JP3722133B2 - Evaluation method and evaluation apparatus for junction potential of dissimilar metals - Google Patents

Evaluation method and evaluation apparatus for junction potential of dissimilar metals Download PDF

Info

Publication number
JP3722133B2
JP3722133B2 JP2003091200A JP2003091200A JP3722133B2 JP 3722133 B2 JP3722133 B2 JP 3722133B2 JP 2003091200 A JP2003091200 A JP 2003091200A JP 2003091200 A JP2003091200 A JP 2003091200A JP 3722133 B2 JP3722133 B2 JP 3722133B2
Authority
JP
Japan
Prior art keywords
wiring
contact portion
potential
taps
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003091200A
Other languages
Japanese (ja)
Other versions
JP2004303749A (en
Inventor
浩一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003091200A priority Critical patent/JP3722133B2/en
Publication of JP2004303749A publication Critical patent/JP2004303749A/en
Application granted granted Critical
Publication of JP3722133B2 publication Critical patent/JP3722133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の多層配線における、異種金属の接合電位に関する評価方法及び評価装置に関するものである。
【0002】
【従来の技術】
半導体装置の微細化、多層化及び集積化がより一層進む中で、多層配線におけるコンタクト部分など微小部位の電位が、半導体装置の動作品質に及ぼす影響度は益々大きくなっている。特に、コンタクト部分の異種金属の接合電位による影響が無視できなくなってきており、上記に関する測定方法と測定装置の実現が望まれている。このため、コンタクト抵抗に関する測定手法が提案されている(例えば、特許文献1参照)。
【0003】
以下、従来例について図面を参照しながら説明する。図6は、従来例のコンタクト抵抗測定用回路図である。図6に示すように、従来例は、導電性拡散層11とアルミ配線12を接続する2つのコンタクト13を一つのコンタクト列CA1〜CAnとして、各コンタクト列における一方の端部を入力端子14に接続し、他方の端部をアルミ配線12により開放端15にした構成を特徴とする。
【0004】
前記の構成によれば、入力端子14に矩形状パルスを印加すると、コンタクト列CA1〜CAnの各開放端15には、回路の容量値Cと抵抗値Rとの積であるCRに応じた波形の電圧が現れる。この波形の立ち上がり時間trはCRと等しい。このことから、回路の形状および材料の誘電率から一義的に決まる容量値Cを使用して、測定から得られた時間trの値から抵抗値Rを求めている。
【0005】
【特許文献1】
特開平8−78493号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来例では、回路の形状および材料の誘電率から一義的に決まる容量値Cを求めることになる。しかし、最近の高度に微細化された半導体装置の回路の複雑な形状から、前記の容量値Cを高精度な数値で特定することは、不可能に近い。しかも、材料の誘電率は回路全般で一様でなく、高精度な容量値Cを求めるために前記の誘電率を得ることは、不可能に近いと言える。
【0007】
さらに、入力端子に矩形状パルスを印加した場合、開放端での立ち上がり時間trを測定し、この立ち上がり時間trとCRが等しいとして、前記の容量値Cを利用して抵抗値Rを求めることになる。しかし、この方法で得られた抵抗値Rから、目的とするコンタクト部分の抵抗値を高精度に求めることは、不可能に近いと言える。
【0008】
本発明は、かかる事情を鑑み、多層配線におけるコンタクト抵抗を高精度で測定することを可能にする、異種金属の接合電位に関する評価装置及び評価方法を提供するものである。
【0009】
【課題を解決するための手段】
上記の課題を解決するために、本発明の異種金属の接合電位に関する評価方法は、異種金属の接合を有する多層配線の評価方法において、コンタクト部分近傍の配線上に同一構造のタップを複数設置し、タップ間の電位差をジュール発熱が無視できる程度の複数の印加電流値で測定し、印加電流値に対する電位差の相関関係から、最小二乗法により該印加電流値が0の時の初期電位を求め、コンタクト部分近傍の接合電位分布を求めることを特徴とする。
【0010】
上記の評価方法において、コンタクト部分及び配線の温度を発熱源により調節し、コンタクト部分及び配線の温度を比較して双方からのジュール発熱の影響が概ね無視できることを確認し、コンタクト部分近傍の温度に依存した初期電位及び接合電位分布を求めることが好ましい。
【0011】
また、本発明の異種金属の接合電位に関する評価装置は、異種金属の接合を有する多層配線の評価装置において、コンタクト部分近傍の配線上に複数設置された同一構造のタップと、コンタクト部分及び配線に電流を印加する電流源と、タップ間の電位差を測定する電圧計と、コンタクト部分及び配線の温度を調整する発熱源と、コンタクト部分及びタップの近傍に設置された温度センサーと、電流源、電圧計、発熱源及び温度センサーを制御するコントローラ解析器とを備え、コントローラ解析器は、電流源の印加電流値に対する電位差の相関関係から、最小二乗法により該印加電流値が0の時の初期電位を求め、コンタクト部分近傍の接合電位分布を求めることを特徴とする。
【0012】
上記の構成によれば、コンタクト部分の異種金属の接合電位を簡便な構成で精度良く評価することができるので、多層配線におけるコンタクト抵抗を高精度で測定することを可能にする。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について、図面を参照しながら説明する。
【0014】
(第1の実施形態)
図1は、本発明に係る半導体装置の異種金属の接合電位に関する評価方法の一実施形態を示す半導体装置のコンタクト部分近傍の断面図である。
【0015】
半導体装置における多層化した配線21のコンタクト部分22近傍に設置した同一構造のタップ23a、23b、23c及び23dを形成し、タップ23a−23b間、タップ23a−23c間及びタップ23a−23d間の各々の電位差を、ジュール発熱が無視できる程度の複数の印加電流値で、複数の印加電流値で電位測定する。この時の配線温度は、コンタクト部分22近傍及び配線21でのジュール発熱が無視できることから室温である。
【0016】
図2(a)は、各タップ間電位から、最小二乗法により求めた初期電位を示した図である。図2(a)に示すように、コンタクト部分22及び配線21に印加した電流値を横軸に、タップ23a−23b間、タップ23a−23c間及びタップ23a−23d間の各々の電位差を縦軸にプロットし、最小二乗法により印加電流値が0の時の初期電位を求める。
【0017】
図2(b)は、各タップ設置位置による接合電位分布を示したグラフである。図2(b)に示すように、図2(a)で求めたタップ23a−23b間、タップ23a−23c間及びタップ23a−23d間の各々の初期電位を縦軸に、タップ23b、タップ23c及びタップ23dの、タップ23aからの距離を横軸にプロットする。この図2(b)は、コンタクト部分22近傍における接合電位分布を示す。
【0018】
上記の構成によれば、前記コンタクト部分22の初期電位及び前記配線21上の接合電位分布を精度良く求めることができる。乃ち、コンタクト部分22の異種金属の接合電位を簡便な方法で精度良く測定することができる。
【0019】
(第2の実施形態)
図3は、本発明に係る半導体装置の温度に依存した異種金属の接合電位に関する評価方法の一実施形態を示す半導体装置のコンタクト部分近傍の断面図である。
【0020】
コンタクト部分42及び配線41の温度をホットチャックの発熱源により温度調節して電流源から電流を印加し、前記コンタクト部分42及び前記配線41からのジュール発熱の影響がほとんど無視できる位置の温度センサー(T1)43及び温度センサー(T2)44により温度を比較して、前記コンタクト部分42及び前記配線41のジュール発熱が無視できることを確認する。次いで、半導体装置における多層化した配線41のコンタクト部分42近傍に設置した同一構造のタップ45a、45b、45c及び45dで、タップ45a−45b間、タップ45a−45c間及びタップ45a−45d間の各々の電位差を、複数の印加電流値で電位測定する。この測定を複数の温度環境で行う。
【0021】
図4(a)は、測定温度をt1、t2、t3と変化させた場合の、各タップ間電位から、最小二乗法により求めた初期電位を示した図である。図4(a)に示すように、各測定温度t1、t2、t3について、コンタクト部分42及び配線41に印加した電流値を横軸に、タップ45a−45b間、タップ45a−45c間及びタップ45a−45d間の各々の電位差を縦軸にプロットし、最小二乗法により印加電流値が0の時の初期電位を求める。
【0022】
図4(b)は、測定温度をt1、t2、t3と変化させた場合の、各タップ設置位置による接合電位分布を示したグラフである。図4(b)に示すように、図4(a)で求めた、測定温度をt1、t2、t3と変化させた場合の、タップ45a−45b間、タップ45a−45c間及びタップ45a−45d間の各々の初期電位を縦軸に、タップ45b、タップ45c及びタップ45dの、タップ45aからの距離を横軸にプロットする。この図4(b)は、コンタクト部分42近傍における接合電位分布を示す。
【0023】
上記の構成によれば、半導体装置の温度に依存した前記コンタクト部分42の初期電位及び前記配線41上の接合電位分布を精度良く求めることができる。乃ち、コンタクト部分42の異種金属の接合電位を簡便な方法で精度良く測定することができる。
【0024】
(第3の実施形態)
図5は、上述した異種金属の接合電位及び接合電位分布の評価方法を実現するための評価装置の断面図である。
【0025】
コンタクト部分61及び配線62近傍にタップ63を複数設置し、前記コンタクト部分61及び前記配線62の近傍に温度センサー(T1)64を設置し、前記コンタクト部分61及び前記配線62の近傍からのジュール発熱影響がほとんど無視できる位置に温度センサー(T2)65及び熱源であるホットチャック66を設置する。さらに、前記コンタクト部分61及び前記配線62に電流印加する電流源67と各タップ63間の電位差を測定できる電圧計68を有する。
【0026】
上記の構成によれば、温度センサー(T1)64、温度センサー(T2)65、ホットチャック66、電流源67及び電圧計68をコントローラ解析器69でコントロールし、得られた温度、印加電流値及び電圧値をコントローラ解析器69で、最小二乗法により、前記コンタクト部分61の印加電流値が0の時の初期電位及び前記配線62上の接合電位分布を精度良く求めることができる。乃ち、コンタクト部分61の異種金属の接合電位を簡便な構成で精度良く評価することができる。
【0027】
【発明の効果】
以上のように、本発明に係る異種金属の接合電位に関する評価方法及び評価装置によれば、コンタクト部分の異種金属の接合電位を簡便な構成で精度良く評価することができるので、多層配線におけるコンタクト抵抗を高精度で測定することを可能にする。
【図面の簡単な説明】
【図1】本発明の第1の実施形態における半導体装置のコンタクト部分近傍の断面図
【図2】(a)第1の実施形態における初期電位を示した図
(b)第1の実施形態における接合電位分布を示した図
【図3】本発明の第2の実施形態における半導体装置のコンタクト部分近傍の断面図
【図4】(a)第2の実施形態における初期電位を示した図
(b)第2の実施形態における接合電位分布を示した図
【図5】本発明の第3の実施形態における評価装置の断面図
【図6】従来例におけるコンタクト抵抗測定用回路図
【符号の説明】
11 導電性拡散層
12 アルミ配線
13 コンタクト
14 入力端子
15 開放端
21 配線
22 コンタクト部分
23a タップ
23b タップ
23c タップ
23d タップ
41 配線
42 コンタクト部分
43 温度センサー(T1)
44 温度センサー(T2)
45a タップ
45b タップ
45c タップ
45d タップ
61 コンタクト部分
62 配線
63 タップ
64 温度センサー(T1)
65 温度センサー(T2)
66 ホットチャック
67 電流源
68 電圧計
69 コントローラ解析器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an evaluation method and an evaluation apparatus related to a junction potential of dissimilar metals in a multilayer wiring of a semiconductor device.
[0002]
[Prior art]
As semiconductor devices are further miniaturized, multilayered, and integrated, the influence of the potential of a minute portion such as a contact portion in the multilayer wiring on the operation quality of the semiconductor device is increasing. In particular, the influence of the junction potential of dissimilar metals in the contact portion can no longer be ignored, and the realization of a measurement method and a measurement apparatus related to the above is desired. For this reason, a measurement method related to contact resistance has been proposed (see, for example, Patent Document 1).
[0003]
A conventional example will be described below with reference to the drawings. FIG. 6 is a circuit diagram for contact resistance measurement of a conventional example. As shown in FIG. 6, in the conventional example, two contacts 13 connecting the conductive diffusion layer 11 and the aluminum wiring 12 are set as one contact row CA1 to CAn, and one end of each contact row is connected to the input terminal 14. It is characterized in that it is connected and the other end is an open end 15 by an aluminum wiring 12.
[0004]
According to the above configuration, when a rectangular pulse is applied to the input terminal 14, each open end 15 of the contact rows CA1 to CAn has a waveform corresponding to CR which is the product of the capacitance value C and the resistance value R of the circuit. Appears. The rise time tr of this waveform is equal to CR. From this, the resistance value R is obtained from the value of the time tr obtained from the measurement, using the capacitance value C that is uniquely determined from the shape of the circuit and the dielectric constant of the material.
[0005]
[Patent Document 1]
JP-A-8-78493 [0006]
[Problems to be solved by the invention]
However, in the above-described conventional example, the capacitance value C uniquely determined from the circuit shape and the dielectric constant of the material is obtained. However, it is almost impossible to specify the capacitance value C with a highly accurate numerical value from the complicated shape of the circuit of a recent highly miniaturized semiconductor device. Moreover, the dielectric constant of the material is not uniform throughout the circuit, and it can be said that it is almost impossible to obtain the dielectric constant in order to obtain a highly accurate capacitance value C.
[0007]
Further, when a rectangular pulse is applied to the input terminal, the rising time tr at the open end is measured, and the resistance value R is obtained using the capacitance value C, assuming that the rising time tr is equal to CR. Become. However, it can be said that it is almost impossible to obtain the resistance value of the target contact portion with high accuracy from the resistance value R obtained by this method.
[0008]
In view of such circumstances, the present invention provides an evaluation apparatus and an evaluation method related to a junction potential of dissimilar metals that make it possible to measure contact resistance in multilayer wiring with high accuracy.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the evaluation method for the junction potential of dissimilar metals according to the present invention is a method for evaluating a multilayer wiring having a junction of dissimilar metals, in which a plurality of taps having the same structure are installed on the wiring near the contact portion. The potential difference between the taps is measured with a plurality of applied current values such that Joule heating is negligible, and the initial potential when the applied current value is 0 is obtained from the correlation of the potential difference with respect to the applied current value by the least square method, The junction potential distribution near the contact portion is obtained.
[0010]
In the above evaluation method, the temperature of the contact part and the wiring is adjusted by a heat source, the temperature of the contact part and the wiring is compared, and it is confirmed that the influence of Joule heat generation from both is negligible. It is preferable to obtain the dependent initial potential and junction potential distribution.
[0011]
Further, the evaluation apparatus for the junction potential of different metals according to the present invention is a multi-layer wiring evaluation apparatus having a junction of different metals, and includes a plurality of taps of the same structure installed on the wiring in the vicinity of the contact portion, the contact portion and the wiring. A current source for applying a current, a voltmeter for measuring a potential difference between the taps, a heat source for adjusting the temperature of the contact part and the wiring, a temperature sensor installed in the vicinity of the contact part and the tap, a current source and a voltage And a controller analyzer for controlling the heat source and the temperature sensor. The controller analyzer has an initial potential when the applied current value is 0 by the least square method based on the correlation of the potential difference with respect to the applied current value of the current source. And the junction potential distribution near the contact portion is obtained.
[0012]
According to the above configuration, the junction potential of the dissimilar metal in the contact portion can be accurately evaluated with a simple configuration, so that the contact resistance in the multilayer wiring can be measured with high accuracy.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
(First embodiment)
FIG. 1 is a cross-sectional view in the vicinity of a contact portion of a semiconductor device showing an embodiment of a method for evaluating a junction potential of dissimilar metals in a semiconductor device according to the present invention.
[0015]
Taps 23a, 23b, 23c and 23d having the same structure are formed in the vicinity of the contact portion 22 of the multilayered wiring 21 in the semiconductor device, and each of the taps 23a-23b, between the taps 23a-23c, and between the taps 23a-23d. The potential is measured at a plurality of applied current values with a plurality of applied current values such that Joule heat generation can be ignored. The wiring temperature at this time is room temperature because Joule heat generation near the contact portion 22 and the wiring 21 can be ignored.
[0016]
FIG. 2A is a diagram showing an initial potential obtained from each inter-tap potential by the least square method. As shown in FIG. 2A, the horizontal axis indicates the current value applied to the contact portion 22 and the wiring 21, and the vertical axis indicates the potential difference between the taps 23a-23b, between the taps 23a-23c, and between the taps 23a-23d. The initial potential when the applied current value is 0 is obtained by the least square method.
[0017]
FIG. 2B is a graph showing the junction potential distribution at each tap installation position. As shown in FIG. 2B, the initial potentials of the taps 23a-23b, the taps 23a-23c, and the taps 23a-23d obtained in FIG. And the distance of the tap 23d from the tap 23a is plotted on the horizontal axis. FIG. 2B shows the junction potential distribution in the vicinity of the contact portion 22.
[0018]
According to the above configuration, the initial potential of the contact portion 22 and the junction potential distribution on the wiring 21 can be obtained with high accuracy. In other words, the junction potential of different metals in the contact portion 22 can be accurately measured by a simple method.
[0019]
(Second Embodiment)
FIG. 3 is a cross-sectional view in the vicinity of a contact portion of a semiconductor device showing an embodiment of a method for evaluating a junction potential of different metals depending on the temperature of the semiconductor device according to the present invention.
[0020]
A temperature sensor at a position where the temperature of the contact portion 42 and the wiring 41 is adjusted by a heat source of a hot chuck and current is applied from a current source so that the influence of Joule heat generation from the contact portion 42 and the wiring 41 can be almost ignored. The temperature is compared by T1) 43 and temperature sensor (T2) 44, and it is confirmed that Joule heat generation of the contact portion 42 and the wiring 41 can be ignored. Next, taps 45a, 45b, 45c and 45d having the same structure installed in the vicinity of the contact portion 42 of the multilayered wiring 41 in the semiconductor device, respectively, between the taps 45a-45b, between the taps 45a-45c, and between the taps 45a-45d. The potential difference is measured with a plurality of applied current values. This measurement is performed in a plurality of temperature environments.
[0021]
FIG. 4A is a diagram showing the initial potential obtained by the least square method from the potentials between the taps when the measured temperature is changed to t1, t2, and t3. As shown in FIG. 4A, for each measurement temperature t1, t2, t3, the current value applied to the contact portion 42 and the wiring 41 is plotted on the horizontal axis between taps 45a-45b, between taps 45a-45c, and tap 45a. Each potential difference between −45 d is plotted on the vertical axis, and the initial potential when the applied current value is 0 is obtained by the least square method.
[0022]
FIG. 4B is a graph showing the junction potential distribution according to each tap installation position when the measured temperature is changed to t1, t2, and t3. As shown in FIG. 4B, the taps 45a-45b, taps 45a-45c, and taps 45a-45d when the measured temperatures obtained in FIG. 4A are changed to t1, t2, and t3. The initial potential between each of them is plotted on the vertical axis, and the distance of the tap 45b, tap 45c and tap 45d from the tap 45a is plotted on the horizontal axis. FIG. 4B shows the junction potential distribution in the vicinity of the contact portion 42.
[0023]
According to the above configuration, the initial potential of the contact portion 42 and the junction potential distribution on the wiring 41 depending on the temperature of the semiconductor device can be obtained with high accuracy. In other words, the junction potential of the dissimilar metal in the contact portion 42 can be accurately measured by a simple method.
[0024]
(Third embodiment)
FIG. 5 is a cross-sectional view of an evaluation apparatus for realizing the above-described method for evaluating the junction potential and junction potential distribution of dissimilar metals.
[0025]
A plurality of taps 63 are installed in the vicinity of the contact portion 61 and the wiring 62, a temperature sensor (T1) 64 is installed in the vicinity of the contact portion 61 and the wiring 62, and Joule heat is generated from the vicinity of the contact portion 61 and the wiring 62. A temperature sensor (T2) 65 and a hot chuck 66 as a heat source are installed at a position where the influence can be almost ignored. Further, a voltmeter 68 capable of measuring a potential difference between the current source 67 for applying a current to the contact portion 61 and the wiring 62 and each tap 63 is provided.
[0026]
According to the above configuration, the temperature sensor (T1) 64, the temperature sensor (T2) 65, the hot chuck 66, the current source 67 and the voltmeter 68 are controlled by the controller analyzer 69, and the obtained temperature, applied current value, and The controller analyzer 69 can accurately obtain the initial potential when the applied current value of the contact portion 61 is 0 and the junction potential distribution on the wiring 62 by the controller analyzer 69 using the least square method. In other words, the junction potential of dissimilar metals in the contact portion 61 can be accurately evaluated with a simple configuration.
[0027]
【The invention's effect】
As described above, according to the evaluation method and the evaluation apparatus related to the junction potential of different metals according to the present invention, the junction potential of different metals in the contact portion can be accurately evaluated with a simple configuration. It makes it possible to measure the resistance with high accuracy.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of the vicinity of a contact portion of a semiconductor device according to a first embodiment of the present invention. FIG. 2A is a diagram showing an initial potential in the first embodiment. FIG. 3 is a cross-sectional view in the vicinity of a contact portion of a semiconductor device in a second embodiment of the present invention. FIG. 4A is a diagram showing an initial potential in the second embodiment. FIG. 5 is a cross-sectional view of an evaluation apparatus according to a third embodiment of the present invention. FIG. 6 is a circuit diagram for measuring contact resistance in a conventional example.
DESCRIPTION OF SYMBOLS 11 Conductive diffusion layer 12 Aluminum wiring 13 Contact 14 Input terminal 15 Open end 21 Wiring 22 Contact part 23a Tap 23b Tap 23c Tap 23d Tap 41 Wiring 42 Contact part 43 Temperature sensor (T1)
44 Temperature sensor (T2)
45a Tap 45b Tap 45c Tap 45d Tap 61 Contact portion 62 Wiring 63 Tap 64 Temperature sensor (T1)
65 Temperature sensor (T2)
66 Hot chuck 67 Current source 68 Voltmeter 69 Controller analyzer

Claims (3)

異種金属の接合を有する多層配線の評価方法において、
コンタクト部分近傍の配線上に同一構造のタップを複数設置し、
前記タップ間の電位差をジュール発熱が無視できる程度の複数の印加電流値で測定し、
前記印加電流値に対する前記電位差の相関関係から、最小二乗法により該印加電流値が0の時の初期電位を求め、前記コンタクト部分近傍の接合電位分布を求めることを特徴とする異種金属の接合電位に関する評価方法。
In the evaluation method of the multilayer wiring having the junction of different metals,
Install multiple taps with the same structure on the wiring near the contact part,
Measure the potential difference between the taps at a plurality of applied current values such that Joule heating is negligible,
From the correlation of the potential difference with respect to the applied current value, an initial potential when the applied current value is 0 is obtained by a least square method, and a junction potential distribution in the vicinity of the contact portion is obtained. Evaluation method regarding.
前記コンタクト部分及び前記配線の温度を発熱源により調節し、
前記コンタクト部分及び前記配線の温度を比較して双方からのジュール発熱の影響が概ね無視できることを確認し、
前記コンタクト部分近傍の温度に依存した前記初期電位及び前記接合電位分布を求めることを特徴とする請求項1に記載の異種金属の接合電位に関する評価方法。
Adjusting the temperature of the contact part and the wiring with a heat source;
Compare the temperature of the contact part and the wiring to confirm that the effects of Joule heat from both can be ignored,
2. The evaluation method for the junction potential of dissimilar metals according to claim 1, wherein the initial potential and the junction potential distribution depending on the temperature in the vicinity of the contact portion are obtained.
異種金属の接合を有する多層配線の評価装置において、
コンタクト部分近傍の配線上に複数設置された同一構造のタップと、
前記コンタクト部分及び前記配線に電流を印加する電流源と、
前記タップ間の電位差を測定する電圧計と、
前記コンタクト部分及び前記配線の温度を調整する発熱源と、
前記コンタクト部分及び前記タップの近傍に設置された温度センサーと、
前記電流源、前記電圧計、前記発熱源及び前記温度センサーを制御するコントローラ解析器とを備え、
前記コントローラ解析器は、前記電流源の印加電流値に対する前記電位差の相関関係から、最小二乗法により該印加電流値が0の時の初期電位を求め、前記コンタクト部分近傍の接合電位分布を求めることを特徴とする異種金属の接合電位に関する評価装置。
In an evaluation apparatus for multilayer wiring having junctions of dissimilar metals,
A plurality of taps of the same structure installed on the wiring near the contact part,
A current source for applying a current to the contact portion and the wiring;
A voltmeter for measuring a potential difference between the taps;
A heat source for adjusting the temperature of the contact portion and the wiring;
A temperature sensor installed in the vicinity of the contact portion and the tap;
A controller analyzer that controls the current source, the voltmeter, the heat source, and the temperature sensor;
The controller analyzer obtains an initial potential when the applied current value is 0 by a least square method from a correlation of the potential difference with respect to an applied current value of the current source, and obtains a junction potential distribution near the contact portion. An apparatus for evaluating the junction potential of dissimilar metals.
JP2003091200A 2003-03-28 2003-03-28 Evaluation method and evaluation apparatus for junction potential of dissimilar metals Expired - Lifetime JP3722133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091200A JP3722133B2 (en) 2003-03-28 2003-03-28 Evaluation method and evaluation apparatus for junction potential of dissimilar metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091200A JP3722133B2 (en) 2003-03-28 2003-03-28 Evaluation method and evaluation apparatus for junction potential of dissimilar metals

Publications (2)

Publication Number Publication Date
JP2004303749A JP2004303749A (en) 2004-10-28
JP3722133B2 true JP3722133B2 (en) 2005-11-30

Family

ID=33404625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091200A Expired - Lifetime JP3722133B2 (en) 2003-03-28 2003-03-28 Evaluation method and evaluation apparatus for junction potential of dissimilar metals

Country Status (1)

Country Link
JP (1) JP3722133B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102551072B1 (en) * 2022-10-28 2023-07-04 주식회사 이지에버텍 Precision measuring device for checking relay contact damage

Also Published As

Publication number Publication date
JP2004303749A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
US6508585B2 (en) Differential scanning calorimeter
US6786639B2 (en) Device for sensing temperature of an electronic chip
JP4936788B2 (en) Prober and probe contact method
JP2008512872A5 (en)
JP2011185697A (en) Thermoelectric material evaluation device and thermoelectric characteristic evaluation method
KR101252885B1 (en) Methods and apparatus for optimizing an electrical response to a conductive layer on a substrate
JP2007019094A (en) Semiconductor testing device
JPWO2007091299A1 (en) TFT substrate heating method, TFT substrate temperature measurement method, and TFT substrate temperature control method
JP3722133B2 (en) Evaluation method and evaluation apparatus for junction potential of dissimilar metals
JP4981525B2 (en) Semiconductor inspection equipment
US20070075398A1 (en) Integrated thermal characterization and trim of polysilicon resistive elements
JP4749794B2 (en) Temperature measuring method and apparatus
JP2009109314A (en) Semiconductor device and its inspecting method
KR20120026798A (en) High speed temperature sensing device
JP2001272434A (en) Method and apparatus for test of semiconductor element
JP2007165365A (en) Semiconductor device and its testing method
JP3681468B2 (en) Temperature coefficient correction type temperature detector
US11313819B2 (en) Thermal analysis of semiconductor devices
EP1215484A2 (en) Differential scanning calorimeter
KR20090132921A (en) System for automatic calibration of thermocouple and method for calibration using the same
JP4912056B2 (en) Prober chuck
US20120106594A1 (en) Thermocouples with two tabs spaced apart along a transverse axis and methods
JPH04359445A (en) Heat-test probing apparatus
JP2019015564A (en) Thermal resistance measuring device and thermal resistance measuring method
JPH06151537A (en) Evaluation for life of wiring

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7