JP3625589B2 - Microwave heating device - Google Patents

Microwave heating device Download PDF

Info

Publication number
JP3625589B2
JP3625589B2 JP26330096A JP26330096A JP3625589B2 JP 3625589 B2 JP3625589 B2 JP 3625589B2 JP 26330096 A JP26330096 A JP 26330096A JP 26330096 A JP26330096 A JP 26330096A JP 3625589 B2 JP3625589 B2 JP 3625589B2
Authority
JP
Japan
Prior art keywords
waveguide
microwave heating
heating furnace
microwave
type microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26330096A
Other languages
Japanese (ja)
Other versions
JPH10112383A (en
Inventor
中 恒 男 村
島 雅 和 豊
藤 洋 一 後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Mechatronics Corp
Original Assignee
Shibaura Mechatronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Mechatronics Corp filed Critical Shibaura Mechatronics Corp
Priority to JP26330096A priority Critical patent/JP3625589B2/en
Publication of JPH10112383A publication Critical patent/JPH10112383A/en
Application granted granted Critical
Publication of JP3625589B2 publication Critical patent/JP3625589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はマイクロ波加熱装置に係り、とりわけ被加熱物にマイクロ波を照射する導波管形マイクロ波加熱炉の改良に関する。
【0002】
【従来の技術】
従来より紙やシート等の比較的薄い被加熱物を効率よく加熱するため、マイクロ波発振器と、導波管形マイクロ波加熱炉とを備えたマイクロ波加熱装置が知られている。このマイクロ波加熱装置においては、マイクロ波発振器により発振されたマイクロ波が、連結用導波管を介して導波管形マイクロ波加熱炉に供給されるようになっている。
【0003】
図5は従来の導波管形マイクロ波加熱炉の内部構成を示す平面図である。図5に示すように、この従来の導波管形マイクロ波加熱炉26は、ケース26aと、ケース26a内に配置され連結用導波管28と同様にマイクロ波を通過できるだけの矩形状の断面を持つ加熱用導波管27とを有している。加熱用導波管27は、複数の直線部27aと、この直線部27a間を連結する円弧状のUターン部(折曲部)27bとからなり、これらの直線部27aとUターン部27bは、連結用導波管28から終端のダミーロード12で終わるまでの経路中に交互に繰り返し形成されている。なお、加熱用導波管27のUターン部27bの回転角度αは180°となっている。
【0004】
図5に示す導波管形マイクロ波加熱炉26において、例えばシート状の被加熱物を乾燥処理する場合には、ケース26aおよび加熱用導波管27の直線部27aの側部に設けられたスロット15(図3参照)を通してシート状の被加熱物13を通過させ、加熱用導波管27の複数の直線部27aを順次通過していく過程で被加熱物13にマイクロ波エネルギーを吸収させている。
【0005】
【発明が解決しようとする課題】
しかしながら、図5から明らかなように、従来のマイクロ波加熱装置では、加熱用導波管27の直線部27aの本数が多くなれば、導波管形マイクロ波加熱炉26における被加熱物13の走行方向の長さLが必然的に長くなり、被加熱物13を通過させることが非常に困難な作業となるという問題がある。
【0006】
なお、被加熱物13を通過させやすくするために導波管形マイクロ波加熱炉26を2つに分割することも可能であるが、このような方法では、マイクロ波の漏洩が多くなり、これに対して漏洩対策を施せば導波管形マイクロ波加熱炉が高価になるという問題がある。
【0007】
本発明はこのような点を考慮してなされたものであり、導波管形マイクロ波加熱炉における被加熱物の走行方向の長さをできるだけ短く保ちつつ、被加熱物が通過する加熱用導波管の直線部の本数を多くすることができるマイクロ波加熱装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、マイクロ波発振器と、マイクロ波発振器に連結用導波管を介して接続された加熱用導波管を有するマイクロ波加熱炉とを備え、マイクロ波加熱炉の加熱用導波管は直線部と折曲部とからなり、折曲部の折曲角度は180°を超えていることを特徴とするマイクロ波加熱装置である。
【0009】
本発明によれば、折曲部の折曲角度は180°を超えているので、隣り合う直線部を互いに接近させることができ、このためマイクロ波加熱炉の直線部に直交する方向の長さを短くすることができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0011】
図1ないし図4は本発明によるマイクロ波加熱装置の一実施の形態を示す図である。まず図2によりマイクロ波加熱装置の全体について説明する。図2に示すように、本発明によるマイクロ波加熱装置はマイクロ波を発生するマイクロ波発振器1と、シート状の被加熱物である印刷紙13を加熱する導波管形マイクロ波加熱炉6とを備え、マイクロ波発振器1と導波管形マイクロ波加熱炉6とは、アイソレータ2、パワーモニタ3、整合器4およびテーパ導波管(連結用導波管)5を介して接続されている。ここで、アイソレータ2は導波管形マイクロ波加熱炉6からの反射エネルギーを吸収してマイクロ波発振器1を保護するためのものであり、パワーモニタ3は入射エネルギーおよび反射エネルギーをモニタするためのものである。またパワーモニタ3には、モニタされた値を表示するための指示計3aが接続されている。整合器4は、マイクロ波発振器1と導波管形マイクロ波加熱炉6とのマッチングを図りマイクロ波エネルギーを有効利用するためのものである。
【0012】
なお、導波管形マイクロ波加熱炉6は加熱炉収容筐体10に収容されており、この加熱炉収容筐体10には温風ダクト11を介して温風発生器8が接続されている。温風発生器8は、導波管形マイクロ波加熱炉6を予熱しておくことで被加熱物である印刷紙13から蒸発する水分の結露を防止するものである。また、マイクロ波発振器1、アイソレータ2、パワーモニタ3および温風発生器8等のマイクロ波応用機器は機器収容筐体9に収容されている。
【0013】
次に図1により導波管形マイクロ波加熱炉6の内部構成を説明する。図1に示すように、導波管形マイクロ波加熱炉6はケース6aと、ケース6a内に配置されテーパ導波管5と同様にマイクロ波を通過できるだけの矩形状の断面を持つ加熱用導波管7を有している。このうち加熱用導波管7は、複数の直線部7aと、直線部7a間を連結する円弧状のUターン部(折曲部)7bとからなり、これらの直線部7aとUターン部7bは、テーパ導波管5から終端のダミーロード12で終わるまでの経路中に交互に繰り返し形成されている。なお、図1においては、加熱用導波管7の経路中に5本のUターン部7bが形成されており、これにより導波管形マイクロ波加熱炉6内での印刷紙13の通過方向を遮るように6本の直線部7aが形成されている。
【0014】
また、図1に示すように、加熱用導波管7のUターン部7bの回転角度(折曲角度)βは180°より大きくなっており、このため加熱用導波管7は、図1に示すようにその複数の直線部7aが互い違いに傾いて配置されるとともに、互いに接近している。
【0015】
図3は図2に示す導波管形マイクロ波加熱炉6の側面図である。図3に示すように、ケース6aおよび加熱用導波管7の直線部7aの中央部側面にスロット15が設けられており、このスロット15を通してシート状の被加熱物である印刷紙13が通過するようになっている。
【0016】
次に、このような構成からなる本実施の形態の作用について説明する。
【0017】
図2に示すように、まず導波管形マイクロ波加熱炉6に設けられたスロット15(図3参照)を通過するようにシート状の被加熱物である印刷紙13をセットし、導波管形マイクロ波加熱炉6内において印刷紙13を所定の速度で走行させる。なお、印刷紙13は、図1に示す加熱用導波管7の複数の直線部7aにほぼ直交する形で走行し、それぞれの直線部7aを順次通過していく。一方、この状態で、マイクロ波発振器1に電源を印加してマイクロ波を発生させ、このマイクロ波をアイソレータ2、パワーモニタ3、整合器4およびテーパ導波管5を介して導波管形マイクロ波加熱炉6内に設けられた加熱用導波管7に供給する。これにより、走行中の印刷紙13は、通過した加熱用導波管7の直線部7aからマイクロ波エネルギーを吸収し、発熱によって所定の乾燥がなされる。なお、印刷紙13に吸収されないで余ったマイクロ波エネルギーはダミーロード12で吸収される。
【0018】
本実施の形態においては、加熱用導波管7が複数の直線部7aと、この直線部7a間を連結するとともに回転角度βが180°より大きい円弧状のUターン部7bとを有しているので、隣り合う直線部7aを互いに接近させることができる。このため、印刷紙13の走行方向(直線部7aに略直交する方向)の導波管形マイクロ波加熱炉6の長さLをできるだけ短く保ちつつ、印刷紙13の通過する直線部7aの本数を多くすることができる。これにより、従来の導波管形マイクロ波加熱炉と比べて、印刷紙13が通過する長さあたりのマイクロ波エネルギーの吸収効率を格段に向上させることができる。
【0019】
なお、図1においては、加熱用導波管7の経路中に5本のUターン部7bが形成され、これにより直線部7aが3往復分(すなわち6本)形成されているが、直線部7aの本数はこれに限られるものではなく、数本、数十本でも構わない。直線部7aの本数は、被加熱物におけるマイクロ波エネルギーの吸収度合いを考慮して決定されるものであり、通常、数本〜十数本である。なお、乾燥処理する被加熱物が上述したような印刷紙等でありマイクロ波エネルギーの吸収効率のさらなる向上が望まれる場合には、できるだけ直線部7aの本数を多くするとよい。
【0020】
【実施例】
次に図1に示す導波管形マイクロ波加熱炉6の具体的実施例について述べる。導波管形マイクロ波加熱炉6を構成する加熱用導波管7のUターン部7bについては、いくつかの実験を行った結果、その回転半径rを管内波長λgの0.25〜0.5倍としたときに良い結果が得られることがわかった。なお、Uターン部7bの回転半径rは、管内波長λgの0.5倍以上であっても特段問題はないが、導波管形マイクロ波加熱炉6における印刷紙13の走行方向の長さLが必要以上に大きくなり好ましくない。
【0021】
なお、加熱用導波管7が、図4に示すような断面が矩形状の導波管であれば、その管内波長λgは次式(1)により表される。
【0022】
【数1】

Figure 0003625589
上式(1)において、「λ」はマイクロ波の自由空間波長であり、「A」は加熱用導波管の幅広面の寸法である(図4参照)。上式(1)に従えば、例えばA=96mmのときに管内波長λgは約158mmとなり、A=109.2mmのときに管内波長λgは約148mmとなる。
【0023】
【発明の効果】
以上説明したように本発明によれば、導波管形マイクロ波加熱炉における被加熱物の走行方向の長さをできるだけ短く保ちつつ、被加熱物が通過する直線部の本数を多くすることができる。このため、導波管形マイクロ波加熱炉における被加熱物の通過作業等を複雑にすることなく、マイクロ波エネルギーの吸収効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明によるマイクロ波加熱装置を構成する導波管形マイクロ波加熱炉の内部構成を示す平面図である。
【図2】本発明によるマイクロ波加熱装置の全体構成を示す図である。
【図3】図2に示す導波管形マイクロ波加熱炉の側面図である。
【図4】断面が矩形状の導波管の基本寸法を示す図である。
【図5】従来の導波管形マイクロ波加熱炉の内部構成を示す平面図である。
【符号の説明】
1 マイクロ波発振器
5 テーパ導波管(連結用導波管)
6 導波管形マイクロ波加熱炉
7 加熱用導波管
7a 直線部
7b Uターン部(折曲部)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microwave heating apparatus, and more particularly to an improvement of a waveguide-type microwave heating furnace that irradiates an object to be heated with microwaves.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a microwave heating apparatus including a microwave oscillator and a waveguide-type microwave heating furnace is known in order to efficiently heat a relatively thin object such as paper or sheet. In this microwave heating apparatus, microwaves oscillated by a microwave oscillator are supplied to a waveguide type microwave heating furnace via a connecting waveguide.
[0003]
FIG. 5 is a plan view showing an internal configuration of a conventional waveguide type microwave heating furnace. As shown in FIG. 5, this conventional waveguide-type microwave heating furnace 26 has a rectangular cross section that can pass through microwaves in the same manner as the case 26a and the connecting waveguide 28 disposed in the case 26a. And a heating waveguide 27. The heating waveguide 27 includes a plurality of straight portions 27a and an arcuate U-turn portion (bent portion) 27b connecting the straight portions 27a. The straight portion 27a and the U-turn portion 27b are In the path from the coupling waveguide 28 to the end of the dummy load 12 at the terminal end, it is alternately and repeatedly formed. The rotation angle α of the U-turn portion 27b of the heating waveguide 27 is 180 °.
[0004]
In the waveguide type microwave heating furnace 26 shown in FIG. 5, for example, when a sheet-like object to be heated is dried, it is provided on the side of the straight portion 27 a of the case 26 a and the heating waveguide 27. The sheet-like object to be heated 13 is passed through the slot 15 (see FIG. 3), and the microwave energy is absorbed by the object to be heated 13 in the process of sequentially passing through the plurality of straight portions 27a of the heating waveguide 27. ing.
[0005]
[Problems to be solved by the invention]
However, as is apparent from FIG. 5, in the conventional microwave heating apparatus, if the number of straight portions 27a of the heating waveguide 27 increases, the object 13 to be heated in the waveguide type microwave heating furnace 26 is increased. There is a problem that the length L in the traveling direction is inevitably long, and it is very difficult to pass the article 13 to be heated.
[0006]
It is possible to divide the waveguide type microwave heating furnace 26 into two in order to make the article to be heated 13 pass easily. However, in such a method, leakage of microwaves increases, If measures against leakage are taken, there is a problem that the waveguide-type microwave heating furnace becomes expensive.
[0007]
The present invention has been made in consideration of the above points, and while the length of the object to be heated in the waveguide type microwave heating furnace is kept as short as possible, the heating guide through which the object to be heated passes is provided. An object of the present invention is to provide a microwave heating apparatus capable of increasing the number of straight portions of the wave tube.
[0008]
[Means for Solving the Problems]
The present invention includes a microwave oscillator and a microwave heating furnace having a heating waveguide connected to the microwave oscillator via a coupling waveguide, and the heating waveguide of the microwave heating furnace includes: The microwave heating apparatus includes a straight portion and a bent portion, and the bent angle of the bent portion exceeds 180 °.
[0009]
According to the present invention, since the bending angle of the bent portion exceeds 180 °, the adjacent straight portions can be brought close to each other, and thus the length in the direction perpendicular to the straight portion of the microwave heating furnace. Can be shortened.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
1 to 4 are diagrams showing an embodiment of a microwave heating apparatus according to the present invention. First, the whole microwave heating apparatus will be described with reference to FIG. As shown in FIG. 2, the microwave heating apparatus according to the present invention includes a microwave oscillator 1 that generates microwaves, a waveguide-type microwave heating furnace 6 that heats printing paper 13 that is a sheet-like object to be heated, and the like. The microwave oscillator 1 and the waveguide type microwave heating furnace 6 are connected to each other through an isolator 2, a power monitor 3, a matching unit 4, and a tapered waveguide (coupling waveguide) 5. . Here, the isolator 2 is for protecting the microwave oscillator 1 by absorbing the reflected energy from the waveguide type microwave heating furnace 6, and the power monitor 3 is for monitoring the incident energy and the reflected energy. Is. The power monitor 3 is connected to an indicator 3a for displaying the monitored value. The matching unit 4 is for matching the microwave oscillator 1 with the waveguide type microwave heating furnace 6 to effectively use the microwave energy.
[0012]
The waveguide type microwave heating furnace 6 is housed in a heating furnace housing case 10, and a hot air generator 8 is connected to the heating furnace housing case 10 via a hot air duct 11. . The warm air generator 8 prevents the condensation of moisture evaporating from the printing paper 13 that is a heated object by preheating the waveguide type microwave heating furnace 6. Further, microwave application devices such as the microwave oscillator 1, the isolator 2, the power monitor 3, and the hot air generator 8 are accommodated in the device housing 9.
[0013]
Next, the internal configuration of the waveguide type microwave heating furnace 6 will be described with reference to FIG. As shown in FIG. 1, a waveguide type microwave heating furnace 6 includes a case 6a and a heating guide having a rectangular cross section that is disposed in the case 6a and has a rectangular cross section that allows microwaves to pass therethrough. A wave tube 7 is provided. Among them, the heating waveguide 7 includes a plurality of straight portions 7a and an arcuate U-turn portion (bent portion) 7b connecting the straight portions 7a. The straight portion 7a and the U-turn portion 7b are connected to each other. Are repeatedly formed alternately in the path from the tapered waveguide 5 to the end of the dummy load 12 at the end. In FIG. 1, five U-turn portions 7 b are formed in the path of the heating waveguide 7, whereby the passage direction of the printing paper 13 in the waveguide type microwave heating furnace 6. Six straight portions 7a are formed so as to block the screen.
[0014]
Further, as shown in FIG. 1, the rotation angle (folding angle) β of the U-turn portion 7b of the heating waveguide 7 is larger than 180 °. As shown in FIG. 3, the plurality of linear portions 7a are alternately inclined and arranged close to each other.
[0015]
FIG. 3 is a side view of the waveguide type microwave heating furnace 6 shown in FIG. As shown in FIG. 3, a slot 15 is provided on the side surface of the central portion of the straight portion 7 a of the case 6 a and the heating waveguide 7, and the printing paper 13, which is a sheet-like object to be heated, passes through the slot 15. It is supposed to be.
[0016]
Next, the operation of the present embodiment having such a configuration will be described.
[0017]
As shown in FIG. 2, first, a printing paper 13 that is a sheet-like object to be heated is set so as to pass through a slot 15 (see FIG. 3) provided in the waveguide type microwave heating furnace 6. The printing paper 13 is run at a predetermined speed in the tubular microwave heating furnace 6. Note that the printing paper 13 travels in a form substantially orthogonal to the plurality of straight portions 7a of the heating waveguide 7 shown in FIG. 1, and sequentially passes through each straight portion 7a. On the other hand, in this state, a power source is applied to the microwave oscillator 1 to generate a microwave, and this microwave is passed through an isolator 2, a power monitor 3, a matching unit 4, and a tapered waveguide 5. The heat is supplied to a heating waveguide 7 provided in the wave heating furnace 6. As a result, the running printing paper 13 absorbs microwave energy from the straight portion 7a of the heating waveguide 7 that has passed, and is dried by heat generation. Note that the remaining microwave energy that is not absorbed by the printing paper 13 is absorbed by the dummy load 12.
[0018]
In the present embodiment, the heating waveguide 7 has a plurality of straight portions 7a, and an arcuate U-turn portion 7b that connects the straight portions 7a and has an arcuate rotation angle β greater than 180 °. Therefore, the adjacent straight portions 7a can be brought close to each other. For this reason, the number L of the linear portions 7a through which the printing paper 13 passes is maintained while keeping the length L of the waveguide microwave heating furnace 6 in the running direction of the printing paper 13 (a direction substantially orthogonal to the linear portions 7a) as short as possible. Can be more. Thereby, compared with the conventional waveguide type microwave heating furnace, the absorption efficiency of the microwave energy per length which the printing paper 13 passes can be improved markedly.
[0019]
In FIG. 1, five U-turn portions 7 b are formed in the path of the heating waveguide 7, and thereby the straight portions 7 a are formed for three reciprocations (that is, six). The number of 7a is not limited to this, and may be several or several tens. The number of straight portions 7a is determined in consideration of the degree of absorption of microwave energy in the object to be heated, and is usually several to dozens. If the object to be dried is printing paper or the like as described above and further improvement in the microwave energy absorption efficiency is desired, the number of straight portions 7a should be increased as much as possible.
[0020]
【Example】
Next, a specific embodiment of the waveguide type microwave heating furnace 6 shown in FIG. 1 will be described. As for the U-turn portion 7b of the heating waveguide 7 constituting the waveguide type microwave heating furnace 6, as a result of several experiments, the rotation radius r is set to 0.25-0. It turned out that a good result is obtained when it is 5 times. It should be noted that there is no particular problem even if the rotation radius r of the U-turn portion 7b is 0.5 times or more the guide wavelength λg, but the length of the printing paper 13 in the traveling direction of the waveguide type microwave heating furnace 6 is not problematic. L is unfavorable because it becomes larger than necessary.
[0021]
If the heating waveguide 7 is a waveguide having a rectangular cross section as shown in FIG. 4, the in-tube wavelength λg is expressed by the following equation (1).
[0022]
[Expression 1]
Figure 0003625589
In the above formula (1), “λ” is the free space wavelength of the microwave, and “A” is the dimension of the wide surface of the heating waveguide (see FIG. 4). According to the above equation (1), for example, when A = 96 mm, the guide wavelength λg is about 158 mm, and when A = 109.2 mm, the guide wavelength λg is about 148 mm.
[0023]
【The invention's effect】
As described above, according to the present invention, it is possible to increase the number of straight portions through which the object to be heated passes while keeping the length of the object to be heated in the waveguide type microwave heating furnace as short as possible. it can. For this reason, the absorption efficiency of microwave energy can be improved without complicating the operation of passing an object to be heated in the waveguide type microwave heating furnace.
[Brief description of the drawings]
FIG. 1 is a plan view showing an internal configuration of a waveguide type microwave heating furnace constituting a microwave heating apparatus according to the present invention.
FIG. 2 is a diagram showing an overall configuration of a microwave heating apparatus according to the present invention.
3 is a side view of the waveguide type microwave heating furnace shown in FIG. 2. FIG.
FIG. 4 is a diagram showing basic dimensions of a waveguide having a rectangular cross section.
FIG. 5 is a plan view showing an internal configuration of a conventional waveguide-type microwave heating furnace.
[Explanation of symbols]
1 Microwave Oscillator 5 Tapered Waveguide (Linking Waveguide)
6 Waveguide Type Microwave Heating Furnace 7 Heating Waveguide 7a Straight Line 7b U-Turn (Bent)

Claims (2)

マイクロ波発振器と、
マイクロ波発振器に連結用導波管を介して接続された加熱用導波管を有するマイクロ波加熱炉とを備え、
マイクロ波加熱炉の加熱用導波管は直線部と折曲部とからなり、
折曲部の折曲角度は180°を超えていることを特徴とするマイクロ波加熱装置。
A microwave oscillator,
A microwave heating furnace having a heating waveguide connected to a microwave oscillator via a coupling waveguide;
The heating waveguide of the microwave heating furnace consists of a straight part and a bent part,
A microwave heating device, wherein a bending angle of the bent portion exceeds 180 °.
加熱用導波管の折曲部は円弧状に形成され、折曲部の半径は管内波長の0.25〜0.5倍であることを特徴とする請求項1記載のマイクロ波加熱装置。The microwave heating apparatus according to claim 1, wherein the bent portion of the heating waveguide is formed in an arc shape, and the radius of the bent portion is 0.25 to 0.5 times the wavelength in the tube.
JP26330096A 1996-10-03 1996-10-03 Microwave heating device Expired - Fee Related JP3625589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26330096A JP3625589B2 (en) 1996-10-03 1996-10-03 Microwave heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26330096A JP3625589B2 (en) 1996-10-03 1996-10-03 Microwave heating device

Publications (2)

Publication Number Publication Date
JPH10112383A JPH10112383A (en) 1998-04-28
JP3625589B2 true JP3625589B2 (en) 2005-03-02

Family

ID=17387568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26330096A Expired - Fee Related JP3625589B2 (en) 1996-10-03 1996-10-03 Microwave heating device

Country Status (1)

Country Link
JP (1) JP3625589B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11838998B2 (en) * 2019-03-29 2023-12-05 Jx Metals Corporation Multi-shank heater

Also Published As

Publication number Publication date
JPH10112383A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US3426439A (en) Microwave drying system
KR960031708A (en) Drying unit of paper machine and dryer of fiber web
US3733711A (en) Apparatus for and method of treating a web
JP4190630B2 (en) Convective radiation system for heat treatment of continuous strips.
GB1207227A (en) Microwave drying method and apparatus
JP3625589B2 (en) Microwave heating device
EP1834149B1 (en) Nozzle insert for a yankee impingement hood
US4257167A (en) Arrangement for supporting a web, especially a paper web
JPH03506068A (en) Method and apparatus for drying plywood and similar products
JPH10112387A (en) Microwave heating device
JP3611408B2 (en) Microwave heating device
US10660166B2 (en) Microwave heating apparatus for uniformly heating objects based on near-cutoff condition
US3710064A (en) Microwave drying system
JPH10112385A (en) Microwave heating device
JPH10112384A (en) Microwave heating device
JP3725678B2 (en) Microwave heating device
JPS5826979A (en) Heating and drying device by microwave
US4693016A (en) Drying apparatus
JP2004031222A (en) Microwave heating device
JPH10144467A (en) Microwave heater device
NO831748L (en) CONVECTION DRYER AND PROCEDURE FOR DRYING A MATERIAL.
JPH03254945A (en) Drier
JPS6034077Y2 (en) Fabric processing equipment
US5150955A (en) Drying apparatus
US3395458A (en) Covers or hoods for the rollers of machines for the treatment of material in web form with humidified air or steam

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees