JP3719925B2 - Electrode bonding method for plasma display panel and plasma display panel - Google Patents

Electrode bonding method for plasma display panel and plasma display panel Download PDF

Info

Publication number
JP3719925B2
JP3719925B2 JP2000343479A JP2000343479A JP3719925B2 JP 3719925 B2 JP3719925 B2 JP 3719925B2 JP 2000343479 A JP2000343479 A JP 2000343479A JP 2000343479 A JP2000343479 A JP 2000343479A JP 3719925 B2 JP3719925 B2 JP 3719925B2
Authority
JP
Japan
Prior art keywords
electrode
glass substrate
substrate
flexible substrate
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000343479A
Other languages
Japanese (ja)
Other versions
JP2002151548A5 (en
JP2002151548A (en
Inventor
尚士 秋口
法人 塚原
知彦 鈴木
貴之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000343479A priority Critical patent/JP3719925B2/en
Publication of JP2002151548A publication Critical patent/JP2002151548A/en
Publication of JP2002151548A5 publication Critical patent/JP2002151548A5/en
Application granted granted Critical
Publication of JP3719925B2 publication Critical patent/JP3719925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高電圧が印加され、高電流が流される基板の電極接合方法及び基板に関するものであり、特にプラズマディスプレイパネル用のガラス基板上の厚膜電極に、プラズマディスプレイパネル用のフレキシブル基板の電極を接合する基板の電極接合方法及び基板に関するものである。
【0002】
【従来の技術】
従来、高電圧が印加され、高電流が流される基板上の電極に別の基板の電極を電気的に接続する技術としては、プラズマディスプレイパネル用のフレキシブル基板の電極とプラズマディスプレイパネル用のガラス基板の厚膜電極を加熱加圧ツールで押圧して半田付けする方法が知られている。図11においては、プラズマディスプレイパネルのガラス基板1の電極2において、ガラス基板電極用絶縁被膜3に覆われていないガラス基板用接合電極部2aに、半田メッキされたフレキシブル基板8の電極7において、フレキシブル基板電極用絶縁被膜6に覆われておらず、かつ、半田メッキされたフレキシブル基板用接合電極部7aを合わせ、フレキシブル基板8の上から、加熱加圧ツール14で押圧して、フレキシブル基板5の半田13を溶解して半田付けされた構成を示している。
【0003】
又、特開平11−016502号公報に記載の方法が知られている。図12においては、導電粒子5が分散された接着剤シート4を介して、ガラス基板1のガラス基板用接合電極部2aと、フレキシブル基板8のフレキシブル基板用接合電極部7aとを重ね合わせ、フレキシブル基板8の上から、加熱加圧ツール15で押圧して上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極部7aとを上記接着剤シート4に密着させた構成を示している。上記接着剤シート4は、加熱加圧されたことで硬化しており、上記ガラス基板用接合電極部2aと、上記フレキシブル基板用接合電極部7aとは、上記接着剤シート4の上記導電粒子5を介して導通している。
【0004】
【発明が解決しようとする課題】
このようなプラズマディスプレイパネルへのフレキシブル基板8の実装においては、高電圧が印加され、高電流が流されることへの信頼性確保と同時に、パネルの高精細化の為の電極の狭ピッチ化がますます求められている。狭ピッチの電極に従来の半田付け方法を適用すれば、半田の濡れが悪かったり、半田ブリッジが発生し、実装品質即ち接合品質がよくなく、パネルの高精細化の為の狭ピッチに対応が難しい。又、特開平11−016502号公報記載の方法を適用すれば、図12に示すように導体粒子5を介して電気的に接続した後の各電極2、7の一部が露出しているため、高電圧印加時に、各電極の露出部の内、互いに対向する2cと7cとの間、及び2dと7dとの間において電極ショート現象が発生し、高電圧印加時における両電極2、7の接続部の信頼性が確保できなくなる可能性があった。但し、図12に示す露出部2c、2d、7c、7dをシリコーン樹脂被膜等の絶縁性の被膜で覆うことで、露出部2cと露出部7cとの間、及び露出部2dと露出部7dとの間において、電極ショート現象が発生することを防止することができる。しかしながら、従来では、露出部2c、2d、7c、7dを覆う工程は、電気的に接続した後でしか行えない為、工数は増加する。
本発明の目的は、工数の増加を招くことなく、接合品質の不安定性を排除し、高電圧印加状態及び高電流化に対応し、かつ、電極の狭ピッチ化に対応することができて、高信頼性の接合品質を実現することができる基板の電極接合方法及び該基板の電極接合方法で電極が接合される基板を提供することである。
【0005】
【課題を解決するための手段】
本発明の第1態様であるプラズマディスプレイパネルの電極接合方法は、ガラス基板に形成された第一電極とフレキシブル基板に形成された第二電極とを接着材料を介して重ね合わせ、上記第一電極と上記第二電極とを接合するプラズマディスプレイパネルの電極接合方法において、
上記接着材料には導電粒子が分散して含有されており、上記第一の電極の表面には有機シリコーン樹脂被膜又は紫外線硬化樹脂被膜が形成されており、
上記接着材料を介して上記第一電極と上記第二電極とを重ね合わせるとき、上記第一電極上記第二電極の接合部分と、上記第一電極の絶縁被膜形成部の前記接合部分側端面と、上記第二電極の絶縁被膜形成部の前記接合部分側端面とを上記接着材料にて覆うとともに、上記第一の電極と上記第二の電極とを接合するとき、上記導電粒子が、上記有機シリコーン樹脂被膜又は紫外線硬化樹脂被膜を貫通して上記第一の電極に接触することにより、上記第一の電極と上記第二の電極とを上記導電粒子を介して導通させるようにしたことを特徴とする。
本発明の第2態様であるプラズマディスプレイパネルの電極接合方法は、本発明の第1態様において、上記接着材料を介して上記第一の電極と上記第二の電極とを重ね合わせるとき、上記第一の電極の絶縁被膜形成部と上記第二の電極とを重ね合わせるとともに、上記第二の電極の絶縁被膜形成部と上記第一の電極とを重ね合わせることを特徴とする。
本発明の第3態様であるプラズマディスプレイパネルは、本発明の第1又は2態様に記載のプラズマディスプレイパネルの電極接合方法により第一の電極と第二の電極とが接合されたことを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基いて詳細に説明する。尚、各図において同一部材には、同一の参照符号を付している。
(第1実施形態)
図1は、本発明の第1実施形態にかかる基板の電極接合方法及び基板の各一例としてのプラズマディスプレイパネル用基板の電極接合方法及びプラズマディスプレイパネル用基板において、第1基板の一例としてのプラズマディスプレイパネル用のガラス基板1上の電極2と、第2基板の一例としてのプラズマディスプレイパネル用のフレキシブル基板8の電極7との接合後における各電極2、7の導通状態の断面図を示している。図8は、上記第1実施形態にかかるプラズマディスプレイパネル用基板の電極接合方法によりプラズマディスプレイパネル用のガラス基板の電極2とフレキシブル基板の電極7とを接合した状態を示す部分斜視図である。又、図7は、両電極2、7の接合前の断面図である。又、図10は、上記第1実施形態にかかるプラズマディスプレイパネル用基板の電極接合方法によるガラス基板の電極2とフレキシブル基板の電極7との接合工程を示すフローチャートである。尚、上記フローチャートは3工程で構成されている。
【0015】
この接合方法の第1工程は、図1(A)において、支持台16上に配置されたガラス基板1上に形成された厚膜電極の一例としての厚さ5〜15μm程度の厚膜銀電極2のガラス基板用接合電極部2aに、一例としてニッケル粒子等の導電粒子5を複数個、好ましくはほぼ均一に分散された絶縁樹脂の接着剤シート4を、上記電極2を覆うガラス基板電極用絶縁被膜3の端面3aを覆い、かつ上記電極2において上記ガラス基板用絶縁被膜3に覆われていないガラス基板用接合電極部2aを完全に覆い隠すように貼り付ける工程(図10ステップS1)である。
【0016】
続いて行われる第2工程は、フレキシブル基板8に形成される電極の一例としての厚さ5〜40μm程度の電極7において、フレキシブル基板電極用絶縁被膜6に覆われていないフレキシブル基板用接合電極部7aを、接着剤シート4を介して、上記支持台16上に配置された上記ガラス基板1の上記ガラス基板用接合電極部2aと重ね合わせる工程(図10ステップS2)である。このとき、図7に示すようにフレキシブル基板用接合電極露出部7cと上記ガラス基板電極用絶縁被膜3の一部と重ねるとともに、上記フレキシブル基板電極用絶縁被膜6の一部とガラス基板電極端部2b付近の上記ガラス基板用接合電極部2aの一部とが重なり、かつ上記接着剤シート4が上記フレキシブル基板電極用絶縁被膜6の端面6aを覆うように、上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極部7aとを重ね合わせる。
【0017】
最後に行われる第3工程は、上記ガラス基板1を上記支持台16上に配置したままの状態で、上記フレキシブル基板8の上から図1(A)に示す圧着ツール9で加熱加圧して、前記接着剤シート4を硬化して、上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極部7aとを導電粒子5を介して導通させる工程(図10ステップS3)である。圧着ツール9は、その下端部に接着剤シート加熱用ヒータ500を内蔵するとともに、その上端にエアーシリンダ(例えば、藤倉ゴム工業株式会社製の「ベロフラムシリンダー」)201を配置し、モータ200により上記圧着ツール9全体が昇降されるようにしている。上記モータ200により上記圧着ツール9が下降して、上記ガラス基板1上の上記フレキシブル基板8に接触する。このとき、上記フレキシブル基板用接合電極露出部7cと上記ガラス基板電極用絶縁被膜3とが重なる部分、及び上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極部7aとが重なる部分を含むように、上記圧着ツール9を上記フレキシブル基板8に接触させる。そして、上記ヒータ500により加熱して前記接着剤シート4を硬化させるとともに、空気を供給してエアーシリンダー201が駆動されることにより、上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極部7aとを加熱加圧して上記接着剤シート4に密着させる。このとき、上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極部7aは、挟まれた上記接着剤シート4と夫々加熱加圧され密着し、上記接着剤シート4内に分散された複数の導電粒子5同士が夫々接触するとともに、上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極部7aとに導体粒子5が接触することで導通させるようにしている。このとき、上記フレキシブル基板電極用絶縁被膜端面6aには、図1(B)に示すように上記接着剤シート4が加熱加圧されて密着し、上記ガラス基板電極用絶縁被膜端面3aにも又、図1(A)に示すように上記接着剤シート4が加熱加圧されて密着する。好ましくは、上記ガラス基板用接合電極部2aと、上記フレキシブル基板用接合電極部7aとに上記接着剤シート4を加熱加圧して密着させ、導電粒子5を介して導通させるとともに、上記ガラス基板電極用絶縁被膜端面3aと、上記フレキシブル基板電極用絶縁被膜端面6aとに上記接着剤シート4を加熱加圧して密着させた(圧着させた)後、上記接着剤シート4の硬化を完了させるのが望ましい。但し、上述した3種類の動作を同時に行ってもよい。尚、この加熱及び加圧装置は以下の実施形態においても使用することができる。
【0018】
上述した接合方法は、ガラス基板1の1本の電極2と、フレキシブル基板8の1本の電極7との接合方法として説明した。
通常、プラズマディスプレイパネル用のガラス基板1に備えられる電極2は複数存在し、ガラス基板1の複数の電極2に対してフレキシブル基板8にも複数の電極7が備えられる。これを図8に示す。図8において、表面側のガラス基板101a及び裏面側のガラス基板101bは、夫々図1及び図7に示すガラス基板1に相当する。図8に示すように、複数のフレキシブル基板8であるフレキシブル基板の複数のフレキシブル基板用接合電極部7aは、1枚の長尺な帯状の接着剤シート4に分散される複数の導体粒子5を介して、表面側のガラス基板101aの複数のガラス基板用接合電極部2aと導通している。又、複数のフレキシブル基板8の複数のフレキシブル基板用接合電極部7aは、1枚の長尺な帯状の接着剤シート4に分散される複数の導体粒子5を介して、裏面側のガラス基板101bの複数のガラス基板用接合電極部2aと導通している。上記表面側のガラス基板101a及び上記裏面側のガラス基板101bの電極2の接合方法は、夫々上述したプラズマディスプレイパネル用基板の電極接合方法を用いる。
【0019】
上記接着剤シート4の材質は、少なくとも絶縁性を有するものであれば特に限定されるものではないが、好ましくは熱硬化性樹脂である。上記接着剤シート4の形状は、特に限定されないが、幅は1mm以上で上記ガラス基板電極用絶縁被膜端面3aを覆い隠し、かつ、上記ガラス基板用接合電極部2aを完全に覆い隠すものが望ましく、厚さは15〜60μmが望ましい。上記接着剤シート4が1mm未満では、0.5A以上の電流が流せなくなり、パネルが動作しなくなる為、好ましくない。又、接着剤シート4の厚さが15μm未満では、接着強度が不足し、剥がれ易く、厚さが60μmを超えると接着剤シート4に分散される導体粒子5を介した導通ができなくなる。上記接着剤シート4の厚さとしては、厚膜電極2の厚さ5〜15μm、フレキシブル基板8の電極7の厚さ5〜40μmに対応して、15〜45μmとするのが更に好ましい。その理由は、この範囲であれば接着剤シート4のはみ出し量が適切であり、これより大きくなると、圧着ツール9に接着剤シート4が付着してしまう為、好ましくない。又、圧着ツール9による加熱加圧の際にはみ出した接着剤シート4が、ガラス基板電極端部2bの一部又は全てをを覆ってもよい。
【0020】
接着剤シート4に分散されている導電粒子5の粒径は、2〜15μmが望ましい。2μm未満では、0.5A以上の電流を流せなくなり、パネルが動作しなくなる為、好ましくなく、15μmを越えると電極間のショート不良が発生しやすくなる為、好ましくない。導電粒子5の材質は、特に限定されず、電気的な導通を生じるものであれば使用できる。又、接着剤シート4中に分散される導電粒子5の配合量は、特に限定されない。
接着剤シート4は、ガラス基板1側に貼り付けられるものに限らず、フレキシブル基板8側に貼り付けられるようにしてもよく、又、ガラス基板1及びフレキシブル基板8のいずれにも貼り付けられずに、両基板1、8が重ね合わされるときに所定の位置に位置決めされるように配置されてもよい。。
【0021】
ガラス基板1及びフレキシブル基板8の材質は、特に限定されない。又、ガラス基板上の厚膜電極2を覆うガラス基板電極用絶縁被膜3と、フレキシブル基板8の電極7を覆うフレキシブル基板電極用絶縁被膜6との材質、形成方法、形成範囲も、特に限定されない。
厚膜の銀電極2は、スクリーン印刷やフォトグラフ法により形成され、焼成される。電極2の材質は特に限定されない。フレキシブル基板8の電極7の材質も、特に限定されないが、好ましくは、銅にニッケルメッキを施した後、さらに金メッキを施したものがある。
圧着ツール9による加圧力の一例としては、1.96MPa(20kg/cm2)程度が好ましい。又、温度の一例としては、180℃程度が好ましい。又、圧着ツール9が加熱加圧する領域は、少なくとも接着剤シート4を挟んでガラス基板用接合電極部2aとフレキシブル基板用接合電極部7aとが重なった部分を含む領域が求められている。
【0022】
上記第1実施形態によれば、上記ガラス基板用接合電極部2a及び上記フレキシブル基板用接合電極部7aと、上記ガラス基板電極用絶縁被膜端面3aと、上記フレキシブル基板電極用絶縁被膜端面6aとに上記接着剤シート4を加熱加圧して密着させることで、上記ガラス基板用接合電極部2a及び上記フレキシブル基板用接合電極部7aに加え、両電極2、7間の内、特に図12にて示される露出部2c、2d、7c、7dをも接着剤シート4にて完全に覆うことができて、100V以上の高電圧印加時における両電極2、7間での電極のショート現象の発生を防止できる。
【0023】
又、本実施形態では、接着剤シート4を貼り付けるときに、接着剤シート4でガラス基板電極用絶縁被膜端面3aを覆い、接着剤シート4を挟んでガラス基板用接合電極部2aとフレキシブル基板用接合電極部7aとを重ね合わせるときに、接着剤シート4でフレキシブル基板電極用絶縁被膜端面6aを覆うようにしている。よって、ガラス基板用接合電極部2a及びフレキシブル基板用接合電極部7aと、ガラス基板電極用絶縁被膜端面3aと、フレキシブル基板電極用絶縁被膜端面6aとに接着剤シート4を加熱加圧して密着させるときに、接合工程開始直後からガラス基板電極用絶縁被膜端面3aと、フレキシブル基板電極用絶縁被膜端面6aとに接着剤シート4をより確実に密着させることができる。
【0024】
又、図7に示す接着剤シート4の貼り付けを行うときに、接着剤シート4がガラス基板電極用絶縁被膜側に寄り、ガラス基板電極端部2b付近のガラス基板用接合電極部2aを覆わなくなることがある。そこで、図7に示すようにガラス基板用接合電極部2aと、フレキシブル基板用接合電極部7aとを接着剤シート4を介して重ね合わせるときに、ガラス基板電極端部2b付近のガラス基板用接合電極部2aと、フレキシブル基板電極用絶縁被膜6の一部とが重なるようにしている。よって、接着剤シート4が、ガラス基板電極端部2b付近のガラス基板用接合電極部2aを覆わない場合でも、フレキシブル基板電極用絶縁被膜6がガラス基板電極端部2b付近のガラス基板用接合電極部2aに対向するフレキシブル基板用接合電極部7aの露出を防止し、ガラス基板電極端部2b付近のガラス基板用接合電極部2aと、フレキシブル基板8の電極7との間での電極のショート現象の発生をより確実に防止できる。同様に、接着剤シート4を挟んでガラス基板用接合電極部2aとフレキシブル基板用接合電極部7aとを重ね合わせるときに、フレキシブル基板用接合電極露出部7cとガラス基板電極用絶縁被膜3とを重ね合わせることで、フレキシブル基板用接合電極露出部7cがガラス基板電極用絶縁被膜3にて覆われ、フレキシブル基板用接合電極露出部7cの露出を防止することができる。よって、フレキシブル基板用接合電極露出部7cとガラス基板1の電極2との間での電極のショート現象の発生をより確実に防止できる。
【0025】
又、ガラス基板1上の電極2とフレキシブル基板8の電極7とを半田を用いることなく導通させる為、両電極2、7間での良好な接続を確保することができ、半田による不具合、つまり、半田の酸化や腐食の為に、電気的な接続に不具合を生じることや、半田付けの際の半田の濡れが悪かったり、半田ブリッジが発生し、接合品質が悪くなることがなくなり、かつ、高電流化に対応することができ、さらに、電極の狭ピッチ化、例えば0.3mm以下のピッチにも対応できる、高信頼性の接合品質を実現することができる。
【0026】
又、ガラス基板用接合電極部2aとフレキシブル基板用接合電極部7aとを接着剤シート4に分散される複数の導体粒子5を介して電気的に導通を図りつつ、上記ガラス基板用接合電極部2aと、上記フレキシブル基板用接合電極部7aとが加熱加圧されて接着剤シート4に密着するとき、同時的に、ガラス基板電極用絶縁被膜端面3aと、フレキシブル基板電極用絶縁被膜端面6aとに接着剤シート4を加熱加圧して密着させることができる。この結果、ガラス基板用接合電極部2aとフレキシブル基板用接合電極部7aとを電気的に接続した後に、別の工程で、図12に示す上記ガラス基板用接合電極部2a及び上記フレキシブル基板用接合電極部7aの露出部の内、互いに対向する2cと7c及び2dと7dとを被覆するといった特別な被覆工程が不要となり、電極接続動作とガラス基板用接合電極部2a及び上記フレキシブル基板用接合電極部7aの露出部2c、2d、7c、7dの被覆動作を同時的に1つの工程で行うことができる。
【0027】
(第2実施形態)
図2は、本発明の第2実施形態にかかる基板の電極接合方法及び基板の各一例としてのプラズマディスプレイパネル用基板の電極接合方法及びプラズマディスプレイパネル用基板において、第1基板の一例としてのプラズマディスプレイパネル用のガラス基板1上の電極2と、第2基板の一例としてのプラズマディスプレイパネル用のフレキシブル基板8の電極7との接合後の各電極2、7の導通状態の断面図を示している。第2実施形態が第1実施形態と異なるのは、図2に示すようにガラス基板1上の厚膜電極2において、ガラス基板電極用絶縁被膜3に覆われていないガラス基板用接合電極部2a及びガラス基板電極端部2bを完全に覆うように、水分の侵入防止用として機能しかつ加熱硬化されて形成された有機シリコーン樹脂の被膜10が備えられている点である。
第2実施形態の場合、まず、上記ガラス基板用接合電極部2aと、上記フレキシブル基板用接合電極部7aとを接着剤シート4を介して重ね合わせるとき、上記ガラス基板用接合電極部2a及び上記ガラス基板電極端部2bが上記有機シリコーン樹脂被膜10にて覆われたガラス基板1を用意し、上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極部7aとを接着剤シート4を介して重ね合わせる。
次いで、図1(A)の圧着ツール9を用いて上記第2基板8の上から加熱加圧するときに、接着剤シート4に分散された複数の導電粒子5の1個又は複数個が、上記有機シリコーン樹脂被膜10に食い込み、上記第1基板用接合電極部2aと接触することで、上記第1基板用接合電極部2aと上記第2基板用接合電極部7aとを上記導電粒子5を介して導通させるようにしている。
【0028】
有機シリコーン樹脂被膜10の材質は、水分の侵入を防止できるものならば、特に限定されない。尚、有機シリコーン樹脂の硬化の為の加熱温度は、一例として120℃程度が望ましい。
又、上記有機シリコーン樹脂被膜10の厚さは、特に限定されないが、好ましくは0.01〜5μmである。上記有機シリコーン樹脂被膜10の厚さが0.01μm未満では、上記ガラス基板用接合電極部2aへの水分の侵入を防止できず、5μmを超える場合には、接合時の導体粒子5を介した導通を阻害する可能性がある。
尚、第2実施形態において、接着剤シート4の材質及び形状、導電粒子5の材質、配合量及び大きさ、ガラス基板2及びフレキシブル基板8の材質、ガラス基板1の電極2の材質及び形成方法、フレキシブル基板8の電極7の材質及び形成方法、ガラス基板1の電極2を覆うガラス基板電極用絶縁被膜3の材質、形成方法及び形成範囲、フレキシブル基板8の電極7を覆うフレキシブル基板電極用絶縁被膜6の材質、形成方法及び形成範囲などその他の構成については、第1実施形態と同様である。
【0029】
第2実施形態によれば、電極接合前に、ガラス基板1の厚膜銀電極2のうちの上記ガラス基板用接合電極部2a及び上記ガラス基板電極端部2bを上記有機シリコーン樹脂被膜10により覆うようにしているため、第1実施形態の奏する作用効果に加えて、ガラス基板用接合電極部2aへの水分の侵入を上記有機シリコーン樹脂被膜10により防止することができて、水分と金属イオンが電極間に存在するとき高電圧と合わさってマイグレーションが発生するのを効果的に防止することができ、ガラス基板用接合電極部2a及び上記ガラス基板電極端部2bの酸化による電気的な導通阻害を防止できる。
【0030】
(第3実施形態)
図3は、本発明の第3実施形態にかかる基板の電極接合方法及び基板の各一例としてのプラズマディスプレイパネル用基板の電極接合方法及びプラズマディスプレイパネル用基板において、第1基板の一例としてのプラズマディスプレイパネル用のガラス基板1上の電極2と、第2基板の一例としてのプラズマディスプレイパネル用のフレキシブル基板8の電極7との接合後における各電極2、7の導通状態の断面図を示している。第3実施形態が第2実施形態と異なるのは、水分の侵入を防止するため、図3に示すように、加熱硬化されて形成された有機シリコーン樹脂の被膜10の代りに、紫外線照射され硬化されて形成された紫外線硬化樹脂の被膜11が備えられている点である。
第3実施形態の場合、まず、上記ガラス基板用接合電極部2aと、上記フレキシブル基板用接合電極部7aとを接着剤シート4を介して重ね合わせるとき、上記ガラス基板用接合電極部2a及び上記ガラス基板電極端部2bが上記紫外線硬化樹脂被膜11にて覆われたガラス基板1を用意し、上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極部7aとを接着剤シート4を介して重ね合わせる。
次いで、図1(A)の圧着ツール9を用いて上記フレキシブル基板8の上から加熱加圧するときに、接着剤シート4に分散された複数の導電粒子5の1個又は複数個が、上記紫外線硬化樹脂被膜11に食い込み、上記ガラス基板用接合電極部2aと接触することで、上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極部7aとを上記導電粒子5を介して導通させるようにしている。
【0031】
紫外線硬化樹脂被膜11の材質は、水分の侵入を防止できるものならば、特に限定されない。紫外線硬化樹脂の硬化の為の紫外線の波長、強度、積算光量も又、特に限定されない。
又、上記紫外線硬化樹脂被膜11の厚さは、特に限定されないが、好ましくは0.01〜5μmである。上記紫外線硬化樹脂被膜11の厚さが0.01μm未満では、上記ガラス基板用接合電極部2aへの水分の侵入を防止できず、5μmを超える場合には、接合時の導体粒子5を介した導通を阻害する可能性がある。尚、第3実施形態において、接着剤シート4の材質及び形状、導電粒子5の材質、配合量及び大きさ、ガラス基板2及びフレキシブル基板8の材質、ガラス基板1の電極2の材質及び形成方法、フレキシブル基板8の電極7の材質及び形成方法、ガラス基板1の電極2を覆うガラス基板電極用絶縁被膜3の材質、形成方法及び形成範囲、フレキシブル基板8の電極7を覆うフレキシブル基板電極用絶縁被膜6の材質、形成方法及び形成範囲などその他の構成については、第1実施形態と同様である。
【0032】
第3実施形態によれば、電極接合前に、ガラス基板1の厚膜銀電極2のうちの上記ガラス基板用接合電極部2a及び上記ガラス基板電極端部2bを上記紫外線硬化樹脂被膜11により覆うようにしているため、第2実施形態の奏する効果と同様に、第1実施形態の奏する作用効果に加えて、ガラス基板用接合電極部2aへの水分の侵入を上記有機シリコーン樹脂被膜10により防止することができて、水分と金属イオンが電極間に存在するとき高電圧と合わさってマイグレーションが発生するのを効果的に防止することができ、ガラス基板用接合電極部2a及び上記ガラス基板電極端部2bの酸化による電気的な導通阻害を防止できる。
【0033】
(第4実施形態)
図4(A)は、本発明の第4実施形態にかかる基板の電極接合方法及び基板の各一例としてのプラズマディスプレイパネル用基板の電極接合方法及びプラズマディスプレイパネル用基板において、第1基板の一例としてのプラズマディスプレイパネル用のガラス基板1上の電極2と、第2基板の一例としてのプラズマディスプレイパネル用のフレキシブル基板8の電極7との接合後における各電極2、7の導通状態の断面図を示している。図4(B)は第4実施形態の電極接合方法で使用する1個の導電粒子の拡大断面図である。第4実施形態が第1〜第3実施形態と異なるのは、図4(B)に示すように、接着剤シート4に分散された導電粒子5が、表面の酸化を防止するため、ニッケル粒子5aの表面に、金メッキ層5bを形成したものである点である。
第4実施形態の場合、ガラス基板用接合電極部2aと、フレキシブル基板用接合電極部7aとを接着剤シート4を介して重ね合わせるとき、上記接着剤シート4をニッケル粒子5aの表面に金メッキ層5bが形成された導電粒子5が多数分散されたものにする。
次いで、図1(A)の圧着ツール9を用いて上記フレキシブル基板8の上から加熱加圧し、上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極7aとを加熱加圧して接着剤シート4に密着させて、上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極7aとを上記1個又は複数個の導電粒子5を介して導通させるようにしている。
【0034】
導電粒子5のニッケル粒子5aの表面に被覆される金メッキ層5bの厚さは、ニッケル粒子5aの表面の酸化を防止できるものであれば、特に限定されないが、好ましくは0.03〜0.09μm程度である。金メッキ層5bの厚さが0.03μm未満では、上記ニッケル粒子5aの表面から剥離しやすく、0.09μmを超える場合には、導電粒子5全体の粒径が15μmを越えることとなり、電極間のショート不良が発生しやすくなる為、好ましくない。又、金メッキ方法等についても、特に限定されないが、一般的にはフラッシュメッキ法が用いられる。
接着剤シート4の材質及び形状、導電粒子5の配合量及び大きさ、ガラス基板2及びフレキシブル基板8の材質、ガラス基板1の電極2の材質及び形成方法、フレキシブル基板8の電極7の材質及び形成方法、ガラス基板1の電極2を覆うガラス基板電極用絶縁被膜3の材質、形成方法及び形成範囲、フレキシブル基板8の電極7を覆うフレキシブル基板電極用絶縁被膜6の材質、形成方法及び形成範囲などその他の構成については、第1実施形態と同様である。
【0035】
第4実施形態によれば、各導電粒子5をニッケル粒子5aの表面に金メッキ層5bで被覆された粒子より構成したので、第1実施形態の奏する作用効果に加えて、プラズマディスプレイパネルが高温に曝された場合でも、導電粒子5の酸化が生じず、電気的な導通阻害が防止できる。
【0036】
(第5実施形態)
図5は、本発明の第5実施形態にかかる基板の電極接合方法及び基板の各一例としてのプラズマディスプレイパネル用基板の電極接合方法及びプラズマディスプレイパネル用基板において、第1基板の一例としてのプラズマディスプレイパネル用のガラス基板1上の電極2と、第2基板の一例としてのプラズマディスプレイパネル用のフレキシブル基板8の電極7との接合後における各電極2、7の導通状態の断面図を示している。第5実施形態が第1〜第4実施形態と異なるのは、図5において、接着剤シート4に分散された導電粒子5の接着剤シート4内における配合量が、300個/mm2〜30000個/mm2である点である。
第5実施形態の場合、ガラス基板用接合電極部2aと、フレキシブル基板用接合電極部7aとを接着剤シート4を介して重ね合わせるとき、分散された導電粒子5の配合量が300個/mm2〜30000個/mm2となる接着剤シート4を介して、上記ガラス基板用接合電極部2aと、上記フレキシブル基板用接合電極部7aとを重ね合わせる。
次いで、図1(A)の圧着ツール9を用いて上記フレキシブル基板8の上から加熱加圧し、上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極7aとを加熱加圧して接着剤シート4に密着させて、上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極7aとを複数個の上記導電粒子5を介して導通させるようにしている。
【0037】
接着剤シート4内における導電粒子5の配合量が300個/mm2〜30000個/mm2とするのは以下の理由による。すなわち、接着剤シート4内における導電粒子5の配合量が300個/mm2未満では、導電粒子5の個数が少なすぎて、電気的な導通が得られない場合があり、30000個/mm2を超える場合には、導電粒子5の個数が多すぎて、電極間のショート現象が発生する可能性があるためである。
接着剤シート4の材質及び形状、導電粒子5の材質、配合量及び大きさ、ガラス基板2及びフレキシブル基板8の材質、ガラス基板1の電極2の材質及び形成方法、フレキシブル基板8の電極7の材質及び形成方法、ガラス基板1の電極2を覆うガラス基板電極用絶縁被膜3の材質、形成方法及び形成範囲、フレキシブル基板8の電極7を覆うフレキシブル基板電極用絶縁被膜6の材質、形成方法及び形成範囲などその他の構成については、第1実施形態と同様である。
第5実施形態によれば、絶縁性の接着剤シート4内に配合する導電粒子5の配合量を300個/mm2〜30000個/mm2とすることにより、電極間のショート現象の発生を防止しつつ電極間の電気的な導通を確実に行うことができて、第1実施形態の奏する作用効果をより一層高めることができる。
【0038】
(第6実施形態)
図6は、本発明の第6実施形態にかかる基板の電極接合方法及び基板の各一例としてのプラズマディスプレイパネル用基板の電極接合方法及びプラズマディスプレイパネル用基板において、第1基板の一例としてのプラズマディスプレイパネル用のガラス基板1上の電極2と、第2基板の一例としてのプラズマディスプレイパネル用のフレキシブル基板8の電極7との接合後における各電極2、7の導通状態の断面図を示している。図9は、上記第6実施形態にかかるプラズマディスプレイパネル用基板の電極接合方法によりプラズマディスプレイパネル用のガラス基板の電極2とフレキシブル基板の電極7とを接合した後、紫外線硬化樹脂を塗布した状態を示す部分斜視図である。第6実施形態が第1〜第5実施形態と異なるのは、図6において、水分及び腐食性ガスの侵入を防止するため、ガラス基板電極用絶縁被膜端面3aと接着剤シート4とが密着する部分と、フレキシブル基板電極用絶縁被膜端面6aと接着剤シート4とが密着する部分とを覆い隠すように、紫外線硬化樹脂被膜12が塗布され硬化されている点である。尚、上記紫外線硬化樹脂被膜12は、フレキシブル基板8上における図1(A)に示す圧着ツール9にて圧力が負荷された部分まで伸びている。以下、第1基板電極用絶縁被膜端面3aと接着剤シート4とが密着する部分を第1密着部20aとし、フレキシブル基板電極用絶縁被膜端面6aと接着剤シート4とが密着する部分を第2密着部20bとする。
第6実施形態の場合、ガラス基板用接合電極部2aと、上記フレキシブル基板用接合電極部7aとを接着剤シート4の1個又は複数個の導電粒子5を介して導通させた後、第1密着部20aと、第2密着部20bとを覆い隠して封止するように紫外線硬化樹脂を塗布する。
次いで、紫外線を照射し、塗布された紫外線硬化樹脂被膜12を硬化して、第1密着20aと、第2密着部20bとを覆うように封止する紫外線硬化樹脂被膜12を形成する。
図9は、第1実施形態のプラズマディスプレイパネル用基板の電極接合方法により接合された図8のプラズマディスプレイパネル用基板において、第6実施形態を適用した図である。図9に示すように、フレキシブル基板8の複数の電極7のうちの端面において第1密着部20aから第2密着部20bに達しようとしている部分の紫外線硬化樹脂被膜12が、図9において12aにより示すように、第2密着部側で塗布形成される紫外線硬化樹脂被膜12と境界面を形成することなく混ざり合って一体化することになり、より確実に電極接合部を覆うことができる。もし、表裏両面に塗布形成した紫外線硬化樹脂被膜12の間で境界が形成されてしまうと、その境界から水分が接合部分に侵入する恐れがある為、好ましくない。
【0039】
紫外線硬化樹脂被膜12は、水分及び腐食性ガスの侵入を防止できるものであれば、いかなる品種の紫外線硬化樹脂でもよいが、硬化強度が大きく、耐湿性がよいエポキシアクリレート系樹脂が好ましい。
第6実施形態において、接着剤シート4の材質及び形状、導電粒子5の材質、配合量及び大きさ、ガラス基板2及びフレキシブル基板8の材質、ガラス基板1の電極2の材質及び形成方法、フレキシブル基板8の電極7の材質及び形成方法、ガラス基板1の電極2を覆うガラス基板電極用絶縁被膜3の材質、形成方法及び形成範囲、フレキシブル基板8の電極7を覆うフレキシブル基板電極用絶縁被膜6の材質、形成方法及び形成範囲などその他の構成については、第1実施形態と同様である。
【0040】
第6実施形態によれば、ガラス基板電極用絶縁被膜端面3aと接着剤シート4とが密着する部分20aと、フレキシブル基板電極用絶縁被膜端面6aと接着剤シート4とが密着する部分20bとを覆い隠すように、紫外線硬化樹脂被膜12が形成されるため、第1〜第5実施形態の奏する作用効果に加えて、紫外線硬化樹脂被膜12により両電極2、7間の接合部分への水分及び腐食性ガスの侵入を短時間で防止でき、両電極2、7の酸化による電気的な導通阻害が防止できる。
【0041】
上述した第1〜第6実施形態では、図10に示すように第1工程の接着剤シート4の貼り付け作業の際、ガラス基板電極用絶縁被膜端面3aを覆い、かつ、ガラス基板用接合電極部2aを完全に覆い隠すように接着剤シート4を貼り付け、第2工程の重ね合わせ作業の際、接着剤シート4がフレキシブル基板電極用絶縁被膜端面6aを覆うように、ガラス基板用接合電極部2aとフレキシブル基板用接合電極部7aとを重ね合わせている。しかし、上述した接着剤シート4の位置は一例であり、第3工程の圧着ツール9による加熱加圧作業の際に、ガラス基板用接合電極部2aと、フレキシブル基板用接合電極部7aと、ガラス基板電極用絶縁被膜端面3aと、フレキシブル基板電極用絶縁被膜端面6aとに接着剤シート4を加熱加圧して密着させればよく、少なくとも両電極2、7において、互いに対向して露出する部分が存在しなければ、電極ショート現象を防止することができる。即ち、加熱加圧にて接着剤シート4が伸びることで、接着剤シート4が、ガラス基板用接合電極部2aと、フレキシブル基板用接合電極部7aと、ガラス基板電極用絶縁被膜端面3aと、フレキシブル基板電極用絶縁被膜端面6aとに密着し、両電極2、7において、互いに対向して露出する部分をなくせばよい。従って、接着剤シート4の貼り付けの際に、接着剤シート4でガラス基板電極用絶縁被膜端面3aを覆わなくてもよく、又は、重ね合わせるときに、接着剤シート4がフレキシブル基板電極用絶縁被膜端面6aを覆わなくてもよい。又は、接着剤シート4の貼り付けの際に、接着剤シート4でガラス基板電極用絶縁被膜端面3aを覆わず、かつ、接着剤シート4がフレキシブル基板電極用絶縁被膜端面6aを覆わない状態で重ね合わせてもよい。
【0042】
加熱加圧前の状態でガラス基板電極用絶縁被膜端面3a及びフレキシブル基板電極用絶縁被膜端面6aのいずれか一方、或いは両方ともを接着剤シート4が覆わない場合、高電圧印加時における両電極2、7間での電極のショート現象の発生を防止する為には、加熱加圧時に接着剤シート4がガラス基板電極用絶縁被膜端面3a及びフレキシブル基板電極用絶縁被膜端面6aに密着するまで伸び、ガラス基板用接合電極部2a及びフレキシブル基板用接合電極部7aに加え、図12にて示される露出部2c、2d、7c、7dをも接着剤シート4にて覆うようにしなければならない。従って、加熱加圧時にガラス基板電極用絶縁被膜端面3a及びフレキシブル基板電極用絶縁被膜端面6aに密着するまで伸びることが可能な接着剤シート4の厚さが必要となる。但し、接着剤シート4の貼り付け位置及びフレキシブル基板用接合電極部7aの重ね合わせ位置が多少ずれていた場合でも電極ショート現象を防止できる為、各電極2、7の接合は、加熱加圧前の状態でガラス基板電極用絶縁被膜端面3a及びフレキシブル基板電極用絶縁被膜端面6aを覆うようにする場合よりも容易になる。
【0043】
【実施例】
次に、本発明の上記実施形態の具体例としての実施例を説明する。すなわち、以下の実施例1〜6は上記第1〜第6実施形態に対応する実施例である。
(実施例1)
図1を参照しながら説明する。
ガラス基板1(厚さ3mm)上にスクリーン印刷法と焼成により形成された厚膜の電極2(厚さ10μm、0.3mmピッチ)に、その上の所定の位置に、ガラスフリットを主成分とするガラス基板電極用絶縁被膜3をスクリーン印刷法と焼成により形成し、導電粒子5としてニッケル粒子(粒径5μm)が多数分散された絶縁性の接着剤シート4(熱硬化性エポキシ樹脂、幅4m、厚さ40μm)を所定の位置に貼り付ける。この際、接着剤シート4が前記ガラス基板1上の電極2を覆うガラス基板電極用絶縁被膜3の端面3aを覆うようにする。このとき、加熱温度は100℃、加圧力は、0.98MPa(10kg/cm2)、加圧時間は5秒である。次いで、フレキシブル基板8の電極7を前記ガラス基板1上の電極2に合わせるように貼り付ける。このとき、フレキシブル基板8の電極7を覆うフレキシブル電極用絶縁被膜6の端面6aが前記接着剤シート4を覆い、かつ、上記フレキシブル基板用接合電極露出部7cと上記ガラス基板電極用絶縁被膜3の一部とが重なり、上記ガラス基板用接合電極部2aの一部と上記フレキシブル電極用絶縁被膜6の一部とが重なるようにする。次いで、前記フレキシブル基板8の上から圧着ツール9で、加熱加圧して、前記接着剤シート4を硬化するとともに、ガラス基板1上の厚膜電極2とフレキシブル基板8の電極7を導電粒子5を介して導通させるとともに、ガラス基板用接合電極部2aと、フレキシブル基板用接合電極部7aと、ガラス基板電極用絶縁被膜端面3aと、フレキシブル基板電極用絶縁被膜端面6aとに接着剤シート4を加熱加圧して密着させる。このとき、上記ガラス基板用接合電極部2aと上記フレキシブル基板用接合電極部7aとが重なる部分、上記フレキシブル基板用接合電極部7aと上記ガラス基板電極用絶縁被膜3とが重なる部分、及び上記ガラス基板用接合電極部2aと上記フレキシブル電極用絶縁被膜6とが重なる部分を含むように同時に加熱加圧する。このとき、加熱温度は170℃、加圧力は2.94MPa(30kg/cm2)、加圧時間は20秒である。
なお、以上の説明では、ガラス基板、ガラス基板上の電極、ガラス基板上の電極上に形成されるガラス基板電極用絶縁被膜、フレキシブル基板、フレキシブル基板の電極、フレキシブル基板の電極を覆うフレキシブル基板電極用絶縁被膜、接着剤シート、導電粒子等の材質、大きさ、厚みや、また、工程での温度、圧力、時間を限定したが、これらは、一つの例であり、限定されるものではない。
【0044】
(実施例2)
実施例1におけるガラス基板1上の厚膜電極2において、ガラス基板電極用絶縁被膜3に覆われていないガラス基板用接合電極部2a及び上記ガラス基板電極端部2bを完全に覆うように、水分侵入防止機能を有する有機シリコーン樹脂(脱アルコール型シリコーン樹脂、SE4456、東レダウコーニングシリコーン社製)が塗布され、加熱硬化して有機シリコーン樹脂被膜10が形成されているガラス基板1を使用した。
その他の工程と条件は、実施例1と同じ。
【0045】
(実施例3)
実施例1におけるガラス基板1上の厚膜電極2において、ガラス基板電極用絶縁被膜3に覆われていないガラス基板用接合電極部2a及び上記ガラス基板電極端部2bを完全に覆うように、水分侵入防止機能を有する紫外線硬化樹脂(エポキシアクリレート系樹脂、PSR−334、互応化学社製)が塗布され、紫外線照射し(紫外線365nm、1000mW/cm、10秒照射硬化)、硬化して紫外線硬化樹脂被膜11が形成されているガラス基板1を使用した。
その他の工程と条件は、実施例1と同じ。
【0046】
(実施例4)
実施例1における絶縁性接着剤シート4に分散されている導電粒子5をニッケル粒子(粒径5μm)の表面に金メッキ層を形成した粒子に置き換えたものを使用した。金メッキは、フラッシュメッキ法により製作した。
その他の工程と条件は、実施例1と同じ。
【0047】
(実施例5)
実施例1における接着剤シート4に分散されている導電粒子5の接着剤シート4への配合量が、2000個/mm2になっているものを使用した。
その他の工程と条件は、実施例1と同じ。
【0048】
(実施例6)
実施例1におけるガラス基板1上の電極2とフレキシブル基板8の電極7を接合導通させたものに、ガラス基板電極用絶縁被膜3の端面3aと接着剤シート4とが密着する部分と、フレキシブル基板基板電極用絶縁被膜6の端面6aと接着剤シート4とが密着する部分とを覆い隠すように、紫外線硬化樹脂(エポキシアクリレート系樹脂、PSR―318、互応化学社製)を塗布し、紫外線照射し(紫外線365nm、3000mW/cm、60秒照射硬化)、硬化して紫外線硬化樹脂被膜12を形成した。
その他の工程と条件は、実施例1と同じ。
【0049】
(比較例1)
ガラス基板1(厚さ3mm)上にスクリーン印刷法と焼成により形成された厚膜の電極2(厚さ10μm、0.3mmピッチ)に、半田メッキ(メッキ厚さ15μm)されたフレキシブル基板8の電極7を前記ガラス基板1の電極2に合わせ、次いで、前記フレキシブル基板8の上から圧着ツール14で、加熱加圧して、半田13を溶融させ、ガラス基板1上の厚膜の電極2とフレキシブル基板8の電極7を半田13を介して導通させた。(240℃、392kPa、4秒加圧)
【0050】
(比較例2)
ガラス基板1(厚さ3mm)上にスクリーン印刷法と焼成により形成された厚膜の電極2(厚さ10μm、0.3mmピッチ)に、導電粒子5としてニッケル粒子(粒径5μm)が分散された接着剤シート4(熱硬化性エポキシ樹脂、幅4m、厚さ40μm)を所定の位置に貼り付ける。このとき、加熱温度は100℃、加圧力は、0.98MPa(10kg/cm2)、加圧時間は5秒である。次いで、フレキシブル基板8の電極7を前記ガラス基板1上の電極2に合わせるように貼り付ける。次いで、前記フレキシブル基板8の上から圧着ツール9で、加熱加圧して、前記の接着剤シート4を硬化し、ガラス基板1上の厚膜電極2とフレキシブル基板8の電極7とを導電粒子5を介して導通させた。このとき、図12に示すように、各電極2、7には露出部2c、2d、7c、7dが存在する。このとき、加熱温度は170℃、加圧力は1.96MPa(20kg/cm2)、加圧時間は20秒である。
実施例1〜6と比較例1、2のサンプルをn=100個ずつ作製し、各種の信頼性試験後の導通不良率とIC部品交換時の基板の破損不良率を調べた。以下、表1に結果を示す。
【0051】
【表1】

Figure 0003719925
このように、比較例1及び比較例2と比べて、上記第1〜第6実施形態に対応する実施例1〜6によれば、不良率及び破損率を0にすることができることがわかる。
尚、本発明はプラズマディスプレイパネル用のガラス基板の電極とフレキシブル基板の電極との接合に適応した例を説明したが、プラズマディスプレイパネル以外に、高電圧を端子間にかけるFAX又はコピー機等のトナーヘッドのガラエポ基板の電極とフレキシブル基板の電極との接合等にも適用することができる。
【0052】
【発明の効果】
以上のように本発明のプラズマディスプレイパネルの電極接合方法によれば、ガラス基板に形成された第一の電極とフレキシブル基板に形成された第二の電極とを接着材料に分散される導電粒子により電気的に導通を図りつつ、ガラス基板に形成された第一の電極とフレキシブル基板に形成された第二の電極とを重ね合わせるとき、上記第一の電極と上記第二の電極との接合部分と、上記第一の電極の絶縁被膜形成部の前記接合部分側端面と、上記第二の電極の絶縁被膜形成部の前記接合部分側端面とを上記接着材料にて覆うとともに、上記第一の電極と上記第二の電極とを接合するとき、上記導電粒子が、上記有機シリコーン樹脂被膜又は紫外線硬化樹脂被膜を貫通して上記第一の電極に接触することにより、上記第一の電極と上記第二の電極とを上記導電粒子を介して導通させることができる。この結果、上記接着材料にてガラス基板に形成された第一の電極とフレキシブル基板に形成された第二の電極の内、少なくとも互いに対向して露出する部分を覆うことができるため、高電圧印加時における電極ショート現象を防止できる。従って、高電圧印加時における電極ショート現象を防止する為に、ガラス基板に形成された第一の電極とフレキシブル基板に形成された第二の電極とを電気的に接続させた後に、別の工程で、ガラス基板に形成された第一の電極とフレキシブル基板に形成された第二の電極の上記接着材料で覆われていない部分を被覆するといった特別な被覆工程が不要となり、電極接合動作と電極露出部分の被覆動作を同時的に1つの工程で行うことができる。
さらに、上記接合工程時に、上記接着材料を介して上記第一の電極と上記第二の電極とを重ね合わせるとき、上記第一の電極の絶縁被膜形成部と上記第二の電極とを重ね合わせるとともに、上記第二の電極の絶縁被膜形成部と上記第一の電極とを重ね合わせるようにすれば、電極接合動作と電極露出部分の被覆動作を同時的に1つの工程で、上記第一の電極と上記第二の電極の両方の接合電極において上記接着材料で覆われていない部分を上記第一の電極の絶縁被膜形成部又は上記第二の電極の絶縁被膜形成部により覆うことができるため、接合後においては、上記第一の電極と上記第二の電極のいずれにおいても接合電極が露出していることがなく、高電圧印加時における電極ショート現象をより確実に防止できる。
また、本発明の基板によれば、少なくとも上記第一の電極と、上記第二の電極と、上記第一の電極の絶縁被膜形成部の前記接合部分側端面と、上記第二の電極の絶縁被膜形成部の前記接合部分側端面とを上記接着材料にて覆うことで、高電圧印加時における電極ショート現象を防止できる。
よって、本発明によれば、接合品質の不安定性を排除し、高電圧印加状態及び高電流化に対応し、かつ、電極の狭ピッチ化に対応することができて、高信頼性の接合品質を実現することができる。
【図面の簡単な説明】
【図1】 (A)は本発明の第1実施形態にかかるプラズマディスプレイパネル用基板の電極接合方法によるガラス基板の電極へのフレキシブル基板の電極の接合後における各電極の導通状態を示す一部断面図であり、(B)はフレキシブル基板電極用絶縁被膜端面周辺の拡大断面図である。
【図2】 本発明の第2実施形態にかかるプラズマディスプレイパネル用基板の電極接合方法によるガラス基板の電極へのフレキシブル基板の電極の接合後における各電極の導通状態を示す断面図である。
【図3】 本発明の第3実施形態にかかるプラズマディスプレイパネル用基板の電極接合方法によるガラス基板の電極へのフレキシブル基板の電極の接合後における各電極の導通状態を示す断面図である。
【図4】 (A)は本発明の第4実施形態にかかるプラズマディスプレイパネル用基板の電極接合方法によるガラス基板の電極へのフレキシブル基板の電極の接合後における各電極の導通状態を示す断面図であり、(B)は1個の導電粒子の拡大断面図である。
【図5】 本発明の第5実施形態にかかるプラズマディスプレイパネル用基板の電極接合方法によるガラス基板の電極へのフレキシブル基板の電極の接合後における各電極の導通状態を示す断面図である。
【図6】 本発明の第6実施形態にかかるプラズマディスプレイパネル用基板の電極接合方法によるガラス基板の電極へのフレキシブル基板の電極の接合後における各電極の導通状態を示す断面図である。
【図7】 図1の接合前の状態を示す断面図である。
【図8】 本発明の上記第1実施形態にかかるプラズマディスプレイパネル用基板の電極接合方法によりプラズマディスプレイパネル用のガラス基板の電極とフレキシブル基板の電極とを接合した状態を示す部分斜視図である。
【図9】 本発明の上記第6実施形態にかかるプラズマディスプレイパネル用基板の電極接合方法によりプラズマディスプレイパネル用のガラス基板の電極とフレキシブル基板の電極とを接合した後、紫外線硬化樹脂を塗布した状態を示す部分斜視図である。
【図10】 本発明の第1実施形態にかかるプラズマディスプレイパネル用基板の電極接合方法によるガラス基板の電極へのフレキシブル基板の電極の接合工程を示すフローチャートである。
【図11】 従来のガラス基板の電極への半田メッキによるフレキシブル基板の電極の接合方法による接合後における各電極の導通状態を示す断面図である。
【図12】 従来のガラス基板の電極への接着剤シートによるフレキシブル基板の電極の接合方法による接合後における各電極の導通状態を示す断面図である。
【符号の説明】
1…第1基板、2…第1基板上の電極、2a…第1基板用接合電極部、
3…第1基板電極用絶縁被膜、3a…第1基板電極用絶縁被膜端面、
4…接着剤シート、5…導電粒子、6…第2基板電極用絶縁被膜、
6a…第2基板電極用絶縁被膜端面、7…第2基板上の電極、
7a…第2基板用接合電極部、8…第2基板、
10…有機シリコーン樹脂被膜、11…紫外線硬化樹脂被膜、
12…紫外線硬化樹脂被膜。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode bonding method for a substrate to which a high voltage is applied and a high current flows, and a substrate, and more particularly, to a thick film electrode on a glass substrate for a plasma display panel, to a flexible substrate for a plasma display panel. The present invention relates to an electrode bonding method for a substrate to which an electrode is bonded and a substrate.
[0002]
[Prior art]
Conventionally, as a technique for electrically connecting an electrode on another substrate to an electrode on a substrate to which a high voltage is applied and a high current flows, an electrode of a flexible substrate for a plasma display panel and a glass substrate for a plasma display panel There is known a method of soldering by pressing a thick film electrode with a heating and pressing tool. In FIG. 11, in the electrode 2 on the glass substrate 1 of the plasma display panel, in the electrode 7 of the flexible substrate 8 solder-plated to the glass substrate bonding electrode portion 2a not covered with the glass substrate electrode insulating coating 3, The flexible substrate bonding electrode portion 7a which is not covered with the insulating film 6 for flexible substrate electrodes and is solder-plated is put together and pressed from above the flexible substrate 8 with the heating and pressing tool 14 to thereby form the flexible substrate 5 The solder 13 is melted and soldered.
[0003]
A method described in JP-A-11-016502 is known. In FIG. 12, the glass substrate bonding electrode portion 2 a and the flexible substrate bonding electrode portion 7 a of the flexible substrate 8 are overlapped with each other via the adhesive sheet 4 in which the conductive particles 5 are dispersed. A configuration is shown in which the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are brought into close contact with the adhesive sheet 4 by pressing with a heating and pressing tool 15 from above the substrate 8. The adhesive sheet 4 is cured by being heated and pressurized, and the glass substrate bonding electrode portion 2 a and the flexible substrate bonding electrode portion 7 a are the conductive particles 5 of the adhesive sheet 4. Conducted through.
[0004]
[Problems to be solved by the invention]
In mounting the flexible substrate 8 on such a plasma display panel, the reliability of the high voltage applied and the high current flowing is ensured, and at the same time, the electrode pitch is narrowed for high definition of the panel. It is increasingly demanded. If conventional soldering methods are applied to narrow pitch electrodes, solder wettability or solder bridges will occur, mounting quality, that is, joint quality will be poor, and it will be possible to handle narrow pitches for high definition panels. difficult. Further, when the method described in JP-A-11-016502 is applied, a part of each of the electrodes 2 and 7 after being electrically connected through the conductor particles 5 is exposed as shown in FIG. When a high voltage is applied, an electrode short phenomenon occurs between 2c and 7c facing each other and between 2d and 7d among the exposed portions of each electrode. There was a possibility that the reliability of the connection could not be secured. However, by covering the exposed portions 2c, 2d, 7c, and 7d shown in FIG. 12 with an insulating coating such as a silicone resin coating, the exposed portions 2c and 7d are exposed between the exposed portions 2c and 7c. It is possible to prevent the electrode short-circuit phenomenon from occurring during the interval. However, conventionally, since the process of covering the exposed portions 2c, 2d, 7c, and 7d can be performed only after electrical connection, the number of steps is increased.
The purpose of the present invention is to eliminate the instability of bonding quality without incurring man-hours, to cope with a high voltage application state and a high current, and to cope with a narrow pitch of electrodes, It is to provide a substrate electrode bonding method capable of realizing highly reliable bonding quality and a substrate to which an electrode is bonded by the substrate electrode bonding method.
[0005]
[Means for Solving the Problems]
  An electrode bonding method for a plasma display panel according to a first aspect of the present invention is a first method formed on a glass substrate.ofSecond formed on electrode and flexible substrateofThe electrode is overlapped with an adhesive material, and the firstofElectrode and second aboveofIn the electrode joining method of the plasma display panel for joining the electrodes,
The adhesive material contains conductive particles dispersed therein, and an organic silicone resin film or an ultraviolet curable resin film is formed on the surface of the first electrode.
  The first through the adhesive materialofElectrode and second aboveofWhen overlaying the electrodes, the firstofelectrodeWhenSecond aboveofelectrodeWhenAnd the first partofelectrodeSide of the insulating coating forming partThe end face and the secondofelectrodeSide of the insulating coating forming partCover the end face with the adhesive materialIn addition, when the first electrode and the second electrode are joined, the conductive particles penetrate the organic silicone resin coating or the ultraviolet curable resin coating and contact the first electrode, thereby The first electrode and the second electrode are made conductive through the conductive particles.It is characterized by that.
The electrode joining method for a plasma display panel according to the second aspect of the present invention is the first aspect of the present invention, wherein the first electrode and the second electrode are overlapped with each other via the adhesive material. The insulating film forming part of one electrode and the second electrode are overlaid, and the insulating film forming part of the second electrode and the first electrode are overlaid.
The plasma display panel according to the third aspect of the present invention is characterized in that the first electrode and the second electrode are bonded by the electrode bonding method of the plasma display panel according to the first or second aspect of the present invention. To do.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals are assigned to the same members.
(First embodiment)
FIG. 1 shows an electrode bonding method for a substrate according to a first embodiment of the present invention, a plasma display panel substrate electrode bonding method as an example of the substrate, and a plasma display panel substrate as an example of the first substrate. Sectional drawing of the conduction | electrical_connection state of each electrode 2 and 7 after joining with the electrode 2 on the glass substrate 1 for display panels and the electrode 7 of the flexible substrate 8 for plasma display panels as an example of a 2nd board | substrate is shown. Yes. FIG. 8 is a partial perspective view showing a state where the electrode 2 of the glass substrate for the plasma display panel and the electrode 7 of the flexible substrate are joined by the electrode joining method of the plasma display panel substrate according to the first embodiment. FIG. 7 is a cross-sectional view of the electrodes 2 and 7 before joining. FIG. 10 is a flowchart showing a bonding process between the electrode 2 of the glass substrate and the electrode 7 of the flexible substrate by the electrode bonding method of the plasma display panel substrate according to the first embodiment. The above flowchart is composed of three steps.
[0015]
The first step of the bonding method is a thick film silver electrode having a thickness of about 5 to 15 μm as an example of the thick film electrode formed on the glass substrate 1 disposed on the support 16 in FIG. As an example, an insulating resin adhesive sheet 4 in which a plurality of conductive particles 5 such as nickel particles, preferably an almost uniform dispersion, is applied to the glass substrate bonding electrode portion 2a. In the step of covering the end surface 3a of the insulating coating 3 and pasting the electrode 2 so as to completely cover the glass substrate bonding electrode portion 2a not covered by the glass substrate insulating coating 3 (step S1 in FIG. 10). is there.
[0016]
The second step performed subsequently is a flexible substrate bonding electrode portion that is not covered with the insulating film 6 for the flexible substrate electrode in the electrode 7 having a thickness of about 5 to 40 μm as an example of the electrode formed on the flexible substrate 8. 7a is a step of superimposing 7a on the glass substrate bonding electrode portion 2a of the glass substrate 1 disposed on the support 16 via the adhesive sheet 4 (step S2 in FIG. 10). At this time, as shown in FIG. 7, the flexible substrate bonding electrode exposed portion 7c and a part of the insulating film 3 for glass substrate electrode are overlapped with each other, and a part of the insulating film 6 for flexible substrate electrode and the edge part of the glass substrate electrode are overlapped. The glass substrate bonding electrode portion 2a is overlapped with a part of the glass substrate bonding electrode portion 2a in the vicinity of 2b, and the adhesive sheet 4 covers the end surface 6a of the flexible substrate electrode insulating coating 6. The flexible substrate bonding electrode portion 7a is overlaid.
[0017]
The third step performed at the end is performed by heating and pressing with the crimping tool 9 shown in FIG. 1A from above the flexible substrate 8 while the glass substrate 1 is still placed on the support base 16. This is a step of curing the adhesive sheet 4 and conducting the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a through the conductive particles 5 (step S3 in FIG. 10). The crimping tool 9 has a heater 500 for heating the adhesive sheet at the lower end thereof, and an air cylinder (for example, “Bellofram cylinder” manufactured by Fujikura Rubber Industry Co., Ltd.) 201 at the upper end thereof. The entire crimping tool 9 is moved up and down. The crimping tool 9 is lowered by the motor 200 and comes into contact with the flexible substrate 8 on the glass substrate 1. At this time, it includes a portion where the flexible substrate bonding electrode exposed portion 7c and the glass substrate electrode insulating coating 3 overlap, and a portion where the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a overlap. Thus, the crimping tool 9 is brought into contact with the flexible substrate 8. And while heating with the said heater 500 and hardening the said adhesive agent sheet 4, the air cylinder 201 is driven by supplying air, The said joined electrode part 2a for glass substrates and the said joined electrode part for flexible substrates 7a is heated and pressed to adhere to the adhesive sheet 4. At this time, the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are heated and pressed into close contact with the sandwiched adhesive sheet 4, and are dispersed in the adhesive sheet 4. The conductive particles 5 are in contact with each other, and the conductive particles 5 are brought into conduction with the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a. At this time, as shown in FIG. 1 (B), the adhesive sheet 4 is heated and pressed to be in close contact with the insulating film end face 6a for the flexible substrate electrode, and is also attached to the insulating film end face 3a for the glass substrate electrode. As shown in FIG. 1 (A), the adhesive sheet 4 is heated and pressed to adhere. Preferably, the adhesive sheet 4 is heated and pressurized to the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a to be brought into close contact with each other through the conductive particles 5 and the glass substrate electrode. The adhesive sheet 4 is heat-pressed and brought into close contact with the insulating coating end face 3a for the flexible substrate electrode and the insulating coating end face 6a for the flexible substrate electrode, and then the curing of the adhesive sheet 4 is completed. desirable. However, the three types of operations described above may be performed simultaneously. This heating and pressurizing device can also be used in the following embodiments.
[0018]
The joining method described above has been described as a joining method between one electrode 2 of the glass substrate 1 and one electrode 7 of the flexible substrate 8.
Usually, there are a plurality of electrodes 2 provided on the glass substrate 1 for a plasma display panel, and the flexible substrate 8 is provided with a plurality of electrodes 7 with respect to the plurality of electrodes 2 of the glass substrate 1. This is shown in FIG. In FIG. 8, a front glass substrate 101a and a rear glass substrate 101b correspond to the glass substrate 1 shown in FIGS. As shown in FIG. 8, a plurality of flexible substrate bonding electrode portions 7 a of a flexible substrate, which is a plurality of flexible substrates 8, include a plurality of conductive particles 5 dispersed in one long strip-shaped adhesive sheet 4. Therefore, the plurality of glass substrate bonding electrode portions 2a of the front glass substrate 101a are electrically connected. The plurality of flexible substrate bonding electrode portions 7a of the plurality of flexible substrates 8 are connected to the glass substrate 101b on the back side through the plurality of conductive particles 5 dispersed in one long strip-shaped adhesive sheet 4. The plurality of glass substrate bonding electrode portions 2a are electrically connected. As the method for bonding the electrodes 2 of the glass substrate 101a on the front surface side and the glass substrate 101b on the back surface side, the electrode bonding method for the substrate for a plasma display panel described above is used.
[0019]
The material of the adhesive sheet 4 is not particularly limited as long as it has at least an insulating property, but is preferably a thermosetting resin. The shape of the adhesive sheet 4 is not particularly limited, but preferably has a width of 1 mm or more so as to cover the glass substrate electrode insulating film end surface 3a and completely cover the glass substrate bonding electrode portion 2a. The thickness is preferably 15 to 60 μm. If the adhesive sheet 4 is less than 1 mm, it is not preferable because a current of 0.5 A or more cannot flow and the panel does not operate. Further, when the thickness of the adhesive sheet 4 is less than 15 μm, the adhesive strength is insufficient, and the adhesive sheet 4 is easily peeled off. When the thickness exceeds 60 μm, conduction through the conductive particles 5 dispersed in the adhesive sheet 4 cannot be performed. The thickness of the adhesive sheet 4 is more preferably 15 to 45 μm, corresponding to the thickness 5 to 15 μm of the thick film electrode 2 and the thickness 7 to 40 μm of the electrode 7 of the flexible substrate 8. The reason is that the amount of protrusion of the adhesive sheet 4 is appropriate within this range, and if it is larger than this, the adhesive sheet 4 adheres to the crimping tool 9, which is not preferable. Further, the adhesive sheet 4 that protrudes during the heating and pressurization by the crimping tool 9 may cover a part or all of the glass substrate electrode end 2b.
[0020]
The particle size of the conductive particles 5 dispersed in the adhesive sheet 4 is desirably 2 to 15 μm. If it is less than 2 μm, it is not preferable because a current of 0.5 A or more cannot flow, and the panel does not operate, and if it exceeds 15 μm, short-circuit failure between electrodes tends to occur. The material of the conductive particles 5 is not particularly limited, and any material that causes electrical conduction can be used. Moreover, the compounding quantity of the electroconductive particle 5 disperse | distributed in the adhesive agent sheet 4 is not specifically limited.
The adhesive sheet 4 is not limited to be attached to the glass substrate 1 side, and may be attached to the flexible substrate 8 side, and is not attached to either the glass substrate 1 or the flexible substrate 8. In addition, the two substrates 1 and 8 may be arranged so as to be positioned at a predetermined position when they are overlapped. .
[0021]
The material of the glass substrate 1 and the flexible substrate 8 is not particularly limited. Further, the material, forming method, and forming range of the insulating film 3 for the glass substrate electrode covering the thick film electrode 2 on the glass substrate and the insulating film 6 for the flexible substrate electrode covering the electrode 7 of the flexible substrate 8 are not particularly limited. .
The thick film silver electrode 2 is formed by screen printing or a photolithography method and baked. The material of the electrode 2 is not particularly limited. The material of the electrode 7 of the flexible substrate 8 is not particularly limited, but preferably, there is a material in which copper is nickel-plated and then gold-plated.
An example of the pressure applied by the crimping tool 9 is 1.96 MPa (20 kg / cm2) Degree is preferred. Moreover, as an example of temperature, about 180 degreeC is preferable. Moreover, the area | region where the crimping | compression-bonding tool 9 heat-presses is calculated | required the area | region including the part which the joining electrode part 2a for glass substrates and the joining electrode part 7a for flexible substrates overlapped at least on the adhesive sheet 4.
[0022]
According to the first embodiment, the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a, the glass substrate electrode insulating coating end surface 3a, and the flexible substrate electrode insulating coating end surface 6a. In addition to the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a, the adhesive sheet 4 is brought into close contact with each other by heating and pressurizing. The exposed portions 2c, 2d, 7c, and 7d can be completely covered with the adhesive sheet 4 to prevent the occurrence of an electrode short-circuit between the electrodes 2 and 7 when a high voltage of 100 V or higher is applied. it can.
[0023]
In this embodiment, when the adhesive sheet 4 is attached, the glass substrate electrode insulating coating end surface 3a is covered with the adhesive sheet 4 and the adhesive sheet 4 is sandwiched between the glass substrate bonding electrode portion 2a and the flexible substrate. When the bonding electrode portion 7a is overlapped, the adhesive sheet 4 covers the insulating film end face 6a for the flexible substrate electrode. Therefore, the adhesive sheet 4 is heated and pressed to adhere to the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a, the glass substrate electrode insulating coating end surface 3a, and the flexible substrate electrode insulating coating end surface 6a. Sometimes, the adhesive sheet 4 can be more closely adhered to the insulating coating end surface 3a for the glass substrate electrode and the insulating coating end surface 6a for the flexible substrate electrode immediately after the start of the bonding process.
[0024]
Further, when the adhesive sheet 4 shown in FIG. 7 is attached, the adhesive sheet 4 approaches the insulating film side for the glass substrate electrode, and covers the glass substrate bonding electrode portion 2a in the vicinity of the glass substrate electrode end portion 2b. It may disappear. Therefore, when the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are overlapped via the adhesive sheet 4 as shown in FIG. 7, the glass substrate bonding portion in the vicinity of the glass substrate electrode end portion 2b is used. The electrode part 2a and a part of the insulating film 6 for flexible substrate electrodes overlap each other. Therefore, even if the adhesive sheet 4 does not cover the glass substrate bonding electrode portion 2a in the vicinity of the glass substrate electrode end portion 2b, the flexible substrate electrode insulating film 6 is in the vicinity of the glass substrate electrode end portion 2b. Exposure of the flexible substrate bonding electrode portion 7a facing the portion 2a is prevented, and an electrode short-circuit phenomenon between the glass substrate bonding electrode portion 2a in the vicinity of the glass substrate electrode end portion 2b and the electrode 7 of the flexible substrate 8 Can be prevented more reliably. Similarly, when the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are overlapped with the adhesive sheet 4 interposed therebetween, the flexible substrate bonding electrode exposed portion 7c and the glass substrate electrode insulating coating 3 are formed. By overlapping, the flexible substrate bonding electrode exposed portion 7c is covered with the glass substrate electrode insulating coating 3, and the flexible substrate bonding electrode exposed portion 7c can be prevented from being exposed. Therefore, it is possible to more reliably prevent the occurrence of an electrode short-circuit between the flexible substrate bonding electrode exposed portion 7 c and the electrode 2 of the glass substrate 1.
[0025]
In addition, since the electrode 2 on the glass substrate 1 and the electrode 7 of the flexible substrate 8 are made conductive without using solder, a good connection between the electrodes 2 and 7 can be secured, and a problem caused by soldering, that is, , Due to oxidation and corrosion of the solder, it will not cause problems in electrical connection, solder wetness during soldering, solder bridges will not occur, joint quality will not deteriorate, and It is possible to realize a highly reliable bonding quality that can cope with a high current and further can cope with a narrow pitch of electrodes, for example, a pitch of 0.3 mm or less.
[0026]
Further, the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are electrically connected through the plurality of conductive particles 5 dispersed in the adhesive sheet 4 while the glass substrate bonding electrode portion 7a is electrically connected. When the 2a and the flexible substrate bonding electrode portion 7a are heated and pressed to adhere to the adhesive sheet 4, simultaneously, the glass substrate electrode insulating coating end surface 3a and the flexible substrate electrode insulating coating end surface 6a The adhesive sheet 4 can be brought into close contact by heating and pressing. As a result, after the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are electrically connected, in another step, the glass substrate bonding electrode portion 2a and the flexible substrate bonding shown in FIG. There is no need for a special coating process such as coating 2c and 7c and 2d and 7d facing each other in the exposed portion of the electrode portion 7a, and the electrode connection operation and the glass substrate bonding electrode portion 2a and the above flexible substrate bonding electrode The covering operation of the exposed portions 2c, 2d, 7c and 7d of the portion 7a can be performed simultaneously in one step.
[0027]
(Second Embodiment)
FIG. 2 illustrates a plasma electrode as an example of a first substrate in an electrode bonding method for a substrate and a substrate for a plasma display panel as an example of a substrate electrode bonding method and a substrate for a plasma display panel according to a second embodiment of the present invention. Sectional drawing of the conduction | electrical_connection state of each electrode 2 and 7 after joining with the electrode 2 on the glass substrate 1 for display panels and the electrode 7 of the flexible substrate 8 for plasma display panels as an example of a 2nd board | substrate is shown. Yes. The second embodiment is different from the first embodiment in that, as shown in FIG. 2, in the thick film electrode 2 on the glass substrate 1, the glass substrate bonding electrode portion 2 a that is not covered with the glass substrate electrode insulating coating 3. In addition, an organic silicone resin coating 10 that functions to prevent moisture intrusion and is cured by heating so as to completely cover the glass substrate electrode end 2b is provided.
In the case of the second embodiment, first, when the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are overlapped via the adhesive sheet 4, the glass substrate bonding electrode portion 2a and the glass substrate bonding electrode portion 2a are overlapped. A glass substrate 1 having a glass substrate electrode end portion 2b covered with the organosilicone resin coating 10 is prepared, and the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are connected via an adhesive sheet 4. And overlap.
Next, when one or more of the plurality of conductive particles 5 dispersed in the adhesive sheet 4 are heated and pressed from above the second substrate 8 using the crimping tool 9 of FIG. By biting into the organic silicone resin film 10 and coming into contact with the first substrate bonding electrode portion 2a, the first substrate bonding electrode portion 2a and the second substrate bonding electrode portion 7a are interposed via the conductive particles 5. To make it conductive.
[0028]
The material of the organic silicone resin film 10 is not particularly limited as long as moisture can be prevented from entering. Note that the heating temperature for curing the organic silicone resin is desirably about 120 ° C. as an example.
Further, the thickness of the organic silicone resin film 10 is not particularly limited, but is preferably 0.01 to 5 μm. If the thickness of the organic silicone resin film 10 is less than 0.01 μm, it is not possible to prevent moisture from entering the bonding electrode portion 2a for glass substrate, and if the thickness exceeds 5 μm, the conductive particles 5 are interposed through the bonding. There is a possibility of inhibiting conduction.
In the second embodiment, the material and shape of the adhesive sheet 4, the material, the blending amount and size of the conductive particles 5, the material of the glass substrate 2 and the flexible substrate 8, and the material and forming method of the electrode 2 of the glass substrate 1. The material and forming method of the electrode 7 of the flexible substrate 8, the material, forming method and forming range of the insulating film 3 for the glass substrate electrode covering the electrode 2 of the glass substrate 1, and the insulating for the flexible substrate electrode covering the electrode 7 of the flexible substrate 8 Other configurations such as the material, forming method, and forming range of the film 6 are the same as those in the first embodiment.
[0029]
According to the second embodiment, the glass substrate bonding electrode portion 2 a and the glass substrate electrode end portion 2 b of the thick film silver electrode 2 of the glass substrate 1 are covered with the organosilicone resin coating 10 before electrode bonding. As a result, in addition to the operational effects of the first embodiment, the organic silicone resin coating 10 can prevent moisture from entering the glass substrate bonding electrode portion 2a. It is possible to effectively prevent migration when combined with a high voltage when it exists between the electrodes, and to prevent electrical continuity due to oxidation of the glass substrate electrode 2a and the glass substrate electrode end 2b. Can be prevented.
[0030]
(Third embodiment)
FIG. 3 illustrates a plasma electrode as an example of a first substrate in an electrode bonding method and a plasma display panel substrate as an example of a substrate electrode bonding method and a substrate according to a third embodiment of the present invention. Sectional drawing of the conduction | electrical_connection state of each electrode 2 and 7 after joining with the electrode 2 on the glass substrate 1 for display panels and the electrode 7 of the flexible substrate 8 for plasma display panels as an example of a 2nd board | substrate is shown. Yes. The third embodiment is different from the second embodiment in that, in order to prevent intrusion of moisture, as shown in FIG. 3, instead of the organic silicone resin film 10 formed by heating and curing, it is cured by irradiation with ultraviolet rays. The film 11 of the ultraviolet curable resin thus formed is provided.
In the case of the third embodiment, when the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are overlapped with each other via the adhesive sheet 4, the glass substrate bonding electrode portion 2a and the glass substrate bonding electrode portion 2a are overlapped. A glass substrate 1 having a glass substrate electrode end portion 2b covered with the ultraviolet curable resin coating 11 is prepared, and the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are connected via an adhesive sheet 4. And overlap.
Next, when one or more of the plurality of conductive particles 5 dispersed in the adhesive sheet 4 are heated and pressed from above the flexible substrate 8 using the crimping tool 9 of FIG. It penetrates into the cured resin coating 11 and is brought into contact with the glass substrate bonding electrode portion 2a so that the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are electrically connected through the conductive particles 5. I have to.
[0031]
The material of the ultraviolet curable resin coating 11 is not particularly limited as long as moisture can be prevented from entering. The wavelength, intensity, and integrated light quantity of ultraviolet rays for curing the ultraviolet curable resin are not particularly limited.
The thickness of the ultraviolet curable resin coating 11 is not particularly limited, but is preferably 0.01 to 5 μm. If the thickness of the ultraviolet curable resin coating 11 is less than 0.01 μm, it is not possible to prevent moisture from entering the bonding electrode portion 2a for glass substrate, and if the thickness exceeds 5 μm, the conductive particles 5 are interposed through the bonding. There is a possibility of inhibiting conduction. In the third embodiment, the material and shape of the adhesive sheet 4, the material, the blending amount and size of the conductive particles 5, the material of the glass substrate 2 and the flexible substrate 8, and the material and forming method of the electrode 2 of the glass substrate 1. The material and forming method of the electrode 7 of the flexible substrate 8, the material, forming method and forming range of the insulating film 3 for the glass substrate electrode covering the electrode 2 of the glass substrate 1, and the insulating for the flexible substrate electrode covering the electrode 7 of the flexible substrate 8 Other configurations such as the material, forming method, and forming range of the film 6 are the same as those in the first embodiment.
[0032]
According to the third embodiment, the glass substrate bonding electrode portion 2 a and the glass substrate electrode end portion 2 b of the thick film silver electrode 2 of the glass substrate 1 are covered with the ultraviolet curable resin coating 11 before electrode bonding. Therefore, in addition to the effects of the first embodiment, in addition to the effects of the first embodiment, the organic silicone resin coating 10 prevents moisture from entering the bonding electrode portion 2a for the glass substrate. When the moisture and metal ions are present between the electrodes, it is possible to effectively prevent migration from occurring together with the high voltage, and the glass substrate bonding electrode portion 2a and the glass substrate electrode end The electrical conduction hindrance due to the oxidation of the portion 2b can be prevented.
[0033]
(Fourth embodiment)
FIG. 4A is an example of the first substrate in the electrode bonding method of the substrate and the electrode bonding method of the plasma display panel substrate as each example of the substrate according to the fourth embodiment of the present invention and the substrate for plasma display panel. Sectional drawing of the conduction | electrical_connection state of each electrode 2 and 7 after joining with the electrode 2 on the glass substrate 1 for plasma display panels as, and the electrode 7 of the flexible substrate 8 for plasma display panels as an example of a 2nd board | substrate Is shown. FIG. 4B is an enlarged cross-sectional view of one conductive particle used in the electrode bonding method of the fourth embodiment. 4th Embodiment differs from 1st-3rd Embodiment, as shown in FIG.4 (B), since the electrically-conductive particle 5 disperse | distributed to the adhesive sheet 4 prevents the oxidation of a surface, it is nickel particle | grains. The gold plating layer 5b is formed on the surface of 5a.
In the case of the fourth embodiment, when the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are overlapped via the adhesive sheet 4, the adhesive sheet 4 is placed on the surface of the nickel particles 5a with a gold plating layer. A large number of conductive particles 5 on which 5b is formed are dispersed.
1A is heated and pressed from above the flexible substrate 8, and the adhesive electrode sheet 2a and the flexible substrate bonding electrode 7a are heated and pressurized to form an adhesive sheet. 4, the glass substrate bonding electrode portion 2 a and the flexible substrate bonding electrode 7 a are electrically connected through the one or more conductive particles 5.
[0034]
The thickness of the gold plating layer 5b coated on the surface of the nickel particles 5a of the conductive particles 5 is not particularly limited as long as it can prevent oxidation of the surface of the nickel particles 5a, but is preferably 0.03 to 0.09 μm. Degree. When the thickness of the gold plating layer 5b is less than 0.03 μm, it is easy to peel off from the surface of the nickel particles 5a. When the thickness exceeds 0.09 μm, the entire particle size of the conductive particles 5 exceeds 15 μm, This is not preferable because short circuit defects are likely to occur. Also, the gold plating method and the like are not particularly limited, but flash plating is generally used.
The material and shape of the adhesive sheet 4, the blending amount and size of the conductive particles 5, the material of the glass substrate 2 and the flexible substrate 8, the material and formation method of the electrode 2 of the glass substrate 1, the material of the electrode 7 of the flexible substrate 8, and Forming method, material, forming method and forming range of insulating film 3 for glass substrate electrode covering electrode 2 of glass substrate 1, material, forming method and forming range of insulating film 6 for flexible substrate electrode covering electrode 7 of flexible substrate 8 Other configurations are the same as those in the first embodiment.
[0035]
According to the fourth embodiment, since each conductive particle 5 is composed of particles coated with the gold plating layer 5b on the surface of the nickel particle 5a, the plasma display panel is heated to a high temperature in addition to the operational effects of the first embodiment. Even when exposed, the conductive particles 5 are not oxidized, and electrical conduction hindrance can be prevented.
[0036]
(Fifth embodiment)
FIG. 5 illustrates plasma as an example of a first substrate in an electrode bonding method for a substrate for a plasma display panel and a substrate for a plasma display panel as examples of the substrate electrode bonding method and substrate according to a fifth embodiment of the present invention. Sectional drawing of the conduction | electrical_connection state of each electrode 2 and 7 after joining with the electrode 2 on the glass substrate 1 for display panels and the electrode 7 of the flexible substrate 8 for plasma display panels as an example of a 2nd board | substrate is shown. Yes. 5th Embodiment differs from 1st-4th Embodiment in FIG. 5, the compounding quantity in the adhesive agent sheet 4 of the electrically-conductive particle 5 disperse | distributed to the adhesive agent sheet 4 is 300 piece / mm.2~ 30000 pieces / mm2It is a point.
In the case of the fifth embodiment, when the bonding electrode part 2a for glass substrate and the bonding electrode part 7a for flexible substrate are overlapped via the adhesive sheet 4, the blending amount of the dispersed conductive particles 5 is 300 / mm.2~ 30000 pieces / mm2The glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are overlapped with each other through the adhesive sheet 4 to be.
1A is heated and pressed from above the flexible substrate 8, and the adhesive electrode sheet 2a and the flexible substrate bonding electrode 7a are heated and pressurized to form an adhesive sheet. 4, the glass substrate bonding electrode portion 2 a and the flexible substrate bonding electrode 7 a are electrically connected through the plurality of conductive particles 5.
[0037]
The amount of the conductive particles 5 in the adhesive sheet 4 is 300 / mm.2~ 30000 pieces / mm2The reason is as follows. That is, the blending amount of the conductive particles 5 in the adhesive sheet 4 is 300 / mm.2If less, the number of the conductive particles 5 is too small, and electrical conduction may not be obtained.2This is because the number of the conductive particles 5 is so large that a short phenomenon between the electrodes may occur.
The material and shape of the adhesive sheet 4, the material, the blending amount and size of the conductive particles 5, the material of the glass substrate 2 and the flexible substrate 8, the material and formation method of the electrode 2 of the glass substrate 1, and the electrode 7 of the flexible substrate 8. Material and forming method, material of glass substrate electrode insulating coating 3 covering electrode 2 of glass substrate 1, forming method and forming range, material of insulating coating 6 for flexible substrate electrode covering electrode 7 of flexible substrate 8, and forming method Other configurations such as the formation range are the same as those in the first embodiment.
According to 5th Embodiment, the compounding quantity of the electrically-conductive particle 5 mix | blended in the insulating adhesive sheet 4 is 300 pieces / mm.2~ 30000 pieces / mm2By doing so, electrical continuity between the electrodes can be reliably performed while preventing the occurrence of a short-circuit phenomenon between the electrodes, and the operational effects of the first embodiment can be further enhanced.
[0038]
(Sixth embodiment)
FIG. 6 illustrates plasma as an example of a first substrate in an electrode bonding method for a substrate for a plasma display panel and a substrate for a plasma display panel as examples of the substrate electrode bonding method and substrate according to a sixth embodiment of the present invention. Sectional drawing of the conduction | electrical_connection state of each electrode 2 and 7 after joining with the electrode 2 on the glass substrate 1 for display panels and the electrode 7 of the flexible substrate 8 for plasma display panels as an example of a 2nd board | substrate is shown. Yes. FIG. 9 shows a state in which an ultraviolet curable resin is applied after the electrode 2 of the glass substrate for the plasma display panel and the electrode 7 of the flexible substrate are joined by the electrode joining method of the plasma display panel substrate according to the sixth embodiment. FIG. The sixth embodiment differs from the first to fifth embodiments in FIG. 6 in that the glass substrate electrode insulating coating end face 3a and the adhesive sheet 4 are in close contact with each other in order to prevent intrusion of moisture and corrosive gas. The ultraviolet curable resin coating 12 is applied and cured so as to cover the portion and the portion where the insulating substrate end surface 6a for the flexible substrate electrode and the adhesive sheet 4 are in close contact with each other. The ultraviolet curable resin coating 12 extends to a portion on the flexible substrate 8 where pressure is applied by the crimping tool 9 shown in FIG. Hereinafter, a portion where the first substrate electrode insulating coating end surface 3a and the adhesive sheet 4 are in close contact with each other is referred to as a first contact portion 20a, and a flexible substrate electrode insulating coating end surface 6a and the adhesive sheet 4 are in close contact with each other. The contact portion 20b is used.
In the case of the sixth embodiment, the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a are electrically connected through one or a plurality of conductive particles 5 of the adhesive sheet 4, and then the first An ultraviolet curable resin is applied so as to cover and seal the close contact portion 20a and the second close contact portion 20b.
Next, ultraviolet rays are irradiated to cure the applied ultraviolet curable resin film 12 to form an ultraviolet curable resin film 12 that is sealed so as to cover the first adhesion 20a and the second adhesion part 20b.
FIG. 9 is a diagram in which the sixth embodiment is applied to the plasma display panel substrate of FIG. 8 bonded by the electrode bonding method of the plasma display panel substrate of the first embodiment. As shown in FIG. 9, the ultraviolet curable resin coating 12 of the part which is going to reach the 2nd contact part 20b from the 1st contact part 20a in the end surface of the some electrodes 7 of the flexible substrate 8 is shown by 12a in FIG. As shown, the UV curable resin coating 12 applied and formed on the second contact portion side is mixed and integrated without forming a boundary surface, and the electrode joint portion can be covered more reliably. If a boundary is formed between the ultraviolet curable resin coatings 12 applied and formed on both the front and back surfaces, moisture may enter the bonded portion from the boundary, which is not preferable.
[0039]
The ultraviolet curable resin coating 12 may be any kind of ultraviolet curable resin as long as it can prevent the intrusion of moisture and corrosive gas, but is preferably an epoxy acrylate resin having high curing strength and good moisture resistance.
In the sixth embodiment, the material and shape of the adhesive sheet 4, the material, the blending amount and size of the conductive particles 5, the material of the glass substrate 2 and the flexible substrate 8, the material and formation method of the electrode 2 of the glass substrate 1, flexible The material and forming method of the electrode 7 of the substrate 8, the material, forming method and forming range of the insulating film 3 for the glass substrate electrode that covers the electrode 2 of the glass substrate 1, and the insulating film 6 for the flexible substrate electrode that covers the electrode 7 of the flexible substrate 8 Other configurations such as the material, the forming method and the forming range are the same as in the first embodiment.
[0040]
According to the sixth embodiment, the portion 20a where the insulating coating end surface 3a for the glass substrate electrode and the adhesive sheet 4 are in close contact with each other, and the portion 20b where the insulating coating end surface 6a for the flexible substrate electrode and the adhesive sheet 4 are in close contact with each other. Since the ultraviolet curable resin coating 12 is formed so as to cover it, in addition to the operational effects of the first to fifth embodiments, moisture and the bonding between the electrodes 2 and 7 by the ultraviolet curable resin coating 12 and Invasion of corrosive gas can be prevented in a short time, and electrical conduction hindrance due to oxidation of both electrodes 2 and 7 can be prevented.
[0041]
In the first to sixth embodiments described above, as shown in FIG. 10, the glass substrate bonding electrode is covered with the insulating coating end surface 3 a for the glass substrate electrode when the adhesive sheet 4 is attached in the first step. The adhesive sheet 4 is pasted so as to completely cover the portion 2a, and the bonding electrode for glass substrate is used so that the adhesive sheet 4 covers the insulating film end face 6a for the flexible substrate electrode during the overlapping operation in the second step. The portion 2a and the flexible substrate bonding electrode portion 7a are overlapped. However, the position of the adhesive sheet 4 described above is an example, and during the heating and pressurizing operation by the crimping tool 9 in the third step, the glass substrate bonding electrode portion 2a, the flexible substrate bonding electrode portion 7a, and the glass The adhesive sheet 4 may be adhered by heating and pressurizing to the insulating film end surface 3a for the substrate electrode and the insulating film end surface 6a for the flexible substrate electrode, and at least the portions of the electrodes 2 and 7 exposed to face each other are exposed. If it does not exist, the electrode short-circuit phenomenon can be prevented. That is, the adhesive sheet 4 is stretched by heating and pressing, so that the adhesive sheet 4 is bonded to the glass substrate bonding electrode portion 2a, the flexible substrate bonding electrode portion 7a, and the glass substrate electrode insulating coating end surface 3a. What is necessary is just to eliminate the part which closely_contact | adheres to the insulating-film end surface 6a for flexible substrate electrodes, and exposes facing both mutually in both electrodes 2 and 7. Therefore, when the adhesive sheet 4 is attached, the adhesive sheet 4 does not have to cover the insulating coating end surface 3a for the glass substrate electrode, or when the adhesive sheet 4 is overlaid, the adhesive sheet 4 is insulated for the flexible substrate electrode. The coating end face 6a may not be covered. Alternatively, when the adhesive sheet 4 is attached, the adhesive sheet 4 does not cover the insulating coating end surface 3a for the glass substrate electrode, and the adhesive sheet 4 does not cover the insulating coating end surface 6a for the flexible substrate electrode. You may superimpose.
[0042]
When the adhesive sheet 4 does not cover either one or both of the insulating coating end surface 3a for the glass substrate electrode and the insulating coating end surface 6a for the flexible substrate electrode in the state before heating and pressurization, the two electrodes 2 when the high voltage is applied. In order to prevent the occurrence of a short-circuit phenomenon between the electrodes 7, the adhesive sheet 4 is stretched until it is in close contact with the insulating coating end surface 3a for the glass substrate electrode and the insulating coating end surface 6a for the flexible substrate electrode during heating and pressurization, In addition to the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a, the exposed portions 2c, 2d, 7c, and 7d shown in FIG. Therefore, the thickness of the adhesive sheet 4 that can be stretched until the glass substrate electrode insulating coating end surface 3a and the flexible substrate electrode insulating coating end surface 6a are in close contact with each other at the time of heating and pressing is required. However, since the electrode short-circuit phenomenon can be prevented even when the bonding position of the adhesive sheet 4 and the overlapping position of the bonding electrode portion 7a for the flexible substrate are slightly deviated, the bonding of the electrodes 2 and 7 is performed before heating and pressing. In this state, it becomes easier than covering the insulating coating end surface 3a for the glass substrate electrode and the insulating coating end surface 6a for the flexible substrate electrode.
[0043]
【Example】
Next, examples will be described as specific examples of the above embodiment of the present invention. That is, the following Examples 1 to 6 are examples corresponding to the first to sixth embodiments.
Example 1
This will be described with reference to FIG.
A glass frit is formed as a main component at a predetermined position on a thick electrode 2 (thickness 10 μm, 0.3 mm pitch) formed by screen printing and baking on a glass substrate 1 (thickness 3 mm). Insulating coating 3 for glass substrate electrode to be formed is formed by screen printing and firing, and insulating adhesive sheet 4 (thermosetting epoxy resin, width 4 m) in which a large number of nickel particles (particle size 5 μm) are dispersed as conductive particles 5 , A thickness of 40 μm) is applied at a predetermined position. At this time, the adhesive sheet 4 covers the end surface 3 a of the insulating film 3 for glass substrate electrode that covers the electrode 2 on the glass substrate 1. At this time, the heating temperature is 100 ° C., and the applied pressure is 0.98 MPa (10 kg / cm2), Pressurization time is 5 seconds. Next, the electrode 7 of the flexible substrate 8 is attached so as to match the electrode 2 on the glass substrate 1. At this time, the end face 6a of the flexible electrode insulating film 6 covering the electrode 7 of the flexible substrate 8 covers the adhesive sheet 4, and the flexible substrate bonding electrode exposed portion 7c and the glass substrate electrode insulating film 3 are formed. Part of the glass substrate bonding electrode portion 2a and part of the flexible electrode insulating coating 6 overlap each other. Next, the adhesive sheet 4 is cured by heating and pressing with the crimping tool 9 from above the flexible substrate 8, and the conductive film 5 is attached to the thick film electrode 2 on the glass substrate 1 and the electrode 7 of the flexible substrate 8. And the adhesive sheet 4 is heated to the glass substrate bonding electrode portion 2a, the flexible substrate bonding electrode portion 7a, the glass substrate electrode insulating coating end surface 3a, and the flexible substrate electrode insulating coating end surface 6a. Apply pressure to bring it into close contact. At this time, the portion where the glass substrate bonding electrode portion 2a and the flexible substrate bonding electrode portion 7a overlap, the portion where the flexible substrate bonding electrode portion 7a and the glass substrate electrode insulating coating 3 overlap, and the glass It heat-presses simultaneously so that the junction electrode part 2a for substrates and the said insulating-film 6 for flexible electrodes may overlap. At this time, the heating temperature is 170 ° C. and the applied pressure is 2.94 MPa (30 kg / cm2), Pressurization time is 20 seconds.
In the above description, the glass substrate, the electrode on the glass substrate, the insulating coating for the glass substrate electrode formed on the electrode on the glass substrate, the flexible substrate, the electrode of the flexible substrate, and the flexible substrate electrode that covers the electrode of the flexible substrate Insulating coatings, adhesive sheets, conductive particles and other materials, sizes, thicknesses, and temperature, pressure, and time in the process are limited, but these are only examples and are not limited. .
[0044]
(Example 2)
In the thick film electrode 2 on the glass substrate 1 in Example 1, the moisture was so covered as to completely cover the glass substrate bonding electrode portion 2a and the glass substrate electrode end portion 2b not covered with the glass substrate electrode insulating coating 3. The glass substrate 1 on which an organic silicone resin having an intrusion prevention function (dealcoholization type silicone resin, SE4456, manufactured by Toray Dow Corning Silicone) was applied and cured by heating was used.
Other steps and conditions are the same as those in Example 1.
[0045]
(Example 3)
In the thick film electrode 2 on the glass substrate 1 in Example 1, the moisture was so covered as to completely cover the glass substrate bonding electrode portion 2a and the glass substrate electrode end portion 2b not covered with the glass substrate electrode insulating coating 3. A UV curable resin (epoxy acrylate resin, PSR-334, manufactured by Kyoyo Chemical Co., Ltd.) having an intrusion prevention function is applied, irradiated with UV rays (UV 365 nm, 1000 mW / cm, 10 seconds irradiation), and cured to UV curable resin. The glass substrate 1 on which the film 11 is formed was used.
Other steps and conditions are the same as those in Example 1.
[0046]
Example 4
What replaced the electroconductive particle 5 disperse | distributed in the insulating adhesive sheet 4 in Example 1 with the particle | grains which formed the gold plating layer on the surface of nickel particle (particle diameter of 5 micrometers) was used. Gold plating was produced by flash plating.
Other steps and conditions are the same as those in Example 1.
[0047]
(Example 5)
The blending amount of the conductive particles 5 dispersed in the adhesive sheet 4 in Example 1 into the adhesive sheet 4 is 2000 / mm.2I used what is.
Other steps and conditions are the same as those in Example 1.
[0048]
(Example 6)
A portion where the end surface 3a of the insulating coating 3 for the glass substrate electrode and the adhesive sheet 4 are in close contact with the electrode 2 on the glass substrate 1 and the electrode 7 of the flexible substrate 8 which are joined and conductive in the first embodiment; An ultraviolet curable resin (epoxy acrylate resin, PSR-318, manufactured by Kyosei Chemical Co., Ltd.) is applied so as to cover the portion where the end face 6a of the substrate electrode insulating film 6 and the adhesive sheet 4 are in close contact with each other, and ultraviolet irradiation is performed. (Ultraviolet ray 365 nm, 3000 mW / cm, irradiation curing for 60 seconds) and cured to form an ultraviolet curable resin film 12.
Other steps and conditions are the same as those in Example 1.
[0049]
(Comparative Example 1)
The flexible substrate 8 is formed by solder plating (plating thickness 15 μm) on a thick film electrode 2 (thickness 10 μm, 0.3 mm pitch) formed on the glass substrate 1 (thickness 3 mm) by screen printing and baking. The electrode 7 is aligned with the electrode 2 of the glass substrate 1, and then heated and pressed by the crimping tool 14 from above the flexible substrate 8 to melt the solder 13, and the thick film electrode 2 on the glass substrate 1 is flexible. The electrode 7 of the substrate 8 was made conductive through the solder 13. (240 ° C, 392kPa, pressurization for 4 seconds)
[0050]
(Comparative Example 2)
Nickel particles (particle size 5 μm) are dispersed as conductive particles 5 on a thick film electrode 2 (thickness 10 μm, 0.3 mm pitch) formed by screen printing and firing on a glass substrate 1 (thickness 3 mm). The adhesive sheet 4 (thermosetting epoxy resin, width 4 m, thickness 40 μm) is attached to a predetermined position. At this time, the heating temperature is 100 ° C., and the applied pressure is 0.98 MPa (10 kg / cm2), Pressurization time is 5 seconds. Next, the electrode 7 of the flexible substrate 8 is attached so as to match the electrode 2 on the glass substrate 1. Next, the adhesive sheet 4 is cured by heating and pressing with the crimping tool 9 from above the flexible substrate 8, and the conductive film 5 connects the thick film electrode 2 on the glass substrate 1 and the electrode 7 of the flexible substrate 8. Through. At this time, as shown in FIG. 12, the exposed portions 2c, 2d, 7c, and 7d exist in the electrodes 2 and 7, respectively. At this time, the heating temperature is 170 ° C. and the applied pressure is 1.96 MPa (20 kg / cm2), Pressurization time is 20 seconds.
N = 100 samples of Examples 1 to 6 and Comparative Examples 1 and 2 were prepared, and the failure rate of continuity after various reliability tests and the failure rate of damage to the substrate during IC component replacement were examined. The results are shown in Table 1 below.
[0051]
[Table 1]
Figure 0003719925
Thus, it can be seen that, compared to Comparative Example 1 and Comparative Example 2, according to Examples 1 to 6 corresponding to the first to sixth embodiments, the defect rate and breakage rate can be reduced to zero.
In addition, although this invention demonstrated the example applied to the joining of the electrode of the glass substrate for plasma display panels, and the electrode of a flexible substrate, other than a plasma display panel, FAX etc. which apply a high voltage between terminals, a copying machine, etc. The present invention can also be applied to bonding of electrodes on a glass substrate of a toner head and electrodes on a flexible substrate.
[0052]
【The invention's effect】
  As described above, the present inventionPlasma display panelAccording to the electrode joining method ofThe first electrode formed on the glass substrate and the second electrode formed on the flexible substrateAnd gluematerialDistributedConductive particlesWhile trying to electrically conduct byWhen the first electrode formed on the glass substrate and the second electrode formed on the flexible substrate are overlapped, a joint portion between the first electrode and the second electrode, and the first electrode The bonding portion side end surface of the insulating coating forming portion and the bonding portion side end surface of the insulating coating forming portion of the second electrode are covered with the adhesive material, and the first electrode and the second electrode When the conductive particles are joined, the conductive particles penetrate the organic silicone resin coating or the ultraviolet curable resin coating and contact the first electrode, whereby the first electrode and the second electrode are electrically connected to each other. Conduction through particlesCan be made. As a result, the above adhesionmaterialAtThe first electrode formed on the glass substrate and the second electrode formed on the flexible substrateAmong them, at least the portions exposed to face each other can be covered, so that an electrode short-circuit phenomenon when a high voltage is applied can be prevented. Therefore, in order to prevent the electrode short-circuit phenomenon when a high voltage is applied,The first electrode formed on the glass substrate and the second electrode formed on the flexible substrateIn a separate process after electrically connectingThe first electrode formed on the glass substrate and the second electrode formed on the flexible substrateOf the above adhesivematerialA special coating process such as coating a portion that is not covered with the electrode becomes unnecessary, and the electrode bonding operation and the electrode exposed portion coating operation can be performed simultaneously in one process.
  Furthermore, during the joining process,When the first electrode and the second electrode are overlapped with each other through the adhesive material, the insulating film forming portion of the first electrode and the second electrode are overlapped, and the second electrode The insulating film forming part of the first electrode and the first electrode are overlaidBy doing so, the electrode bonding operation and the electrode exposure portion covering operation can be performed simultaneously in one step,The first electrode and the second electrodeBoth junctionsExtremelyIn the above adhesivematerialThe part not covered withInsulating film forming part of the first electrodeOrInsulating film forming part of the second electrodeAfter joining,The first electrode and the second electrodeIn either caseThe poleThere is no exposure, and the electrode short-circuit phenomenon when a high voltage is applied can be prevented more reliably.
  Moreover, according to the substrate of the present invention, at leastThe first electrode, the second electrode, the joining portion side end face of the insulating coating forming portion of the first electrode, and the joining portion side end face of the insulating coating forming portion of the second electrode. Cover with the adhesive materialThus, an electrode short-circuit phenomenon when a high voltage is applied can be prevented.
  Therefore, according to the present invention, the instability of the bonding quality is eliminated, the high voltage application state and the high current can be coped with, and the electrode pitch can be narrowed. Can be realized.
[Brief description of the drawings]
FIG. 1A is a partial view showing a conductive state of each electrode after bonding of an electrode of a flexible substrate to an electrode of a glass substrate by an electrode bonding method for a substrate for a plasma display panel according to a first embodiment of the present invention. It is sectional drawing, (B) is an expanded sectional view of the insulating-film end surface periphery for flexible substrate electrodes.
FIG. 2 is a cross-sectional view showing a conductive state of each electrode after the electrode of the flexible substrate is bonded to the electrode of the glass substrate by the electrode bonding method of the substrate for the plasma display panel according to the second embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a conductive state of each electrode after bonding of an electrode of a flexible substrate to an electrode of a glass substrate by an electrode bonding method for a substrate for a plasma display panel according to a third embodiment of the present invention.
FIG. 4A is a cross-sectional view showing a conductive state of each electrode after bonding of the electrode of the flexible substrate to the electrode of the glass substrate by the electrode bonding method of the substrate for the plasma display panel according to the fourth embodiment of the present invention. (B) is an enlarged sectional view of one conductive particle.
FIG. 5 is a cross-sectional view showing a conductive state of each electrode after the electrode of the flexible substrate is bonded to the electrode of the glass substrate by the electrode bonding method of the substrate for the plasma display panel according to the fifth embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a conductive state of each electrode after the electrode of the flexible substrate is bonded to the electrode of the glass substrate by the electrode bonding method of the substrate for the plasma display panel according to the sixth embodiment of the present invention.
7 is a cross-sectional view showing a state before joining in FIG. 1. FIG.
FIG. 8 is a partial perspective view showing a state in which an electrode of a glass substrate for a plasma display panel and an electrode of a flexible substrate are joined by the electrode joining method for a plasma display panel substrate according to the first embodiment of the present invention. .
FIG. 9 shows the plasma display panel substrate electrode bonding method according to the sixth embodiment of the present invention, wherein the plasma display panel glass substrate electrode and the flexible substrate electrode are bonded, and then an ultraviolet curable resin is applied. It is a fragmentary perspective view which shows a state.
FIG. 10 is a flowchart showing a step of bonding electrodes of a flexible substrate to electrodes of a glass substrate by the electrode bonding method for a plasma display panel substrate according to the first embodiment of the present invention.
FIG. 11 is a cross-sectional view showing a conductive state of each electrode after joining by a joining method of electrodes of a flexible substrate by solder plating to electrodes of a conventional glass substrate.
FIG. 12 is a cross-sectional view showing a conductive state of each electrode after joining by a method for joining electrodes of a flexible substrate with an adhesive sheet to electrodes of a conventional glass substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... 1st board | substrate, 2 ... Electrode on 1st board | substrate, 2a ... Joining electrode part for 1st board | substrates,
3 ... Insulating coating for first substrate electrode, 3a ... End surface of insulating coating for first substrate electrode,
4 ... adhesive sheet, 5 ... conductive particles, 6 ... insulating coating for second substrate electrode,
6a ... Insulating film end face for second substrate electrode, 7 ... Electrode on second substrate,
7a ... second substrate bonding electrode portion, 8 ... second substrate,
10 ... Organic silicone resin film, 11 ... UV curable resin film,
12 ... UV curable resin coating.

Claims (3)

ガラス基板に形成された第一電極とフレキシブル基板に形成された第二電極とを接着材料を介して重ね合わせ、上記第一電極と上記第二電極とを接合するプラズマディスプレイパネルの電極接合方法において、
上記接着材料には導電粒子が分散して含有されており、上記第一の電極の表面には有機シリコーン樹脂被膜又は紫外線硬化樹脂被膜が形成されており、
上記接着材料を介して上記第一電極と上記第二電極とを重ね合わせるとき、上記第一電極上記第二電極の接合部分と、上記第一電極の絶縁被膜形成部の前記接合部分側端面と、上記第二電極の絶縁被膜形成部の前記接合部分側端面とを上記接着材料にて覆うとともに、上記第一の電極と上記第二の電極とを接合するとき、上記導電粒子が、上記有機シリコーン樹脂被膜又は紫外線硬化樹脂被膜を貫通して上記第一の電極に接触することにより、上記第一の電極と上記第二の電極とを上記導電粒子を介して導通させることを特徴とする、プラズマディスプレイパネルの電極接合方法。
Superposing a second electrode formed on the first electrode and the flexible substrate formed on the glass substrate via an adhesive material, a plasma display panel for joining the said first electrode and said second electrode In the electrode joining method,
The adhesive material contains conductive particles dispersed therein, and an organic silicone resin film or an ultraviolet curable resin film is formed on the surface of the first electrode.
When superposing the above-described first electrode and the second electrode via the adhesive material, the joining portion between the first electrode and the second electrode, the insulating film forming portion of the first electrode and said joining portion side end surface of the said joint portion side end surface of the insulating film-forming portion of the second electrode covering at the adhesive material, joining the said first electrode and said second electrode When the conductive particles pass through the organic silicone resin coating or the ultraviolet curable resin coating and contact the first electrode, the first electrode and the second electrode are combined with the conductive particles. A method for joining electrodes of a plasma display panel, characterized in that the electrodes are electrically connected .
上記接着材料を介して上記第一電極と上記第二電極とを重ね合わせるとき、上記第一電極の絶縁被膜形成部と上記第二電極とを重ね合わせるとともに、上記第二電極の絶縁被膜形成部と上記第一電極とを重ね合わせることを特徴とする、請求項1記載のプラズマディスプレイパネルの電極接合方法。When superposing the above-described first electrode and the second electrode via the adhesive material, with overlapping the above first insulating film forming part of the electrode and the second electrode, the second electrode insulation, characterized in that overlapping the film forming portion and the first electrode, the electrode bonding method as claimed in claim 1, wherein. 請求項1又は2に記載のプラズマディスプレイパネルの電極接合方法により第一の電極と第二の電極とが接合されたことを特徴とする、プラズマディスプレイパネル。A plasma display panel, wherein the first electrode and the second electrode are bonded by the electrode bonding method of the plasma display panel according to claim 1 or 2.
JP2000343479A 2000-11-10 2000-11-10 Electrode bonding method for plasma display panel and plasma display panel Expired - Fee Related JP3719925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000343479A JP3719925B2 (en) 2000-11-10 2000-11-10 Electrode bonding method for plasma display panel and plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000343479A JP3719925B2 (en) 2000-11-10 2000-11-10 Electrode bonding method for plasma display panel and plasma display panel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005228501A Division JP2006049917A (en) 2005-08-05 2005-08-05 Electrode joining method of plasma display panel, and plasma display panel

Publications (3)

Publication Number Publication Date
JP2002151548A JP2002151548A (en) 2002-05-24
JP2002151548A5 JP2002151548A5 (en) 2005-06-02
JP3719925B2 true JP3719925B2 (en) 2005-11-24

Family

ID=18817843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000343479A Expired - Fee Related JP3719925B2 (en) 2000-11-10 2000-11-10 Electrode bonding method for plasma display panel and plasma display panel

Country Status (1)

Country Link
JP (1) JP3719925B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684726B1 (en) * 2005-09-27 2007-02-20 삼성에스디아이 주식회사 Plasma display device

Also Published As

Publication number Publication date
JP2002151548A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
US20020189862A1 (en) Method for interconnecting printed circuit boards and interconnection structure
US5332869A (en) Printed circuit board, a method of its fabrication and a method of attaching electronic parts thereto
JP2006049917A (en) Electrode joining method of plasma display panel, and plasma display panel
JPH0553129A (en) Liquid crystal display element and production
JP3492195B2 (en) Electrode bonding method for plasma display panel
JP2000195584A (en) Electrical connection device and electrical connection method
JP2006286790A (en) Method of bonding wiring board, structure of bonded part thereof, and electric circuit device with bonded part thereof
JP3719925B2 (en) Electrode bonding method for plasma display panel and plasma display panel
JPH02127620A (en) Electrooptic device and its connecting method
JP2004004947A (en) Plasma display panel
JP2003297516A (en) Connection method of flexible board
JP2001119116A (en) Connecting structure for liquid crystal display device
JP3092118B2 (en) Conductive particle transfer type anisotropic conductive film and electrical connection method
JPH06235928A (en) Liquid crystal display device
JPH05174890A (en) Joining structure
JP2005294092A (en) Heating element
JPH09260822A (en) Structure for connecting/fixing electronic part to board with solder
JP2762813B2 (en) Connection method of semiconductor chip
JP2008147473A (en) Electrode connection method and electrode connection structure
JP2006276881A (en) Method for manufacturing plasma display panel
JP2003178686A (en) Plasma display and manufacturing method thereof
JP3100436B2 (en) Anisotropic conductive film
JP2005141244A (en) Method for manufacturing plasma display panel
JPH05203976A (en) Liquid crystal display device and its production
JP2000332373A (en) Electronic component mounting body and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees