JP3723570B1 - Bearing stress distribution member, fixing tool and prestressed concrete - Google Patents

Bearing stress distribution member, fixing tool and prestressed concrete Download PDF

Info

Publication number
JP3723570B1
JP3723570B1 JP2005215586A JP2005215586A JP3723570B1 JP 3723570 B1 JP3723570 B1 JP 3723570B1 JP 2005215586 A JP2005215586 A JP 2005215586A JP 2005215586 A JP2005215586 A JP 2005215586A JP 3723570 B1 JP3723570 B1 JP 3723570B1
Authority
JP
Japan
Prior art keywords
guide
distribution member
insertion hole
thickness
stress distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005215586A
Other languages
Japanese (ja)
Other versions
JP2007032051A (en
Inventor
晴次 広瀬
邦彦 成沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokuto Kogen Concrete Shinko Co Ltd
Original Assignee
Kyokuto Kogen Concrete Shinko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokuto Kogen Concrete Shinko Co Ltd filed Critical Kyokuto Kogen Concrete Shinko Co Ltd
Priority to JP2005215586A priority Critical patent/JP3723570B1/en
Application granted granted Critical
Publication of JP3723570B1 publication Critical patent/JP3723570B1/en
Publication of JP2007032051A publication Critical patent/JP2007032051A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Abstract

【課題】 緊張材から定着具に与えられる緊張力の反力としてのプレストレスを、定着具を構成するガイドからその回りのコンクリートに分散させて伝達する支圧応力分散部材の外形寸法を抑えながら、ガイドへの装着状態で支圧応力分散部材を安定させる。
【解決手段】 厚さ方向に面対称形の平板状に製作し、中央部に、緊張材2が挿通する筒状のガイド3が挿通するための、ガイド3の形状に対応した形のガイド挿通孔1aを形成し、このガイド挿通孔1aの周囲に複数個の貫通孔1eを周方向に間隔をおいて形成する。ガイド挿通孔1aの周囲の縁部分1bの肉厚を他の部分の肉厚より大きくし、この肉厚の大きい縁部分1bにおいてガイド3の外周面に、ガイド3の軸方向に係止させると共に、前記縁部分1bの内周面に、ガイド3の外周面に形成された凸部3bがガイド3の軸方向に嵌合し、周方向に係合し得る凹部1cを形成する。
【選択図】 図1
PROBLEM TO BE SOLVED: To suppress an external dimension of a supporting stress dispersion member that transmits prestress as a reaction force of a tension force applied from a tension material to a fixing tool while dispersing the prestress from a guide constituting the fixing tool to a surrounding concrete. The bearing stress distribution member is stabilized in the mounted state on the guide.
SOLUTION: A guide insertion having a shape corresponding to the shape of a guide 3 is manufactured so that a cylindrical guide 3 through which a tension material 2 is inserted is manufactured in a flat plate shape symmetrical to the thickness direction. A hole 1a is formed, and a plurality of through holes 1e are formed around the guide insertion hole 1a at intervals in the circumferential direction. The thickness of the edge portion 1b around the guide insertion hole 1a is made larger than the thickness of other portions, and the edge portion 1b having a large thickness is locked to the outer peripheral surface of the guide 3 in the axial direction of the guide 3. On the inner peripheral surface of the edge portion 1b, a convex portion 3b formed on the outer peripheral surface of the guide 3 is fitted in the axial direction of the guide 3 to form a concave portion 1c that can be engaged in the circumferential direction.
[Selection] Figure 1

Description

本発明はコンクリートの端部に設置され、コンクリートにプレストレスを導入するPC鋼材等の緊張材の定着具において、緊張材から定着具に与えられる緊張力の反力としてのプレストレスを定着具回りのコンクリートに分散させて伝達する支圧応力分散部材、及びそれを含む定着具、並びにコンクリート中に定着具が定着されたプレストレストコンクリートに関するものである。   The present invention is a fixing device for a tension material such as a PC steel material, which is installed at an end portion of concrete and introduces prestress into concrete, and prestress is applied as a reaction force of a tension force applied from the tension material to the fixing device. The present invention relates to a supporting stress dispersion member that is dispersed and transmitted to concrete, a fixing tool including the same, and prestressed concrete in which the fixing tool is fixed in the concrete.

緊張材の端部が定着される定着具は図4に示すように複数本の緊張材が定着される定着ブロックと、コンクリート中に配置されるシースから定着ブロックまでの間に配置され、定着ブロックが受けるプレストレスをコンクリートに伝達するための、筒形のガイドから構成される。   As shown in FIG. 4, the fixing tool to which the end of the tendon is fixed is disposed between the fixing block to which a plurality of tendons are fixed and the sheath to the fixing block arranged in the concrete. It is composed of a cylindrical guide for transmitting the prestress received by the concrete to the concrete.

ガイド周辺のコンクリートにはガイドの外周面からコーン状に圧縮応力(支圧応力)が伝達されることから、その応力伝達領域には過大な応力が発生するため、一部に応力を集中させず、コンクリートの圧壊を防止するために、ガイドの周囲には図4、図5に示すようにコンクリートを補強するための補強筋を配筋することが必要になる(特許文献1、2参照)。図4は波形に形成された2本の鉄筋が格子状に組まれた鉄筋(グリッド筋)の例を、図5−(a)はスパイラル状に組まれた鉄筋の例を示す。   Since compressive stress (bearing stress) is transmitted to the concrete around the guide in a cone shape from the outer peripheral surface of the guide, excessive stress is generated in the stress transmission area, so that the stress is not concentrated in part. In order to prevent concrete crushing, it is necessary to arrange reinforcing bars for reinforcing concrete as shown in FIGS. 4 and 5 around the guide (see Patent Documents 1 and 2). FIG. 4 shows an example of a reinforcing bar (grid bar) in which two reinforcing bars formed in a waveform are assembled in a lattice shape, and FIG. 5A shows an example of a reinforcing bar assembled in a spiral shape.

図4−(a)に示すようにグリッド筋を用いる場合、コンクリート中に配筋される鉄筋(主筋)の径に応じ、鉄筋が挿通する折り曲げ部分の最小曲げ半径が決められている関係から、プレストレストコンクリート中の必要鉄筋量を満足させようとすれば、折り曲げ部分の曲率半径が大きくなり、グリッド筋の外形寸法が大きくなる。   When using grid bars as shown in FIG. 4- (a), the minimum bending radius of the bent portion through which the reinforcing bars are inserted is determined according to the diameter of the reinforcing bars (main bars) placed in the concrete. If an attempt is made to satisfy the required amount of reinforcing steel in the prestressed concrete, the radius of curvature of the bent portion increases, and the external dimensions of the grid reinforcement increase.

外形寸法が大きくなれば、グリッド筋の最も外側の鉄筋からコンクリートの表面までの距離が確保されにくくなり、かぶりを確保することが難しくなる。そのような場合、図4−(b)に示すようにグリッド筋を二重に配置すれば、1個当たりのグリッド筋の寸法を小さくすることができる結果、必要なかぶり厚を確保することができるが、ガイド回りに鉄筋が混材するため、主筋に交差する方向の鉄筋の配筋作業性とコンクリートの充填性が低下する上、グリッド筋の使用量が増えるために補強に要するコストが上昇する不利益を伴う。   If the outer dimension becomes large, it becomes difficult to secure the distance from the outermost reinforcing bar of the grid reinforcement to the concrete surface, and it becomes difficult to ensure the cover. In such a case, as shown in FIG. 4- (b), if the grid lines are arranged in a double manner, the size of each grid line can be reduced, so that the necessary cover thickness can be secured. However, because the reinforcing bars are mixed around the guides, the reinforcing bar workability and the filling of the concrete in the direction intersecting the main bars are reduced, and the amount of grid bars used increases, so the cost required for reinforcement increases. With disadvantages.

特開2002−97745号公報(請求項4、段落0013〜0019、図1〜図3)JP 2002-97745 A (Claim 4, paragraphs 0013 to 0019, FIGS. 1 to 3) 特開2003−41710号公報(段落0011〜0012、図1、図2)JP 2003-41710 A (paragraphs 0011 to 0012, FIGS. 1 and 2)

また図4に示すグリッド筋は鉄筋を格子状に組み合わせた形状であることから、厚さ方向の安定性がないため、ガイドの回りに装着された状態からコンクリートを打設したときに面外方向に回転変形し易い。同様に図5−(a)に示すスパイラル筋は全体として剛性が乏しいことから、それ自身が軸方向に変形し易いため、やはりコンクリートの打設時に図5−(b)、(c)に示すようにガイドに対して変位し易く、共にガイドから受ける圧縮応力に対して装着状態を維持することが難しい。   In addition, since the grid bars shown in FIG. 4 are shaped by combining reinforcing bars in a lattice shape, there is no stability in the thickness direction. It is easy to rotate and deform. Similarly, since the spiral muscle shown in FIG. 5- (a) has poor rigidity as a whole, it itself is easily deformed in the axial direction, so that it is also shown in FIGS. 5- (b) and (c) when placing concrete. Thus, it is easy to be displaced with respect to the guide, and it is difficult to maintain the mounting state against the compressive stress received from the guide.

グリッド筋とスパイラル筋のいずれも、ガイドからの支圧応力を効率的に分散させてコンクリートに伝達する上ではガイドの、コンクリート表面側の端部からの距離、またはコンクリート端面からの距離を一定の範囲内に納める必要があるところ、上記のようにガイドへの装着時点においてガイドに対して変形、または変位するとすれば、支圧応力を分散させる効果が発揮されなくなる。   Both grid and spiral bars efficiently distribute the bearing stress from the guide and transmit it to the concrete. However, if the guide is deformed or displaced at the time of mounting on the guide as described above, the effect of dispersing the bearing stress cannot be exhibited.

本発明は上記背景より、外形寸法を抑えながらも安定してガイドへの装着状態を維持でき、且つガイドからの支圧応力を効果的に分散させてコンクリートに伝達できる支圧応力分散部材、及びそれを含む定着具、並びにプレストレストコンクリートを提案するものである。   From the above background, the present invention provides a bearing stress distribution member that can stably maintain the mounting state on the guide while suppressing the external dimensions, and that can effectively distribute the bearing stress from the guide and transmit it to the concrete, and The present invention proposes a fixing tool including the same and prestressed concrete.

請求項1に記載の発明の支圧応力分散部材は厚さ方向に面対称形の平板状に製作され、中央部に、緊張材が挿通する筒状のガイドが挿通するための、ガイドの形状に対応した形のガイド挿通孔が形成され、このガイド挿通孔の周囲に複数個の貫通孔が周方向に間隔をおいて形成され、ガイド挿通孔の周囲の縁部分の肉厚が他の部分の肉厚より大きく、この肉厚の大きい縁部分においてガイドの外周面に、ガイドの軸方向に係止し得ると共に、前記縁部分の内周面に、ガイドの外周面に形成された凸部がガイドの軸方向に嵌合し、周方向に係合し得る凹部が形成されていることを構成要件とする。   The bearing stress distribution member according to the first aspect of the present invention is manufactured in a plane-symmetrical plate shape in the thickness direction, and the shape of the guide for inserting a cylindrical guide through which the tension material is inserted into the center portion. A guide insertion hole having a shape corresponding to the guide insertion hole is formed, a plurality of through holes are formed around the guide insertion hole at intervals in the circumferential direction, and the thickness of the edge portion around the guide insertion hole is the other part. And a convex portion formed on the outer peripheral surface of the guide on the inner peripheral surface of the edge portion. Is configured to have a recess that fits in the axial direction of the guide and can be engaged in the circumferential direction.

支圧応力分散部材自体が厚さ方向に面対称形であることで、表裏の別がないことから、コンクリートの両端のいずれの側においても、厚さ方向の向きを考えることなく支圧応力分散部材をガイドに装着することが可能であり、厚さ方向両面のいずれの面をコンクリートの端面側に向けてもガイドに装着可能である。換言すれば、厚さ方向の向きを間違える余地がないため、支圧応力分散部材の取り扱い易さが高い。表裏の別があれば、支圧応力分散部材の向きを間違えて配置する可能性がないとは言えないからである。   Since the bearing stress distribution member itself is plane-symmetric in the thickness direction, there is no distinction between the front and back sides, so it is possible to distribute the bearing stress without considering the direction of the thickness direction on either side of the concrete. The member can be attached to the guide, and can be attached to the guide even if any one of both surfaces in the thickness direction faces the end surface side of the concrete. In other words, since there is no room for making a mistake in the direction of the thickness direction, the support stress distribution member is easy to handle. This is because if there is a difference between the front and back sides, it cannot be said that there is no possibility of arranging the bearing stress distribution members in the wrong direction.

またガイド挿通孔の周囲に複数個の貫通孔が周方向に間隔をおいて形成されることで、支圧応力分散部材の使用状態で貫通孔内にコンクリートが入り込み、支圧応力分散部材にコンクリートとの間で付着力が発生する。この結果、図3−(b)に矢印で示すように緊張材が定着されるガイドからコンクリート中にコーン状に伝達される支圧応力に対して支圧応力分散部材が付着力を発揮し、抵抗することにより、複数個の貫通孔から周辺のコンクリートに支圧応力を分散させて伝達することになる。   In addition, by forming a plurality of through holes around the guide insertion hole at intervals in the circumferential direction, the concrete enters the through hole when the support stress distribution member is in use, and the support stress distribution member Adhesive force is generated between them. As a result, as shown by the arrow in FIG. 3- (b), the supporting stress dispersing member exerts an adhesive force against the supporting stress transmitted in a cone shape from the guide to which the tension material is fixed into the concrete, By resisting, the supporting stress is dispersed and transmitted from the plurality of through holes to the surrounding concrete.

支圧応力分散部材はその挿通孔にガイドが挿通することによりガイドに装着されるが、ガイド挿通孔の周囲の縁部分の肉厚が他の部分の肉厚より大きく、この肉厚の大きい縁部分においてガイドの外周面に、ガイドの軸方向に係止することで、常にガイドの端面からの距離が一定の位置に装着される。結果として、支圧応力分散部材は緊張材の端部を定着しているコンクリートの端面に対して正確に位置決めされるため、コンクリートの端面からの設置深さが常に一定に保持される。ガイドに対して一定の位置に装着されることで、支圧応力分散効果を発揮させる上で、最も有効な位置に常に支圧応力分散部材を配置することができるため、支圧応力分散効果が失われることなく、確実に発揮される。   The support stress distribution member is attached to the guide by inserting the guide through the insertion hole. The thickness of the edge portion around the guide insertion hole is larger than the thickness of the other portion, and the edge having the large thickness is inserted. By engaging the guide with the outer peripheral surface of the guide in the axial direction of the guide, the distance from the end surface of the guide is always mounted at a fixed position. As a result, since the bearing stress distribution member is accurately positioned with respect to the end surface of the concrete fixing the end portion of the tendon, the installation depth from the end surface of the concrete is always kept constant. By mounting the guide at a fixed position, the support stress distribution member can always be arranged at the most effective position to exert the support stress distribution effect. It is surely demonstrated without being lost.

特に支圧応力分散部材がガイドの外周面に係止するばかりでなく、係止する部分が厚肉に形成されていることで、ガイドが筒状で、ガイド挿通孔がそれに対応した形であることと併せ、ガイドの外周面をガイド挿通孔に嵌合した状態に維持することができ、厚肉の縁部分がガイドに係止しているときの、支圧応力分散部材の面外方向への傾斜とずれに対する安定性が高い。更に支圧応力分散部材はガイドの外周面への係止によってコンクリート中での傾斜やずれに対して安定するため、安定性を確保するための作業が極めて簡単であり、例えばガイドにねじ止めや溶接等により固定する場合との対比では作業効率が高い。   In particular, the support stress distribution member is not only locked to the outer peripheral surface of the guide, but also the locking portion is formed thick, so that the guide is cylindrical and the guide insertion hole has a corresponding shape. In addition, the outer peripheral surface of the guide can be maintained in a state of being fitted into the guide insertion hole, and when the thick edge portion is locked to the guide, the bearing stress distribution member is moved in the out-of-plane direction. High stability against tilt and displacement. Furthermore, since the support stress distribution member is stable against inclination and displacement in the concrete by being locked to the outer peripheral surface of the guide, the work for ensuring stability is extremely simple. Compared with the case of fixing by welding or the like, the work efficiency is high.

加えてガイド挿通孔の周囲の縁部分の内周面に、ガイドの外周面に形成された凸部がガイドの軸方向に嵌合し、周方向に係合し得る凹部が形成されていることで、装着状態での支圧応力分散部材の、ガイドに対する周方向の回転が防止されるため、支圧応力分散部材は傾斜とずれに対する安定性に加え、周方向の回転に対しても安定性を確保し、結果として支圧応力を分散させてコンクリートに伝達する効果が有効に発揮される。縁部分の内周面とは、縁部分のガイド挿通孔側の面を指す。   In addition, on the inner peripheral surface of the edge portion around the guide insertion hole, a convex portion formed on the outer peripheral surface of the guide is fitted in the axial direction of the guide, and a concave portion that can be engaged in the circumferential direction is formed. Therefore, the support stress distribution member in the mounted state is prevented from rotating in the circumferential direction with respect to the guide, so that the support stress distribution member is not only stable against inclination and displacement but also stable against rotation in the circumferential direction. As a result, the effect of dispersing the bearing stress and transmitting it to the concrete is effectively exhibited. The inner peripheral surface of the edge portion refers to the surface of the edge portion on the guide insertion hole side.

請求項2に記載の発明は請求項1に記載の支圧応力分散部材において、支圧応力分散部材の外周の縁部分の肉厚がその内周の、前記ガイド挿通孔の周囲の縁部分を除く部分の肉厚より大きいことを構成要件とする。この場合、支圧応力分散部材の外周の縁部分の肉厚が、ガイド挿通孔の周囲の縁部分を除く部分の肉厚より大きいことで、支圧応力分散部材の外周部分の曲げ剛性が大きく、曲げ変形しにくいため、ガイドからの支圧応力を分散させてコンクリートに伝達する能力が向上する。   The invention according to claim 2 is the bearing stress distribution member according to claim 1, wherein the thickness of the outer peripheral edge portion of the bearing stress distribution member is the inner peripheral edge portion around the guide insertion hole. It must be larger than the thickness of the part to be excluded. In this case, since the thickness of the outer peripheral edge portion of the supporting stress dispersion member is larger than the thickness of the portion excluding the edge portion around the guide insertion hole, the bending rigidity of the outer peripheral portion of the supporting stress distribution member is increased. Since it is difficult to bend and deform, the ability to disperse the supporting stress from the guide and transmit it to the concrete is improved.

請求項3に記載の発明は請求項1、もしくは請求項2に記載の支圧応力分散部材において、ガイド挿通孔の周囲の縁部分の外周にリブが形成されていることを構成要件とする。この場合、支圧応力分散部材はリブを有することで、コンクリートに接する表面積が増大し、コンクリートとの間の付着力が増すため、支圧応力分散部材からコンクリートへの支圧応力の伝達効果が大きくなる。   According to a third aspect of the present invention, in the bearing stress distribution member according to the first or second aspect, a rib is formed on the outer periphery of the edge portion around the guide insertion hole. In this case, since the bearing stress dispersion member has ribs, the surface area in contact with the concrete is increased and the adhesion force with the concrete is increased. Therefore, the effect of transmitting the bearing stress from the bearing stress dispersion member to the concrete is increased. growing.

請求項4に記載の発明の定着具は請求項1乃至請求項3に記載の支圧応力分散部材と、そのガイド挿通孔を挿通し、緊張材が挿通する筒状のガイドとを備え、このガイドの外周面に支圧応力分散部材の前記凹部に軸方向に嵌合し、周方向に係合する凸部が形成されていることを構成要件とする。定着具は支圧応力分散部材とガイドからなることで、請求項1乃至請求項3の支圧応力分散部材が有する利益を引き継ぐため、支圧応力分散部材の取り扱い易さとガイドへの装着状態での安定性が高い効果と、支圧応力分散部材によって支圧応力をコンクリートに分散させて伝達できる効果が得られる。   According to a fourth aspect of the present invention, there is provided a fixing tool comprising the supporting stress dispersing member according to the first to third aspects, a cylindrical guide through which the guide insertion hole is inserted, and a tension material is inserted therethrough. The outer peripheral surface of the guide is configured to have a convex portion that is fitted in the axial direction into the concave portion of the supporting stress dispersion member and engaged in the circumferential direction. Since the fixing tool is composed of a support stress distribution member and a guide, and inherits the benefits of the support stress distribution member according to claims 1 to 3, it is easy to handle the support stress distribution member and attach it to the guide. The effect of having a high stability and the effect that the bearing stress can be dispersed and transmitted to the concrete by the bearing stress dispersing member.

請求項5に記載の発明は請求項4に記載の定着具において、支圧応力分散部材がそのガイド挿通孔の周囲の縁部分においてガイドの外周面に、前記緊張材の端部側へ係止していることを構成要件とする。支圧応力分散部材はその凹部にガイドの凸部が嵌合した状態で、ガイドの外周面に緊張材の端部側へ係止する。コンクリートはガイドに支圧応力分散部材を装着した状態で打設され、その打設時の圧力はガイドの外周部においてはシース側から緊張材端部側へ作用する傾向があるため、支圧応力分散部材が緊張材端部側へ係止することで、コンクリート打設時の支圧応力分散部材の安定性が高い。   According to a fifth aspect of the present invention, in the fixing device according to the fourth aspect, the supporting stress dispersion member is locked to the outer peripheral surface of the guide at the edge portion around the guide insertion hole to the end side of the tension material. Is a constituent requirement. The supporting stress distribution member is locked to the end of the tension material on the outer peripheral surface of the guide in a state where the convex portion of the guide is fitted in the concave portion. Concrete is placed with a support stress distribution member attached to the guide, and the pressure at the time of placement tends to act from the sheath side to the end of the tendon at the outer periphery of the guide. Since the dispersing member is locked to the end of the tendon material, the stability of the supporting stress dispersing member at the time of placing the concrete is high.

請求項6に記載の発明はプレストレストコンクリート中に配置された緊張材の少なくとも一方の端部に請求項4、もしくは請求項5に記載の定着具が取り付けられていることを構成要件とする。定着具は請求項1乃至請求項3の支圧応力分散部材を含むため、支圧応力分散部材の取り扱い易さとガイドへの装着状態での安定性が高い効果と、支圧応力分散部材によって支圧応力をコンクリートに分散させて伝達できる効果を保有する。   The invention according to claim 6 is characterized in that the fixing tool according to claim 4 or 5 is attached to at least one end portion of the tendon disposed in the prestressed concrete. Since the fixing tool includes the bearing stress dispersion member according to claims 1 to 3, the bearing stress dispersion member is supported by the support stress dispersion member and the effect that the bearing stress dispersion member is easy to handle and has a high stability when mounted on the guide. Has the effect of transmitting pressure stress dispersed in concrete.

支圧応力分散部材自体が厚さ方向に面対称形であるため、コンクリートの両端のいずれの側においても、厚さ方向両面のいずれの面をコンクリートの端面側に向けても支圧応力分散部材をガイドに装着することができる。
またガイド挿通孔の周囲に複数個の貫通孔が周方向に間隔をおいて形成されることで、支圧応力分散部材にコンクリートとの間で付着力が発生するため、ガイドからコンクリート中にコーン状に伝達される支圧応力に対し、周辺のコンクリートに支圧応力を分散させて伝達することができる。
Since the support stress distribution member itself is plane-symmetric in the thickness direction, the support stress distribution member can be used on either side of both ends of the concrete, even if either side of the thickness direction faces the end surface of the concrete. Can be attached to the guide.
In addition, since a plurality of through holes are formed around the guide insertion hole at intervals in the circumferential direction, an adhesive force is generated between the support stress distribution member and the concrete. The bearing stress can be dispersed and transmitted to the surrounding concrete with respect to the bearing stress transmitted in a shape.

ガイド挿通孔の周囲の縁部分の肉厚が他の部分の肉厚より大きく、この肉厚の大きい縁部分においてガイドの外周面に、ガイドの軸方向に係止することで、常にガイドの端面からの距離が一定の位置に装着されるため、コンクリートの端面からの設置深さを常に一定に保持することができる。また支圧応力分散部材のガイド外周面への係止部分が厚肉に形成されていることで、厚肉の縁部分がガイドに係止しているときの、支圧応力分散部材の傾斜とずれに対する安定性が高い。   The thickness of the edge part around the guide insertion hole is larger than the thickness of the other part, and the edge part of the guide is always locked in the axial direction of the guide on the outer peripheral surface of the guide at this thick edge part. Since the distance from is fixed at a fixed position, the installation depth from the end face of the concrete can always be kept constant. In addition, since the locking portion of the supporting stress distribution member to the outer peripheral surface of the guide is formed thick, the inclination of the supporting stress distribution member when the thick edge portion is locked to the guide and High stability against deviation.

更にガイド挿通孔の周囲の縁部分の内周面に、ガイドの外周面に形成された凸部がガイドの軸方向に嵌合し、周方向に係合し得る凹部が形成されていることで、装着状態での支圧応力分散部材の、ガイドに対する周方向の回転が防止されるため、傾斜とずれに対する安定性と併せ、支圧応力を分散させてコンクリートに伝達する効果を有効に発揮させることができる。   Furthermore, a convex portion formed on the outer peripheral surface of the guide is fitted in the axial direction of the guide on the inner peripheral surface of the edge portion around the guide insertion hole, and a concave portion that can be engaged in the circumferential direction is formed. Since the support stress distribution member in the mounted state is prevented from rotating in the circumferential direction with respect to the guide, the effect of dispersing the support stress and transmitting it to the concrete is effectively exhibited together with stability against inclination and displacement. be able to.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

請求項1に記載の支圧応力分散部材1は図1−(a)に示すように緊張材2が挿通する筒状のガイド3の回りに装着され、そのガイド3の外周面から作用する支圧応力をコンクリート4に分散させて伝達するものである。支圧応力分散部材1とガイド3は緊張材2を定着するための定着具を構成する。   The support stress distribution member 1 according to claim 1 is mounted around a cylindrical guide 3 through which the tension material 2 is inserted as shown in FIG. The pressure stress is dispersed in the concrete 4 and transmitted. The support stress distribution member 1 and the guide 3 constitute a fixing tool for fixing the tendon 2.

緊張材2にはPC鋼材の他、ステンレス鋼、アラミドや炭素の繊維を用いた繊維強化材料が使用される。支圧応力分散部材1とガイド3は主として炭素鋼を鋳造や鍛造することにより製作されるが、繊維強化複合材料(繊維強化プラスチック、繊維強化合金等)を用いて製作されることもある。   For the tendon 2, a fiber reinforced material using stainless steel, aramid or carbon fibers is used in addition to PC steel. The support stress distribution member 1 and the guide 3 are manufactured mainly by casting or forging carbon steel, but may be manufactured using a fiber reinforced composite material (fiber reinforced plastic, fiber reinforced alloy, etc.).

ガイド3はコンクリート4中に配置されるシース5に、または図1に示すように複数本の緊張材2をコンクリート4の端部位置で分散させて配置されるトランペットシース6に接続され、緊張材2の端部側である頭部3aがコンクリート4から露出する。コンクリート4の、緊張材2の端部側には緊張材2の端部を定着する作業を行うための空間7が形成されているが、この空間7は緊張材2の定着後、緊張材2を保護するためにモルタルやコンクリート等により埋められる。   The guide 3 is connected to a sheath 5 arranged in the concrete 4 or to a trumpet sheath 6 arranged by dispersing a plurality of tendons 2 at the end positions of the concrete 4 as shown in FIG. 2 is exposed from the concrete 4. A space 7 for fixing the end of the tendon 2 is formed on the end side of the tendon 2 of the concrete 4. This space 7 is formed after the tendon 2 is fixed. It is buried with mortar, concrete, etc. to protect it.

上記空間7に露出したガイド3の頭部3aの内周には緊張材2が定着される、緊張材2の本数分の挿通孔を有する定着ブロック8が、ガイド3の軸方向に嵌合し、移動を拘束された形で設置される。緊張材2はこの定着ブロック8に楔9、ナットその他の手段で定着される。   On the inner periphery of the head 3a of the guide 3 exposed to the space 7, a fixing block 8 to which the tension material 2 is fixed and having insertion holes for the number of the tension materials 2 is fitted in the axial direction of the guide 3. , Installed in a restrained form. The tendon 2 is fixed to the fixing block 8 by a wedge 9, a nut or other means.

ガイド3の外周面は全体的にシース5側から定着ブロック8側へかけて径が増大する形状をし、シース5側の先端と頭部3aの中間部位置、具体的にはガイド3からコーン状に広がってコンクリート4に伝達される支圧応力を分散させる上で有効な位置に、支圧応力分散部材1を装着状態で周方向に安定させるための凸部3bが形成される。凸部3bの形成位置以外の部分には必要によりコンクリート4との付着を確保するための凹凸が形成される。   The outer peripheral surface of the guide 3 generally has a shape in which the diameter increases from the sheath 5 side to the fixing block 8 side, and the intermediate position between the distal end on the sheath 5 side and the head 3a, specifically, from the guide 3 to the cone. A convex portion 3b for stabilizing the bearing stress dispersion member 1 in the circumferential direction in the mounted state is formed at a position effective for dispersing the bearing stress that spreads in a shape and is transmitted to the concrete 4. Concavities and convexities are formed on portions other than the positions where the convex portions 3b are formed to ensure adhesion with the concrete 4, if necessary.

凸部3bは図1−(a)の一部拡大図である(b)に示すようにガイド3の外径が相対的に増大する部分の、径の小さい側に形成され、支圧応力分散部材1がガイド3の軸方向に嵌合し、周方向に係止するよう、周方向に間隔をおき、軸方向を向いて形成される。支圧応力分散部材1は厚さ方向に面対称形の平板状に製作されることから、支圧応力分散部材1が装着される部分、すなわち凸部3bが形成される部分の径は一定になる。支圧応力分散部材1はガイド3の外径が相対的に増大する部分において外径の小さい側から増大する定着ブロック8側へ係止する。   The convex portion 3b is formed on the smaller diameter side of the portion where the outer diameter of the guide 3 relatively increases as shown in FIG. 1 (b), which is a partially enlarged view of FIG. The member 1 is formed in the axial direction so that the member 1 is fitted in the axial direction of the guide 3 and is locked in the circumferential direction. Since the supporting stress dispersion member 1 is manufactured in a plane-symmetrical plate shape in the thickness direction, the diameter of the portion where the supporting stress distribution member 1 is mounted, that is, the portion where the convex portion 3b is formed is constant. Become. The supporting stress distribution member 1 is locked to the fixing block 8 side where the outer diameter of the guide 3 increases relatively from the smaller outer diameter side.

支圧応力分散部材1は厚さ方向に面対称形の平板状に製作され、図2−(a)に示すように中央部に、ガイド3が挿通するための、ガイド3の形状に対応した形のガイド挿通孔1aが形成される。図面ではガイド3の外形を円形にしている関係から、ガイド挿通孔1aを円形にしているが、必ずしもガイド3の外径が円形である必要はないため、円形以外の形の場合もある。また図2−(a)では支圧応力分散部材1の外形を、四角形の隅角部を曲線状にした形状にしているが、円形状等、支圧応力分散部材1自体の外形も任意である。   The supporting stress dispersion member 1 is manufactured in a plane-symmetrical plate shape in the thickness direction, and corresponds to the shape of the guide 3 through which the guide 3 is inserted in the center as shown in FIG. A shaped guide insertion hole 1a is formed. In the drawing, the guide insertion hole 1a is circular because the outer shape of the guide 3 is circular. However, since the outer diameter of the guide 3 does not necessarily have to be circular, it may have a shape other than circular. In FIG. 2- (a), the external shape of the support stress distribution member 1 is a shape in which the corners of the quadrangle are curved. However, the external shape of the support stress distribution member 1 itself may be arbitrary, such as a circular shape. is there.

図1、図2に示すようにガイド挿通孔1aの周囲の縁部分1bの肉厚は他の部分の肉厚より大きく、支圧応力分散部材1はこの肉厚の大きい縁部分1bにおいてガイド3の外周面に、ガイド3の軸方向に係止する。   As shown in FIGS. 1 and 2, the thickness of the edge portion 1b around the guide insertion hole 1a is larger than the thickness of the other portions, and the supporting stress distribution member 1 has the guide 3 at the edge portion 1b having a large thickness. The guide 3 is locked in the axial direction.

前記縁部分1bの内周面の、前記ガイド3の凸部3bに対応した位置には図2−(a)に示すようにガイド3の外周面に形成された凸部3bがガイド3の軸方向に嵌合し、周方向に係合し得る凹部1cが形成される。図面では凹部1cを周方向に均等に4箇所形成しているが、凹部1cはガイド3の凸部3bに嵌合し、係止した状態で安定すればよいため、1箇所形成されればよいこともある。また凹部1cはガイド3の凸部3bが嵌合する形状をしていればよいため、四角形状、半円形状等、任意の形状に形成される。   A convex portion 3b formed on the outer peripheral surface of the guide 3 is located on the inner peripheral surface of the edge portion 1b corresponding to the convex portion 3b of the guide 3 as shown in FIG. A recess 1c that fits in the direction and can be engaged in the circumferential direction is formed. In the drawing, the recesses 1c are formed uniformly at four locations in the circumferential direction. However, the recesses 1c only need to be formed at one location because the recesses 1c only need to be fitted and locked with the projections 3b of the guide 3. Sometimes. Moreover, since the recessed part 1c should just be the shape which the convex part 3b of the guide 3 fits, it is formed in arbitrary shapes, such as square shape and semicircle shape.

図1−(b)、図2−(b)に示すように支圧応力分散部材1の、外周の縁部分1dの肉厚は外周部分の曲げ剛性を高めるために、その内周の、ガイド挿通孔1aの周囲の縁部分1bを除く部分の肉厚より大きく、このガイド挿通孔1aの周囲の縁部分1bと外周の縁部分1dの間に、支圧応力分散部材1全体のコンクリート4との付着を確保するために、図2−(a)に示すようにコンクリート4が入り込む複数個の貫通孔1eが周方向に間隔をおいて形成される。ガイド挿通孔1aの周囲の縁部分1bと最外周の縁部分1dの間の、貫通孔1eの形成部分以外の部分にはまた、コンクリート4との付着を稼ぐためのリブ1fが形成される。   As shown in FIG. 1- (b) and FIG. 2- (b), the wall thickness of the outer peripheral edge portion 1d of the bearing stress distribution member 1 is increased in order to increase the bending rigidity of the outer peripheral portion. It is larger than the thickness of the portion excluding the edge portion 1b around the insertion hole 1a. Between the edge portion 1b around the guide insertion hole 1a and the edge portion 1d on the outer periphery, the concrete 4 of the supporting stress distribution member 1 as a whole In order to ensure adhesion, a plurality of through-holes 1e into which the concrete 4 enters are formed at intervals in the circumferential direction as shown in FIG. Ribs 1f for gaining adhesion to the concrete 4 are also formed in portions other than the formation portion of the through-hole 1e between the peripheral edge portion 1b and the outermost peripheral edge portion 1d of the guide insertion hole 1a.

支圧応力分散部材1は図1−(a)に示すようにガイド3の回りに装着された状態で、シース5及び緊張材2と共にコンクリート4を打設、もしくは充填すべき箇所に配置され、前記のようにガイド3の頭部3aがコンクリート4から空間7に露出するようにコンクリート4が打設される。   As shown in FIG. 1- (a), the support stress distribution member 1 is placed around the guide 3 and placed in a place where the concrete 4 is to be cast or filled together with the sheath 5 and the tension material 2. As described above, the concrete 4 is placed so that the head 3 a of the guide 3 is exposed from the concrete 4 to the space 7.

ガイド3の回りのコンクリート4にはガイド3からの支圧応力が図3−(b)に示すようにガイド3側からシース5側へかけて拡大した領域に分散して伝達されるが、分散して伝達される支圧応力に対してコンクリート4を補強するために、図1に示すようにガイド3の回りの、支圧応力分散部材1よりシース5、6側の位置には例えば籠状に組まれた補強筋10が配置される。   As shown in FIG. 3B, the supporting stress from the guide 3 is dispersed and transmitted to the concrete 4 around the guide 3 in an enlarged region from the guide 3 side to the sheath 5 side. In order to reinforce the concrete 4 against the bearing stress transmitted in this manner, as shown in FIG. Reinforcing bars 10 are arranged.

コンクリート4の硬化後、緊張材2に緊張力が与えられて緊張材2が楔9等により定着ブロック8に定着される。緊張材2の定着後、定着ブロック8の回りにグラウトキャップ11が被せられ、その内部にグラウトが充填される。グラウトの充填後、空間7にコンクリートやモルタル等の充填材が充填され、グラウトキャップ11が埋められる。   After the concrete 4 is cured, a tension force is applied to the tendon 2 and the tendon 2 is fixed to the fixing block 8 by the wedge 9 or the like. After the tension material 2 is fixed, a grout cap 11 is put around the fixing block 8, and the inside is filled with grout. After filling the grout, the space 7 is filled with a filler such as concrete or mortar, and the grout cap 11 is filled.

(a)は本発明の支圧応力分散部材とガイドのコンクリート中での配置状態を示した断面図、(b)は(a)の一部拡大図である。(A) is sectional drawing which showed the arrangement | positioning state in concrete of the bearing stress distribution member and guide of this invention, (b) is the partially expanded view of (a). (a)は支圧応力分散部材を示した立面図、(b)は(a)のx−x線断面図である。(A) is the elevation which showed the bearing stress dispersion | distribution member, (b) is the xx sectional view taken on the line of (a). (a)はコンクリートの端部寄りに配置された支圧応力分散部材とコンクリートのかぶりの関係を示した断面図、(b)はガイドの外周面から作用する支圧応力のコンクリートへの伝達の様子を示した断面図である。(A) is a cross-sectional view showing the relationship between the bearing stress dispersion member disposed near the end of the concrete and the cover of the concrete, (b) is the transmission of the bearing stress acting from the outer peripheral surface of the guide to the concrete It is sectional drawing which showed the mode. (a)はガイドからの支圧応力に抵抗させるための従来のグリッド筋の配置例を示した断面図、(b)は従来のグリッド筋を二重に配置したときの様子を示した断面図である。(A) is sectional drawing which showed the example of arrangement | positioning of the conventional grid reinforcement for resisting the bearing stress from a guide, (b) is sectional drawing which showed the mode when the conventional grid reinforcement was arrange | positioned doubly. It is. (a)〜(c)はグリッド筋に代え、従来のスパイラル筋を配置したときの様子を示した断面図である。(A)-(c) is sectional drawing which showed the mode when it replaces with a grid | stitch line and has arrange | positioned the conventional spiral streak.

符号の説明Explanation of symbols

1………支圧応力分散部材
1a……ガイド挿通孔
1b……縁部分
1c……凹部
1d……外周の縁部分
1e……貫通孔
1f……リブ
2………緊張材
3………ガイド
3a……頭部
3b……凸部
4………コンクリート
5………シース
6………トランペットシース
7………空間
8………定着ブロック
9………楔
10……補強筋
11……グラウトキャップ

DESCRIPTION OF SYMBOLS 1 ......... Supporting stress dispersion | distribution member 1a ...... Guide insertion hole 1b ...... Edge part 1c ...... Recessed part 1d ...... Outer peripheral edge part 1e …… Through hole 1f …… Rib 2 ... …… Tension material 3 ... …… Guide 3a …… Head 3b …… Convex 4 ……… Concrete 5 ……… Sheath 6 ……… Trumpet sheath 7 ……… Space 8 ……… Fixing block 9 ……… Wedge 10 …… Reinforcement 11… ... grout cap

Claims (6)

厚さ方向に面対称形の平板状に製作され、中央部に、緊張材が挿通する筒状のガイドが挿通するための、前記ガイドの形状に対応した形のガイド挿通孔が形成され、このガイド挿通孔の周囲に複数個の貫通孔が周方向に間隔をおいて形成され、前記ガイド挿通孔の周囲の縁部分の肉厚は他の部分の肉厚より大きく、この肉厚の大きい縁部分において前記ガイドの外周面に、前記ガイドの軸方向に係止し得ると共に、前記縁部分の内周面に、前記ガイドの外周面に形成された凸部が前記ガイドの軸方向に嵌合し、周方向に係合し得る凹部が形成されていることを特徴とする支圧応力分散部材。   A guide insertion hole is formed in a shape corresponding to the shape of the guide, through which a cylindrical guide through which a tension material is inserted is formed in the center portion, and is formed into a plane-symmetric plate shape in the thickness direction. A plurality of through-holes are formed around the guide insertion hole at intervals in the circumferential direction, and the thickness of the edge portion around the guide insertion hole is larger than the thickness of the other portion, and the edge having the large thickness is formed. The protrusion can be engaged with the outer peripheral surface of the guide in the axial direction of the guide, and the convex portion formed on the outer peripheral surface of the guide fits in the axial direction of the guide on the inner peripheral surface of the edge portion. And the recessed part which can be engaged in the circumferential direction is formed, The bearing stress distribution member characterized by the above-mentioned. 外周の縁部分の肉厚がその内周の、前記ガイド挿通孔の周囲の縁部分を除く部分の肉厚より大きいことを特徴とする請求項1に記載の支圧応力分散部材。   The supporting stress distribution member according to claim 1, wherein a thickness of an outer peripheral edge portion is larger than a thickness of an inner peripheral portion excluding an edge portion around the guide insertion hole. 前記ガイド挿通孔の周囲の縁部分の外周にリブが形成されていることを特徴とする請求項1、もしくは請求項2に記載の支圧応力分散部材。   The bearing stress distribution member according to claim 1, wherein a rib is formed on an outer periphery of an edge portion around the guide insertion hole. 請求項1乃至請求項3のいずれかに記載の支圧応力分散部材と、そのガイド挿通孔を挿通し、緊張材が挿通する筒状のガイドとを備え、このガイドの外周面に前記支圧応力分散部材の前記凹部に軸方向に嵌合し、周方向に係合する凸部が形成されていることを特徴とする定着具。   A bearing stress distribution member according to any one of claims 1 to 3, a cylindrical guide through which a guide insertion hole is inserted, and a tension material is inserted, and the support pressure is provided on an outer peripheral surface of the guide. A fixing device characterized in that a convex portion is formed in the concave portion of the stress dispersion member so as to be fitted in the axial direction and engaged in the circumferential direction. 前記支圧応力分散部材はそのガイド挿通孔の周囲の縁部分において前記ガイドの外周面に、前記緊張材の端部側へ係止していることを特徴とする請求項4に記載の定着具。   The fixing tool according to claim 4, wherein the supporting stress distribution member is locked to an outer peripheral surface of the guide at an edge portion around the guide insertion hole toward an end portion side of the tension material. . 前記緊張材の少なくとも一方の端部に、請求項4、もしくは請求項5に記載の定着具が取り付けられていることを特徴とするプレストレストコンクリート。
A prestressed concrete in which the fixing tool according to claim 4 or 5 is attached to at least one end of the tendon.
JP2005215586A 2005-07-26 2005-07-26 Bearing stress distribution member, fixing tool and prestressed concrete Expired - Fee Related JP3723570B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005215586A JP3723570B1 (en) 2005-07-26 2005-07-26 Bearing stress distribution member, fixing tool and prestressed concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005215586A JP3723570B1 (en) 2005-07-26 2005-07-26 Bearing stress distribution member, fixing tool and prestressed concrete

Publications (2)

Publication Number Publication Date
JP3723570B1 true JP3723570B1 (en) 2005-12-07
JP2007032051A JP2007032051A (en) 2007-02-08

Family

ID=35500459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005215586A Expired - Fee Related JP3723570B1 (en) 2005-07-26 2005-07-26 Bearing stress distribution member, fixing tool and prestressed concrete

Country Status (1)

Country Link
JP (1) JP3723570B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342403B1 (en) * 2012-11-28 2013-12-18 재단법인 포항산업과학연구원 Apparatus for fixing the tendon
JP2016023414A (en) * 2014-07-16 2016-02-08 株式会社ピーエス三菱 Column-beam structure
JP6877237B2 (en) * 2017-05-23 2021-05-26 住友電気工業株式会社 Fixtures for tensioning materials and prestressed concrete structures

Also Published As

Publication number Publication date
JP2007032051A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP3723570B1 (en) Bearing stress distribution member, fixing tool and prestressed concrete
JP6192302B2 (en) Joint structure of steel girder and concrete slab
JP2009293349A (en) Joint structure between pile and foundation, construction method thereof, and joint method of pile to foundation
JP2008150776A (en) Reinforcing structure of skeleton
JP5308012B2 (en) Reinforcement structure for wall column members
JP5542519B2 (en) Joint structure of pile head and foundation
JP3870364B2 (en) Reinforcement structure and reinforcement method for concrete members
JP5438557B2 (en) Grout hole cap
JP2008075280A (en) Buckling restricting brace and proof stress frame using buckling restricting brace
JP5137075B2 (en) Low temperature PC tank outer tank side liner rigid anchor device
JP5551943B2 (en) Foundation structure using ground improvement body
JP2014051826A (en) Aseismic reinforcement structure for reinforced concrete
JP2014214457A (en) Load resistant body and ground anchor
JP3887248B2 (en) Support structure for concrete foundation
JP2010090547A (en) Pile head joining structure
JP2004162259A (en) Support structure of structure foundation
JP2009030351A (en) Root wrapping type column base structure
JP2007070895A (en) Composite structure anchorage body for introducing prestress and structure using the same
US20240093494A1 (en) Anchoring device and prestressed concrete
JP4722540B2 (en) Pile foundation structure
KR102629043B1 (en) Deep Depth Deck-Plate And Reinforcement Composition Used for the Same
JP4339179B2 (en) Pile head structure of foundation pile
JP2011163080A (en) Foundation structure using soil improvement body, and method for constructing the same
JP2018104944A (en) Column base structure, and construction method for the same
JP4489628B2 (en) Pile and footing joint structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees