JP3724035B2 - Method for manufacturing light emitting device - Google Patents

Method for manufacturing light emitting device Download PDF

Info

Publication number
JP3724035B2
JP3724035B2 JP1925896A JP1925896A JP3724035B2 JP 3724035 B2 JP3724035 B2 JP 3724035B2 JP 1925896 A JP1925896 A JP 1925896A JP 1925896 A JP1925896 A JP 1925896A JP 3724035 B2 JP3724035 B2 JP 3724035B2
Authority
JP
Japan
Prior art keywords
light
emitting element
light emitting
front surface
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1925896A
Other languages
Japanese (ja)
Other versions
JPH09191130A (en
Inventor
幹雄 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1925896A priority Critical patent/JP3724035B2/en
Publication of JPH09191130A publication Critical patent/JPH09191130A/en
Application granted granted Critical
Publication of JP3724035B2 publication Critical patent/JP3724035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロレンズを有する発光素子装置およびその製造方法に関する。
【0002】
【従来の技術】
従来、光通信等においてLED(発光ダイオード)等の発光素子の光を利用する場合には、発光素子から出射される光を発光素子の前面で集光することなく直接使用していた。
【0003】
【発明が解決しようとする課題】
そのため、発光素子から出射された光の利用率が必ずしも良くなく、発光素子からの光に十分な強さを与えるためには、それだけ多くの電力が必要となり、例えば光通信に利用しようとする際の低消費電力化に不向きであるという問題点があった。
【0004】
また、従来、発光素子を封止するパッケージをレンズ形状にして集光性を与えるようにしたものもあるが、この場合、パッケージをレンズ形状にするため、小型化が困難であるという問題点があった。
【0005】
本発明はかかる問題点に鑑みてなされたもので、その課題は、発光素子から出射された光を効率良く利用でき、低消費電力化を可能とすると共に、小型化に適した発光素子装置およびその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1記載の発光素子装置は、光を出射する発光素子と、発光素子の前面に発光素子と一体的に形成され、発光素子から出射された光を集光して放出するマイクロレンズとを備えたものである複数の発光素子が形成された半導体基体上に各発光素子の前面に開口部を有する遮光膜、透光性樹脂層、レジスト材層を順に形成する工程と、前記レジスト材層をパターニングして前記各発光素子の前面にレジストパターンを形成する工程と、前記レジストパターンをマスクにして前記透光性樹脂層をエッチングして前記各発光素子の前面に樹脂パターンを形成する工程と、熱処理によるリフローによって前記樹脂パターンの表面形状を曲面化する工程と、前記曲面化された樹脂パターンを硬化させてマイクロレンズを形成する工程とを備えたことを特徴とする。
【0007
本願発明の発光素子装置の製造方法では、発光素子が形成された基体上における発光素子に対応する位置にパターニングされた光硬化型の透光性材料層を熱処理することによって、透光性材料層の表面形状が曲面化され、更に、この透光性材料層に所定の光を照射して透光性材料層を硬化させることによってマイクロレンズが形成される。
【0008
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0009
は本発明の第1の実施の形態に係る発光素子装置の製造方法を示す説明図である。本実施の形態に係る発光素子装置は、図1(d)に示したように、複数の発光素子11が形成された半導体基体10上に、発光素子11の前面(上面)の所定の範囲に開口郡12aを有する遮光膜12が形成されると共に、発光素子11の前面に光硬化型の透光性樹脂によるマイクロレンズ21が形成されて構成されている。
【0010
次に、本実施の形態に係る発光素子装置の製造方法について説明する。この製造方法では、まず、図1(a)に示したように、複数の発光素子11が形成された半導体基体10上に、発光素子11の前面の所定の範囲に開口部12aを有する遮光膜12を形成する。遮光膜12には例えばAlを用いる。遮光膜12の形成方法は、例えば、Al等の遮光膜12用の材料を半導体基体10上の全面に蒸着し、フォト・リソグラフィ工程によって、開口部12aを有する遮光膜12をパターニングする方法とする。次に、発光素子11および遮光膜12上に、光硬化型の透光性樹脂を例えば塗布装置により塗布して、透光性樹脂層21aを形成する。この透光性樹脂層21aの厚みは、発光素子11のサイズ等に応じて適宜に設定するが、例えば1μm程度である。透光性樹脂層21a上にレジスト材を例えば塗布装置により塗布して、レジスト材層22aを形成する。次に、図1(b)に示したように、フォトマスクによりレジスト材層22aに所定のパターンを露光し現像して、発光素子11の前面にレジストパターン22bを形成する。次に、図1(c)に示したように、レジストパターン22bをマスクとして、透光性樹脂層21aにおける不要部分である遮光膜12上の部分をエッチングによって除去して、発光素子11の前面に樹脂パターン21bを形成(パターニング)する。次に、図1(d)に示したように、熱処理によるリフローによって、樹脂パターン21bの表面形状を球面等の曲面にする。熱処理の温度は、透光性樹脂の種類に依存するが、例えば200°C程度である。次に、表面形状が曲面化された樹脂パターン21bの全面に、透光性樹脂を硬化させるための光を一括照射して、表面形状が曲面化された樹脂パターン21bを硬化させてマイクロレンズ21を形成する。ここで、マイクロレンズ21の形状は、透光性樹脂の材料、厚みおよび熱処理の温度等によって制御する。
【0011
本実施の形態に係る発光素子装置およびその製造方法によれば、発光素子11から出射された光は、その前面にオンチップ形成されたマイクロレンズ21によって集光されて、前方に放出されるので、発光素子11から出射された光を効率良く利用することができる。従って、例えば本実施の形態に係る発光素子装置を光通信に利用する場合には従来に比べて発光素子11の出射光が弱くても信号を送ることができるようになる等、従来に比べて必要な電力を低減でき、低消費電力化が可能となる。また、発光素子11上に直接マイクロレンズ21を形成するので、パッケージをレンズ形状にする場合に比べて、発光素子装置の小型化が容易であり、その結果、発光素子装置を用いる装置の小型化も可能になる。また、レジスト材によるマイクロレンズ13よりも大きめのマイクロレンズ21を形成する場合に有利になる。なお、本実施の形態では、発光素子11およびその前面のマイクロレンズ21がそれぞれ複数ある発光素子装置の例で説明したが、発光素子11およびその前面のマイクロレンズ21はそれぞれ1つずつでも良く、その場合の製造方法も本実施の形態で説明した製造方法と同様である
【0012
図2は本発明の第2の実施の形態に係る発光素子装置の製造方法を示す説明図である。本実施の形態に係る発光素子装置は、図2(d)に示したように、複数の発光素子11が形成された半導体基体10上に、発光素子11の前面(上面)の所定の範囲に開口部12aを有する遮光膜12が形成されると共に、発光素子11の前面に、マイクロレンズ21による集光位置を調整するための透光性膜23を介して、光硬化型の透光性樹脂によるマイクロレンズ21が形成されて構成されている。
【0013
次に、本実施の形態に係る発光素子装置の製造方法について説明する。この製造方法では、まず、図2(a)に示したように、複数の発光素子11が形成された半導体基体10上に、第1の実施の形態と同様に、発光素子11の前面の所定の範囲に開口部12aを有する遮光膜12を形成する。次に、発光素子11および遮光膜12上の全面に透光性材料層を形成し、所定の厚みとなるまで研磨して平坦化して透光性膜23を形成する。透光性膜14とする透光性材料としては、例えば、TEOS(テトラエチルオルソシリケート)酸化膜等のSiO 2 膜を用いる。次に、透光性膜23上に、光硬化型の透光性樹脂を例えば塗布装置により塗布して、透光性樹脂層21aを形成する。次に、透光性樹脂層21a上にレジスト材を例えば塗布装置により塗布して、レジスト材層22aを形成する。次に、図2(b)に示したように、レジスト材層22aに所定のパターンを露光し現像して、発光素子11の前面にレジストパターン22bを形成する。次に、図2(c)に示したように、レジストパターン22bをマスクとして、透光性樹脂層21aにおける不要部分である遮光膜12上の部分をエッチングによって除去して、発光素子11の前面に樹脂パターン21bを形成する。次に、図2(d)に示したように、熱処理によるリフローによって樹脂パターン21bの表面形状を球面等の曲面にする。次に、表面形状が曲面化された樹脂パターン21bの全面に、透光性樹脂を硬化させるための光を一括照射して、表面形状が曲面化された樹脂パターン21bを硬化させてマイクロレンズ21を形成する。
【0014
本実施の形態に係る発光素子装置およびその製造方法によれば、発光素子11とマイクロレンズ21との間に透光性膜23を設けたので、透光性膜23の厚みを調整することで、マイクロレンズ21による集光位置を調整することができる。本実施の形態のその他の構成、作用および効果は第1の実施の形態と同様である。
【0015
なお、本発明は上記各実施の形態に限定されず、例えば、発光素子11としては、LEDに限らず、半導体レーザ等の他の発光素子を用いても良い。
【0016
【発明の効果】
以上説明したように請求項1記載の発光素子装置の製造方法によれば、発光素子の前面に発光素子と一体的にマイクロレンズを形成したので、発光素子から出射された光を効率良く利用でき、低消費電力化が可能になると共に、発光素子装置の小型化に適しているという効果を奏する。
【0017
また、透光性の膜を備えた発光素子装置の製造方法によれば、発光素子とマイクロレンズとの間に、マイクロレンズによる集光位置を調整するための透光性の膜を介装したので、上記効果に加え、透光性の膜の厚みを調整することによって、マイクロレンズによる集光位置を調整することができるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係る発光素子装置の製造方法を示す説明図である。
【図2】 本発明の第2の実施の形態に係る発光素子装置の製造方法を示す説明図である。
【符号の説明】
10 半導体基体
11 発光素子
12 遮光膜
21a 透光性樹脂層
21b 樹脂パターン
21 マイクロレンズ
22a レジスト材層
22b レジストパターン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting device having a microlens and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, when light from a light emitting element such as an LED (light emitting diode) is used in optical communication or the like, the light emitted from the light emitting element is directly used without condensing on the front surface of the light emitting element.
[0003]
[Problems to be solved by the invention]
Therefore, the utilization factor of the light emitted from the light emitting element is not necessarily good, and in order to give sufficient intensity to the light from the light emitting element, much power is required. For example, when trying to use it for optical communication There is a problem that it is not suitable for low power consumption.
[0004]
Conventionally, there is a package in which a light-emitting element sealing package is provided with a lens shape so as to provide light collecting properties. However, in this case, since the package is formed into a lens shape, it is difficult to reduce the size. there were.
[0005]
The present invention has been made in view of such problems, and the problem is that a light-emitting element device that can efficiently use light emitted from a light-emitting element, enables low power consumption, and is suitable for downsizing. It is in providing the manufacturing method.
[0006]
[Means for Solving the Problems]
The light-emitting element device according to claim 1 includes: a light-emitting element that emits light; and a microlens that is formed integrally with the light-emitting element on the front surface of the light-emitting element and that collects and emits the light emitted from the light-emitting element. A step of sequentially forming a light-shielding film having an opening on the front surface of each light-emitting element, a translucent resin layer, and a resist material layer on a semiconductor substrate on which a plurality of light-emitting elements are provided; and the resist material layer Forming a resist pattern on the front surface of each light emitting device by patterning, and etching the translucent resin layer using the resist pattern as a mask to form a resin pattern on the front surface of each light emitting device; , further comprising the step of curved the surface shape of the resin pattern by reflow by heat treatment, and forming a micro-lens by curing the curved surface of the resin pattern And it features.
[00 07 ]
In the manufacturing method of the light emitting element device of the present invention, the light transmissive material layer patterned by heat treatment on the position corresponding to the light emitting element on the substrate on which the light emitting element is formed, The surface shape is curved, and a microlens is formed by irradiating the translucent material layer with predetermined light to cure the translucent material layer.
[00 08 ]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[00 09 ]
FIG. 1 is an explanatory view showing a method for manufacturing a light emitting element device according to the first embodiment of the present invention. As shown in FIG. 1D , the light emitting element device according to the present embodiment has a predetermined range on the front surface (upper surface) of the light emitting element 11 on the semiconductor substrate 10 on which the plurality of light emitting elements 11 are formed. A light shielding film 12 having an aperture group 12 a is formed, and a microlens 21 made of a photocurable translucent resin is formed on the front surface of the light emitting element 11.
[00 10 ]
Next, a method for manufacturing the light emitting element device according to this embodiment will be described. In this manufacturing method, first, as shown in FIG. 1A , a light-shielding film having an opening 12a in a predetermined range on the front surface of the light-emitting element 11 on the semiconductor substrate 10 on which the plurality of light-emitting elements 11 are formed. 12 is formed. For example, Al is used for the light shielding film 12. The light shielding film 12 is formed by, for example, depositing a material for the light shielding film 12 such as Al on the entire surface of the semiconductor substrate 10 and patterning the light shielding film 12 having the opening 12a by a photolithography process. . Next, a light curable translucent resin is applied on the light emitting element 11 and the light shielding film 12 by, for example, a coating apparatus to form the translucent resin layer 21a. The thickness of the translucent resin layer 21a is appropriately set according to the size of the light emitting element 11, etc., and is about 1 μm, for example. A resist material is applied onto the translucent resin layer 21a by, for example, a coating apparatus to form the resist material layer 22a. Next, as shown in FIG. 1 (b), and exposing a predetermined pattern on the resist material layer 22a by the photo mask and developed to form a resist pattern 22b on the front surface of the light emitting element 11. Next, as shown in FIG. 1C , using the resist pattern 22b as a mask, a portion on the light shielding film 12 which is an unnecessary portion in the translucent resin layer 21a is removed by etching, so that the front surface of the light emitting element 11 is obtained. A resin pattern 21b is formed (patterned) . Next, as shown in FIG. 1D, the surface shape of the resin pattern 21b is changed to a curved surface such as a spherical surface by reflow by heat treatment. Although the temperature of heat processing is dependent on the kind of translucent resin, it is about 200 degreeC, for example. Next, the entire surface of the resin pattern 21b having a curved surface shape is collectively irradiated with light for curing the translucent resin, and the resin pattern 21b having a curved surface shape is cured to form the microlens 21. Form. Here, the shape of the microlens 21 is controlled by the material, thickness, heat treatment temperature, and the like of the translucent resin.
[00 11 ]
According to the light emitting element device and the manufacturing method thereof according to the present embodiment, the light emitted from the light emitting element 11 is collected by the microlens 21 formed on-chip on the front surface and emitted forward. The light emitted from the light emitting element 11 can be used efficiently. Therefore, for example, when the light-emitting element device according to the present embodiment is used for optical communication, a signal can be sent even if the light emitted from the light-emitting element 11 is weaker than in the past. Necessary power can be reduced and low power consumption can be achieved. Further, since the microlens 21 is formed directly on the light emitting element 11, the light emitting element device can be easily downsized as compared with the case where the package is formed into a lens shape. As a result, the device using the light emitting element device can be downsized. Is also possible. Further, it is advantageous when forming a microlens 21 larger than the microlens 13 made of a resist material. In the present embodiment, the example of the light emitting element device having a plurality of light emitting elements 11 and a plurality of microlenses 21 in front of the light emitting elements 11 has been described. The manufacturing method in that case is also the same as the manufacturing method described in this embodiment .
[00 12 ]
FIG. 2 is an explanatory view showing a method for manufacturing a light-emitting element device according to the second embodiment of the present invention. As shown in FIG. 2D , the light emitting element device according to the present embodiment has a predetermined range on the front surface (upper surface) of the light emitting element 11 on the semiconductor substrate 10 on which the plurality of light emitting elements 11 are formed. A light shielding film 12 having an opening 12a is formed, and a light curable translucent resin is provided on the front surface of the light emitting element 11 via a translucent film 23 for adjusting a light collecting position by the microlens 21. The microlens 21 is formed and configured.
[00 13 ]
Next, a method for manufacturing the light emitting element device according to this embodiment will be described. In this manufacturing method, first, as shown in FIG. 2A , a predetermined surface on the front surface of the light emitting element 11 is formed on the semiconductor substrate 10 on which the plurality of light emitting elements 11 are formed, as in the first embodiment. The light shielding film 12 having the opening 12a in the range is formed. Next, a light- transmitting material layer is formed on the entire surface of the light- emitting element 11 and the light-shielding film 12, and is polished and flattened to a predetermined thickness to form a light-transmitting film 23. As the translucent material used as the translucent film 14, for example, a SiO 2 film such as a TEOS (tetraethylorthosilicate) oxide film is used. Next, a light curable translucent resin is applied onto the translucent film 23 by, for example, a coating apparatus to form the translucent resin layer 21a. Next, a resist material is applied onto the translucent resin layer 21a by, for example, a coating apparatus to form the resist material layer 22a. Next, as shown in FIG. 2B, a predetermined pattern is exposed and developed on the resist material layer 22 a to form a resist pattern 22 b on the front surface of the light emitting element 11. Next, as shown in FIG. 2C , using the resist pattern 22b as a mask, a portion on the light shielding film 12 which is an unnecessary portion in the translucent resin layer 21a is removed by etching, and the front surface of the light emitting element 11 is obtained. The resin pattern 21b is formed. Next, as shown in FIG. 2D, the surface shape of the resin pattern 21b is changed to a curved surface such as a spherical surface by reflow by heat treatment. Next, the entire surface of the resin pattern 21b having a curved surface shape is collectively irradiated with light for curing the translucent resin, and the resin pattern 21b having a curved surface shape is cured to form the microlens 21. Form.
[00 14 ]
According to the light emitting element device and the method for manufacturing the same according to the present embodiment, the translucent film 23 is provided between the light emitting element 11 and the microlens 21, and therefore the thickness of the translucent film 23 is adjusted. The focusing position by the microlens 21 can be adjusted. Other configurations, operations, and effects of the present embodiment are the same as those of the first embodiment.
[00 15 ]
In addition, this invention is not limited to said each embodiment, For example, as the light emitting element 11, you may use other light emitting elements, such as not only LED but a semiconductor laser.
[00 16 ]
【The invention's effect】
As described above, according to the method for manufacturing a light emitting device according to claim 1, since the microlens is formed integrally with the light emitting device on the front surface of the light emitting device, the light emitted from the light emitting device can be used efficiently. As a result, the power consumption can be reduced and the light emitting device can be reduced in size.
[00 17 ]
Moreover, according to the manufacturing method of the light emitting element device provided with the translucent film , the translucent film for adjusting the condensing position by the microlens is interposed between the light emitting element and the microlens. Therefore, in addition to the above-described effect, there is an effect that the condensing position by the microlens can be adjusted by adjusting the thickness of the light-transmitting film.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a method for manufacturing a light emitting device according to a first embodiment of the invention.
FIG. 2 is an explanatory view showing a method for manufacturing a light emitting element device according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Semiconductor substrate 11 Light emitting element 12 Light shielding film
21a Translucent resin layer
21b Resin pattern
21 micro lens
22 a Resist material layer
22 b resist pattern

Claims (2)

複数の発光素子が形成された半導体基体上に各発光素子の前面に開口部を有する遮光膜、透光性樹脂層、レジスト材層を順に形成する工程と、
前記レジスト材層をパターニングして前記各発光素子の前面にレジストパターンを形成する工程と、
前記レジストパターンをマスクにして前記透光性樹脂層をエッチングして前記各発光素子の前面に樹脂パターンを形成する工程と、
熱処理によるリフローによって前記樹脂パターンの表面形状を曲面化する工程と、
前記曲面化された樹脂パターンを硬化させてマイクロレンズを形成する工程と
を備えたことを特徴とする発光素子装置の製造方法。
Forming a light-shielding film having an opening on the front surface of each light-emitting element, a translucent resin layer, and a resist material layer on a semiconductor substrate on which a plurality of light-emitting elements are formed;
Patterning the resist material layer to form a resist pattern on the front surface of each light emitting element;
Etching the translucent resin layer using the resist pattern as a mask to form a resin pattern on the front surface of each light emitting element; and
A step of curving the surface shape of the resin pattern by reflow by heat treatment;
Curing the curved resin pattern to form a microlens;
A method for manufacturing a light-emitting element device, comprising:
前記遮光膜を形成した後で前記透光性樹脂層を形成する前に、透光性膜を形成する工程
を備えたことを特徴とする請求項1記載の発光素子装置の製造方法。
A step of forming a light-transmitting film after forming the light-shielding film and before forming the light-transmitting resin layer
The method of manufacturing a light emitting element device according to claim 1, comprising :
JP1925896A 1996-01-11 1996-01-11 Method for manufacturing light emitting device Expired - Fee Related JP3724035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1925896A JP3724035B2 (en) 1996-01-11 1996-01-11 Method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1925896A JP3724035B2 (en) 1996-01-11 1996-01-11 Method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JPH09191130A JPH09191130A (en) 1997-07-22
JP3724035B2 true JP3724035B2 (en) 2005-12-07

Family

ID=11994415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1925896A Expired - Fee Related JP3724035B2 (en) 1996-01-11 1996-01-11 Method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP3724035B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320270B2 (en) * 2009-11-25 2013-10-23 株式会社沖データ Manufacturing method of display panel
US10886327B2 (en) * 2017-12-14 2021-01-05 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same

Also Published As

Publication number Publication date
JPH09191130A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
US6794218B2 (en) Glass attachment over micro-lens arrays
JP3836678B2 (en) Microlens and photodetector
JPH10303439A (en) Optical transmissive layer, opto-electronic device and manufacture thereof
KR100976671B1 (en) Process for producing optical waveguide
US5286605A (en) Method for producing solid-state imaging device
JP2002196104A (en) Microlens array, method for manufacturing the same and optical device
JP2007053318A (en) Solid-state imaging device and method of manufacturing same
JPH11211902A (en) Flat plane type microlens array
JP3547467B2 (en) Micro lens array and method of manufacturing the same
WO2001069316A1 (en) Exposure controlling photomask and production method therefor
JP3724035B2 (en) Method for manufacturing light emitting device
JPH0412568A (en) Manufacture of solid-state image pickup device
JPH06194502A (en) Microlens and microlens array and their production
JP2000307090A (en) Solid-state image sensing device microlens array, solid- state image sensing device provided with it, and method of manufacturing them
JP2992515B1 (en) Method of manufacturing a complementary metal-oxide-semiconductor (CMOS) sensor device
KR101033414B1 (en) Method for forming a micro-lens of an image sensor, and manufacturing the image sensor
JP2010054923A (en) Color imaging device and manufacturing method of same
JP2007017980A (en) Optical device with refractive and diffraction characteristics
JPH06302794A (en) Manufacture of solid-state image sensing element
JP2004327713A (en) Image read device and manufacturing method therefor
US20230350112A1 (en) Multi-level structures and methods for manufacturing the same
JPH0474471A (en) Manufacturing of micro lens
JPH03169076A (en) Solid-state image sensing element with micro lens and its manufacture
JP2004354668A (en) Method of manufacturing microlens
JP2001085651A (en) Solid state image pick up element and fabrication method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees