JP3725678B2 - Microwave heating device - Google Patents

Microwave heating device Download PDF

Info

Publication number
JP3725678B2
JP3725678B2 JP27437497A JP27437497A JP3725678B2 JP 3725678 B2 JP3725678 B2 JP 3725678B2 JP 27437497 A JP27437497 A JP 27437497A JP 27437497 A JP27437497 A JP 27437497A JP 3725678 B2 JP3725678 B2 JP 3725678B2
Authority
JP
Japan
Prior art keywords
microwave heating
heated
circular waveguide
microwave
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27437497A
Other languages
Japanese (ja)
Other versions
JPH11111446A (en
Inventor
中 恒 男 村
島 雅 和 豊
藤 洋 一 後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Mechatronics Corp
Original Assignee
Shibaura Mechatronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Mechatronics Corp filed Critical Shibaura Mechatronics Corp
Priority to JP27437497A priority Critical patent/JP3725678B2/en
Publication of JPH11111446A publication Critical patent/JPH11111446A/en
Application granted granted Critical
Publication of JP3725678B2 publication Critical patent/JP3725678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はマイクロ波加熱装置に係り、とりわけ糸状の被加熱物を加熱するマイクロ波加熱装置に関する。
【0002】
【従来の技術】
従来から、糸状の被加熱物を加熱するための装置としてマイクロ波加熱装置が用いられている。図6(a)(b)に従来のマイクロ波加熱装置の一例を示す。ここで、図6(a)は従来のマイクロ波加熱装置を示す全体概略図、図6(b)は図6(a)に示すマイクロ波加熱装置のA−A線についての断面図である。
【0003】
図6(a)に示すように、マイクロ波加熱装置は、マイクロ波を発生するマイクロ波発振機1と、糸状の被加熱物7にマイクロ波を照射する定在波導波管形マイクロ波加熱炉6とを備え、マイクロ波発振機1と定在波導波管形マイクロ波加熱炉6との間にはアイソレータ2、パワーモニタ3、整合器4および接続導波管5が設けられている。なお、パワーモニタ3にはモニタされた値を表示するための指示計3aが接続され、また定在波導波管形マイクロ波加熱炉6には糸状の被加熱物7を通すためのシールド筒6a,6aが設けられている。
【0004】
また、定在波導波管形マイクロ波加熱炉6のうちシールド筒6a,6aが設けられた部分の電界分布は図6(b)に示すようになっており、糸状の被加熱物7はこのような電界Eの最大強度の部分を通過するようになっている。
【0005】
ここで、このようなマイクロ波加熱装置により糸状の被加熱物7を加熱および乾燥させる場合には、定在波導波管形マイクロ波加熱炉6内に糸状の被加熱物7をセットし、定在波導波管形マイクロ波加熱炉6内にて糸状の被加熱物7をシールド筒6a,6aの延在方向に沿って所定速度で走行させる。一方、この状態で、マイクロ波発振機1に電源を印加してマイクロ波を発生させ、このマイクロ波をアイソレータ2、パワーモニタ3、整合器4および接続導波管5を介して定在波導波管形マイクロ波加熱炉6に供給する。これにより、走行中の糸状の被加熱物7は、定在波導波管形マイクロ波加熱炉6からマイクロ波エネルギーを吸収し、発熱によって所定の乾燥がなされる。
【0006】
【発明が解決しようとする課題】
上述したように、従来のマイクロ波加熱装置においては、図6(a)(b)に示すように、定在波導波管形マイクロ波加熱炉6内に形成された定在波(電界E)の最大強度の部分に糸状の被加熱物7を通して走行させることにより、この走行中の糸状の被加熱物7を加熱および乾燥させている。
【0007】
しかしながら、従来のマイクロ波加熱装置では、図6(b)に示すように、定在波導波管形マイクロ波加熱炉6の構造上、糸状の被加熱物7の走行経路に形成される定在波(電界E)の範囲が限られるので、糸状の被加熱物7がマイクロ波エネルギーを十分に吸収することができないという問題がある。
【0008】
また、従来のマイクロ波加熱装置では、定在波導波管形マイクロ波加熱炉6内にて複数の糸状の被加熱物7を一度に走行させて加熱および乾燥させるような場合に、定在波導波管形マイクロ波加熱炉6内にて複数の糸状の被加熱物7同士が互いに干渉しやすいので、複数の糸状の被加熱物7を一度に加熱および乾燥させることが難しいという問題がある。
【0009】
本発明はこのような点を考慮してなされたものであり、糸状の被加熱物を効率良く加熱することができるマイクロ波加熱装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、マイクロ波を発生するマイクロ波発振機と、前記マイクロ波発振機に接続導波管を介して接続されたマイクロ波加熱炉とを備え、前記マイクロ波加熱炉は管状部と、この管状部の両端に設けられた一対の蓋部とを有する円形導波管からなり、前記円形導波管の前記各蓋部の中央部分近傍には糸状の被加熱物を通すとともに前記円形導波管内における前記糸状の被加熱物の位置決めを行う複数の孔が設けられ、前記各孔は前記各蓋部の中央部分近傍の所定径の円周上に所定ピッチで配置されていることを特徴とするマイクロ波加熱装置を提供する。
【0011】
また本発明は、マイクロ波を発生するマイクロ波発振機と、前記マイクロ波発振機に接続導波管を介して接続されたマイクロ波加熱炉とを備え、前記マイクロ波加熱炉は管状部と、この管状部の両端に設けられた一対の蓋部とを有する円形導波管からなり、前記円形導波管の前記各蓋部はその中央部分近傍に前記各蓋部を貫通する開口部を有し、この各開口部には糸状の被加熱物を通すとともに前記円形導波管内における前記糸状の被加熱物の位置決めを行う複数の孔が設けられたアダプタが取り付けられ、前記各孔は前記各アダプタの所定径の円周上に所定ピッチで配置されていることを特徴とするマイクロ波加熱装置を提供する。
【0012】
本発明によれば、円形導波管の一対の蓋部またはアダプタに設けられた孔を通して糸状の被加熱物を円形導波管内にて管軸方向に沿って走行させるので、糸状の被加熱物が通過するマイクロ波の範囲を従来の定在波導波管形マイクロ波加熱炉に比べて大きくとることができ、このため糸状の被加熱物にマイクロ波エネルギーを十分に吸収させることができる。また、円形導波管の一対の蓋部またはアダプタに設けられた孔に糸状の被加熱物を通すので、円形導波管内における糸状の被加熱物の位置決めを容易に行うことができ、このため糸状の被加熱物の加熱作業を効率良く行うことができる。さらに、複数の糸状の被加熱物のそれぞれに対応して各蓋部または各アダプタに、当該各蓋部または各アダプタの中央部分近傍の所定径の円周上に所定ピッチで配置された複数の孔を設けるようにすれば、複数の糸状の被加熱物同士の干渉を効果的に防止することができるので、複数の糸状の被加熱物を一度に加熱および乾燥させることも可能となる。
【0013】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。図1乃至図3は本発明によるマイクロ波加熱装置の一実施の形態を示す図である。
【0014】
まず、図1により、マイクロ波加熱装置の全体について説明する。図1に示すように、マイクロ波加熱装置は、マイクロ波を発生するマイクロ波発振機1と、糸状の被加熱物7にマイクロ波を照射する円形導波管形マイクロ波加熱炉8とを備え、マイクロ波発振機1と円形導波管形マイクロ波加熱炉8との間にはアイソレータ2、パワーモニタ3、整合器4および接続導波管5が設けられている。
【0015】
ここで、アイソレータ2は円形導波管形マイクロ波加熱炉8からの反射エネルギーを吸収してマイクロ波発振機1を保護するためのものであり、パワーモニタ3は入射エネルギーおよび反射エネルギーをモニタするためのものである。なおパワーモニタ3には、モニタされた値を表示するための指示計3aが接続されている。また、整合器4はマイクロ波発振機1と円形導波管形マイクロ波加熱炉8とのマッチングを図りマイクロ波エネルギーを有効利用するためのものである。
【0016】
次に、図1および図2により、円形導波管形マイクロ波加熱炉8の詳細について説明する。ここで、図2は図1に示す円形導波管形マイクロ波加熱炉8の右側面図である。
【0017】
図1および図2に示すように、円形導波管形マイクロ波加熱炉8は、管状部9と、この管状部9の両端に設けられた一対の蓋部10,10とを有している。また図2に示すように、各蓋部10の中央部分近傍には糸状の被加熱物7を通すとともに円形導波管形マイクロ波加熱炉8内における糸状の被加熱物7の位置決めを行う複数の孔10a,…,10aが設けられている。なお各孔10aは、各蓋部10の中央部分近傍の所定径の円周上に所定ピッチで配置されている。
【0018】
なお、円形導波管形マイクロ波加熱炉8内には、伝送モードがT 01モードの場合に図3(a)(b)に示すような電磁界が形成されており、各蓋部10に設けられた複数の孔10a,…,10aのそれぞれから通された複数の糸状の被加熱物7は、このような高い強度の電界Eが周期的に現れる管軸T近傍を通過するようになっている。
【0019】
次に、このような構成からなる本実施の形態の作用について説明する。
【0020】
まず、円形導波管形マイクロ波加熱炉8の一対の蓋部10,10に設けられた複数の孔10a,…,10aのそれぞれに糸状の被加熱物7を通して円形導波管形マイクロ波加熱炉8内に複数の糸状の被加熱物7をセットし、円形導波管形マイクロ波加熱炉8内にて複数の糸状の被加熱物7を管軸方向(T)に沿って所定速度で走行させる。一方、この状態で、マイクロ波発振機1に電源を印加してマイクロ波を発生させ、このマイクロ波をアイソレータ2、パワーモニタ3、整合器4および接続導波管5を介して円形導波管形マイクロ波加熱炉8に供給する。これにより、走行中の糸状の被加熱物7は、円形導波管形マイクロ波加熱炉8の管軸T近傍からマイクロ波エネルギーを吸収し、発熱によって所定の乾燥がなされる。
【0021】
このように本実施の形態によれば、円形導波管形マイクロ波加熱炉8の一対の蓋部10,10に設けられた複数の孔10a,…,10aを通して複数の糸状の被加熱物7を円形導波管形マイクロ波加熱炉8内にて管軸方向(T)に沿って走行させるので、糸状の被加熱物7が通過する電界Eの範囲を従来の定在波導波管形マイクロ波加熱炉に比べて大きくとることができ、このため糸状の被加熱物7にマイクロ波エネルギーを十分に吸収させることができる。
【0022】
また本実施の形態によれば、円形導波管形マイクロ波加熱炉8の各蓋部10,10の中央部分近傍の所定径の円周上に所定ピッチで配置された複数の孔10a,…,10aのそれぞれに糸状の被加熱物7を通すので、円形導波管形マイクロ波加熱炉8内における糸状の被加熱物7の位置決めを容易に行うことができるとともに、円形導波管形マイクロ波加熱炉8内における複数の糸状の被加熱物7同士の干渉を効果的に防止することができる。
【0023】
次に、図4および図5により、本発明によるマイクロ波加熱装置の別の実施の形態について説明する。ここで、図4は図1および図2に示す円形導波管形マイクロ波加熱炉の変形例を示す図、図5は図4に示す円形導波管形マイクロ波加熱炉の蓋部の一部拡大断面図である。
【0024】
図4および図5に示すように、円形導波管形マイクロ波加熱炉8は、管状部9と、この管状部9の両端に設けられた一対の蓋部10,10とを有している。なお図4および図5においては、円形導波管形マイクロ波加熱炉8の一方の端部のみが示されているが、他方の端部も同様の構造となっている。
【0025】
ここで、管状部9および各蓋部10は管軸方向(T)に沿って2つの部分に分割されている。すなわち、管状部9は第1管状部分9bと第2管状部分9cとに分割され、また各蓋部10は第1蓋部分10bと第2蓋部分10cとに分割されている。なお、第1管状部分9bには接続導波管5および第1蓋部分10b,10bが固定的に接続され、また第2管状部分9cには第2蓋部分10c,10cが固定的に接続されている。なお、各蓋部10の第1蓋部分10bと第2蓋部分10cとはヒンジ13により揺動自在に接続されている。
【0026】
また図4および図5に示すように、円形導波管形マイクロ波加熱炉8の各蓋部10を構成する第1蓋部分10bおよび第2蓋部分10cにはそれぞれ半円状の開口部11b,11cが設けられている。そして、第1蓋部分10bおよび第2蓋部分10cが接合されることにより形成された完全な円状の開口部11には、糸状の被加熱物7を通すための複数の孔12aが設けられたアダプタ12が図5に示すような状態で取り付けられる。なお、各孔12aはアダプタ12の所定径の円周上に所定ピッチで配置されている。
【0027】
このように本発明の別の実施の形態によれば、管状部9および各蓋部10が管軸方向(T)の所定断面に沿って2つの部分に分割可能となっているので、図4に示すように円形導波管形マイクロ波加熱炉8が2つの部分に分割された状態で糸状の被加熱物7を容易にセットすることができる。なお、管状部9および各蓋部10のこのような構成は、図1乃至図3に示す実施の形態においても同様に適用することができる。
【0028】
また本発明の別の実施の形態によれば、各蓋部10の中央部分近傍に開口部11が設けられ、この各開口部11には糸状の被加熱物7を通すとともに円形導波管形マイクロ波加熱炉8内における糸状の被加熱物7の位置決めを行う複数の孔12a,…,12aが設けられたアダプタ12が取り付けられるようになっているので、アダプタ12を蓋部10とは別のテフロン等の材料から作製することができ、このため孔12aと接触する糸状の被加熱物7の損傷を最小限に抑えることができる。
【0029】
なお、上述した各実施の形態においては、糸状の被加熱物7を通すための複数の孔10a,…,10aまたは12a,…,12aを蓋部10またはアダプタ12の所定径の円周上に所定ピッチで配置しているが、複数の孔10a,…,10aまたは12a,…,12aの配置の仕方はこれに限定されるものではなく、円形導波管形マイクロ波加熱炉8内において複数の糸状の被加熱物7同士の干渉を防止できれば、これ以外の各種の配置の仕方を採用することができる。
【0030】
【発明の効果】
以上説明したように本発明によれば、糸状の被加熱物が通過するマイクロ波の範囲を従来の定在波導波管形マイクロ波加熱炉に比べて大きくとることができるので、糸状の被加熱物にマイクロ波エネルギーを十分に吸収させることができる。また、円形導波管内における糸状の被加熱物の位置決めを容易に行うことができるので、糸状の被加熱物の加熱作業を効率良く行うことができる。
【図面の簡単な説明】
【図1】本発明によるマイクロ波加熱装置の一実施の形態を示す全体概略図。
【図2】図1に示すマイクロ波加熱装置の円形導波管形マイクロ波加熱炉の右側面図。
【図3】円形導波管形マイクロ波加熱炉内に形成される電磁界分布を示す図。
【図4】円形導波管形マイクロ波加熱炉の変形例を示す図。
【図5】図4に示す円形導波管形マイクロ波加熱炉の一部拡大断面図。
【図6】従来のマイクロ波加熱装置を示す図。
【符号の説明】
1 マイクロ波発振機
5 接続導波管
7 糸状の被加熱物
8 円形導波管形マイクロ波加熱炉
9 管状部
10 蓋部
10a,12a 孔
11 開口部
12 アダプタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microwave heating apparatus, and more particularly to a microwave heating apparatus that heats a filamentous object to be heated.
[0002]
[Prior art]
Conventionally, a microwave heating apparatus has been used as an apparatus for heating a filamentous object to be heated. An example of the conventional microwave heating apparatus is shown to Fig.6 (a) (b). Here, FIG. 6A is an overall schematic diagram showing a conventional microwave heating apparatus, and FIG. 6B is a cross-sectional view taken along the line AA of the microwave heating apparatus shown in FIG.
[0003]
As shown in FIG. 6A, the microwave heating apparatus includes a microwave oscillator 1 that generates microwaves, and a standing wave waveguide type microwave heating furnace that irradiates microwaves to a filamentous object 7 to be heated. 6, and an isolator 2, a power monitor 3, a matching unit 4, and a connection waveguide 5 are provided between the microwave oscillator 1 and the standing wave waveguide type microwave heating furnace 6. The power monitor 3 is connected to an indicator 3a for displaying the monitored value, and the standing wave waveguide type microwave heating furnace 6 is connected to a shield tube 6a for passing the filamentous object 7 to be heated. , 6a are provided.
[0004]
In addition, the electric field distribution of the portion of the standing wave waveguide type microwave heating furnace 6 where the shield cylinders 6a and 6a are provided is as shown in FIG. 6 (b). It passes through the maximum intensity portion of the electric field E.
[0005]
Here, when heating and drying the filamentous object 7 by using such a microwave heating apparatus, the filamentous object 7 is set in the standing wave waveguide type microwave heating furnace 6 and fixed. In the standing wave waveguide type microwave heating furnace 6, the filamentous object 7 is run at a predetermined speed along the extending direction of the shield cylinders 6a, 6a. On the other hand, in this state, a power source is applied to the microwave oscillator 1 to generate a microwave, and this microwave is guided through the isolator 2, the power monitor 3, the matching unit 4 and the connection waveguide 5. It supplies to the tubular microwave heating furnace 6. As a result, the filamentous heated object 7 that is running absorbs microwave energy from the standing wave waveguide type microwave heating furnace 6 and is dried by heat generation.
[0006]
[Problems to be solved by the invention]
As described above, in the conventional microwave heating apparatus, as shown in FIGS. 6A and 6B, the standing wave (electric field E) formed in the standing wave waveguide type microwave heating furnace 6 is used. The thread-like heated object 7 that is running is heated and dried by running through the thread-like heated object 7 to the portion of the maximum strength of.
[0007]
However, in the conventional microwave heating apparatus, as shown in FIG. 6B, due to the structure of the standing wave waveguide type microwave heating furnace 6, the standing is formed in the traveling path of the filamentous object 7 to be heated. Since the range of the wave (electric field E) is limited, there is a problem that the filamentous object to be heated 7 cannot sufficiently absorb the microwave energy.
[0008]
Further, in the conventional microwave heating apparatus, when a plurality of filamentous objects to be heated 7 are run at once in the standing wave waveguide microwave heating furnace 6 and heated and dried, the standing wave guide is used. In the wave tube type microwave heating furnace 6, the plurality of thread-like objects to be heated 7 easily interfere with each other, so that there is a problem that it is difficult to heat and dry the plurality of thread-like objects to be heated 7 at a time.
[0009]
The present invention has been made in consideration of such points, and an object of the present invention is to provide a microwave heating apparatus that can efficiently heat a filament-shaped object to be heated.
[0010]
[Means for Solving the Problems]
The present invention includes a microwave oscillator that generates a microwave, and a microwave heating furnace connected to the microwave oscillator via a connection waveguide, the microwave heating furnace including a tubular portion, A circular waveguide having a pair of lid portions provided at both ends of the tubular portion, and a thread-like object to be heated is passed near the central portion of each lid portion of the circular waveguide and the circular waveguide is provided. A plurality of holes for positioning the filamentous object to be heated in a pipe are provided , and the holes are arranged at a predetermined pitch on a circumference of a predetermined diameter in the vicinity of a central portion of each lid portion. A microwave heating apparatus is provided.
[0011]
Further, the present invention comprises a microwave oscillator for generating a microwave, and a microwave heating furnace connected to the microwave oscillator via a connection waveguide, the microwave heating furnace having a tubular portion, The circular waveguide has a pair of lids provided at both ends of the tubular portion, and each lid portion of the circular waveguide has an opening that penetrates each lid portion in the vicinity of the center portion thereof. and, this in each opening is attached the circular plurality of holes for positioning the object to be heated of the thread in the waveguide is provided adapters with passing the object to be heated thread, said each hole each Provided is a microwave heating device which is arranged on a circumference of a predetermined diameter of an adapter at a predetermined pitch .
[0012]
According to the present invention, since the filamentous object to be heated travels along the tube axis direction in the circular waveguide through the holes provided in the pair of lids or adapters of the circular waveguide, the filamentous object to be heated The range of the microwave that passes through can be made larger than that of the conventional standing wave waveguide type microwave heating furnace, so that the microwave energy can be sufficiently absorbed by the filamentous object to be heated. Further, since the filamentous heated object is passed through the holes provided in the pair of lid portions or adapters of the circular waveguide, the filamentous heated object can be easily positioned in the circular waveguide. The heating operation of the filamentous object to be heated can be performed efficiently. Furthermore, each lid or adapter corresponding to each of the plurality of filamentous objects to be heated has a plurality of pitches arranged at a predetermined pitch on the circumference of a predetermined diameter near the center of each lid or adapter . If the holes are provided, interference between the plurality of thread-like objects to be heated can be effectively prevented, so that the plurality of thread-like objects to be heated can be heated and dried at a time.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are views showing an embodiment of a microwave heating apparatus according to the present invention.
[0014]
First, the whole microwave heating apparatus will be described with reference to FIG. As shown in FIG. 1, the microwave heating apparatus includes a microwave oscillator 1 that generates a microwave, and a circular waveguide microwave heating furnace 8 that irradiates the filamentous object 7 with microwaves. An isolator 2, a power monitor 3, a matching unit 4, and a connection waveguide 5 are provided between the microwave oscillator 1 and the circular waveguide microwave heating furnace 8.
[0015]
Here, the isolator 2 is for absorbing the reflected energy from the circular waveguide microwave heating furnace 8 to protect the microwave oscillator 1, and the power monitor 3 monitors the incident energy and the reflected energy. Is for. The power monitor 3 is connected to an indicator 3a for displaying the monitored value. The matching unit 4 is used for matching the microwave oscillator 1 and the circular waveguide microwave heating furnace 8 to effectively use the microwave energy.
[0016]
Next, details of the circular waveguide microwave heating furnace 8 will be described with reference to FIGS. 1 and 2. Here, FIG. 2 is a right side view of the circular waveguide microwave heating furnace 8 shown in FIG.
[0017]
As shown in FIGS. 1 and 2, the circular waveguide microwave heating furnace 8 includes a tubular portion 9 and a pair of lid portions 10 and 10 provided at both ends of the tubular portion 9. . Further, as shown in FIG. 2, a plurality of thread-like objects to be heated 7 are passed in the vicinity of the center portion of each lid portion 10, and a plurality of positions for positioning the filament-like objects 7 to be heated in the circular waveguide microwave heating furnace 8. , 10a are provided. The holes 10a are arranged at a predetermined pitch on the circumference of a predetermined diameter in the vicinity of the center portion of each lid 10.
[0018]
In the circular waveguide microwave heating furnace 8, an electromagnetic field as shown in FIGS. 3A and 3B is formed when the transmission mode is the T M 01 mode. The plurality of thread-like objects 7 to be heated passed through the plurality of holes 10a,..., 10a provided in the tube so as to pass through the vicinity of the tube axis T where such a high-intensity electric field E appears periodically. It has become.
[0019]
Next, the operation of the present embodiment having such a configuration will be described.
[0020]
First, the circular waveguide type microwave heating is performed by passing the thread-like object 7 into each of the plurality of holes 10a,..., 10a provided in the pair of lid portions 10 and 10 of the circular waveguide type microwave heating furnace 8. A plurality of thread-like objects 7 to be heated are set in the furnace 8, and the plurality of thread-like objects 7 to be heated in the circular waveguide microwave heating furnace 8 at a predetermined speed along the tube axis direction (T). Let it run. On the other hand, in this state, a microwave is generated by applying a power source to the microwave oscillator 1, and this microwave is passed through the isolator 2, the power monitor 3, the matching unit 4, and the connection waveguide 5. The microwave heating furnace 8 is supplied. As a result, the filamentous heated object 7 that is running absorbs microwave energy from the vicinity of the tube axis T of the circular waveguide microwave heating furnace 8 and is dried by heat generation.
[0021]
As described above, according to the present embodiment, a plurality of thread-like objects 7 to be heated are passed through the plurality of holes 10 a,..., 10 a provided in the pair of lid portions 10, 10 of the circular waveguide microwave heating furnace 8. Is moved along the tube axis direction (T) in the circular waveguide microwave heating furnace 8, the range of the electric field E through which the filamentous object to be heated 7 passes is compared with the conventional standing wave waveguide micro. Compared with a wave heating furnace, it can be taken larger, and therefore, the microwave energy can be sufficiently absorbed by the filamentous object 7 to be heated.
[0022]
Further, according to the present embodiment, a plurality of holes 10a arranged at a predetermined pitch on the circumference of a predetermined diameter in the vicinity of the center portion of each lid portion 10, 10 of the circular waveguide microwave heating furnace 8. , 10a, the filamentous object 7 is passed through the circular waveguide microwave heating furnace 8, so that the filamentous object 7 can be positioned easily and the circular waveguide micro Interference between the plurality of filamentous objects 7 to be heated in the wave heating furnace 8 can be effectively prevented.
[0023]
Next, another embodiment of the microwave heating apparatus according to the present invention will be described with reference to FIGS. Here, FIG. 4 is a view showing a modification of the circular waveguide microwave furnace shown in FIGS. 1 and 2, and FIG. 5 is one of the lid portions of the circular waveguide microwave furnace shown in FIG. FIG.
[0024]
As shown in FIGS. 4 and 5, the circular waveguide microwave heating furnace 8 includes a tubular portion 9 and a pair of lid portions 10 and 10 provided at both ends of the tubular portion 9. . 4 and 5, only one end portion of the circular waveguide microwave furnace 8 is shown, but the other end portion has the same structure.
[0025]
Here, the tubular portion 9 and each lid portion 10 are divided into two portions along the tube axis direction (T). That is, the tubular portion 9 is divided into a first tubular portion 9b and a second tubular portion 9c, and each lid portion 10 is divided into a first lid portion 10b and a second lid portion 10c. The connection waveguide 5 and the first lid portions 10b and 10b are fixedly connected to the first tubular portion 9b, and the second lid portions 10c and 10c are fixedly connected to the second tubular portion 9c. ing. The first lid portion 10b and the second lid portion 10c of each lid portion 10 are swingably connected by a hinge 13.
[0026]
4 and 5, semicircular openings 11b are formed in the first lid portion 10b and the second lid portion 10c constituting each lid portion 10 of the circular waveguide microwave heating furnace 8, respectively. , 11c. A complete circular opening 11 formed by joining the first lid portion 10b and the second lid portion 10c is provided with a plurality of holes 12a for passing the thread-like object 7 to be heated. The adapter 12 is attached in the state shown in FIG. The holes 12a are arranged at a predetermined pitch on the circumference of the adapter 12 with a predetermined diameter.
[0027]
Thus, according to another embodiment of the present invention, the tubular portion 9 and each lid portion 10 can be divided into two parts along a predetermined cross section in the tube axis direction (T). As shown in FIG. 4, the filamentous object 7 can be easily set in a state where the circular waveguide microwave heating furnace 8 is divided into two parts. It should be noted that such configurations of the tubular portion 9 and the lid portions 10 can be similarly applied to the embodiments shown in FIGS. 1 to 3.
[0028]
According to another embodiment of the present invention, an opening 11 is provided in the vicinity of the center portion of each lid 10, and a thread-like object 7 is passed through each opening 11 and a circular waveguide shape is provided. Since the adapter 12 provided with a plurality of holes 12a,..., 12a for positioning the filamentous object 7 to be heated in the microwave heating furnace 8 is attached, the adapter 12 is separated from the lid portion 10. Therefore, it is possible to minimize damage to the thread-like heated object 7 that contacts the hole 12a.
[0029]
In each of the above-described embodiments, a plurality of holes 10a,..., 10a or 12a,. The holes 10a,..., 10a or 12a,..., 12a are not limited to this, and a plurality of holes 10a,. As long as it is possible to prevent interference between the filamentous heated objects 7, various other arrangement methods can be employed.
[0030]
【The invention's effect】
As described above, according to the present invention, the microwave range through which the filamentous object to be heated passes can be made larger than that of the conventional standing wave waveguide type microwave heating furnace. The object can sufficiently absorb the microwave energy. In addition, since the filamentous object to be heated can be easily positioned in the circular waveguide, the heating operation of the filamentous object to be heated can be performed efficiently.
[Brief description of the drawings]
FIG. 1 is an overall schematic view showing an embodiment of a microwave heating apparatus according to the present invention.
2 is a right side view of a circular waveguide microwave heating furnace of the microwave heating apparatus shown in FIG.
FIG. 3 is a diagram showing an electromagnetic field distribution formed in a circular waveguide microwave heating furnace.
FIG. 4 is a view showing a modification of a circular waveguide microwave heating furnace.
5 is a partially enlarged cross-sectional view of the circular waveguide microwave heating furnace shown in FIG.
FIG. 6 is a diagram showing a conventional microwave heating apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Microwave oscillator 5 Connection waveguide 7 Thread-like to-be-heated object 8 Circular waveguide type microwave heating furnace 9 Tubular part 10 Lid part 10a, 12a Hole 11 Opening part 12 Adapter

Claims (4)

マイクロ波を発生するマイクロ波発振機と、
前記マイクロ波発振機に接続導波管を介して接続されたマイクロ波加熱炉とを備え、
前記マイクロ波加熱炉は管状部と、この管状部の両端に設けられた一対の蓋部とを有する円形導波管からなり、
前記円形導波管の前記各蓋部の中央部分近傍には糸状の被加熱物を通すとともに前記円形導波管内における前記糸状の被加熱物の位置決めを行う複数の孔が設けられ、前記各孔は前記各蓋部の中央部分近傍の所定径の円周上に所定ピッチで配置されていることを特徴とするマイクロ波加熱装置。
A microwave oscillator that generates microwaves;
A microwave heating furnace connected to the microwave oscillator via a connection waveguide,
The microwave heating furnace comprises a circular waveguide having a tubular portion and a pair of lid portions provided at both ends of the tubular portion,
A plurality of holes are provided in the vicinity of the central portion of the respective lid portions of the circular waveguide to pass the thread-shaped object to be heated and to position the thread-shaped object to be heated in the circular waveguide. Are arranged at a predetermined pitch on a circumference of a predetermined diameter in the vicinity of the central portion of each lid portion .
前記円形導波管の前記管状部および前記各蓋部は管軸方向の所定断面に沿って少なくとも2つの部分に分割可能となっていることを特徴とする請求項記載のマイクロ波加熱装置。Microwave heating apparatus according to claim 1, wherein the said tubular portion and the respective lid of the circular waveguide which is dividable into at least two parts along a predetermined section of the tube axis direction. マイクロ波を発生するマイクロ波発振機と、
前記マイクロ波発振機に接続導波管を介して接続されたマイクロ波加熱炉とを備え、
前記マイクロ波加熱炉は管状部と、この管状部の両端に設けられた一対の蓋部とを有する円形導波管からなり、
前記円形導波管の前記各蓋部はその中央部分近傍に前記各蓋部を貫通する開口部を有し、この各開口部には糸状の被加熱物を通すとともに前記円形導波管内における前記糸状の被加熱物の位置決めを行う複数の孔が設けられたアダプタが取り付けられ、前記各孔は前記各アダプタの所定径の円周上に所定ピッチで配置されていることを特徴とするマイクロ波加熱装置。
A microwave oscillator that generates microwaves;
A microwave heating furnace connected to the microwave oscillator via a connection waveguide,
The microwave heating furnace comprises a circular waveguide having a tubular portion and a pair of lid portions provided at both ends of the tubular portion,
Each of the lids of the circular waveguide has an opening penetrating each of the lids in the vicinity of the central portion thereof, and a thread-like object to be heated is passed through each of the openings and the inside of the circular waveguide is An adapter provided with a plurality of holes for positioning a thread-like object to be heated is attached , and each of the holes is arranged at a predetermined pitch on a circumference of a predetermined diameter of each adapter. Heating device.
前記円形導波管の前記管状部および前記各蓋部は管軸方向の所定断面に沿って少なくとも2つの部分に分割可能となっていることを特徴とする請求項記載のマイクロ波加熱装置。 3. The microwave heating device according to claim 2 , wherein the tubular portion and the lid portions of the circular waveguide can be divided into at least two portions along a predetermined cross section in the tube axis direction.
JP27437497A 1997-10-07 1997-10-07 Microwave heating device Expired - Fee Related JP3725678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27437497A JP3725678B2 (en) 1997-10-07 1997-10-07 Microwave heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27437497A JP3725678B2 (en) 1997-10-07 1997-10-07 Microwave heating device

Publications (2)

Publication Number Publication Date
JPH11111446A JPH11111446A (en) 1999-04-23
JP3725678B2 true JP3725678B2 (en) 2005-12-14

Family

ID=17540776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27437497A Expired - Fee Related JP3725678B2 (en) 1997-10-07 1997-10-07 Microwave heating device

Country Status (1)

Country Link
JP (1) JP3725678B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759668B2 (en) * 2004-05-11 2011-08-31 株式会社Idx Microwave heating device
EP1839741B1 (en) 2004-12-28 2010-06-16 Püschner GmbH & Co. KG Micro wave chemical reaction device
JP2006181534A (en) * 2004-12-28 2006-07-13 Idx Corp Microwave chemical reaction apparatus
JP2007149404A (en) * 2005-11-25 2007-06-14 Shimada Phys & Chem Ind Co Ltd Microwave heating device
JP4943088B2 (en) * 2006-08-11 2012-05-30 美濃窯業株式会社 Continuous firing equipment
JP4943087B2 (en) * 2006-08-11 2012-05-30 大学共同利用機関法人自然科学研究機構 Continuous firing furnace and continuous firing method

Also Published As

Publication number Publication date
JPH11111446A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
JP3725678B2 (en) Microwave heating device
JP4125487B2 (en) Thermal sensor located in microwave waveguide
JP6616118B2 (en) Tubular diaphragm waveguide applicator
US20070215612A1 (en) Apparatus and method for microwave processing of materials
US20170120179A1 (en) Microwave irradiation apparatus and exhaust gas purification apparatus
JP2007149404A (en) Microwave heating device
US6211503B1 (en) Device and method of heating components made of microwave absorbing plastic
WO2019142578A1 (en) Microwave processing device and carbon fiber production method
JP2017535034A (en) Microwave oven with wire mesh heating element
JP3625589B2 (en) Microwave heating device
JP4383136B2 (en) Microwave heating device
JPH07310888A (en) Microwave heating type plastic pipe fusing device
JP2004031222A (en) Microwave heating device
JPS58952Y2 (en) High frequency heating device
WO2024054025A1 (en) Plasma generator by means of resonant waveguide
JP2019125573A (en) Microwave processing apparatus and method of manufacturing carbon fiber
WO2024054026A1 (en) Plasma generation device using resonant waveguide having tuner
JP5102791B2 (en) Microwave heating device and T-type waveguide
JP2018174081A (en) Heating method and method for producing carbon fiber, and carbonization apparatus and apparatus for producing carbon fiber
JPS5855597Y2 (en) High frequency heating device
JPS5846556Y2 (en) Waveguide type microwave heating device
JPH08142199A (en) Fusion bonding apparatus for microwave heating type plastic tube
JP3998482B2 (en) Wire cross-linking treatment apparatus and wire cross-linking treatment method
JPH10144467A (en) Microwave heater device
SU654989A2 (en) Coaxial harmonic filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees