JP3724362B2 - Aluminum alloy for die casting - Google Patents

Aluminum alloy for die casting Download PDF

Info

Publication number
JP3724362B2
JP3724362B2 JP2000335468A JP2000335468A JP3724362B2 JP 3724362 B2 JP3724362 B2 JP 3724362B2 JP 2000335468 A JP2000335468 A JP 2000335468A JP 2000335468 A JP2000335468 A JP 2000335468A JP 3724362 B2 JP3724362 B2 JP 3724362B2
Authority
JP
Japan
Prior art keywords
mass
casting
alloy
less
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000335468A
Other languages
Japanese (ja)
Other versions
JP2002146463A (en
Inventor
慎一郎 角
隆彰 猪狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2000335468A priority Critical patent/JP3724362B2/en
Publication of JP2002146463A publication Critical patent/JP2002146463A/en
Application granted granted Critical
Publication of JP3724362B2 publication Critical patent/JP3724362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、衝撃エネルギー吸収特性が要求される自動車の薄肉大型車体部品をダイカストマシーンで製造するのに好適なダイカスト用アルミニウム合金に関するものである。
【0002】
【従来の技術】
アルミニウムフレーム車体構造の継ぎ手およびセンターピラー等に、アルミニウムダイカスト部品が採用されている。自動車の車体構造に採用されるダイカスト製部品には、自動車衝突時の衝撃エネルギー吸収特性が要求されるが、従来のダイカスト用合金では十分ではない機械的特性、すなわち高い耐力と伸びを兼ね備えているこが必要となる。
このようなアルミニウムフレーム車体構造用ダイカスト合金としては、ドイツ・ラインフェルデン社、米・アルコア社等の開発合金が知られている。これらの合金組成は、Al-5%Mg-2%Si-Mn(Magsm59)、Al-3%Mg-Mn-Co(Magsm22){cf:Diecasting World,March 2000}、Al-4%Mg-1%Mn{特開平11―80875号公報}である。
【0003】
これらの組成の合金は、材料特性としての高い耐力と伸びを兼ね備えている点では満足できるが、それぞれ実用合金としては課題がある。
すなわち、Al-5%Mg-2%Si-Mn合金は鋳造後、室温でMg2Si相の析出現象が急激に進行するため、時間経過とともに伸びが大幅に低下するという欠点がある。
伸びが低い鋳物は、衝撃エネルギーが加わった際に、すぐ破断してしまい、破断に使用されたエネルギー以上は衝撃エネルギーを吸収することができない。一方伸びが大きい鋳物は、衝撃エネルギーが加わった際に、破断せずに変形し、衝撃エネルギーを変形エネルギーとして吸収する。そのため、自動車用に使用する場合、自動車事故により衝突エネルギーが加わっても破断せず、被害を大きくすることが避けられる。したがって、実用上では永続的に伸びが大きいほど有利となる。
上記Al-5%Mg-2%Si-Mn合金では、永年に亘っての伸びを確保するために、鋳造後に300〜400℃での組織安定化熱処理が不可欠である。
また、Siを含有していないAl-3%Mg-Mn(Co)合金では、鋳造性に課題があり、ダイカスト時に割れ欠陥が発生し易く、複雑な形状の鋳物を一体で成形するダイカスト法には適用し難い。
【0004】
【発明が解決しようとする課題】
このように、自動車車体構造部品の製造にアルミニウムのダイカスト技術を適用しようとすると、大量生産できるように鋳造性がよく、車体に要求される機械的な材料特性を有し、かつ鋳造のままで長時間保持しても耐力、伸び等の特性変化がない合金が要求される。
本発明は、このような問題を解消すべく案出されたものであり、高い耐力と伸びを兼ね備え、かつ安定化熱処理を必要とせずに鋳造のままで機械的特性を永続的に保持できる、自動車車体構造部品用のダイカスト鋳造性のよいアルミニウム合金を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の自動車車体構造部品ダイカスト用アルミニウム合金は、その目的を達成するため、下記組成のアルミニウム−マグネシウム−珪素−マンガンベースとしたものである。
すなわち、本発明の合金は、3.0質量%以上4.0質量%未満のマグネシウム、1.0質量%以上1.5質量%以下のマンガン、0.5質量%以上1.5質量%以下の珪素、0.5質量%以下の鉄を含有し、残部がアルミニウム及び不可避的不純物からなり、かつマグネシウムと珪素の比Mg/Siを2.7以上としたものである。また必要に応じて0.5質量%以下の銅を含有することもできる。さらにその他の元素の含有量は0.1質量%以下にすることが望ましい。
【0006】
【作用】
本発明によるダイカスト用アルミニウム合金は、マグネシウム、マンガンおよび珪素の含有量を最適の範囲に組み合わせることにより、自動車の車体構造用に適する生産性と機械的特性を有する材料を提供できるものである。
各合金元素の含有量について、作用とともに説明する。
【0007】
Mg:3.0質量%以上4.0質量%未満
本発明合金の最も重要な合金元素で、材料特性はマグネシウムの含有量によって大きく変動する。マグネシウムはアルミニウム中に固溶し、強度を高める元素であるが、その含有量が3.0質量%未満ではダイカスト部品に必要な機械的特性の内の耐力140MPaを満足することができない。また、4.0質量%以上では応力腐食割れが発生し易くなるとともに、長年の使用によりMg2Al3相が結晶粒界に析出し、材料が脆化する。
また、ダイカスト用合金の場合、鋳造性の改善のために珪素の添加を避けることができないが、珪素とマグネシウムが共存する時、マグネシウム含有量が4.0質量%以上では、Mg2Siの析出も多くなり、Mg2Siによる材料の脆化も加わるため、経年変化が著しくなり、時間の経過とともに伸びが低下する。
したがって、マグネシウムの含有量は3.0質量%以上4.0質量%未満にしなければならない。
【0008】
Mn:1.0質量%以上1.5質量%以下
マンガンは、ダイカスト鋳型への焼き付きを防止し、さらに材料の耐力と高温強度を向上させる効果がある。また、ダイカスト終了後の鋳造品の取り出し時の鋳造品変形を防止する作用をも有している。含有量が1.0質量%未満では、鉄含有量が低い時にダイカスト鋳型に焼き付き易く、また鋳造品取り出し時に鋳造品の形状変形を起こし易い。含有量が1.5質量%を超えると、ダイカストで通常得られる凝固速度ではマンガンの固溶限界を超え、巨大な晶出物を生成するようになり、材料特性の内の伸びを低下させる悪影響を及ぼす。
したがって、焼き付きを防止し、また取り出し時の鋳造品形状安定性を確保し、しかも伸びを低下させないマンガン含有量は1.0質量%以上1.5質量%以下である。
【0009】
Si:0.5質量%以上1.5質量%以下
珪素は、アルミニウム−マグネシウム合金の鋳造性を改良するのに必要な成分であり、0.5質量%以上の含有によって、ダイカスト鋳造品の鋳造割れを防止することができる。しかし、含有量が1.5質量%をこえると、合金の凝固時にマグネシウムとの化合物Mg2Siが晶出し、合金の伸びを低下させるとともに、さらに経年変化により伸びがさらに低下することになる。
したがって、鋳造割れを防止し、材料の伸びを低下させず、15%以上の伸び値を確保するためには0.5質量%以上1.5質量%以下の珪素を含有させなければならない。
【0010】
Mg/Si:2.7以上
上記のような組成範囲のアルミニウム−マグネシウム−珪素−マンガンベースの合金であっても、Mgに対してSiの比率が高いと鋳造時にMg2Siの晶出が優先される。この晶出したMg2Siのため材料の伸びが低下しやすくなるので、珪素含有量に対してマグネシウムの含有量を多く、実験的な結果からMg/Si比は2.7以上にする必要がある。
【0011】
Fe:0.5質量%以下
鉄は、ダイカストの鋳造時にダイカスト金型との焼き付きを防止する作用があるが、アルミニウム中にはほとんど固溶しない。大量に含有させると針状のAl−Fe−Si晶出物を形成し、材料の伸びを急激に低下させる。伸びの値を15%以上に保持するためには、その含有量は0.5質量%以下にしなければならない。
【0012】
Cu:0.5質量%以下
銅は、材料特性のうち耐力を向上させる作用を有するので必要に応じて含有させる。しかし、含有量に応じて伸びと耐食性を低下させるので、含有させるばあいも、0.5質量%以下に制限しなければならない。
その他の元素:0.1質量%以下
その他の元素も、材料に要求される伸びを確保するためには、混入を極力抑制する必要があり、それぞれ0.1質量%以下にすることが望ましい。
【0013】
以上のように成分調整することにより、本発明アルミニウム合金は、複雑な形状のダイカスト鋳物製造においても、鋳造割れを起こさず、ダイカスト金型への焼き付きを起こさず、また製品を金型から取り出す際に製品に変形を起こさず、しかも、真空ダイカスト法あるいは酸素ダイカスト法等の高品質のダイカスト法で鋳造された時、何らの熱処理を施さずに鋳造のままで十分な伸びを確保することができるので、自動車の車体構造材として適用できる衝撃エネルギー吸収能力の高い鋳物を製造することができる。
【0014】
【実施例】
表1に示す組成を有するアルミニウム合金を溶解した後、脱ガス、脱滓の溶湯処理を行い、溶湯温度720〜750℃、型温度250℃の条件で真空に保持されたダイカスト金型内に鋳造し、型締め力350トンで、厚さ3mm、150mm×200mmの大きさの平板状鋳物を作成した。ダイカストされた鋳物中のポロシティは気孔率2%以下に制御した。この鋳物から黒皮付きの平板状引張り試験片を、1枚の平板状鋳物から3本切り出し、一水準につき9本の試験片を引張り試験に供した。(表1中、下線は、規定の範囲を外れることを示す。)
なお、引張り試験試験は熱処理を施さず鋳造のままの試料で、ダイカスト鋳造後3日経過後、30日経過後、および90日経過後に実施した。
【0015】

Figure 0003724362
【0016】
表2に各合金の引張り試験の結果を示す。表中の値は9本の引張り試験の平均の結果である。
表1と表2を対応させると明らかなように、本発明で規定する組成を有する合金No.1〜5では、全ての合金が140MPa以上の耐力と、15%以上の伸びを兼ね備えていた。しかし、マグネシウム含有量が3質量%未満の合金No.6は、耐力が140Mpaに達していない。また合金No.7はMg/Si比が2.7未満であるために、伸びが低い。さらに、合金No.8,9は、マグネシウムの含有量が4.0質量%以上であるため、鋳造3日経過後の引張り試験ではかなり高い伸びを維持していたが、30日経過後や90日経過後の引張り試験では10%前後に低下していた。
【0017】
Figure 0003724362
【0018】
次に、実用に近いダイカスト鋳型を用いて、ダイカスト鋳造性および合金の離型特性を調査した。ダイカスト条件は、引張り試験試料と同じく、溶湯温度720〜750℃、型温度250℃の条件で、鋳物サンプルの形状を幅50mm長さ200mm深さ30mm厚さ2mmで上部周辺に幅15mmのフランジを持つ箱型の鋳型に鋳造し、この鋳物サンプルで箱の底部あるいはフランジ部に生じる鋳造割れ、並びにダイカスト後サンプル温度300〜350℃で金型から箱型鋳物サンプルを取り出した時の鋳物の形状不良発生状況を測定した。
【0019】
その結果を表3に示す。結果は確率で整理した。鋳造割れは、目視で観察されるクラックを微小でもカウントした。なお、表中の個数は10個の試験体のうちの鋳造割れを生じていた個数を示している。
表3に示されているように、珪素含有量が特許請求の範囲で規定する範囲より少ない0.2質量%の合金No.11、12では、試験した鋳型の7〜80%の確率で鋳造割れを起こしている。0.4質量%のSiを含有する合金No.13でもまだ20%ほどの割れ不良を発生させている。しかし、Si含有量が0.5質量%を超える合金No.14,15,16,17では鋳造割れは発生していない。
型からの鋳物の離型性は、取り出した試験体を定盤に当てて2mm以上のズレが観察されたものを不良品とカウントし、鋳造割れと同様、10個の試験体のうちで発生した不良品の数を表3中に示している。
マンガンの含有量が1.0質量%未満の合金No.14は変形不良が発生しているが、1.0質量%以上の合金No.15,16,17では発生率がゼロである。
【0020】
Figure 0003724362
【0021】
【発明の効果】
以上に説明したように、本発明のダイカスト用アルミニウム合金は、マグネシウム、珪素およびマンガンの含有量を最適の範囲に調整することにより、優れたダイカスト鋳造性を有し、鋳造のままの状態で高い耐力と伸びを永続的に兼ね備えた材料特性を有し、自動車の車体構造用ダイカスト鋳物に適したものである。[0001]
[Industrial application fields]
The present invention relates to an aluminum alloy for die casting that is suitable for manufacturing a thin-walled large-sized vehicle body part of an automobile requiring impact energy absorption characteristics by a die-casting machine.
[0002]
[Prior art]
Aluminum die-cast parts are used for joints and center pillars of aluminum frame body structures. Die-cast parts used in automobile body structures are required to absorb impact energy at the time of automobile collision, but they have mechanical properties that are not sufficient with conventional die-casting alloys, that is, high proof stress and elongation. This is necessary.
As such a die-cast alloy for an aluminum frame body structure, developed alloys such as Germany-Rheinfelden and US-Alcoa are known. These alloy compositions are Al-5% Mg-2% Si-Mn (Magsm59), Al-3% Mg-Mn-Co (Magsm22) {cf: Diecasting World, March 2000}, Al-4% Mg-1 % Mn {Japanese Patent Laid-Open No. 11-80875}.
[0003]
Alloys of these compositions are satisfactory in that they have both high yield strength and elongation as material properties, but each has a problem as a practical alloy.
That is, the Al-5% Mg-2% Si-Mn alloy has the disadvantage that the elongation phenomenon is significantly reduced with time since the precipitation phenomenon of the Mg 2 Si phase proceeds rapidly at room temperature after casting.
A casting with low elongation breaks immediately when impact energy is applied, and cannot absorb impact energy beyond the energy used for fracture. On the other hand, a casting having a large elongation deforms without breaking when impact energy is applied, and absorbs the impact energy as deformation energy. Therefore, when used for automobiles, even if collision energy is applied due to an automobile accident, it does not break and avoids increasing damage. Therefore, in practice, the longer the elongation, the more advantageous.
In the Al-5% Mg-2% Si-Mn alloy, in order to ensure elongation over many years, a structure stabilization heat treatment at 300 to 400 ° C. is indispensable after casting.
In addition, Al-3% Mg-Mn (Co) alloy that does not contain Si has a problem in castability, and crack defects are likely to occur during die casting. Is difficult to apply.
[0004]
[Problems to be solved by the invention]
In this way, when aluminum die casting technology is applied to the manufacture of automobile body structural parts, it has good castability so that it can be mass-produced, has the mechanical material characteristics required for the car body, and remains cast. An alloy that does not change in properties such as yield strength and elongation even when held for a long time is required.
The present invention has been devised to solve such problems, has both high yield strength and elongation, and can permanently retain the mechanical properties as cast without the need for stabilizing heat treatment, An object of the present invention is to provide an aluminum alloy having good die castability for automobile body structural parts.
[0005]
[Means for Solving the Problems]
In order to achieve the object, the aluminum alloy for automobile body structural parts die casting of the present invention is based on aluminum-magnesium-silicon-manganese having the following composition.
That is, the alloy of the present invention comprises 3.0% by mass or more and less than 4.0% by mass of magnesium, 1.0% by mass or more and 1.5% by mass or less of manganese, 0.5% by mass or more and 1.5% by mass or less. Silicon, 0.5 mass% or less of iron, the balance is made of aluminum and inevitable impurities , and the ratio Mg / Si of magnesium to silicon is 2.7 or more. Moreover, 0.5 mass% or less of copper can also be contained as needed. Furthermore, the content of other elements is preferably 0.1% by mass or less.
[0006]
[Action]
The aluminum alloy for die castings according to the present invention can provide a material having productivity and mechanical characteristics suitable for a vehicle body structure by combining the contents of magnesium, manganese and silicon within an optimum range.
The content of each alloy element will be described together with the action.
[0007]
Mg: 3.0% by mass or more and less than 4.0% by mass The most important alloy element of the alloy of the present invention, and the material characteristics greatly vary depending on the magnesium content. Magnesium is an element that dissolves in aluminum and enhances the strength. However, if its content is less than 3.0% by mass, it cannot satisfy the proof stress of 140 MPa among the mechanical properties required for die-cast parts. Further, if it is 4.0% by mass or more, stress corrosion cracking is likely to occur, and the Mg 2 Al 3 phase precipitates at the grain boundary due to long-term use, and the material becomes brittle.
In addition, in the case of an alloy for die casting, addition of silicon cannot be avoided to improve castability. However, when silicon and magnesium coexist, if the magnesium content is 4.0% by mass or more, precipitation of Mg 2 Si And the embrittlement of the material due to Mg 2 Si is also added, so that the secular change becomes remarkable and the elongation decreases with the passage of time.
Therefore, the magnesium content must be 3.0% by mass or more and less than 4.0% by mass.
[0008]
Mn: 1.0% by mass or more and 1.5% by mass or less Manganese has an effect of preventing seizure to the die casting mold and further improving the yield strength and high temperature strength of the material. Moreover, it also has the effect | action which prevents a cast product deformation | transformation at the time of taking out the cast product after completion | finish of die-casting. When the content is less than 1.0% by mass, the die-casting mold is easily seized when the iron content is low, and the shape of the cast product is easily deformed when the cast product is taken out. If the content exceeds 1.5% by mass, the solidification rate normally obtained by die casting exceeds the solid solution limit of manganese, and a huge crystallized product is produced, which adversely affects the elongation of material properties. Effect.
Therefore, the manganese content that prevents seizure, secures the shape stability of the cast product at the time of removal, and does not decrease the elongation is 1.0% by mass or more and 1.5% by mass or less.
[0009]
Si: 0.5% by mass or more and 1.5% by mass or less Silicon is a component necessary for improving the castability of an aluminum-magnesium alloy. Cast cracking of the cast product can be prevented. However, if the content exceeds 1.5% by mass, the compound Mg 2 Si with magnesium is crystallized at the time of solidification of the alloy, thereby reducing the elongation of the alloy and further reducing the elongation due to aging.
Therefore, in order to prevent casting cracks, reduce the elongation of the material, and ensure an elongation value of 15% or more, 0.5% by mass or more and 1.5% by mass or less of silicon must be contained.
[0010]
Mg / Si: 2.7 or more Even in the case of an aluminum-magnesium-silicon-manganese base alloy having the above composition range, if the ratio of Si to Mg is high, Mg 2 Si is not suitable for casting. Crystallization has priority. Since the crystallized Mg 2 Si tends to reduce the elongation of the material, the magnesium content must be higher than the silicon content, and the Mg / Si ratio should be 2.7 or higher based on experimental results. is there.
[0011]
Fe: 0.5% by mass or less Iron has an effect of preventing seizure with a die-casting die during die-casting, but hardly dissolves in aluminum. When it is contained in a large amount, a needle-like Al—Fe—Si crystallized product is formed, and the elongation of the material is rapidly reduced. In order to keep the elongation value at 15% or more, the content must be 0.5% by mass or less.
[0012]
Cu: 0.5% by mass or less Copper has an effect of improving the proof stress among the material characteristics, so is contained as necessary. However, since elongation and corrosion resistance are lowered according to the content, the content must be limited to 0.5% by mass or less.
Other elements: 0.1% by mass or less Other elements also need to suppress mixing as much as possible in order to ensure the elongation required for the material, and each is made 0.1% by mass or less. It is desirable.
[0013]
By adjusting the components as described above, the aluminum alloy of the present invention does not cause casting cracks even in the production of complex-shaped die castings, does not cause seizure to the die casting mold, and takes the product out of the mold. In addition, when it is cast by a high-quality die casting method such as a vacuum die casting method or an oxygen die casting method, sufficient elongation can be secured as it is without performing any heat treatment. Therefore, it is possible to manufacture a casting having a high impact energy absorption capability that can be applied as a vehicle body structure material of an automobile.
[0014]
【Example】
After melting the aluminum alloy having the composition shown in Table 1, the molten metal treatment for degassing and degassing is performed, and casting is performed in a die-casting mold held in a vacuum at a molten metal temperature of 720 to 750 ° C. and a mold temperature of 250 ° C. Then, a flat casting having a thickness of 3 mm and a size of 150 mm × 200 mm was prepared with a clamping force of 350 tons. The porosity in the die-cast casting was controlled to 2% or less. Three flat tensile test pieces with a black skin were cut out from one flat casting from this casting, and nine test pieces per level were subjected to a tensile test. (In Table 1, the underline indicates that it is outside the specified range.)
The tensile test was a sample that was cast without being subjected to heat treatment, and was performed after 3 days, 30 days, and 90 days after die casting.
[0015]
Figure 0003724362
[0016]
Table 2 shows the results of the tensile test of each alloy. The values in the table are the average results of 9 tensile tests.
As is apparent from the correspondence between Tables 1 and 2, Alloy No. having the composition defined in the present invention is used. In 1-5, all the alloys had a yield strength of 140 MPa or more and an elongation of 15% or more. However, Alloy No. with a magnesium content of less than 3% by mass. No. 6 has a proof stress not reaching 140 MPa. Alloy No. No. 7 has a low elongation because the Mg / Si ratio is less than 2.7. Furthermore, alloy no. Nos. 8 and 9 had a magnesium content of 4.0% by mass or more, and thus maintained a fairly high elongation in the tensile test after 3 days of casting, but 10 in the tensile test after 30 days or 90 days. % Decreased to around%.
[0017]
Figure 0003724362
[0018]
Next, the die casting moldability and the mold release characteristics of the alloy were investigated using a die casting mold close to practical use. The die casting conditions are the same as in the tensile test sample, with the conditions of a molten metal temperature of 720 to 750 ° C and a mold temperature of 250 ° C. Cast into a box-shaped mold, cast cracks that occur at the bottom or flange of the box with this casting sample, and poor casting shape when the box-shaped casting sample is removed from the mold at a sample temperature of 300-350 ° C after die casting The occurrence situation was measured.
[0019]
The results are shown in Table 3. The results were organized by probability. As for the casting crack, even a minute crack observed visually was counted. In addition, the number in the table | surface has shown the number which had produced the casting crack among 10 test bodies.
As shown in Table 3, 0.2% by mass of alloy no. In Nos. 11 and 12, casting cracks occur with a probability of 7 to 80% of the tested molds. Alloy No. 1 containing 0.4% by mass of Si 13 still produces crack defects of about 20%. However, Alloy No. with Si content exceeding 0.5 mass%. No casting cracks occurred in 14, 15, 16, and 17.
The mold releasability of the casting from the mold occurred in 10 test specimens, as well as casting cracks, when the removed specimen was applied to the surface plate and the deviation of 2 mm or more was observed as a defective product. Table 3 shows the number of defective products.
Alloy No. 1 with a manganese content of less than 1.0% by mass No. 14 has a deformation defect, but an alloy no. In 15, 16, and 17, the incidence is zero.
[0020]
Figure 0003724362
[0021]
【The invention's effect】
As described above, the aluminum alloy for die casting of the present invention has excellent die castability by adjusting the contents of magnesium, silicon and manganese to the optimum range, and is high in the as-cast state. It has material properties that have both yield strength and elongation, and is suitable for die castings for automobile body structures.

Claims (2)

3.0質量%以上4.0質量%未満のマグネシウム、1.0質量%以上1.5質量%以下のマンガン、0.5質量%以上1.5質量%以下の珪素、0.5質量%以下の鉄を含有し、残部がアルミニウム及び不可避的不純物からなり、かつマグネシウムと珪素の比Mg/Siを2.7以上としたことを特徴とする自動車車体構造部品ダイカスト用アルミニウム合金。3.0 mass% or more and less than 4.0 mass% magnesium, 1.0 mass% or more and 1.5 mass% or less manganese, 0.5 mass% or more and 1.5 mass% or less silicon, 0.5 mass% An aluminum alloy for automobile body structural parts die casting, comprising the following iron, the balance being aluminum and inevitable impurities , and the ratio Mg / Si of magnesium to silicon being 2.7 or more. さらに0.5質量%以下の銅を含有したものである請求項1記載の自動車車体構造部品ダイカスト用アルミニウム合金。  The aluminum alloy for automobile body structural parts die-casting according to claim 1, further comprising 0.5% by mass or less of copper.
JP2000335468A 2000-11-02 2000-11-02 Aluminum alloy for die casting Expired - Fee Related JP3724362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000335468A JP3724362B2 (en) 2000-11-02 2000-11-02 Aluminum alloy for die casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000335468A JP3724362B2 (en) 2000-11-02 2000-11-02 Aluminum alloy for die casting

Publications (2)

Publication Number Publication Date
JP2002146463A JP2002146463A (en) 2002-05-22
JP3724362B2 true JP3724362B2 (en) 2005-12-07

Family

ID=18811205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000335468A Expired - Fee Related JP3724362B2 (en) 2000-11-02 2000-11-02 Aluminum alloy for die casting

Country Status (1)

Country Link
JP (1) JP3724362B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004027594B4 (en) * 2004-06-05 2006-06-29 Man B & W Diesel Ag Turbomachine with radially flowing compressor wheel
KR101055373B1 (en) * 2011-01-27 2011-08-08 지케이 주식회사 Aluminum alloy for diecasting
JP2017210653A (en) * 2016-05-26 2017-11-30 日本軽金属株式会社 Aluminum alloy and casting
PL3589766T3 (en) * 2018-05-07 2023-07-31 Alcoa Usa Corp. Al-mg-si-mn-fe casting alloys

Also Published As

Publication number Publication date
JP2002146463A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
JP6780664B2 (en) Aluminum alloy plate for battery lid for molding of integrated circular explosion-proof valve and its manufacturing method
CA2574962C (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
US7625454B2 (en) Al-Si-Mg-Zn-Cu alloy for aerospace and automotive castings
JP3734155B2 (en) Aluminum alloy for die-casting, aluminum die-casting product, and manufacturing method thereof
US20100288401A1 (en) Aluminum casting alloy
US11401586B2 (en) High-strength A356 alloy and preparation method thereof
US20050191204A1 (en) Aluminum alloy for producing high performance shaped castings
EP1882754B1 (en) Aluminium alloy
EP1882753A1 (en) Aluminium alloy
KR101757013B1 (en) Copper aluminum alloy molded part having high mechanical strength and hot creep resistance
JP2001220639A (en) Aluminum alloy for casting
JP2008542533A (en) Aluminum casting alloy and method for producing the same
EP4365323A1 (en) Die-casting aluminum alloy without heat-treatment and preparation method and application thereof
CN111945040B (en) Al-Si-Cu-Mg-Zr aluminum alloy and short-process heat treatment process thereof
CN113862531A (en) Aluminum alloy and preparation method thereof
JP4007488B2 (en) Aluminum alloy for die casting, manufacturing method of die casting product and die casting product
EP3342889B1 (en) Aluminium casting alloy
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
JP3724362B2 (en) Aluminum alloy for die casting
JP7152977B2 (en) aluminum alloy
CN115418535A (en) Aluminum alloy material, preparation method and application thereof, and aluminum alloy product
CN113046606B (en) Aluminum alloy, preparation method thereof and aluminum alloy structural part
JPH0375329A (en) Aluminum alloy and method for its casting
WO2007114345A1 (en) DIECASTING Zn ALLOY, PROCESS FOR PRODUCTION THEREOF, AND Al MASTER ALLOY FOR DIECASTING ALLOY
JPH03249148A (en) Low thermal expansion aluminum alloy excellent in strength and ductility

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Ref document number: 3724362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees