JP3720016B2 - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
JP3720016B2
JP3720016B2 JP2002324246A JP2002324246A JP3720016B2 JP 3720016 B2 JP3720016 B2 JP 3720016B2 JP 2002324246 A JP2002324246 A JP 2002324246A JP 2002324246 A JP2002324246 A JP 2002324246A JP 3720016 B2 JP3720016 B2 JP 3720016B2
Authority
JP
Japan
Prior art keywords
weight
rubber
oil
parts
petroleum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002324246A
Other languages
Japanese (ja)
Other versions
JP2004155959A (en
Inventor
孝夫 村木
智明 杉山
貞文 相部
欽也 川上
崇之 福富
宏之 斎藤
也寸志 菊地
資二 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2002324246A priority Critical patent/JP3720016B2/en
Publication of JP2004155959A publication Critical patent/JP2004155959A/en
Application granted granted Critical
Publication of JP3720016B2 publication Critical patent/JP3720016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はゴム組成物に関し、更に詳しくは特定の石油系プロセス油と芳香族系、ロジン系、クマロン系などの特定の樹脂又は特定のノボラック型アルキルフェノール樹脂とを配合することによって低燃費性、グリップ性および耐熱老化性を両立させかつ加工性及び安全性にも優れたゴム組成物に関する。
【0002】
【従来の技術】
従来ゴム組成物に配合する軟化剤として、例えば特許文献1に記載のように、典型的には芳香族炭化水素含有量(アロマ分)が約30〜55%、ナフラン系炭化水素(ナフラン分)及びパラフィン系炭化水素(パラフィン分)含量が約40〜65%の、所謂アロマ油が使用されている。然るに、近年に至って、アロマ油中の多環芳香族成分量が環境的に問題があるとの声があがっている。
【0003】
【特許文献1】
特許公報第2948659号
【0004】
【発明が解決しようとする課題】
石油系プロセスオイルは極めて多種類の低分子炭化水素化合物との混合物であり、その性質は、アロマティク、ナフテニック及びパラフィニック成分の構成比率、各成分分子のミクロな形状(側鎖や環状成分の割合等)、分子量等を総合したオイルの構造によって決まる。このオイルの構造が、ゴムとオイルの親和性、伸長下あるいは動的条件下でのゴムの分子挙動、コンパウンド中のオイル流動性、マイグレーション等を支配し、その結果がゴムの未加硫、加硫物性に反映していると考えるが、その詳細な機構については解明されていない。
【0005】
一般に芳香族炭化水素含有量CAが大きいと、親和性は強くなり、動的条件下でのtanδは増加する。プロセスオイルはゴム製品の製造時の省エネ、ゴム粘度の低下による加工生産性の向上などのために使用するものであるが、その他にも製品の品質特性、特に例えばタイヤ製品の燃費性、グリップ性にも影響を与える。
【0006】
tanδを下げて、燃費性を向上させるには、芳香族炭化水素含有量CA(%)の少ないナフテニック又はパラフィニック成分比率の高いオイルが、逆に、tanδを上げてグリップ性をよくするには、CA%の多いアロマティックオイルが適していることがよく知られている。このように低燃費性とグリップ性とを両立させる石油系プロセスオイルは未だ見出されていない。
【0007】
従って、本発明は前述のような石油系プロセスオイルを配合する場合の問題点を排除して、ゴム組成物の加硫物性、特に低燃費性、グリップ性及び耐熱老化性を両立させることを目的とする。
【0008】
【課題を解決するための手段】
本発明の第一の態様に従えば、ガラス転移温度Tgが−55℃以上のスチレン−ブタジエン共重合体ゴム(SBR)を少なくとも一種含むジエン系ゴム100重量部に、芳香族炭化水素含量CAが20〜35重量%、Tgが−55℃〜−30℃、動粘度(100℃)が20〜50mm2/gでかつ多環芳香族成分量(PCA)が石油系プロセスオイル中の3重量%以下である石油系プロセスオイル5〜80重量部と芳香族系、ロジン系及びクマロン系から選ばれる少なくとも一種の軟化点80〜130℃の樹脂2〜30重量部を配合してなるゴム組成物が提供される。
【0009】
本発明の第二の態様に従えば、少なくとも1種のジエン系ゴム100重量部に、芳香族炭化水素含有量(CA)が20〜35重量%、ガラス転移温度Tgが−55℃〜−30℃、動粘度(100℃)が20〜50mm2/gでかつ多環芳香族成分量(PCA)3重量%以下の石油系プロセスオイルと、重量平均分子量が200〜10,000のノボラック型アルキルフェノール樹脂との混合物で、該プロセスオイルと該樹脂との重量割合が25〜95重量%/5〜75重量%である混合物10〜30重量部を配合してなるゴム組成物が提供される。
【0010】
【発明の実施の形態】
本発明のゴム組成物に配合される石油系プロセスオイルは、プロセスオイル中の芳香族炭化水素含量CAが20〜35重量%、好ましくは25〜35重量%、ガラス転移温度Tg(DSC:示差熱走査型熱量計で測定)が−55℃〜−30℃、好ましくは−45℃〜−35℃である。ここでCAは環分析法(n−d−M法)(ASTM D3238)で測定することができる。動粘度(100℃)が20〜50mm 2 sec、好ましくは25〜50mm 2 secである。また、多環芳香族成分量(PCA)が3重量%以下である。ここでPCAは多環芳香族などの2環以上が融合した芳香族化合物で、DMSO抽出物質としてIP346/92法で測定することができる。
【0011】
本発明において使用する石油系プロセスオイルのCAが20重量%未満ではグリップ性能の指標であるtanδ(0℃)が低下するので好ましくなく、逆に35重量%を超えると低燃費性の指標であるtanδ(60℃)が増加(燃費性悪化)するので好ましくない。Tgが−55℃より低いとグリップ性能、耐熱老化性が低下するので好ましくなく、逆に−30℃より高いと低燃費性が悪化するので好ましくない。動粘度(100℃)が20 mm 2 sec未満ではグリップ性能が低下するので好ましくなく、逆に50mm 2 secを超えると輸送時の高温加温が必要になり、使用コストの増大を招くので好ましくない。更にPCAが3重量%を超えると環境・安全性の潜在的問題があるので好ましくない。
【0012】
本発明の第一の態様に係るゴム組成物では、ガラス転移温度Tgが−55℃以上のスチレンブタジエン共重合体(SBR)を少なくとも一種類含むジエン系ゴム100重量部に、前記石油系プロセスオイル5〜80重量部、好ましくは10〜70重量部並びに軟化点が80〜130℃、好ましくは80〜120℃の芳香族系、ロジン系及び/又はクマロン系の樹脂2〜30重量部、好ましくは2〜15重量部を配合する。石油系プロセスオイルの配合量が少な過ぎるとゴムの加工性が悪化するので好ましくなく、逆に多過ぎると低燃費性が悪化するので好ましくない。また樹脂の軟化点が低過ぎる場合にはグリップ性能が低下するので好ましくなく、逆に高過ぎると軟化効果が小さくなり、加工性が悪化するので好ましくない。更に樹脂の配合量が少な過ぎると軟化効果が小さくなり、加工性が悪化するので好ましくなく、逆に多過ぎると低燃費性が悪化するので好ましくない。
【0013】
前記芳香族系、ロジン系及び/又はクマロン系樹脂としては、例えばC9 樹脂、ガムロジン、ウッドロジン、トールロジン等のロジン系樹脂、さらにはロジンエステル系樹脂等の変性樹脂、クマロン−インデン樹脂などをあげることができ、これらは例えば三井石油製ペトロジン、安原油脂(株)製の各種ロジンエステル樹脂神戸油化学工業(株)製クマロン100などとして市販されている。
【0014】
本発明の第一の態様に係るゴム組成物に前記SBRと併用することのできるジエン系ゴムとしては、従来からゴム組成物に一般的に配合されている任意のジエン系ゴム、例えば天然ゴム(NR)、各種ブタジエンゴム(BR)、他のスチレン−ブタジエン共重合体ゴム(SBR)、ポリイソプレンゴム(IR)、ブチルゴム(IIR)などをその用途に応じて単独又は任意のブレンドとして用いることができる。
【0015】
本発明の第一の態様に係るゴム組成物には前記した必須成分に加えて、カーボンブラックやシリカなどの補強剤、加硫又は架橋剤、加硫又は架橋促進剤、各種オイル、老化防止剤、可塑性剤などのタイヤ用、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができ、かかる配合物は一般的な方法で混練、加硫して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量も本発明の目的に反しない限り、従来の一般的な配合量とすることができる。かかるゴム組成物の用途には特に限定はないが、例えばタイヤトレッド用、ベルト類、ホース類などのゴム製工業用品などに使用するのに好適である。
【0016】
本発明の第二の態様に係るゴム組成物では、少なくとも一種のジエン系ゴム100重量部に、前記石油系プロセスオイルと重量平均分子量が200〜10,000、好ましくは250〜5000のノボラック型アルキルフェノール樹脂との混合物で、前記石油系プロセスオイルとノボラック製アルキルフェノール樹脂との重量割合が(25〜95重量%)/(5〜75重量%)である混合物10〜30重量部を軟化剤として配合する。
【0017】
本発明の第二の態様によれば、前記石油系プロセスオイルと共に、分子量200〜10,000、好ましくは250〜5,000のノボラック型アルキルフェノールを配合することにより、所望のゴムコンパウンド性能を得ることができることを見出した。ノボラック型アルキルフェノールの分子量が200未満では低伸長域でのモジュラスの増大効果が認められず、逆に分子量が10,000を超えると、高伸長域での軟化効果が小さく、またゴムの混合加工性が悪化する傾向にあるので、好ましくない。前記石油系プロセスオイルとの配合量は、両者の合計量に対しノボラック型アルキルフェノールが5〜75重量%、好ましくは10〜50重量%の範囲である。ノボラック型アルキルフェノールの配合量が5重量%未満ではモジュラス増加効果を発現できず、また75重量%を超えると、加工性が悪化するだけでなくコストアップとなり、タイヤ用ゴムとしては好ましくない。軟化剤の配合量はジエン系ゴム100重量部に対し、10〜30重量部である。この配合量が少なすぎるとゴムの加工性が悪化するので好ましくなく、逆に多過ぎると低燃費性が低下するので好ましくない。
【0018】
本発明の第二の態様に係るゴム組成物に用いることのできるジエン系ゴムとしては、従来からゴム組成物に一般的に配合されている任意のジエン系ゴム、例えば天然ゴム(NR)、各種ブタジエンゴム(BR)、各種スチレン−ブタジエン共重合体ゴム(SBR)、ポリイソプレンゴム(IR)、ブチルゴム(IIR)などをその用途に応じて単独又は任意のブレンドとして用いることができる。
【0019】
本発明の第二の態様に係るゴム組成物には前記した必須成分に加えて、カーボンブラックやシリカなどの補強剤、加硫又は架橋剤、加硫又は架橋促進剤、各種オイル、老化防止剤、可塑性剤などのタイヤ用、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができ、かかる配合物は一般的な方法で混練、加硫して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量も本発明の目的に反しない限り、従来の一般的な配合量とすることができる。かかるゴム組成物の用途には特に限定はないが、例えばタイヤ用カーカス部材、タイヤ用トレッド、ベルト、ホース類などに使用するのに好適である。
【0020】
【実施例】
以下、実施例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことは言うまでもない。なお、以下の例中「%」は特にことわりのない限り「重量%」を示す。また物性の測定方法は以下の通りであった。
1)tanδ(0℃及び60℃):粘弾性スペクトロメーター(上島製作所(株)製伸長型粘弾性測定機)を用い、温度0℃及び60℃、歪率10±2%、周波数20Hzの条件で測定した。
2)ΔHs:高分子計器(株)製 JIS A型硬さ計を用いてJIS K−6301に準じて測定した。比較例を基準にして値の増減を示している。
3)引張り強度(老化後)(Mpa):JIS K−6301に準じて、空気加熱老化試験(100℃、24時間)を行った後に引張り試験を実施した。
【0021】
実施例1〜4及び比較例1〜4
表Iに示す配合(重量部)に従って、加硫促進剤及び硫黄以外のゴム及び配合剤を1.7リットルのバンバリーミキサーで5分間混練し、次にこの配合物に加硫促進剤及び硫黄を8インチの試験用練りロール機で4分間混練してゴム組成物を得た。これらのゴム組成物を150℃で30分間プレスして、目的とする試験片を調製し、各種試験を行いその物性を測定した。その結果を表Iに示す。
【0022】
なお物性はtanδ(60℃)及びΔHsは前述の通りであり、耐摩耗性は岩本製作所製ランボーン摩耗試験機(測定条件:荷重=3.0kg、砥石の表面速度=40m/min 、スリップ率25%、試験時間=5分間、落砂量=20g/min )で測定し、測定温度は室温で、体積減量(cc)を調べ、比較例1の値を100として指数表示した。この値が大きいほど耐摩耗性に優れている。
【0023】
【表1】

Figure 0003720016
【0024】
表Iの脚注
*1:St=33%、Vn=14%、Tg=−36℃の乳化重合SBR、37.5phr油展(アロマ)*16
*2:St=33%、Vn=14%、Tg=−36℃の乳化重合SBR、37.5phr油展(パラフィン)*17
*3:St=33%、Vn=14%、Tg=−36℃の乳化重合SBR、37.5phr油展(オイル)*18
*4:St=25%、Vn=16%、Tg=−51℃の乳化重合SBR、37.5phr油展(アロマ)*16
*5:St=25%、Vn=16%、Tg=−51℃の乳化重合SBR、37.5phr油展(パラフィン)*17
*6:St=25%、Vn=16%、Tg=−51℃の乳化重合SBR、37.5phr油展(オイル)*18
*7:日本ゼオン(株)製Nipol1220
*8:昭和キャボット(株)製ショウブラックN220
*9:フレキシス(株)製サントフレックス6PPD
*10:昭和シェル石油(株)製デゾレックス3号
*11:昭和シェル石油(株)製マシン油22
*12:アロマ系オイル(CA=27%、Tg=−40℃、動粘度(100℃)=47mm2/sec )
*13:ヤスハラケミカル(株)製ハイロジン 軟化点:95℃
*14:大内新興化学工業(株)製クマロン樹脂 軟化点:90℃
*15:大内新興化学工業(株)製ノクセラーCZ−G
*16:昭和シェル石油(株)製デゾレックス3号
*17:昭和シェル石油(株)製マシン油22
*18:アロマ系オイル(CA=27%、Tg=−40℃、動粘度(100℃)=47mm2/sec )[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber composition, and more specifically, by blending a specific petroleum-based process oil with a specific resin such as aromatic, rosin or coumarone, or a specific novolac-type alkylphenol resin , low fuel consumption, grip TECHNICAL FIELD The present invention relates to a rubber composition that achieves both compatibility and heat aging resistance and is excellent in processability and safety.
[0002]
[Prior art]
As a softening agent blended in a conventional rubber composition, for example, as described in Patent Document 1, typically, an aromatic hydrocarbon content (aroma content) is about 30 to 55%, and a nafuran hydrocarbon (nafuran content). And so-called aroma oil having a paraffinic hydrocarbon (paraffin content) content of about 40 to 65% is used. However, in recent years, there are voices that the amount of polycyclic aromatic components in aroma oil is environmentally problematic.
[0003]
[Patent Document 1]
Patent Publication No. 2948659 [0004]
[Problems to be solved by the invention]
Petroleum-based process oil is a mixture with a very wide variety of low-molecular-weight hydrocarbon compounds, and its properties include the composition ratio of aromatic, naphthenic and paraffinic components, and the micro shape of each component molecule (side chain and cyclic component). Ratio, etc.) and the structure of the oil that combines the molecular weight. This oil structure governs the affinity between rubber and oil, the molecular behavior of the rubber under elongation or dynamic conditions, the oil fluidity in the compound, the migration, etc., and the result is the unvulcanized and cured rubber. Although it seems to reflect on the physical properties, the detailed mechanism has not been elucidated.
[0005]
In general the aromatic hydrocarbon content C A is large, the affinity becomes stronger, increases tanδ under dynamic conditions. Process oil is used to save energy when manufacturing rubber products, and to improve processing productivity by reducing rubber viscosity. However, other process quality characteristics such as fuel efficiency and grip characteristics of tire products are also included. Also affects.
[0006]
In order to reduce tan δ and improve fuel efficiency, an oil with a low aromatic hydrocarbon content C A (%) naphthenic or high paraffinic component ratio will increase tan δ to improve grip. It is well known that aromatic oils with high C A % are suitable. Thus, a petroleum-based process oil that achieves both low fuel consumption and grip performance has not yet been found.
[0007]
Therefore, the present invention aims to eliminate the problems in the case of blending the above-described petroleum-based process oil and to achieve both the vulcanized physical properties of the rubber composition, particularly low fuel consumption, grip properties and heat aging resistance. And
[0008]
[Means for Solving the Problems]
According to the first aspect of the present invention, aromatic hydrocarbon content C A is added to 100 parts by weight of diene rubber containing at least one styrene-butadiene copolymer rubber (SBR) having a glass transition temperature Tg of −55 ° C. or higher. Is 20 to 35% by weight, Tg is −55 ° C. to −30 ° C., kinematic viscosity (100 ° C.) is 20 to 50 mm 2 / g, and polycyclic aromatic component amount (PCA) is 3% in petroleum process oil. % Rubber composition comprising 5 to 80 parts by weight of petroleum process oil and 2 to 30 parts by weight of a resin having a softening point of 80 to 130 ° C. selected from aromatic, rosin and coumarone. Is provided.
[0009]
According to the second aspect of the present invention, 100 parts by weight of at least one diene rubber has an aromatic hydrocarbon content (C A ) of 20 to 35% by weight and a glass transition temperature Tg of −55 ° C. to − Petroleum process oil with 30 ° C., kinematic viscosity (100 ° C.) of 20-50 mm 2 / g and 3% by weight or less of polycyclic aromatic component (PCA), and novolak type having a weight average molecular weight of 200-10,000 There is provided a rubber composition comprising a mixture of an alkylphenol resin and 10 to 30 parts by weight of a mixture of 25 to 95% by weight to 5 to 75% by weight of the process oil and the resin.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Petroleum process oil to be blended in the rubber composition of the present invention, the aromatic hydrocarbon content C A in the process oil 20 to 35% by weight, preferably 25 to 35 wt%, the glass transition temperature Tg (DSC: Differential (Measured with a thermal scanning calorimeter) is -55 ° C to -30 ° C, preferably -45 ° C to -35 ° C. Wherein C A can be measured by the ring analysis (n-d-M method) (ASTM D3238). The kinematic viscosity (100 ° C.) is 20 to 50 mm 2 / sec , preferably 25 to 50 mm 2 / sec . The polycyclic aromatic component amount (PCA) is 3% by weight or less. Here, PCA is an aromatic compound in which two or more rings such as polycyclic aromatic are fused, and can be measured by the IP346 / 92 method as a DMSO extract.
[0011]
It is not preferable because the C A petroleum based process oil is less than 20 wt% used as an indicator of grip performance tan [delta (0 ° C.) is reduced in the present invention, in fuel economy index exceeds 35 wt% in the reverse A certain tan δ (60 ° C.) increases (deteriorates fuel efficiency), which is not preferable. If Tg is lower than −55 ° C., grip performance and heat aging resistance are deteriorated, which is not preferable. Conversely, if Tg is higher than −30 ° C., fuel efficiency is deteriorated, which is not preferable. If the kinematic viscosity (100 ° C.) is less than 20 mm 2 / sec , the grip performance deteriorates, which is not preferable. On the other hand, if it exceeds 50 mm 2 / sec , high temperature heating during transportation is required, resulting in an increase in usage costs. Therefore, it is not preferable. Further, if PCA exceeds 3% by weight, there is a potential problem of environment and safety, which is not preferable.
[0012]
In the rubber composition according to the first aspect of the present invention, the petroleum process oil is added to 100 parts by weight of a diene rubber containing at least one styrene butadiene copolymer (SBR) having a glass transition temperature Tg of −55 ° C. or higher. 5 to 80 parts by weight, preferably 10 to 70 parts by weight, and 2 to 30 parts by weight of an aromatic, rosin and / or coumarone resin having a softening point of 80 to 130 ° C, preferably 80 to 120 ° C, preferably 2 to 15 parts by weight are blended. If the blending amount of the petroleum-based process oil is too small, the processability of the rubber is deteriorated, which is not preferable. On the other hand, if the amount is too large, the fuel efficiency is deteriorated. Further, when the softening point of the resin is too low, the grip performance is lowered, which is not preferable. On the other hand, when the resin is too high, the softening effect is reduced and the workability is deteriorated. Further, if the amount of the resin is too small, the softening effect is reduced and the workability is deteriorated, which is not preferable. On the other hand, if the amount is too large, the fuel efficiency is deteriorated.
[0013]
The aromatic, examples of rosin-based and / or coumarone-based resins, for example, C 9 resins, gum rosin, wood rosin, rosin-based resins such as tall rosin, further modified resins, coumarone such rosin ester resin - the like indene resin These are commercially available, for example, as Petrogin manufactured by Mitsui Oil, various rosin ester resins manufactured by An Crude Oil Co., Ltd., Coumaron 100 manufactured by Kobe Oil Chemical Co., Ltd., and the like.
[0014]
Examples of the diene rubber that can be used in combination with the SBR in the rubber composition according to the first aspect of the present invention include any diene rubber that has been conventionally blended in a rubber composition, such as natural rubber ( NR), various butadiene rubbers (BR), other styrene-butadiene copolymer rubbers (SBR), polyisoprene rubber (IR), butyl rubber (IIR), etc. may be used alone or as an arbitrary blend depending on the application. it can.
[0015]
In addition to the essential components described above, the rubber composition according to the first aspect of the present invention includes a reinforcing agent such as carbon black and silica, a vulcanization or crosslinking agent, a vulcanization or crosslinking accelerator, various oils, and an antioxidant. Various additives that are generally blended for tires such as plasticizers and other general rubbers can be blended, and these blends are kneaded and vulcanized by a general method to form a composition. It can be used for sulfurization or crosslinking. As long as the amount of these additives is not contrary to the object of the present invention, the conventional general amounts can be used. The use of such a rubber composition is not particularly limited, but is suitable for use in, for example, rubber industrial articles such as tire treads, belts, hoses and the like.
[0016]
In the rubber composition according to the second aspect of the present invention, at least 100 parts by weight of the diene rubber, the novolak type alkylphenol having the petroleum process oil and the weight average molecular weight of 200 to 10,000, preferably 250 to 5000 is used. 10 to 30 parts by weight of a mixture of a resin and a weight ratio of the petroleum process oil and the novolak alkylphenol resin is (25 to 95% by weight) / (5 to 75% by weight) as a softening agent. .
[0017]
According to the second aspect of the present invention, desired rubber compound performance can be obtained by blending a novolak-type alkylphenol having a molecular weight of 200 to 10,000, preferably 250 to 5,000, with the petroleum-based process oil. I found out that I can. When the molecular weight of the novolak-type alkylphenol is less than 200, the effect of increasing the modulus in the low elongation region is not recognized. Conversely, when the molecular weight exceeds 10,000, the softening effect in the high elongation region is small, and the rubber mixing processability Is not preferable because it tends to deteriorate. The blending amount with the petroleum-based process oil is in the range of 5 to 75% by weight, preferably 10 to 50% by weight of the novolak type alkylphenol with respect to the total amount of both. If the compounding amount of the novolak alkylphenol is less than 5% by weight, the effect of increasing the modulus cannot be exhibited, and if it exceeds 75% by weight, not only the processability is deteriorated but also the cost is increased, which is not preferable as a tire rubber. The blending amount of the softening agent is 10 to 30 parts by weight with respect to 100 parts by weight of the diene rubber. If the blending amount is too small, the processability of rubber deteriorates, which is not preferable. On the other hand, if the blending amount is too large, fuel efficiency decreases.
[0018]
Examples of the diene rubber that can be used in the rubber composition according to the second aspect of the present invention include any diene rubber that has been conventionally blended in a rubber composition, such as natural rubber (NR), Butadiene rubber (BR), various styrene-butadiene copolymer rubbers (SBR), polyisoprene rubber (IR), butyl rubber (IIR), and the like can be used alone or as any blend depending on the application.
[0019]
In addition to the above-described essential components, the rubber composition according to the second aspect of the present invention includes a reinforcing agent such as carbon black and silica, a vulcanization or crosslinking agent, a vulcanization or crosslinking accelerator, various oils, and an antioxidant. Various additives that are generally blended for tires such as plasticizers and other general rubbers can be blended, and these blends are kneaded and vulcanized by a general method to form a composition. It can be used for sulfurization or crosslinking. As long as the amount of these additives is not contrary to the object of the present invention, the conventional general amounts can be used. The use of such a rubber composition is not particularly limited, but is suitable for use in, for example, tire carcass members, tire treads, belts, hoses and the like.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further, it cannot be overemphasized that the scope of the present invention is not limited to these Examples. In the following examples, “%” means “% by weight” unless otherwise specified. The physical properties were measured as follows.
1) tan δ (0 ° C. and 60 ° C.): using a viscoelastic spectrometer (elongation type viscoelasticity measuring machine manufactured by Ueshima Seisakusho Co., Ltd.), temperature 0 ° C. and 60 ° C., strain rate 10 ± 2%, frequency 20 Hz Measured with
2) ΔHs: Measured according to JIS K-6301 using a JIS A type hardness meter manufactured by Kobunshi Keiki Co., Ltd. The increase / decrease of the value is shown based on the comparative example.
3) Tensile strength (after aging) (Mpa): According to JIS K-6301, an air heating aging test (100 ° C., 24 hours) was performed, and then a tensile test was performed.
[0021]
Examples 1-4 and Comparative Examples 1-4
In accordance with the formulation (parts by weight) shown in Table I , the rubber other than the vulcanization accelerator and sulfur and the compounding agent were kneaded in a 1.7 liter Banbury mixer for 5 minutes, and then the vulcanization accelerator and sulfur were added to the compound. A rubber composition was obtained by kneading for 4 minutes with an 8-inch test kneading roll. These rubber compositions were pressed at 150 ° C. for 30 minutes to prepare target test pieces, and various tests were performed to measure their physical properties. The results are shown in Table I.
[0022]
The physical properties are tan δ (60 ° C.) and ΔHs, and the wear resistance is a lambone wear tester manufactured by Iwamoto Seisakusho (measurement conditions: load = 3.0 kg, surface speed of the grindstone = 40 m / min, slip rate 25) %, Test time = 5 minutes, amount of sand fall = 20 g / min), the measurement temperature was room temperature, the volume loss (cc) was examined, and the value of Comparative Example 1 was shown as an index. The larger this value, the better the wear resistance.
[0023]
[Table 1]
Figure 0003720016
[0024]
Table I footnotes
* 1 : Emulsion polymerization SBR with St = 33%, Vn = 14%, Tg = −36 ° C., 37.5 phr oil (Aroma) * 16
* 2 : St = 33%, Vn = 14%, Tg = −36 ° C. emulsion polymerization SBR, 37.5 phr oil extended (paraffin) * 17
* 3 : Emulsion polymerization SBR of St = 33%, Vn = 14%, Tg = −36 ° C., 37.5 phr oil exhibition (oil) * 18
* 4 : St = 25%, Vn = 16%, Tg = -51 ° C. emulsion polymerization SBR, 37.5 phr oil exhibition (aromatic) * 16
* 5 : Emulsion polymerization SBR with St = 25%, Vn = 16%, Tg = −51 ° C., 37.5 phr oil extended (paraffin) * 17
* 6 : Emulsion polymerization SBR with St = 25%, Vn = 16%, Tg = −51 ° C., 37.5 phr oil exhibition (oil) * 18
* 7 : Nipol 1220 manufactured by Nippon Zeon Co., Ltd.
* 8 : Show Black N220 manufactured by Showa Cabot Co., Ltd.
* 9 : Santoflex 6PPD manufactured by Flexis Co., Ltd.
* 10 : Desolex No. 3 manufactured by Showa Shell Sekiyu KK
* 11 : Machine oil 22 manufactured by Showa Shell Sekiyu KK
* 12 : Aromatic oil (C A = 27%, Tg = −40 ° C., kinematic viscosity (100 ° C.) = 47 mm 2 / sec)
* 13 : Hyrosin, Yashara Chemical Co., Ltd. Softening point: 95 ° C
* 14 : Coumarone resin manufactured by Ouchi Shinsei Chemical Co., Ltd. Softening point: 90 ° C
* 15 : Nouchira CZ-G manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 16 : Desolex 3 manufactured by Showa Shell Sekiyu KK
* 17 : Showa Shell Sekiyu Co., Ltd. machine oil 22
* 18 : Aromatic oil (C A = 27%, Tg = −40 ° C., kinematic viscosity (100 ° C.) = 47 mm 2 / sec)

Claims (2)

ガラス転移温度Tgが−55℃以上のスチレン−ブタジエン共重合体ゴム(SBR)を少なくとも一種類含むジエン系ゴム100重量部に、芳香族炭化水素含有量(CA)が20〜35重量%、Tgが−55℃〜−30℃、動粘度(100℃)が20〜50mm 2 secでかつ多環芳香族成分量(PCA)が石油系プロセスオイル中の3重量%以下である石油系プロセスオイル5〜80重量部と芳香族系、ロジン系及びクマロン系から選ばれる少なくとも一種の軟化点80〜130℃の樹脂2〜30重量部とを配合してなるゴム組成物。100 parts by weight of a diene rubber containing at least one styrene-butadiene copolymer rubber (SBR) having a glass transition temperature Tg of −55 ° C. or higher has an aromatic hydrocarbon content (C A ) of 20 to 35% by weight, A petroleum system having a Tg of −55 ° C. to −30 ° C., a kinematic viscosity (100 ° C.) of 20 to 50 mm 2 / sec , and a polycyclic aromatic component amount (PCA) of 3% by weight or less in the petroleum-based process oil. A rubber composition comprising 5 to 80 parts by weight of process oil and 2 to 30 parts by weight of a resin having a softening point of 80 to 130 ° C selected from aromatic, rosin and coumarone. 少なくとも1種のジエン系ゴム100重量部に、芳香族炭化水素含有量(CA)が20〜35重量%、ガラス転移温度Tgが−55℃〜−30℃、動粘度(100℃)が20〜50mm 2 secでかつ多環芳香族成分量(PCA)が石油系プロセスオイル中の3重量%以下である石油系プロセスオイルと、重量平均分子量が200〜10,000のノボラック型アルキルフェノール樹脂との混合物で、該プロセスオイルと該樹脂との重量割合が25〜95重量%/5〜75重量%である混合物10〜30重量部を配合してなるゴム組成物。100 parts by weight of at least one diene rubber has an aromatic hydrocarbon content (C A ) of 20 to 35% by weight, a glass transition temperature Tg of −55 ° C. to −30 ° C., and a kinematic viscosity (100 ° C.) of 20 to 50 mm 2 / sec at and polycyclic aromatic component amount (PCA) petroleum and petroleum-based process oil process 3 wt% or less in the oil, the novolak type phenol resin having a weight average molecular weight of 200 to 10,000 And a rubber composition comprising 10 to 30 parts by weight of a mixture in which the weight ratio of the process oil and the resin is 25 to 95% by weight / 5 to 75% by weight.
JP2002324246A 2002-11-07 2002-11-07 Rubber composition Expired - Lifetime JP3720016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324246A JP3720016B2 (en) 2002-11-07 2002-11-07 Rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324246A JP3720016B2 (en) 2002-11-07 2002-11-07 Rubber composition

Publications (2)

Publication Number Publication Date
JP2004155959A JP2004155959A (en) 2004-06-03
JP3720016B2 true JP3720016B2 (en) 2005-11-24

Family

ID=32803891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324246A Expired - Lifetime JP3720016B2 (en) 2002-11-07 2002-11-07 Rubber composition

Country Status (1)

Country Link
JP (1) JP3720016B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079447B2 (en) * 2007-10-23 2012-11-21 東洋ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP5410807B2 (en) 2009-03-27 2014-02-05 Jx日鉱日石エネルギー株式会社 Rubber compounding oil and method for producing the same
CN103059908B (en) * 2009-03-27 2015-04-29 吉坤日矿日石能源株式会社 Rubber compounding oil, aromatic compound-containing base oil, and methods for producing same
FR2968006B1 (en) 2010-11-26 2012-12-21 Michelin Soc Tech TIRE TREAD TIRE
JP6278587B2 (en) 2012-03-21 2018-02-14 Jxtgエネルギー株式会社 High aromatic base oil and method for producing high aromatic base oil

Also Published As

Publication number Publication date
JP2004155959A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP5529008B2 (en) Rubber composition for tire and tire
JP4275388B2 (en) Tread rubber composition and tire
JP6057875B2 (en) tire
JP2008019334A (en) Rubber composition for tire tread
JP5205876B2 (en) Rubber composition for tire tread
JP2008138086A (en) Rubber composition for tire tread
JP2005146115A (en) Tire tread rubber composition
JP2007246573A (en) Rubber composition for tire tread
JP5265115B2 (en) Rubber composition and pneumatic tire using the same
JPWO2003060004A1 (en) Rubber composition
JP2008297445A (en) Rubber composition for tire tread
JP3720016B2 (en) Rubber composition
JPH0827313A (en) Rubber composition for tire tread
JP2008297449A (en) Rubber composition for tire tread
JP3400887B2 (en) Rubber composition for tire tread
JP2005350595A (en) Pneumatic tire
JP2013155308A (en) Rubber composition for cap tread, base tread, side wall, carcass, clinch or bead apex and pneumatic tire
JP2009173797A (en) Method for producing rubber composition for tire tread
JP2007246622A (en) Rubber composition
JP5205716B2 (en) Silica-containing rubber composition
JP5424693B2 (en) Rubber composition and tire using the same
JP3544717B2 (en) Tread rubber composition for tire
JP2006137806A (en) Manufacturing method for rubber composition, rubber composition and pneumatic tire having sidewall consisting of the same
JP2006241315A (en) Rubber composition for pneumatic tire
JP2006056979A (en) Rubber composition and tire using it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

R150 Certificate of patent or registration of utility model

Ref document number: 3720016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term