JP3722772B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3722772B2
JP3722772B2 JP2002087982A JP2002087982A JP3722772B2 JP 3722772 B2 JP3722772 B2 JP 3722772B2 JP 2002087982 A JP2002087982 A JP 2002087982A JP 2002087982 A JP2002087982 A JP 2002087982A JP 3722772 B2 JP3722772 B2 JP 3722772B2
Authority
JP
Japan
Prior art keywords
insulating film
silicon nitride
film
electrodes
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002087982A
Other languages
Japanese (ja)
Other versions
JP2003282706A (en
Inventor
本栄 具
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2002087982A priority Critical patent/JP3722772B2/en
Publication of JP2003282706A publication Critical patent/JP2003282706A/en
Application granted granted Critical
Publication of JP3722772B2 publication Critical patent/JP3722772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に関し、より詳しくは、微細構造を有する配線間にボイドを発生させること無く絶縁膜を成膜する半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、半導体装置の集積度の増加に伴い個々の素子の寸法は微小化が進み、各素子を構成する半導体領域の寸法も微細化されている。そして、各半導体領域に接続する配線を埋め込むために絶縁膜に形成するコンタクト孔も微細化され、そのアスペクト比も高くなる傾向にある。例えば、配線間隔が130nmの素子構造の場合、アスペクト比は3.0〜4.0である。
【0003】
コンタクト孔を形成する技術としては、従来よりセルフアラインコンタクト(Self Aligned Contact,以下、SACという)形成技術が用いられている。例えば、SAC形成工程では各ゲート電極の上面を窒化膜で覆い、ゲート電極の両側に窒化膜スペーサを形成してコンタクトが形成される部分を予め限定した後、酸化膜からなる層間絶縁膜を形成し、層間絶縁膜をエッチングすることによって各ゲート電極間にコンタクト孔を形成する。
【0004】
SAC形成技術を用いた従来のコンタクト孔形成工程の一例について、さらに具体的に図2を用いて説明する。シリコン基板8の上にゲート絶縁膜17,17′を形成し、その上にゲート電極9,9′を形成した後、絶縁のためにゲート電極9,9′の上面および側面をシリコン窒化膜10,10′で覆って図2(a)の形状とする。ゲート電極9,9′の側壁に形成されたシリコン窒化膜10a,10b,10′a,10′bはサイドウォールスペーサである。
【0005】
次に、図2(b)に示すように、この上に、例えばシリコン酸化膜を用いて、層間絶縁膜11を形成する。層間絶縁膜の形成は、例えば化学気相成長法(Chemical Vapor Deposition,以下、CVDという)により行い、具体的には準常圧CVD(Sub Atmospheric CVD)法や高密度プラズマCVD(High Density Plasma CVD)法等により行う。
【0006】
続いて、フォトリソグラフィ法により、図2(c)に示すように、層間絶縁膜11の上に開口部12aを有するフォトレジスト12を形成する。その後、層間絶縁膜11のエッチングを行い、フォトレジスト12を剥離して、図2(d)の構造とする。以上の工程を通じて、層間絶縁膜11にコンタクト孔13を形成する。
【0007】
【発明が解決しようとする課題】
上述したSAC形成技術は、シリコン基板とシリコン窒化膜との段差を利用することによりコンタクト孔を開口するものである。そして、層間絶縁膜はこの段差の上に形成されるものであり、配線間の間隙を完全に埋め込むようにして成膜される必要がある。
【0008】
しかしながら、素子構造の微細化に伴いアスペクト比の大きな段差が形成されるようになると、微細構造を有する配線間の間隙は深くて狭いものとなるために、間隙内部に成膜ガスが進入し難くなる。図3を用いてこの現象について説明する。
【0009】
図3は、シリコン基板8の上に形成されたゲート電極9とゲート電極9′の間隙15に層間絶縁膜11が形成された様子を示したものである。間隙15は深くて狭いため、内部に成膜ガスが到達し難い。したがって、シリコン窒化膜10の表面10a、間隙側面15aおよび間隙底部15bのそれぞれの箇所における層間絶縁膜11の堆積速度が異なって、層間絶縁膜11の膜厚に差が生じる。そして、間隙15の内部が層間絶縁膜11で完全に充填される前に間隙の上端部15cが塞がれると、層間絶縁膜11の中にボイド14が発生するという問題があった。このようなボイドの存在は、配線をショートさせて素子特性に悪影響を及ぼすことになる。
【0010】
また、従来、層間絶縁膜中にボイドが形成された場合には、高温で加熱処理をして層間絶縁膜をリフローさせることによりボイドを埋めていた。しかしながら、高温での加熱処理は素子にダメージを与えるとともに、プロセス時間が長くなるという問題もあった。
【0011】
本発明はこのような問題点に鑑みてなされたものである。即ち、本発明は、微細構造を有する配線間にボイドを発生させること無く絶縁膜を成膜できる半導体装置の製造方法を提供するものである。
【0012】
【課題を解決するための手段】
本願請求項1にかかる発明は、半導体装置の製造方法であって、
半導体基板に絶縁膜を介して複数の電極を形成する工程と、
前記複数の電極の上面および側面を窒化シリコン膜で被覆する工程と、
フッ素含有化合物を含むガスのプラズマで異方性エッチングを行って前記窒化シリコン膜の角部をテーパ状に加工する工程と、
前記窒化シリコン膜で被覆された前記電極の間隙を埋め込むように前記半導体基板の上に絶縁膜を形成する工程と、
前記絶縁膜をエッチングして前記複数の電極の間で前記半導体基板に達するコンタクト孔を形成する工程とを有することを特徴とするものである。
【0013】
請求項2にかかる発明は、請求項1に記載の半導体装置の製造方法において、前記異方性エッチングは前記半導体基板に高周波交流バイアスパワーを印加して行うことを特徴とするものである。
【0014】
請求項3にかかる発明は、請求項1または2に記載の半導体装置の製造方法において、前記フッ素含有化合物は三フッ化窒素であることを特徴とするものである。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
【0016】
実施の形態1
図1は、本発明にかかるコンタクト孔の形成工程を示したものである。まず、半導体基板としてシリコン基板を用い、所定の間隔をおいて複数のゲート電極を形成する。すなわち、シリコン基板1の上にゲート絶縁膜16,16′を形成し、ゲート絶縁膜16,16′を介してゲート電極2,2′を形成した後、絶縁のためにゲート電極2,2′の上面および側面をシリコン窒化膜3,3′で覆って図1(a)の形状とする。ゲート電極2,2′の側壁に形成されたシリコン窒化膜3a,3b,3′a,3′bはサイドウォールスペーサである。図1(a)の例では、ゲート電極2,2′が窒化シリコン膜3,3′で被覆されているとともにシリコン基板1の表面がゲート電極2と2′の間に露出している。
【0017】
次に、三フッ化窒素ガス(NF)を主成分とするエッチングガスからなるプラズマを用いて異方性エッチングを行い、シリコン窒化膜3,3′の角部を図1(b)に示すようにテーパ状に加工する。ここで、シリコン窒化膜3,3′の角部とは、例えばゲート電極2とゲート電極2′の間隙4において、間隙上端近傍3a,3′aをいう。また、テーパ状とは、具体的には、図1(b)に示すように、間隙上端近傍において、間隙内部から間隙端部に向かって開口寸法が拡大するようなテーパ形状をいう。
【0018】
三フッ化窒素プラズマによる異方性エッチングは、例えば高密度プラズマをプラズマ源とするCVD装置を用いて行う。すなわち、図(a)に示すゲート電極およびシリコン窒化膜が形成されたシリコン基板をCVD装置の成膜チャンバに載置する。次に、成膜チャンバ内を所定の真空度にした後、シリコン基板に高周波の交流バイアスパワーを印加し、成膜チャンバ内にエッチングガスを導入してエッチングを行う。シリコン基板に交流バイアス電圧を印加することによって、等方性の三フッ化窒素ガスプラズマを異方性のプラズマとすることができる。エッチング速度については、希釈ガスとして例えば窒素(N)ガスを用い、所望のエッチング速度に応じた適当量の窒素ガスを三フッ化窒素ガスに混合することにより制御することができる。
【0019】
続いて、CVD装置の成膜チャンバからエッチングガスを排気し、新たに層間絶縁膜を成膜するために適当な材料ガスを導入する。図1(b)において、上記異方性エッチングをしてシリコン窒化膜3,3′の角部をテーパ状に加工したことにより間隙4の上端4aでの開口寸法が広がるために、成膜ガスが間隙4の内部に進入し易くなる。したがって、図1(c)に示すように、ボイドを発生させること無く層間絶縁膜5で間隙4を埋め込むようにして、層間絶縁膜11を窒化シリコン膜3およびシリコン基板1の上に形成することができる。
【0020】
次に、フォトリソグラフィ法により、図1(d)に示すように、層間絶縁膜5の上に開口部6aを有するフォトレジスト6を形成する。その後、間隙4の部分の層間絶縁膜5をエッチングして開口した後、フォトレジスト6を剥離する。以上の工程により、図1(e)に示すように、セルフアラインでゲート電極2とゲート電極2′の間にコンタクト孔7を形成する。
【0021】
尚、三フッ化窒素プラズマによる異方性エッチングプロセスを行う代わりに、絶縁膜成膜プロセスにおいて、シリコン基板に印加する交流バイアスパワーを高くしてもシリコン窒化膜の開口端部をテーパ状に加工することは可能である。しかしながら、シリコン基板に印加する交流バイアスパワーを高くすることによってシリコン基板にダメージを与えるおそれがあることから、かかる方法は好ましくない。
【0022】
また、三フッ化窒素は一般にCVD装置の成膜チャンバのクリーニングに用いられる材料でもあることから、三フッ化窒素プラズマによる異方性エッチングプロセスを経ることによって、エッチングに加えてシリコン基板に対するクリーニング効果も得られる。クリーニングは、例えば、前工程でシリコン基板に付着した粒子と三フッ化窒素の放電により生成した活性種とが反応し、反応生成物が成膜チャンバから排気されることによって行われる。
【0023】
本実施の形態では三フッ化窒素ガスプラズマを用いた異方性エッチングについて述べたが、シリコン窒化膜の角部をテーパ状に加工することができるものであれば三フッ化窒素ガスプラズマに限定されるものではなく、他のフッ素含有ガスであってもよい。
【0024】
本実施の形態ではゲート電極が形成されたシリコン基板に形成された層間絶縁膜にコンタクト孔を形成する例について説明したが、これらに限定されるものではなく、他の電極、半導体基板等であってもよい。半導体領域に配線を接続するために該配線を埋め込むための接続孔を絶縁膜に形成する場合であれば本発明を適用することにより同様の効果を得ることができる。
【0025】
【発明の効果】
本発明によれば、微細構造を有する配線間にボイドを発生させること無く絶縁膜を成膜することができるので、配線のショート不良を低減させて歩留まりの向上を図ることができる。また、ボイドを埋めるための加熱処理工程が不要になるので、プロセス時間の短縮化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係るコンタクト孔の形成工程を示したものである。
【図2】従来のコンタクト孔の形成工程を示したものである。
【図3】ボイドの発生を説明する図である。
【符号の説明】
1,8 シリコン基板、 2,9 ゲート電極、 3,10 シリコン窒化膜、 4,15 間隙、 5,11 層間絶縁膜、 6,12 レジスト、 7,13 コンタクト孔、 14 ボイド、 16,17 ゲート絶縁膜。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device in which an insulating film is formed without generating voids between interconnects having a fine structure.
[0002]
[Prior art]
In recent years, with the increase in the degree of integration of semiconductor devices, the dimensions of individual elements have progressed, and the dimensions of semiconductor regions constituting each element have also been reduced. Then, contact holes formed in the insulating film in order to embed wirings connected to each semiconductor region are also miniaturized, and the aspect ratio tends to increase. For example, in the case of an element structure with a wiring interval of 130 nm, the aspect ratio is 3.0 to 4.0.
[0003]
As a technique for forming the contact hole, a self-aligned contact (hereinafter referred to as SAC) forming technique has been conventionally used. For example, in the SAC formation process, the upper surface of each gate electrode is covered with a nitride film, nitride film spacers are formed on both sides of the gate electrode to preliminarily define the portions where contacts are formed, and then an interlayer insulating film made of an oxide film is formed Then, a contact hole is formed between the gate electrodes by etching the interlayer insulating film.
[0004]
An example of a conventional contact hole forming process using the SAC forming technique will be described more specifically with reference to FIG. After forming gate insulating films 17 and 17 'on the silicon substrate 8 and forming gate electrodes 9 and 9' thereon, the upper and side surfaces of the gate electrodes 9 and 9 'are formed on the silicon nitride film 10 for insulation. , 10 ′ to form the shape of FIG. Silicon nitride films 10a, 10b, 10'a, 10'b formed on the side walls of the gate electrodes 9, 9 'are sidewall spacers.
[0005]
Next, as shown in FIG. 2B, an interlayer insulating film 11 is formed thereon using, for example, a silicon oxide film. The interlayer insulating film is formed by, for example, chemical vapor deposition (hereinafter referred to as CVD), specifically, quasi-atmospheric CVD (Sub Atmospheric CVD) or high-density plasma CVD (High Density Plasma CVD). ) Conduct by law.
[0006]
Subsequently, as shown in FIG. 2C, a photoresist 12 having an opening 12a is formed on the interlayer insulating film 11 by photolithography. Thereafter, the interlayer insulating film 11 is etched and the photoresist 12 is peeled off to obtain the structure of FIG. Through the above steps, the contact hole 13 is formed in the interlayer insulating film 11.
[0007]
[Problems to be solved by the invention]
The SAC formation technique described above opens a contact hole by utilizing a step between the silicon substrate and the silicon nitride film. The interlayer insulating film is formed on the step and needs to be formed so as to completely fill the gap between the wirings.
[0008]
However, when a step with a large aspect ratio is formed as the device structure is miniaturized, the gap between wirings having a fine structure becomes deeper and narrower, so that the deposition gas does not easily enter the gap. Become. This phenomenon will be described with reference to FIG.
[0009]
FIG. 3 shows a state in which the interlayer insulating film 11 is formed in the gap 15 between the gate electrode 9 and the gate electrode 9 ′ formed on the silicon substrate 8. Since the gap 15 is deep and narrow, it is difficult for the deposition gas to reach the inside. Therefore, the deposition rate of the interlayer insulating film 11 at each of the surface 10a, the gap side surface 15a, and the gap bottom 15b of the silicon nitride film 10 is different, resulting in a difference in the film thickness of the interlayer insulating film 11. If the upper end portion 15 c of the gap is closed before the gap 15 is completely filled with the interlayer insulating film 11, there is a problem that a void 14 is generated in the interlayer insulating film 11. The presence of such voids adversely affects device characteristics by shorting the wiring.
[0010]
Conventionally, when a void is formed in the interlayer insulating film, the void is filled by performing a heat treatment at a high temperature to reflow the interlayer insulating film. However, the heat treatment at a high temperature has a problem that the device is damaged and the process time becomes long.
[0011]
The present invention has been made in view of such problems. That is, the present invention provides a method for manufacturing a semiconductor device capable of forming an insulating film without generating voids between interconnects having a fine structure.
[0012]
[Means for Solving the Problems]
The invention according to claim 1 of the present application is a method of manufacturing a semiconductor device,
Forming a plurality of electrodes on the semiconductor substrate via an insulating film;
Coating the upper and side surfaces of the plurality of electrodes with a silicon nitride film;
Performing anisotropic etching with plasma of a gas containing a fluorine-containing compound to process corners of the silicon nitride film into a tapered shape;
Forming an insulating film on the semiconductor substrate so as to fill a gap between the electrodes covered with the silicon nitride film;
Etching the insulating film to form a contact hole reaching the semiconductor substrate between the plurality of electrodes.
[0013]
According to a second aspect of the present invention, in the method of manufacturing a semiconductor device according to the first aspect, the anisotropic etching is performed by applying a high-frequency AC bias power to the semiconductor substrate.
[0014]
According to a third aspect of the present invention, in the method for manufacturing a semiconductor device according to the first or second aspect, the fluorine-containing compound is nitrogen trifluoride.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
Embodiment 1
FIG. 1 shows a process for forming a contact hole according to the present invention. First, a silicon substrate is used as a semiconductor substrate, and a plurality of gate electrodes are formed at predetermined intervals. That is, the gate insulating films 16 and 16 'are formed on the silicon substrate 1, the gate electrodes 2 and 2' are formed through the gate insulating films 16 and 16 ', and then the gate electrodes 2 and 2' for insulation. The upper and side surfaces of the substrate are covered with silicon nitride films 3 and 3 'to obtain the shape of FIG. Silicon nitride films 3a, 3b, 3'a and 3'b formed on the side walls of the gate electrodes 2 and 2 'are side wall spacers. In the example of FIG. 1A, the gate electrodes 2 and 2 'are covered with the silicon nitride films 3 and 3', and the surface of the silicon substrate 1 is exposed between the gate electrodes 2 and 2 '.
[0017]
Next, anisotropic etching is performed using plasma composed of an etching gas containing nitrogen trifluoride gas (NF 3 ) as a main component, and the corners of the silicon nitride films 3 and 3 ′ are shown in FIG. To be tapered. Here, the corners of the silicon nitride films 3 and 3 ′ refer to the vicinity of the gap upper end 3 a and 3 ′ a in the gap 4 between the gate electrode 2 and the gate electrode 2 ′, for example. In addition, the taper shape specifically refers to a taper shape in which the opening size increases from the inside of the gap toward the gap end in the vicinity of the gap upper end as shown in FIG.
[0018]
The anisotropic etching using nitrogen trifluoride plasma is performed using, for example, a CVD apparatus using high-density plasma as a plasma source. That is, the silicon substrate on which the gate electrode and the silicon nitride film shown in FIG. Next, after the inside of the film forming chamber is set to a predetermined degree of vacuum, high frequency alternating current bias power is applied to the silicon substrate, and etching is performed by introducing an etching gas into the film forming chamber. By applying an AC bias voltage to the silicon substrate, the isotropic nitrogen trifluoride gas plasma can be made an anisotropic plasma. The etching rate can be controlled by using, for example, nitrogen (N 2 ) gas as a dilution gas and mixing an appropriate amount of nitrogen gas corresponding to the desired etching rate with nitrogen trifluoride gas.
[0019]
Subsequently, the etching gas is exhausted from the film forming chamber of the CVD apparatus, and an appropriate material gas is introduced to form a new interlayer insulating film. In FIG. 1B, the anisotropic etching is performed to process the corners of the silicon nitride films 3 and 3 ′ so that the opening size at the upper end 4a of the gap 4 is widened. Can easily enter the inside of the gap 4. Therefore, as shown in FIG. 1C, the interlayer insulating film 11 is formed on the silicon nitride film 3 and the silicon substrate 1 so as to fill the gap 4 with the interlayer insulating film 5 without generating voids. Can do.
[0020]
Next, a photoresist 6 having an opening 6a is formed on the interlayer insulating film 5 by photolithography as shown in FIG. Thereafter, the interlayer insulating film 5 in the gap 4 is etched and opened, and then the photoresist 6 is peeled off. Through the above steps, as shown in FIG. 1E, the contact hole 7 is formed between the gate electrode 2 and the gate electrode 2 ′ by self-alignment.
[0021]
Instead of performing an anisotropic etching process using nitrogen trifluoride plasma, the opening end of the silicon nitride film is processed into a taper shape even if the AC bias power applied to the silicon substrate is increased in the insulating film forming process. It is possible to do. However, such a method is not preferable because there is a possibility of damaging the silicon substrate by increasing the AC bias power applied to the silicon substrate.
[0022]
In addition, since nitrogen trifluoride is also a material generally used for cleaning the film forming chamber of a CVD apparatus, a cleaning effect on a silicon substrate in addition to etching is achieved by performing an anisotropic etching process using nitrogen trifluoride plasma. Can also be obtained. For example, the cleaning is performed by the reaction between the particles attached to the silicon substrate in the previous step and the active species generated by the discharge of nitrogen trifluoride, and the reaction product is exhausted from the film formation chamber.
[0023]
In this embodiment, anisotropic etching using nitrogen trifluoride gas plasma has been described. However, as long as the corner of the silicon nitride film can be processed into a tapered shape, the plasma is limited to nitrogen trifluoride gas plasma. However, other fluorine-containing gas may be used.
[0024]
In this embodiment, the example in which the contact hole is formed in the interlayer insulating film formed in the silicon substrate on which the gate electrode is formed is described, but the present invention is not limited to this, and other electrodes, semiconductor substrates, and the like are used. May be. In the case where a connection hole for embedding the wiring is formed in the insulating film in order to connect the wiring to the semiconductor region, the same effect can be obtained by applying the present invention.
[0025]
【The invention's effect】
According to the present invention, since an insulating film can be formed without generating voids between wirings having a fine structure, wiring short-circuit defects can be reduced and yield can be improved. In addition, since a heat treatment step for filling the void is not necessary, the process time can be shortened.
[Brief description of the drawings]
FIG. 1 shows a process for forming a contact hole according to the present invention.
FIG. 2 shows a conventional contact hole forming process.
FIG. 3 is a diagram for explaining the generation of voids;
[Explanation of symbols]
1,8 silicon substrate, 2,9 gate electrode, 3,10 silicon nitride film, 4,15 gap, 5,11 interlayer insulation film, 6,12 resist, 7,13 contact hole, 14 void, 16,17 gate insulation film.

Claims (3)

半導体基板に複数のゲート絶縁膜を介して複数の電極を形成する工程と、
前記複数のゲート絶縁膜及び前記複数の電極の上面および側面を窒化シリコン膜で被覆する工程と、
フッ素含有化合物を含むガスのプラズマで異方性エッチングを行って前記窒化シリコン膜の角部をテーパ状に加工する工程と、
前記窒化シリコン膜で被覆された前記電極の間隙を埋め込むように前記半導体基板の上に絶縁膜を形成する工程と、
前記絶縁膜を前記窒化シリコン膜に対して選択的にエッチングして前記複数の電極の間で前記半導体基板に達するコンタクト孔を形成する工程と
を有することを特徴とする半導体装置の製造方法。
Forming a plurality of electrodes on a semiconductor substrate via a plurality of gate insulating films;
Covering the top and side surfaces of the plurality of gate insulating films and the plurality of electrodes with a silicon nitride film;
Performing anisotropic etching with plasma of a gas containing a fluorine-containing compound to process corners of the silicon nitride film into a tapered shape;
Forming an insulating film on the semiconductor substrate so as to fill a gap between the electrodes covered with the silicon nitride film;
And a step of selectively etching the insulating film with respect to the silicon nitride film to form a contact hole reaching the semiconductor substrate between the plurality of electrodes.
前記異方性エッチングは、前記半導体基板に高周波交流バイアスパワーを印加して行う請求項1に記載の半導体装置の製造方法。  The method of manufacturing a semiconductor device according to claim 1, wherein the anisotropic etching is performed by applying a high-frequency AC bias power to the semiconductor substrate. 前記フッ素含有化合物は三フッ化窒素である請求項1または2に記載の半導体装置の製造方法。  The method for manufacturing a semiconductor device according to claim 1, wherein the fluorine-containing compound is nitrogen trifluoride.
JP2002087982A 2002-03-27 2002-03-27 Manufacturing method of semiconductor device Expired - Lifetime JP3722772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087982A JP3722772B2 (en) 2002-03-27 2002-03-27 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087982A JP3722772B2 (en) 2002-03-27 2002-03-27 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2003282706A JP2003282706A (en) 2003-10-03
JP3722772B2 true JP3722772B2 (en) 2005-11-30

Family

ID=29233989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087982A Expired - Lifetime JP3722772B2 (en) 2002-03-27 2002-03-27 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3722772B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100567529B1 (en) * 2003-12-30 2006-04-03 주식회사 하이닉스반도체 Method of manufacturing a semiconductor device
TW201123377A (en) * 2009-12-16 2011-07-01 Raydium Semiconductor Corp Electronic chip and substrate with void

Also Published As

Publication number Publication date
JP2003282706A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
KR100403630B1 (en) Method for forming inter-layer dielectric film of semiconductor device by HDP CVD
US5422310A (en) Method of forming interconnection in semiconductor device
US6194305B1 (en) Planarization using plasma oxidized amorphous silicon
JP3027951B2 (en) Method for manufacturing semiconductor device
US6177331B1 (en) Method for manufacturing semiconductor device
JP2006303063A (en) Method of manufacturing semiconductor apparatus
GB2216336A (en) Forming insulating layers on substrates
JPH09148268A (en) Method for manufacturing semiconductor device
JP3722772B2 (en) Manufacturing method of semiconductor device
JPH04211120A (en) Contact forming method and fabrication of semiconductor device
KR20060133606A (en) Method of cleaning contact hole and method of manufacturing semiconductor device using the same
JP2004342873A (en) Semiconductor device and its manufacturing method
US6060371A (en) Process for forming a trench device isolation region on a semiconductor substrate
JP2002289682A (en) Semiconductor device and its manufacturing method
JP3777093B2 (en) Insulated interconnect stud and method of forming the stud
JPH09162172A (en) Method for removing etching damage
JPH022125A (en) Formation of through hole of semiconductor device
JP4170612B2 (en) Semiconductor device and manufacturing method thereof
JPH09260485A (en) Manufacture of semiconductor device
JPH1012868A (en) Semiconductor and its manufacture
JP3402937B2 (en) Method for manufacturing semiconductor device
KR100403638B1 (en) Manufacturing method for semiconductor device
JP2000031489A (en) Manufacturing semiconductor device
KR100474863B1 (en) Method of forming an isolation layer in a semiconductor device
JPH0428229A (en) Formation of contact hole and etching device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040603

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Ref document number: 3722772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term