as it is or into another propagation characteristic form, the temperature is corrected, and the value of the deterioration diagnostic characteristic of the coating layer is obtained from the value. In order to perform this temperature correction, a temperature measuring means 3 for measuring the surface temperature of the coating layer is provided. The temperature measuring means 3 has a good heat conductive member 31 for making direct contact with the coating layer, and a temperature sensor 32 attached thereto. With the diagnostic device configured as described above, as described in the above description of the operation,
The temperature correction of the propagation characteristics can be accurately performed, and correct deterioration diagnosis can be performed.

【0021】診断対象となる鉄道用低圧ケーブルは、電
気設備技術基準に規定された直流750V以下、交流6
00V以下低電圧用の絶縁電線である。該ケーブルは、
図1に示すように、中心の導線C2の外側に、有機高分
子材料からなる絶縁体層を被覆層として有する。該有機
高分子材料としては、ポリエチレンやポリプロピレンな
どの熱可塑性樹脂、天然や合成によるゴム、熱可塑性エ
ラストマーなどが用いられている。
The low-voltage cable for railways to be diagnosed is DC 750 V or less and AC 6
It is an insulated wire for low voltage of 00V or less. The cable is
As shown in FIG. 1, an insulating layer made of an organic polymer material is provided as a coating layer outside the central conducting wire C2. As the organic polymer material, a thermoplastic resin such as polyethylene or polypropylene, a natural or synthetic rubber, a thermoplastic elastomer, or the like is used.

【0022】送信手段、受信手段は、被覆層を伝搬経路
として超音波の送信・受信を行なう装置である。送信手
段、受信手段は、被覆層に装着される先端のプローブ部
だけでなく、各々、超音波を送信、受信するためのシス
テム全体を指し、超音波振動子(送信)や超音波検出素
子(受信)などの変換素子の他に、電気エネルギーの供
給や増幅を行なう駆動回路系、該素子と被覆層との間に
介在するディレーチップなどが含まれる。
The transmitting means and the receiving means are devices for transmitting and receiving ultrasonic waves using the coating layer as a propagation path. The transmitting means and the receiving means refer not only to the probe part at the tip mounted on the coating layer but also to the entire system for transmitting and receiving ultrasonic waves, respectively, and include an ultrasonic transducer (transmission) and an ultrasonic detection element ( In addition to a conversion element such as reception, a drive circuit system for supplying and amplifying electric energy, a delay chip interposed between the element and the coating layer, and the like are included.

【0023】図1の例では、診断装置全体の構成が、被
覆層に装着されるプローブ部4と、それに有線(無線で
もよい)で接続された制御部5とに分離した構成となっ
ており、送信手段1、受信手段2、温度測定手段3も、
それぞれプローブ部と、制御部とに分離している。例え
ば、送信手段1では、ディレーチップ11と変換素子1
2はプローブ部4に含まれ、その駆動回路系は制御部5
に含まれている。しかし、このような分離型の態様だけ
でなく、駆動回路系とプローブ部とが一体となった態様
でもよく、各手段内での一体型・分離型は、各手段毎に
自由に選択してよい。また、図1の例では、好ましい操
作性の点から、送信手段1、受信手段2、温度測定手段
3の各プローブ部が合体し1つのプローブ部4となって
いるが、温度測定手段3だけを独立させる態様など、各
手段同士の一体化・分離化も、自由に選択してよい。
In the example shown in FIG. 1, the overall configuration of the diagnostic apparatus is separated into a probe unit 4 attached to the coating layer and a control unit 5 connected to the probe unit 4 by wire (or wirelessly). , Transmitting means 1, receiving means 2, temperature measuring means 3,
Each is separated into a probe unit and a control unit. For example, in the transmission means 1, the delay chip 11 and the conversion element 1
2 is included in the probe unit 4 and its driving circuit system is a control unit 5
Included in. However, not only such a separated type, but also an embodiment in which the drive circuit system and the probe unit are integrated, the integrated type and the separated type in each means can be freely selected for each means. Good. Further, in the example of FIG. 1, the probe units of the transmitting unit 1, the receiving unit 2, and the temperature measuring unit 3 are combined into one probe unit 4 in terms of preferable operability, but only the temperature measuring unit 3 is used. For example, the integration and separation of the respective means may be freely selected, such as an embodiment in which the means are independent.

【0024】超音波の送信、受信の方法は、被覆層表面
に垂直に内部方向へ超音波を発射し深層で反射してきた
波を同じ位置で受信する方法や、被覆層表面から斜め下
方に超音波を発射し深層で反射させて離れた位置で受信
する方法など、種々の公知の手法を用いてよい。なかで
も、ディレーチップを用いて超音波を被覆層の表面に沿
って受信手段まで直接伝搬させる方法は、外部から明確
に測定し得る〔時間、直線距離〕という量だけで伝搬速
度が算出できる方法である。以下に、送信手段、受信手
段、伝搬時間測定手段などについては、ディレーチップ
を用いて超音波を被覆層の表面に沿って伝搬させる態様
を代表として本発明を説明する。
The method of transmitting and receiving the ultrasonic wave includes a method of emitting an ultrasonic wave in an inward direction perpendicular to the surface of the coating layer and receiving a wave reflected at a deep layer at the same position, and a method of transmitting the ultrasonic wave obliquely downward from the surface of the coating layer. Various known techniques may be used, such as a method of emitting a sound wave, reflecting the sound wave in a deep layer, and receiving the sound wave at a remote position. Above all, the method of directly transmitting ultrasonic waves to the receiving means along the surface of the coating layer using a delay chip is a method in which the propagation velocity can be calculated only by the amount that can be clearly measured from the outside [time, linear distance]. It is. Hereinafter, the present invention will be described with respect to a transmitting unit, a receiving unit, a propagation time measuring unit, and the like, taking as an example a mode in which an ultrasonic wave is propagated along a surface of a coating layer using a delay chip.

【0025】図1に示すように、送信手段1では、超音
波発振子12が、ディレーチップ11を介して被覆層C
1の表面上に設置されている。受信手段2では、超音波
検出素子22が、ディレーチップ21を介して被覆層C
1の表面上に、送信手段1から所定の距離だけ離れた位
置に設置されている。この構成によって、送信手段1か
ら発信された超音波Wは、ディレーチップ11を介して
被覆層内に入る。ディレーチップ11は被覆層の材料に
対して超音波伝搬速度の点で選択された材料からなり傾
斜角度が選択されており、超音波はディレーチップと被
覆層との界面で伝搬方向を変え、被覆層の表面に沿って
(即ち被覆層の表面および表面付近を通って)受信手段
2の位置まで直線的に伝搬し、ディレーチップ21を介
して検出素子22で受信される。そのときの伝搬時間
は、伝搬時間測定手段によって測定される。
As shown in FIG. 1, in the transmitting means 1, the ultrasonic oscillator 12 is provided with a coating layer C via a delay chip 11.
1 surface. In the receiving means 2, the ultrasonic detecting element 22 is connected to the coating layer C via the delay chip 21.
1 is installed at a position separated from the transmitting means 1 by a predetermined distance. With this configuration, the ultrasonic wave W transmitted from the transmission unit 1 enters the coating layer via the delay chip 11. The delay chip 11 is made of a material selected in terms of the ultrasonic wave propagation velocity with respect to the material of the coating layer, and the inclination angle is selected. The ultrasonic wave changes the propagation direction at the interface between the delay chip and the coating layer, and The light propagates linearly along the surface of the layer (that is, through and near the surface of the coating layer) to the position of the receiving means 2, and is received by the detection element 22 via the delay chip 21. The propagation time at that time is measured by the propagation time measuring means.

【0026】ディレーチップは、変換素子と被覆層との
間に介在させるものであって、超音波の伝搬方向を屈折
させ、被覆層の表面に沿うように送り、また、表面に沿
って伝搬して来た超音波を受け入れることができるよう
に構成されたものである。ディレーチップの基本的な構
造は従来技術を参照してよい。
The delay chip is interposed between the conversion element and the coating layer. The delay chip refracts the propagation direction of the ultrasonic wave, sends the ultrasonic wave along the surface of the coating layer, and propagates the ultrasonic wave along the surface. It is configured to accept incoming ultrasonic waves. The basic structure of the delay chip may refer to the prior art.

【0027】超音波が伝搬する被覆層の表面および表面
付近は、被覆層の表面から3mm程度の深さまでの領域
が主となる。従って、被覆層が充分に厚い場合は問題な
いが、例えば厚みが1.5mmしかない場合、超音波の
一部は、被覆層の下層(ケーブルでは導体など、被覆層
下に隣接する次の層)との界面で反射して、あるいは該
界面と被覆層表面との間で反射を繰り返して、伝搬する
ことになり、正確な伝搬特性が測定できない場合もあ
る。そこで、より正確に測定するためには、例えば、被
覆層の表面および表面から1mm程度までの深さで超音
波を伝搬させるなど、下層に達しない深さで、送信手段
から受信手段へ直線的に伝搬させるのが好ましい。
The surface of the coating layer through which the ultrasonic waves propagate and the vicinity of the surface mainly include a region from the surface of the coating layer to a depth of about 3 mm. Therefore, although there is no problem when the coating layer is sufficiently thick, for example, when the thickness is only 1.5 mm, a part of the ultrasonic wave is transmitted to the next layer below the coating layer (such as a conductor in a cable). ), Or the reflection is repeated between the interface and the surface of the coating layer, so that the propagation characteristics may not be accurately measured. Therefore, in order to measure more accurately, for example, the ultrasonic wave is propagated to the surface of the coating layer and to a depth of about 1 mm from the surface, and a linear transmission from the transmitting means to the receiving means is performed at a depth that does not reach the lower layer. Preferably.

【0028】本発明で使用する超音波の周波数には制限
はない。なお、ポリエチレン、ポリ塩化ビニル、エチレ
ン・プロピレン共重合ゴム(EPM)など、ケーブルの
被覆層に多用される有機高分子材料では、概して超音波
の減衰が大きいので、減衰が比較的少ない0.1〜5M
Hz程度、特に0.5〜2MHz程度の周波数が好まし
い。
The frequency of the ultrasonic wave used in the present invention is not limited. In addition, since organic polymer materials, such as polyethylene, polyvinyl chloride, and ethylene-propylene copolymer rubber (EPM), which are frequently used for a coating layer of a cable, generally have a large attenuation of ultrasonic waves, the attenuation is relatively small. ~ 5M
A frequency of about Hz, particularly about 0.5 to 2 MHz is preferable.

【0029】伝搬特性は、被覆層の材料中に超音波を伝
搬させたときの伝搬状態を示す量であってかつ材料の劣
化と相関関係を有するものであればよい。例えば、特に
有用な伝搬時間や伝搬速度の他にも、超音波の受信感
度、超音波波形の周波数変化、超音波波形の形状変化、
超音波の減衰特性などが挙げられる。
The propagation characteristic may be an amount that indicates the propagation state when the ultrasonic wave is propagated through the material of the coating layer and has a correlation with the deterioration of the material. For example, in addition to particularly useful propagation time and propagation velocity, ultrasonic reception sensitivity, frequency change of ultrasonic waveform, shape change of ultrasonic waveform,
Ultrasonic attenuation characteristics and the like.

【0030】劣化診断特性は、被覆層に用いられる有機
高分子材料(以下「被覆層の材料」ともいう)の劣化度
を示し得る特性であって伝搬特性と相関関係を有するも
のであればよい。例えば、材料の表面反発硬度、表面針
入硬度、引張強さ、破断伸び率、弾性率、ヤング率、モ
ジュラス、誘電率、誘電正接、体積抵抗率、交流破壊電
圧強度、インパルス破壊電圧強度、捩じりトルクや曲げ
剛性など、機械的特性や電気的特性が挙げられる。特
に、破断伸び率は、ケーブルの被覆層の劣化度を顕著に
表し、伝搬特性とも強い相関関係を有するので、劣化診
断特性として好ましく用いられる。
The deterioration diagnostic characteristic is a characteristic that can indicate the degree of deterioration of the organic polymer material used for the coating layer (hereinafter, also referred to as “material of the coating layer”) and has a correlation with the propagation characteristic. . For example, surface rebound hardness, surface penetration hardness, tensile strength, elongation at break, elastic modulus, Young's modulus, modulus, dielectric constant, dielectric loss tangent, volume resistivity, AC breakdown voltage strength, impulse breakdown voltage strength, Mechanical characteristics and electrical characteristics such as torsion torque and bending rigidity are given. In particular, since the elongation at break significantly indicates the degree of deterioration of the coating layer of the cable and has a strong correlation with the propagation characteristics, it is preferably used as a deterioration diagnostic characteristic.

【0031】一般に、ケーブルの被覆層の破断伸び率が
50%に近づくと、振動や衝撃によりクラックが発生す
る傾向にあり、その結果外部からの水の侵入などにより
絶縁破壊を起こす可能性がある。従って、ケーブルの取
替は破断伸び率が50%程度となるのを目安にして行え
ば良いと考えられる。但し、劣化の指標の基準は適宜使
用者で決定しても良い。
In general, when the elongation at break of the coating layer of the cable approaches 50%, cracks tend to occur due to vibration or impact, and as a result, dielectric breakdown may occur due to invasion of water from the outside. . Therefore, it is considered that the replacement of the cable may be performed with reference to the elongation at break of about 50%. However, the criterion of the deterioration index may be appropriately determined by the user.

【0032】伝搬時間測定手段は、送信手段からは受信
手段までの伝搬時間を測定し得る装置であればよく、そ
の構成は限定されないが、図1の例のように、送信手段
から送信を開始したという信号を受け、受信手段から着
信したという信号を受けて、その間の時間をカウントし
伝搬時間とする演算が簡易で正確である。ディレーチッ
プの介在などで発生する細かい誤差は必要に応じて補正
すればよい。
The propagation time measuring means may be any device capable of measuring the propagation time from the transmitting means to the receiving means, and its configuration is not limited. However, as shown in the example of FIG. Receiving the signal indicating that the signal has been received, and receiving the signal indicating that the call has arrived from the receiving means, counting the time during that time and calculating the propagation time is simple and accurate. Minor errors that occur due to the presence of a delay chip may be corrected as needed.

【0033】温度測定手段は、被覆層の表面温度を測定
するものであり、図1に示すように、被覆層の表面に対
して良熱伝導性部材31を接触させ、この部材に温度セ
ンサ32を取り付けて、被覆層の表面温度を、良熱伝導
性部材31を介して測定する構成である。温度測定手段
は、温度を測定するためのシステム全体を指し、送信手
段などと同様、先端のプローブ部だけでなく、検出信号
の増幅を行なう増幅回路系などが含まれる。
The temperature measuring means is for measuring the surface temperature of the coating layer. As shown in FIG. 1, a good heat conductive member 31 is brought into contact with the surface of the coating layer. Is attached, and the surface temperature of the coating layer is measured via the good heat conductive member 31. The temperature measuring means refers to the entire system for measuring temperature, and includes not only a probe section at the tip but also an amplification circuit system for amplifying a detection signal, as in the case of the transmitting means.

【0034】良熱伝導性部材は、被覆層の表面温度によ
く応答し、熱を効率よく温度センサに伝達し得るもので
あればよく、単一の素材からなる板状や塊状の態様の他
に、高い熱伝導率を達成し得るように構成された構造体
であってもよい。本発明でいう良熱伝導性とは、常温付
近での熱伝導率が概ね100W/m・K以上であること
をいう。低コストで簡単に適度な熱容量を持つ部材に形
成し得る態様としては、一般に知られている良熱伝導性
の金属材料を用い、板状、塊状とする態様が好ましい。
そのような金属としては、銅、銅合金、アルミニウムま
たはアルミニウム合金が好ましいものとして挙げられ
る。前記板状の態様には、加工が容易で熱容量を面積で
簡単に調節できるという利点があり、一方、円柱状、角
柱状、円錐状、角錐状などの塊状の態様には、熱容量を
体積で調節でき、ケーブルとの接触面を小さくして全体
としてセンサを小型化できるという利点がある。
The good heat conductive member may be any material that responds well to the surface temperature of the coating layer and can efficiently transmit heat to the temperature sensor. In addition, the structure may be configured to achieve high thermal conductivity. Good thermal conductivity in the present invention means that the thermal conductivity near normal temperature is about 100 W / m · K or more. As a mode that can be easily formed at low cost into a member having an appropriate heat capacity, a mode in which a generally known metal material having good heat conductivity is used and a plate shape or a block shape is preferable.
Preferred such metals include copper, copper alloys, aluminum or aluminum alloys. The plate-like aspect has an advantage that processing is easy and the heat capacity can be easily adjusted by the area.On the other hand, the column-like, prismatic, conical, and pyramid-like massive aspects have the heat capacity by volume. There is an advantage that the sensor can be adjusted, the contact surface with the cable can be reduced, and the sensor can be downsized as a whole.

【0035】良熱伝導性部材を上記板状とする場合、例
えば板面が正方形の場合では大きさは2mm×2mm〜
10mm×10mm程度、板厚は0.1mm〜2mm程
度が好ましい。また、塊状とする場合、例えば円柱の場
合では、接触面の大きさは直径2mm〜10mm程度、
円柱の高さは2mm〜10mm程度が好ましい。熱容量
を調整するために、上記範囲を外れても問題はなく、ま
た、いかなる形状としてもよい。また、接触面はケーブ
ルに沿うよう湾曲面としてもよい。被覆層と良熱伝導性
部材との接触は、計測時だけの接触でも、恒久的な固定
であってもよい。
When the good heat conductive member has the above-mentioned plate shape, for example, when the plate surface is square, the size is 2 mm × 2 mm to
The thickness is preferably about 10 mm × 10 mm, and the thickness is preferably about 0.1 mm to 2 mm. Also, in the case of a lump, for example, in the case of a cylinder, the size of the contact surface is about 2 mm to 10 mm in diameter,
The height of the cylinder is preferably about 2 mm to 10 mm. To adjust the heat capacity, there is no problem even if it is out of the above range, and any shape may be used. Further, the contact surface may be a curved surface along the cable. The contact between the coating layer and the good heat conductive member may be a contact only at the time of measurement or a permanent fixation.

【0036】温度センサは、特に限定されず、公知の温
度測定センサをもちいてよい。例えば、熱電対、白金抵
抗測温体、サーミスタ等が挙げられる。上記のとおり、
必要な検出に必要な回路部は一体型でも分離型でもよ
い。
The temperature sensor is not particularly limited, and a known temperature measuring sensor may be used. For example, a thermocouple, a platinum resistance thermometer, a thermistor, and the like can be given. As mentioned above,
The circuit part necessary for the necessary detection may be of an integrated type or a separated type.

【0037】送信手段、受信手段、温度測定手段の各プ
ローブ部のケーブルに対する配置関係は限定されない
が、超音波を被覆層表面に沿って直線的に伝搬させるに
は、送信手段、受信手段をケーブルの長手方向に沿って
配置するのが好ましい。それらに対して、温度測定手段
は、超音波の伝搬の障害にならない程度の近傍に位置す
るのが好ましい。図1の例では、送信手段、受信手段、
温度測定手段は、ケーブルの長手方向に沿って一直線上
に配置されている。
The arrangement of the transmitting means, the receiving means, and the temperature measuring means with respect to the cable of each probe unit is not limited. However, in order to transmit ultrasonic waves linearly along the surface of the coating layer, the transmitting means and the receiving means must be connected by a cable. Are preferably arranged along the longitudinal direction. On the other hand, it is preferable that the temperature measuring means is located in such a vicinity as not to hinder the propagation of the ultrasonic wave. In the example of FIG. 1, the transmitting unit, the receiving unit,
The temperature measuring means is arranged in a straight line along the longitudinal direction of the cable.

【0038】上記作用の説明で述べたように、超音波に
よるケーブルの劣化診断方法は、伝搬特性の値から対応
する劣化診断特性を求めるという方法である。従って、
現場において、即座に劣化度の判定を下すには、ケーブ
ルの種類に応じて異なる種々の被覆層の有機高分子材料
について、伝搬特性と劣化診断特性との関係を予め求め
ておき、その場で伝搬特性から劣化診断特性に変換でき
るようにしておくべきである。この伝搬特性/診断特性
の変換は、相関グラフ等を用いた手作業でもよいが、被
覆層の種々の材料に関して伝搬特性と診断特性とが対応
した劣化診断用データ群を有する演算部を本発明の装置
に設け、伝搬特性から診断特性を自動的に求める構成と
するのが迅速で正確である。伝搬特性は手入力であって
もよいが、各手段と直結させる態様が好ましい。
As described in the above description of the operation, the method for diagnosing deterioration of a cable by ultrasonic waves is a method of obtaining a corresponding deterioration diagnosis characteristic from the value of the propagation characteristic. Therefore,
In order to immediately determine the degree of deterioration in the field, the relationship between the propagation characteristics and the deterioration diagnostic characteristics of the organic polymer materials of various coating layers that differ depending on the type of cable is determined in advance, and on the spot. It should be possible to convert from propagation characteristics to degradation diagnostic characteristics. Although the conversion of the propagation characteristics / diagnosis characteristics may be performed manually using a correlation graph or the like, the present invention employs an arithmetic unit having a deterioration diagnosis data group in which the propagation characteristics and the diagnosis characteristics correspond to various materials of the coating layer. It is quick and accurate to provide a configuration in which the diagnostic characteristics are automatically obtained from the propagation characteristics. The propagation characteristics may be manually input, but a mode in which the propagation characteristics are directly connected to each means is preferable.

【0039】演算部は、少なくとも伝搬特性を診断特性
に変換するものであるが、図1に示すように、送信手
段、受信手段、伝搬時間測定手段、温度測定手段をコン
トロールし、伝搬時間を求め、温度補正し、必要ならば
伝搬速度などの他の伝搬特性に変換し、劣化診断用デー
タ群から劣化診断特性を選びだすまでの作業を集中的に
行なう制御部そのものであってもよい。装置としてはコ
ンピュータが最適である。
The arithmetic unit converts at least the propagation characteristic into a diagnostic characteristic. As shown in FIG. 1, the operation unit controls the transmitting means, the receiving means, the propagation time measuring means, and the temperature measuring means to calculate the propagation time. Alternatively, the control unit itself may perform temperature correction, if necessary, conversion to another propagation characteristic such as a propagation speed, and intensively perform the operation of selecting the deterioration diagnosis characteristic from the deterioration diagnosis data group. A computer is most suitable as the device.

【0040】劣化診断用データ群は、変換用の実験式を
用いるような連続的なものでも、対応データが集合した
離散的なものでもよい。また、劣化診断用データ群は、
「伝搬特性」と「診断特性」とが2元で対応したものと
するだけではなく、これらに「時間の経過」の要素を加
え、「時間の経過」と「診断特性」と「伝搬特性」とが
3元で対応したデータ群としてもよい。またさらに他の
要素を加えて多元で対応したデータ群としてもよい。
The deterioration diagnosis data group may be a continuous data group using an empirical formula for conversion or a discrete data group obtained by collecting corresponding data. In addition, the deterioration diagnosis data group includes:
In addition to making the “propagation characteristic” and “diagnosis characteristic” correspond in a binary manner, an element of “elapse of time” is added to them, and “elapse of time”, “diagnosis characteristic”, and “propagation characteristic” May be a data group corresponding to the three elements. Further, the data group may be a multi-dimensional data group by adding other elements.

【0041】データ群に「時間の経過」を要素として加
えることによって、単に被覆層の機械的特性・電気的特
性の値の判定をすることだけでなく、伝搬特性の経時的
変化から診断特性の経時的変化を知ることができ、余寿
命(残存寿命)の推定など、時間の経過に関係する評価
を含めた総合的な診断が可能となる。特に、余寿命の推
定は、測定時点までの劣化ではなく、測定時点から後の
劣化の進行を診断するものであり、ケーブルなどの設備
には有用な劣化診断である。
By adding “elapse of time” as an element to the data group, it is possible not only to judge the values of the mechanical characteristics and the electric characteristics of the coating layer, but also to determine the diagnostic characteristics based on the temporal change of the propagation characteristics. It is possible to know the change with time, and it is possible to perform a comprehensive diagnosis including evaluation relating to the passage of time, such as estimation of the remaining life (remaining life). In particular, the estimation of the remaining life is not for deterioration up to the measurement time point, but for diagnosing the progress of deterioration after the measurement time point, and is a useful deterioration diagnosis for equipment such as cables.

【0042】上記作用の説明で述べたように、本発明で
は、保守現場における検査員の作業性を改善しかつ測定
を安定化するために、診断装置の先端部にケーブル保持
具を提供している。図2(a)はその一例であって、受
け部材7に溝6が設けられ、この溝6とプローブ部4と
によってケーブルCを挟んで保持する構成である。
As described in the above description of the operation, in the present invention, in order to improve the workability of the inspector at the maintenance site and stabilize the measurement, a cable holder is provided at the distal end of the diagnostic device. I have. FIG. 2A shows an example of such a structure, in which a groove 6 is provided in a receiving member 7, and the cable C is held between the groove 6 and the probe section 4 and held.

【0043】図2(a)に示すケーブル保持具のプロー
ブ部4の内部構造は、図1に示すものと同様である。プ
ローブ部4の接触面には、図2(b)に示すように、送
信手段、受信手段のディレーチップ11、12、温度測
定手段の良熱伝導性部材31が露出している。
The internal structure of the probe part 4 of the cable holder shown in FIG. 2A is the same as that shown in FIG. As shown in FIG. 2B, on the contact surface of the probe part 4, the delay chips 11, 12 of the transmitting means and the receiving means, and the good heat conductive member 31 of the temperature measuring means are exposed.

【0044】ケーブル保持具の溝6の表面には、保持す
べきケーブルに対する滑り止めを設け、ケーブルの保持
を確実にするのが好ましい。該滑り止めの態様は限定さ
れないが、例えば、溝の表面に、グルービング加工、ロ
ーレット加工などの各種粗面化加工を施す態様、溝の表
面にゴムなどの弾性材料からなる層を設ける態様などが
挙げられる。また、溝6を有する受け部材7全体の一部
または全部を弾性材料で作成してもよい。弾性材料から
なる溝面に上記粗面化加工を施すことも効果的である。
It is preferable that the surface of the groove 6 of the cable holder is provided with a non-slip for the cable to be held to ensure the holding of the cable. The mode of the non-slip is not limited, and examples thereof include a mode in which various surface roughening processes such as grooving and knurling are performed on the surface of the groove, and a mode in which a layer made of an elastic material such as rubber is provided on the surface of the groove. No. Further, a part or the whole of the receiving member 7 having the groove 6 may be made of an elastic material. It is also effective to apply the above roughening process to the groove surface made of an elastic material.

【0045】溝の断面形状はどのような形でも制限はな
いが、安定性や各種サイズの電線ケーブルの把持しやす
さの点でV字形またはU字形が望ましい。
There is no limitation on the cross-sectional shape of the groove, but a V-shape or a U-shape is preferable in terms of stability and ease of holding various sizes of electric cables.

【0046】ケーブル保持具全体の構造としては、図2
(a)に示すように、弾性体8の復帰力によってプロー
ブ部4と受け部材7とでケーブルを挟み込む構造が好ま
しい。これによって、送信手段、受信手段、温度センサ
を、ケーブルの被覆層表面に常に一定荷重で安定して接
触させることができる。
The structure of the entire cable holder is shown in FIG.
As shown in (a), a structure in which the cable is sandwiched between the probe unit 4 and the receiving member 7 by the return force of the elastic body 8 is preferable. Thus, the transmitting means, the receiving means, and the temperature sensor can be stably brought into constant contact with the surface of the coating layer of the cable with a constant load.

【0047】弾性体は、荷重を容易に設定できる点では
種々のバネが好ましいが、ゴムなどの弾性材料の塊状物
であってもよい。弾性体の復帰力は、圧縮、引っ張り、
捩じり、曲げなどのいずれの変位によるものであっても
よい。また、弾性体の力を利用してケーブルを挟み込む
機構に特に制限はない。図2(a)の態様では、2つの
レバーL1、L2を支点部9でリンク状に結合し、圧縮
コイルバネ8の力を作用させて、洗濯バサミの様にケー
ブルCを挟む構造となっている。
The elastic body is preferably made of various springs in that the load can be easily set, but may be a lump of an elastic material such as rubber. The return force of the elastic body is compressed, pulled,
Any displacement such as twisting or bending may be used. Further, there is no particular limitation on a mechanism for sandwiching the cable by using the force of the elastic body. 2A, the two levers L1 and L2 are connected in a link at a fulcrum 9, and the force of the compression coil spring 8 is applied to sandwich the cable C like a clothespin. .

【0048】被覆層の伝搬特性からその劣化度を求める
という超音波劣化診断の基本的な技術、被覆層を構成す
る有機高分子材料、伝搬特性と劣化診断特性との関係な
どについては、特開平7−35372号公報、特開平7
−35373号公報、特開平10−54827号公報、
特開平10−300731号公報、特開平11−146
07号公報を参照してよい。
The basic technology of ultrasonic deterioration diagnosis for obtaining the degree of deterioration from the propagation characteristics of the coating layer, the organic polymer material constituting the coating layer, the relationship between the propagation characteristics and the deterioration diagnosis characteristics, and the like are described in Japanese Patent Application Laid-Open No. H10-260,086. JP-A-7-35372, JP-A-Hei 7
JP-A-35373, JP-A-10-54827,
JP-A-10-30731, JP-A-11-146
07 publication may be referred to.

【0049】[0049]

【実施例】本実施例では、図2に示す態様のケーブル保
持具を有する超音波劣化診断装置を製作し、ケーブル保
持具の各部の仕様、即ち、良熱伝導性部材の材料、
良熱伝導性部材の形状、ケーブル保持具の溝の断面形
状、溝面の表面材料、溝面の表面に対する粗面化加
工を、種々に変化させて、ケーブルの被覆層表面の温度
測定の応答性、温度測定値の安定性、ケーブルの把持安
定性を調べた。また、比較例として、良熱伝導性部材を
除去したもの、良熱伝導性部材の代わりに熱伝導性の悪
い材料を用いたもの、溝面の表面材料が固く滑り止めの
無いものを製作した。
EXAMPLE In this example, an ultrasonic deterioration diagnosis apparatus having a cable holder of the embodiment shown in FIG. 2 was manufactured, and the specifications of each part of the cable holder, that is, the material of the good heat conductive member,
Response of temperature measurement on the surface of the coating layer of the cable by variously changing the shape of the good thermal conductive member, the cross-sectional shape of the groove of the cable holder, the surface material of the groove surface, and the surface roughening process for the groove surface The stability, the stability of the measured temperature value, and the gripping stability of the cable were examined. In addition, as comparative examples, those having the good heat conductive member removed, those using a material having poor heat conductivity instead of the good heat conductive member, and those having a non-slip surface material with a hard groove surface were manufactured. .

【0050】測定対象の鉄道用低圧ケーブルは、JIS
C 3342に定められる600V3心ビニル絶縁ビ
ニルシースケーブルVVR5.5mm2 であって、屋外
に敷設されたものである。測定時の気温は27℃であっ
た。
The low-voltage cable for railways to be measured is JIS
A 600 V 3-core vinyl insulated vinyl sheathed cable VVR 5.5 mm 2 defined in C3342, which is laid outdoors. The temperature at the time of measurement was 27 ° C.

【0051】温度測定手段の良熱伝導性部材の形状は、
塊状の一例として直径4mm、高さ4mmの円柱状のも
のと、外形5mm×5mm、厚さ1mmの板状のものを
用いた。温度センサには、白金抵抗測温体を使用した。
The shape of the good heat conductive member of the temperature measuring means is as follows.
As an example of a lump, a columnar shape having a diameter of 4 mm and a height of 4 mm, and a plate shape having an outer shape of 5 mm × 5 mm and a thickness of 1 mm were used. A platinum resistance temperature detector was used as the temperature sensor.

【0052】温度測定の応答性は、判定用の基準とする
ために別途設置した熱電対温度計の指示値と、温度測定
値が一致するまでの時間で評価した。熱電対温度計は、
測定点から30mm離れた被覆層表面に絶縁テープで固
定し、被覆層の正しい表面温度を示すよう、十分に長い
時間を経過させた。
The responsiveness of the temperature measurement was evaluated by the time until the measured value coincides with the indicated value of a thermocouple thermometer separately provided as a reference for determination. Thermocouple thermometer
It was fixed to the surface of the coating layer 30 mm away from the measurement point with an insulating tape, and a sufficiently long time had elapsed so as to show the correct surface temperature of the coating layer.

【0053】温度測定値の安定性は、温度測定値が熱電
対温度計の指示値と一致した後、1分間の温度変動幅で
評価した。
The stability of the measured temperature value was evaluated based on the temperature fluctuation width for one minute after the measured temperature value coincided with the indicated value of the thermocouple thermometer.

【0054】ケーブルの把持安定性は、鉛直方向および
水平方向に布設されたケーブルを、ケーブル保持具で把
持し、手を離したときに接触部にずれが生じるかどうか
を観察した。
The holding stability of the cable was evaluated by observing whether or not the contact portion was displaced when the cable laid in the vertical direction and the horizontal direction was held by the cable holder and the hand was released.

【0055】実施例および比較例として製作した診断装
置における、ケーブル保持具の仕様の変更内容を表1に
示す。表1中、良熱伝導性部材の材料を示す記号のう
ち、「Al合金」はJIS規定の展伸用アルミニウム合
金(6061)、「SUS」はJIS規定のステンレス
鋼(SUS304)、「黄銅」はJIS規定の60/4
0黄銅(C2801)、「PE」はポリエチレン、「P
VC」はポリ塩化ビニルを示す。また、溝表面に対する
粗面化加工では、「R」はローレット加工、「SB」は
サンドブラスト加工、「G」はグルービング加工を示
す。
Table 1 shows the changes in the specifications of the cable holders in the diagnostic devices manufactured as examples and comparative examples. In Table 1, among the symbols indicating the material of the good heat conductive member, "Al alloy" is an aluminum alloy for spreading (6061) specified by JIS, "SUS" is stainless steel (SUS304) specified by JIS, and "brass". Is 60/4 specified by JIS
0 brass (C2801), “PE” is polyethylene, “P”
"VC" indicates polyvinyl chloride. In the roughening process for the groove surface, “R” indicates knurling, “SB” indicates sandblasting, and “G” indicates grooving.

【0056】[0056]

【表1】 [Table 1]

【0057】実施例および比較例として製作したケーブ
ル保持具の評価を表2に示す。表2では、温度測定の応
答性については、応答に要する秒数を4段階に分け、1
0秒以内の応答を「◎」、15秒以内を「○」、30秒
以内を「△」、31秒以上を「×」で示している。ま
た、温度測定値の安定性については、温度変動幅を4段
階に分け、1℃以内の変動を「◎」、2℃以内を
「○」、4℃以内を「△」、5℃以上を「×」で示して
いる。また、ケーブルの把持安定性については、観察の
結果を4段階に分け、ずれ無しを「◎」、僅かなずれを
「○」、大きなずれを「△」、落下を「×」で示してい
る。
Table 2 shows the evaluations of the cable holders manufactured as examples and comparative examples. In Table 2, regarding the responsiveness of the temperature measurement, the number of seconds required for the response was divided into four stages,
A response within 0 seconds is indicated by “◎”, a response within 15 seconds is indicated by “○”, a response within 30 seconds is indicated by “△”, and a response over 31 seconds is indicated by “×”. For the stability of the measured temperature, the temperature fluctuation range is divided into four steps: “◎” for fluctuations within 1 ° C, “○” for fluctuations within 2 ° C, “△” for fluctuations within 4 ° C, It is indicated by "x". Regarding the gripping stability of the cable, the observation results were divided into four stages, and "無 し" indicates no deviation, "○" indicates a slight deviation, "△" indicates a large deviation, and "X" indicates a drop. .

【0058】[0058]

【表2】 [Table 2]

【0059】表2に示すとおり、良熱伝導性部材を設け
た本発明の装置の方が、設けない比較例よりも、ケーブ
ルの表面温度に迅速に応答しかつ安定していることが明
らかとなった。また、ケーブル保持具の操作性の点で
は、溝面に滑り止めを施した本実施例のものは、バネの
力でケーブルを挟むだけで、手を離しても温度センサが
被覆層の表面からずれることがなかった。このことか
ら、高所や狭隘な部分など、診断装置をケーブルに対し
て手で保持しにくい場所でも、正確な劣化診断が可能で
あることがわかった。
As shown in Table 2, it is clear that the device of the present invention provided with the good heat conductive member responds more quickly to the surface temperature of the cable and is more stable than the comparative example without the device. became. In addition, in terms of operability of the cable holder, in the case of the present embodiment in which the groove surface is non-slip, the temperature sensor can be removed from the surface of the coating layer even if the hand is released only by holding the cable by the force of the spring. There was no deviation. From this, it has been found that accurate degradation diagnosis is possible even in a place where the diagnostic device is difficult to hold by hand with respect to the cable, such as a high place or a narrow portion.

【0060】[0060]

【発明の効果】以上説明したとおり、本発明の超音波劣
化診断装置は、簡単な構成でありながら、鉄道用低圧ケ
ーブルの敷設現場において被覆層の表面温度を正確にか
つ迅速に測定できる。従って、測定される超音波伝搬特
性に対してその場で正確な温度補正が可能であり、ひい
ては正確でかつ迅速な劣化診断が可能である。また、本
発明の超音波劣化診断装置は、鉄道設備の保守現場での
使用に適したケーブル保持具を備えているから、検査員
の作業性を改善し、正確でかつ迅速な劣化診断が可能と
なっている。
As described above, the ultrasonic deterioration diagnosis apparatus of the present invention can accurately and quickly measure the surface temperature of the coating layer at the site where the low-voltage cable for railway is laid, while having a simple configuration. Accordingly, accurate temperature correction can be performed on the measured ultrasonic wave propagation characteristics on the spot, and accurate and quick deterioration diagnosis can be performed. In addition, since the ultrasonic deterioration diagnosis apparatus of the present invention is equipped with a cable holder suitable for use at the maintenance site of railway equipment, the workability of inspectors can be improved, and accurate and quick deterioration diagnosis can be performed. It has become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による超音波劣化診断装置の一構成例を
示す模式図である。
FIG. 1 is a schematic diagram showing an example of a configuration of an ultrasonic degradation diagnosis apparatus according to the present invention.

【図2】本発明おいて、超音波劣化診断装置に付与され
たケーブル保持具の一構成例を示す模式図である。図2
(a)は、ケーブルCを挟んだ状態を示している。ケー
ブルCは紙面と垂直に交わっている。図2(b)は、図
2(a)に示すケーブル保持具のプローブ部4の、ケー
ブルに対する接触面を見せた斜視図である。
FIG. 2 is a schematic view showing a configuration example of a cable holder provided to the ultrasonic degradation diagnosis apparatus according to the present invention. FIG.
(A) shows a state where the cable C is sandwiched. Cable C intersects perpendicularly with the paper. FIG. 2B is a perspective view showing a contact surface of the probe part 4 of the cable holder shown in FIG.

【符号の説明】[Explanation of symbols]

1 超音波送信手段 2 超音波受信手段 3 温度測定手段 31 良熱伝導性部材 32 温度センサ 4 プローブ部 5 制御部 C 鉄道用低圧ケーブル C1 被覆層 W 超音波 DESCRIPTION OF SYMBOLS 1 Ultrasonic transmitting means 2 Ultrasonic receiving means 3 Temperature measuring means 31 Good thermal conductive member 32 Temperature sensor 4 Probe part 5 Control part C Low-voltage cable for railway C1 Coating layer W Ultrasonic

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川辺 勝男 東京都渋谷区代々木二丁目二番二号 東日 本旅客鉄道株式会社内 Fターム(参考) 2G015 AA27 CA20 2G047 AA08 AB03 AB05 BC02 BC11 EA09 EA10 GA18  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Katsuo Kawabe 2-2-2 Yoyogi, Shibuya-ku, Tokyo East Japan Railway Company F-term (reference) 2G015 AA27 CA20 2G047 AA08 AB03 AB05 BC02 BC11 EA09 EA10 GA18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機高分子材料からなる被覆層を有する
鉄道設備用低圧電線ケーブルを診断対象とし、 超音波送信手段と、超音波受信手段と、該送信手段から
該受信手段へと超音波が前記被覆層を伝搬するときの伝
搬時間を測定する伝搬時間測定手段と、被覆層の表面温
度を測定する温度測定手段とを有し、 該温度測定手段が、被覆層の表面と接するための良熱伝
導性部材と、該部材に取り付けられた温度センサとを有
することを特徴とする、鉄道設備用低圧電線ケーブルの
ための超音波劣化診断装置。
An object of the present invention is to diagnose a low-voltage cable for railway equipment having a coating layer made of an organic polymer material, and to transmit ultrasonic waves to an ultrasonic transmitting unit, an ultrasonic receiving unit, and an ultrasonic wave from the transmitting unit to the receiving unit. A propagation time measuring means for measuring a propagation time when the light propagates through the coating layer; and a temperature measuring means for measuring a surface temperature of the coating layer, wherein the temperature measuring means is in good contact with the surface of the coating layer. An ultrasonic degradation diagnostic device for a low-voltage cable for railway equipment, comprising a heat conductive member and a temperature sensor attached to the member.
【請求項2】 良熱伝導性部材が、銅、銅合金、アルミ
ニウムまたはアルミニウム合金からなるものである請求
項1記載の超音波劣化診断装置。
2. The ultrasonic deterioration diagnosis apparatus according to claim 1, wherein the good thermal conductive member is made of copper, copper alloy, aluminum or aluminum alloy.
【請求項3】 さらに、演算部を有し、 該演算部は、被覆層の材料に関して超音波伝搬特性と劣
化診断特性とが対応した劣化診断用データ群を有し、上
記伝搬時間を含む超音波伝搬特性を、温度測定手段で得
た温度を用いて温度補正し、前記劣化診断用データ群を
用いて被覆層の劣化診断特性を求める演算を行なうもの
である請求項1記載の超音波劣化診断装置。
3. An operation unit, further comprising: a deterioration diagnosis data group in which the ultrasonic wave propagation characteristics and the deterioration diagnosis characteristics of the material of the coating layer correspond to each other. 2. The ultrasonic wave deterioration according to claim 1, wherein the sound wave propagation characteristics are temperature-corrected using the temperature obtained by the temperature measuring means, and the deterioration diagnosis characteristics of the coating layer are calculated using the deterioration diagnosis data group. Diagnostic device.
【請求項4】 さらに、ケーブル保持具を有し、 該ケーブル保持具は、上記低圧電線ケーブルの保持に用
い得る溝を有し、かつ、上記超音波送信手段、超音波受
信手段、温度測定手段と、前記溝とによって低圧電線ケ
ーブルを挟んで保持し得る構造であり、前記溝の表面に
は、保持すべき低圧電線ケーブルに対する滑り止めが設
けられている請求項1記載の超音波劣化診断装置。
4. A cable holder, the cable holder having a groove that can be used to hold the low-voltage cable, and the ultrasonic transmitting unit, the ultrasonic receiving unit, and the temperature measuring unit. The ultrasonic degradation diagnostic apparatus according to claim 1, wherein the low-voltage cable is held between the low-voltage cable and the groove, and a non-slip for the low-voltage cable to be held is provided on the surface of the groove. .
【請求項5】 上記滑り止めが、上記溝の表面に粗面化
加工が施されてなるものであるか、または、上記溝の表
面に弾性材料からなる層が設けられてなるものである請
求項4記載の超音波劣化診断装置。
5. The non-slip device according to claim 1, wherein the surface of the groove is roughened, or a layer made of an elastic material is provided on the surface of the groove. Item 7. The ultrasonic degradation diagnosis apparatus according to Item 4.
JP2000001671A 2000-01-07 2000-01-07 Ultrasonic degradation diagnostic equipment for low-voltage cable for railway equipment Expired - Fee Related JP3725747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000001671A JP3725747B2 (en) 2000-01-07 2000-01-07 Ultrasonic degradation diagnostic equipment for low-voltage cable for railway equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000001671A JP3725747B2 (en) 2000-01-07 2000-01-07 Ultrasonic degradation diagnostic equipment for low-voltage cable for railway equipment

Publications (2)

Publication Number Publication Date
JP2001194350A true JP2001194350A (en) 2001-07-19
JP3725747B2 JP3725747B2 (en) 2005-12-14

Family

ID=18530872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000001671A Expired - Fee Related JP3725747B2 (en) 2000-01-07 2000-01-07 Ultrasonic degradation diagnostic equipment for low-voltage cable for railway equipment

Country Status (1)

Country Link
JP (1) JP3725747B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103995056A (en) * 2014-05-14 2014-08-20 国核电站运行服务技术有限公司 Axial acoustic velocity measurement clamp and device for cable sheath
JP2019025606A (en) * 2017-07-31 2019-02-21 ブラザー工業株式会社 Tool holding arm and machine tool
CN112313609A (en) * 2018-06-20 2021-02-02 华为技术有限公司 Method and apparatus for integrating swipe and touch on input device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633392B (en) * 2018-12-30 2021-08-20 国网北京市电力公司 Transformer insulation test method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163943U (en) * 1987-04-15 1988-10-26
JPH105123A (en) * 1996-06-26 1998-01-13 Toshiba Home Technol Corp Rice cooker
JPH1064653A (en) * 1996-08-23 1998-03-06 Sumitomo Wiring Syst Ltd Solder type link device for coated wire
JPH11271288A (en) * 1998-03-23 1999-10-05 Mitsubishi Cable Ind Ltd Device for ultrasonic measurement
JPH11344475A (en) * 1998-06-03 1999-12-14 Mitsubishi Cable Ind Ltd Method for diagnosing deterioration of coated cable and method for estimating remaining life thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163943U (en) * 1987-04-15 1988-10-26
JPH105123A (en) * 1996-06-26 1998-01-13 Toshiba Home Technol Corp Rice cooker
JPH1064653A (en) * 1996-08-23 1998-03-06 Sumitomo Wiring Syst Ltd Solder type link device for coated wire
JPH11271288A (en) * 1998-03-23 1999-10-05 Mitsubishi Cable Ind Ltd Device for ultrasonic measurement
JPH11344475A (en) * 1998-06-03 1999-12-14 Mitsubishi Cable Ind Ltd Method for diagnosing deterioration of coated cable and method for estimating remaining life thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103995056A (en) * 2014-05-14 2014-08-20 国核电站运行服务技术有限公司 Axial acoustic velocity measurement clamp and device for cable sheath
JP2019025606A (en) * 2017-07-31 2019-02-21 ブラザー工業株式会社 Tool holding arm and machine tool
JP7037295B2 (en) 2017-07-31 2022-03-16 ブラザー工業株式会社 Tool holding arm and machine tool
CN112313609A (en) * 2018-06-20 2021-02-02 华为技术有限公司 Method and apparatus for integrating swipe and touch on input device

Also Published As

Publication number Publication date
JP3725747B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
JP5346472B2 (en) Method and system for passively detecting and locating wire harness defects
EP2427758B1 (en) Non-contact acoustic signal propagation property evaluation of synthetic fiber rope
US20090043516A1 (en) Method and apparatus for detecting damage in armor structures
JP2001141683A (en) Method and apparatus for monitoring crack
JP2004004003A (en) Device for detecting partial discharge from power apparatus utilizing radiated electronic waves
US6450036B1 (en) Method and device for diagnosing deterioration of an article having at least a covering layer organic polymer material
KR20100022785A (en) System and method for measuaring partial discharge for power cable
Majchrzak et al. Application of the acoustic emission method for diagnosis in on-load tap changer
JP2010085366A (en) Apparatus for diagnosing abnormality in insulation of high-voltage electric instrument
JP2010190626A (en) Device and method for diagnosis of partial discharge deterioration
JP2001194350A (en) Ultrasonic degradation diagnostic apparatus for low voltage electric cable for railway facilities
JPH095175A (en) Stress measuring sensor
CN117031339A (en) Multi-channel battery health monitoring system and method
CN101303381B (en) Systems, methods, and apparatus for measuring capacitance in stator component
JP2003107030A (en) Crack detection system
KR100710662B1 (en) Fatigue intensity monitorring system of construction
JP2008064580A (en) Deterioration diagnosis method of electrical apparatus insulation material
CN114062860A (en) Partial discharge detection device for transformer and control method
JP2003185643A (en) Crack detecting system
CN208688452U (en) Cable fault detection device based on ultrasonic transducer
JP3081734B2 (en) Degradation diagnosis device for cable coating material
US20180210024A1 (en) Systems, methods and patches for monitoring a structural health of a connector in overhead transmission lines
CN111624445A (en) Partial discharge detection method and system based on infrared temperature measurement sensor
CN108775880A (en) Cable fault detection device based on ultrasonic transducer and application method
JP2004333181A (en) Method for detecting crack width in concrete structure, and method for monitoring crack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees