JP3719898B2 - Optical polyimide monomer, polyimide compound and production method thereof - Google Patents

Optical polyimide monomer, polyimide compound and production method thereof Download PDF

Info

Publication number
JP3719898B2
JP3719898B2 JP2000064045A JP2000064045A JP3719898B2 JP 3719898 B2 JP3719898 B2 JP 3719898B2 JP 2000064045 A JP2000064045 A JP 2000064045A JP 2000064045 A JP2000064045 A JP 2000064045A JP 3719898 B2 JP3719898 B2 JP 3719898B2
Authority
JP
Japan
Prior art keywords
polyimide
compound
chemical formula
fully
aromatic ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000064045A
Other languages
Japanese (ja)
Other versions
JP2001247523A (en
Inventor
慶姫 劉
官秀 韓
泰衡 李
銀枝 金
定姫 金
祐赫 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2000064045A priority Critical patent/JP3719898B2/en
Publication of JP2001247523A publication Critical patent/JP2001247523A/en
Application granted granted Critical
Publication of JP3719898B2 publication Critical patent/JP3719898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光学用の線形(linear)高分子材料に係り、特に、光学用のポリイミド単量体、ポリイミド化合物及びその製造方法に関する。
【0002】
【従来の技術】
通常、光学用の線形高分子材料は次世代の高速、大容量情報通信事業の核心部品である各種の光学素子に用いられる材料であり、光電集積回路、光電混合配線管、ハイブリッド集積化素子、光多重基板素子及びプラスチック光ファイバなどを導波させるための光学素子の製作に用いられる。
今までの光学素子の材料としてはLiNbO3のような無機結晶を用いてきたが、前記無機結晶はその特性上製造及び加工が困難で大量生産には限界があるため、現在では材料設計及び加工が容易な有機高分子材料に対する研究が行われつつある。
【0003】
このような有機高分子材料のうち、ポリイミドは優れた熱的、機械的性質により半導体保護用の緩衝剤として用いられており、前記ポリイミドを光学用の高分子材料として活用するためにC−H結合の水素の代わりにフッ素や重水素を置換して光の吸収損失を低減するための研究が行われている。一般に高分子材料は1000−1700nmの近赤外線領域で光の吸収が発生する。このような光の吸収損失は高分子の主鎖にあるC−H結合の伸縮振動と変形振動による高周波の倍音により発生する。これを低減するためには光の吸収波長を近赤外線領域よりは長波長や短波長側に移動させるべきである。このため、C−H結合の水素をフッ素や重水素に置換する。
【0004】
前記水素を重水素に置換したポリイミドの場合、1550nm波長帯で光の吸収が発生するため、光通信素子用の材料には不向きである。しかしながら、前記水素をフッ素に置換したポリイミドの場合は1000−1700nm波長帯の光吸収損失を最少化することができて光通信素子用の材料として開発されている。前記フッ素に置換したポリイミドを用いて光導波路を製作するときはコア層及びクラッド層の屈折率の差を満たすため、フッ素を含む単量体及びフッ素を含まない単量体の混合比率を適宜に調節して共重合させてコア層及びクラッド層を製作する。
【0005】
しかしながら、従来のフッ素に置換したポリイミド、すなわち、フルオロ化ポリイミド化合物はフッ素の含有により屈折率が低いため、これを用いてコア層を形成する場合、コア層より低い屈折率を有するクラッド層を形成するために使用する材料の選択幅は制限される。かつ、前記フッ素に置換したポリイミドを用いてクラッド層を形成する場合にも、フッ素含有量の減少によりC−H結合の含有量が増えるため、光の吸収損失は増加するという問題点がある。
かつ、従来のポリイミドは低い複屈折率を有する柔軟な鎖構造を備えるが、このような鎖構造のポリイミドは食刻工程でその深さが深くなる場合、シリコン基板とポリイミドとの熱膨張係数の差により薄膜がきれるという問題点も発生する。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、従来のフルオロ化ポリイミド化合物の低い光吸収損失及び高い耐熱特性をそのまま維持しながら、食刻工程時の薄膜のきれ現象を防止することのできる光学用のポリイミド単量体、ポリイミド化合物及びその製造方法を提供することにある。
本発明の他の目的は、1300−1550nmの光通信波長帯域で低い光吸収損失を有することにより、比較的広い領域で様々な屈折率の調節によりコアとクラッドの材料選択幅を広げる光学用のポリイミド単量体、ポリイミド化合物及びその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するための本発明は光学用の高分子材料として活用するためのポリイミド単量体、ポリイミド化合物及びその製造方法を提供する。本発明によるポリイミド単量体はポリイミド化合物を製造するための食刻工程でその食刻深さが深くなる場合、シリコン基板とポリイミドの熱膨張係数の差により発生する薄膜のきれ現象を防止するために提供される。本発明のポリイミド化合物は前記ポリイミド単量体とジアンヒドリドを溶媒に溶解させて中間体であるポリアミック酸(amic acid)を合成し、そのポリアミック酸をシリコン基板にコーティングして熱処理することにより製造される。
【0008】
【発明の実施の形態】
以下、光学用のポリイミド単量体及びその製造方法、ポリイミド化合物及びその製造方法を説明する。
1.ポリイミド単量体及びその製造方法
本発明によるポリイミド単量体はポリイミド化合物を製造するための食刻工程で食刻の深さが深くなる場合、シリコン基板とポリイミドの熱膨張係数の差により発生する薄膜のきれ現象を防止するために提供される。
本発明のポリイミド単量体は下記の化学式1のように定義される。
【0009】
【化7】

Figure 0003719898
(ここで、Xは塩素、ブロム(bromine)又は沃素のハロゲン元素であるか、ハロゲン化アルキル基であり、Arは芳香族環基又はハロゲン化芳香族環基である)
【0010】
図1は本発明の実施形態によるポリイミド単量体の製造方法を示した流れ図である。図1に示したように、前記ポリイミド単量体は溶解過程(110)、加熱過程(120)、再結晶過程(130)及び還元過程(140)を含む工程により製造される。
前記溶解過程(110)はジオール(diol)と2−クロロ−5−ニトロベンゾトリフルオライドをN,N−ジメチルアセトアミドに溶解させる過程である。前記ジオールとしては、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、テトラフルオロ−1,4,ヒドロキノン、テトラクロロ−1,4,ヒドロキノン、ヒドロキノン及び4,6−ジクロロレゾルシノールなどを用いることができる。
【0011】
前記加熱過程(120)は前記溶解過程(110)による生成物に炭酸カリウム、第三ブチルアンモニウムクロライド及び銅パウダーを入れて熱を加える過程である。前記加熱過程(120)の加熱温度及び加熱時間は実施形態に応じて可変値を有する。
前記再結晶過程(130)は前記加熱過程(120)による生成物で銅を取り除いて沈殿させた後、アセト酸(acetic acid)で再結晶してジニトロ化合物を得る過程である。前記再結晶過程(130)の沈殿に用いられる溶媒は前記溶解過程に用いられるジオールの種類に応じて決められる。すなわち、前記ジオールとして2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、テトラフルオロ−1,4−ヒドロキノン及びヒドロキノンを用いる場合にはメタノール−水の1:1混合物を、前記ジオールとしてテトラクロロ−1,4−ヒドロキノンを用いる場合には濃い硫酸を、前記ジオールとして4,6−ジクロロレゾルシノールを用いる場合には塩酸を添加した水をそれぞれ沈殿用の溶媒として用いる。
【0012】
前記還元過程(140)は前記ジニトロ化合物をテトラヒドロフランに溶解させた後、触媒を用いて還元させることにより、ジアミン化合物を生成する過程である。前記還元過程(140)は水素気体雰囲気下で行われるが、前記触媒としてはパラジウムを用いる。前記パラジウム及び水素はNO2をNH2に還元させる役目を果たす。
本発明のポリイミド単量体はポリイミド化合物からなるコアとクラッドの複屈折の変化問題点を改善することができる。かつ、本発明のポリイミド単量体は前記化学式1のAr部分に様々なハロゲン化芳香族環基を置換させて広い範囲の屈折率を調節してコアとクラッド材料の選択幅を広げることができる。
【0013】
[実施形態1−1]
2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン5.1g、0.0152モルと2−クロロ−5−ニトロベンゾトリフルオライド7.518g、0.0333モルとを溶媒であるN−N−ジメチルアセトアミド63ml(約20%の固形粉含量)に溶解させた後、炭酸カリウム6.91g、0.05モルと第三ブチルアンモニウムクロライド0.0975g及び銅パウダー0.195gを入れた後、100℃で2時間加熱反応させた。その後、前記反応溶液を濾過して銅を取り除いた後、メタノール−水の1:1混合溶媒に入れて沈殿物が生成されると、アセト酸で再結晶して黄色のジニトロ化合物8.497g(78.5%の収率)を得た。この化合物5.0gをテトラヒドロフランに溶解させた後、水素気体雰囲気でパラジウム(活性炭素内10%)触媒を用いて還元させて前記化学式1により定義されるジアミン化合物2.633g(60.0%の収率)を製造した。
【0014】
[実施形態1−2]
テトラフルオロ−1,4−ヒドロキノン2.761g、0.0152モルと2−クロロ−5−ニトロベンゾトリフルオライド7.518g、0.0333モルとを溶媒であるN−N−ジメチルアセトアミド51ml(約20%の固形粉含量)に溶解させた後、炭酸カリウム6.91g、0.05モルと第三ブチルアンモニウムクロライド0.0975g及び銅パウダー0.195gを入れた後、110℃で16時間加熱反応させた。その後、前記反応溶液を濾過して銅を取り除いた後、メタノール−水の1:1混合溶媒に入れて沈殿物が生成されると、アセト酸で再結晶して肌色のジニトロ化合物5.505g(64.8%の収率)を得た。この化合物5.0gをテトラヒドロフランに溶解させた後、水素気体雰囲気でパラジウム(活性炭素内10%)触媒を用いて還元させて前記化学式1により定義されるジアミン化合物3.407g(76.3%の収率)を製造した。
【0015】
[実施形態1−3]
テトラクロロ−1,4−ヒドロキノン3.768g、0.0152モルと2−クロロ−5−ニトロベンゾトリフルオライド7.518g、0.0333モルとを溶媒であるN−N−ジメチルアセトアミド56ml(約20%の固形粉含量)に溶解させた後、炭酸カリウム6.91g、0.05モルと第三ブチルアンモニウムクロライド0.0975g及び銅パウダー0.195gを入れた後、80℃で24時間加熱反応させた。その後、前記反応溶液を濾過して銅を取り除いた後、濃い硫酸に入れて沈殿物が生成されると、アセト酸で再結晶して黄色のジニトロ化合物5.90g(62.0%の収率)を得た。この化合物5.0gをテトラヒドロフランに溶解させた後、水素気体雰囲気でパラジウム(活性炭素内10%)触媒を用いて還元させて前記化学式1により定義されるジアミン化合物3.148g(69.6%の収率)を製造した。
【0016】
[実施形態1−4]
ヒドロキノン1.674g、0.0152モルと2−クロロ−5−ニトロベンゾトリフルオライド7.518g、0.0333モルとを溶媒であるN−N−ジメチルアセトアミド46ml(約20%の固形粉含量)に溶解させた後、炭酸カリウム6.91g、0.05モルと第三ブチルアンモニウムクロライド0.0975g及び銅パウダー0.195gを入れた後、110℃で3時間加熱反応させた。その後、前記反応溶液を濾過して銅を取り除いた後、メタノール−水の1:1混合溶媒に入れて沈殿物が生成されると、アセト酸で再結晶して黄色のジニトロ化合物5.337g(71.9%の収率)を得た。この化合物5.0gをテトラヒドロフランに溶解させた後、水素気体雰囲気でパラジウム(活性炭素内10%)触媒を用いて還元させて前記化学式1により定義されるジアミン化合物3.313g(75.5%の収率)を製造した。
【0017】
[実施形態1−5]
4,6−ジクロロレゾルシノール2.721g、0.0152モルと2−クロロ−5−ニトロベンゾトリフルオライド7.518g、0.0333モルとを溶媒であるN−N−ジメチルアセトアミド46ml(約20%の固形粉含量)に溶解させた後、炭酸カリウム6.91g、0.05モルと第三ブチルアンモニウムクロライド0.0975g及び銅パウダー0.195gを入れた後、80℃で15時間加熱反応させた。その後、前記反応溶液を濾過して銅を取り除いた後、塩酸を添加した水に入れて沈殿物が生成されると、アセト酸で再結晶して黄色のジニトロ化合物5.287g(62.4%の収率)を得た。この化合物5.0gをテトラヒドロフランに溶解させた後、水素気体雰囲気でバラジウム(活性炭素内10%)触媒を用いて還元させて前記化学式1により定義されるジアミン化合物2.347g(53.5%の収率)を製造した。
【0018】
2.ポリイミド化合物及びその製造方法
本発明のポリイミド化合物は上述したように製造されるポリイミド単量体とジアンヒドリドを溶媒に溶解させて中間体のポリアミック酸を合成し、前記合成ポリアミック酸をシリコン基板にコーティングした後、熱処理することにより製造される。この際、前記ジアンヒドリドは下記の化学式2により定義され、本発明のポリイミド化合物は下記の化学式3により定義される。
【0019】
【化8】
Figure 0003719898
(ここで、Zは部分/完全フッ素化芳香族鎖、部分/完全塩素化芳香族鎖、部分/完全フッ素化環形脂肪族、部分/完全塩素化環形脂肪族、部分/完全フッ素化脂肪族、部分/完全塩素化脂肪族或いはこれらがヘテロ原子で連結される構造である)
【0020】
【化9】
Figure 0003719898
(ここで、Xは塩素、ブロム又は沃素のハロゲン元素であるか、ハロゲン化アルキル基であり、Arは芳香族環基又はハロゲン化芳香族環基であり、Zは部分/完全フッ素化芳香族鎖、部分/完全塩素化芳香族鎖、部分/完全フッ素化環形脂肪族、部分/完全塩素化環形脂肪族、部分/完全フッ素化脂肪族、部分/完全塩素化脂肪族或いはこれらがヘテロ原子で連結される構造である)
【0021】
図2は本発明の実施形態によるポリイミド化合物の製造方法を示した流れ図である。図2に示したように、本発明のポリイミド化合物は溶解過程(210)、中間体形成過程(220)、コーティング過程(230)及び熱処理過程(240)を含む工程により製造される。
前記溶解過程(210)は化学式1によるポリイミド単量体と化学式2によるジアンヒドリドをジメチルアセトアミドに溶解させる過程である。前記ポリイミド単量体としては1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)テトラフルオロベンゼン、1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン、1,3−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)−4,6−ジクロロベンゼンなどを用いることができ、前記ジアンヒドリドとしては2,2−ビス(ジカルボキシフェニル)ヘキサフルオロプロパンジアンヒドリド及び1,2,4,5−ベンゼンテトラカルボキシアンヒドリドを用いる。
【0022】
前記中間体形成過程(220)は前記溶解過程(210)による生成物を窒素雰囲気で攪拌させて中間体のポリアミック酸を形成する過程である。
前記コーティング過程(230)は前記中間体形成過程(220)で形成したポリアミック酸溶液をシリコン基板にコーティングする過程である。
前記熱処理過程(240)は前記ポリアミック酸コーティング基板を熱処理して最終的にポリイミド化合物を生成する過程である。前記熱処理過程(240)は窒素雰囲気のオーブンで行われるが、前記窒素はポリイミド化合物の内部への水分浸透を防止して高分子構造の鎖連結破壊を防止する。
【0023】
3.共重合ポリイミド化合物及びその製造方法
本発明の共重合ポリイミド化合物は化学式1により定義される相異なるポリイミド単量体を相異なる比率で化学式2のジアンヒドリドと共重合させることにより製造され、このように製造された共重合ポリイミド化合物は相異なる屈折率を有する。
【0024】
(1) 第1の共重合ポリイミド化合物及びその製造方法
本発明の実施形態による第1の共重合ポリイミド化合物は相異なるポリイミド単量体、すなわち、1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)テトラフルオロベンゼン、1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン、1,3−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)−4,6−ジクロロベンゼンなどを2,2−ビス(ジカルボキシフェニル)ヘキサフルオロプロパンジアンヒドリド(6FDA)と共重合させることにより生成され、化学式4により定義される。
【0025】
【化10】
Figure 0003719898
(ここで、Xは塩素、ブロム又は沃素のハロゲン元素であるか、ハロゲン化アルキル基であり、Ar及びAr'は芳香族環基又はハロゲン化芳香族環基である)
【0026】
本発明の第1の共重合ポリイミド化合物の製造過程を調べると、同じモル数のポリイミド単量体と2,2−ビス(ジカルボキシフェニル)ヘキサフルオロプロパンジアンヒドリド(6FDA)をジメチルアセトアミドに溶解させる。前記溶解過程による生成物を窒素雰囲気で攪拌させて中間体のポリアミック酸を形成させる。その後、前記ポリアミック酸をシリコン基板にスピンコーティングした後、前記ポリアミック酸コーティングのシリコン基板をオーブンなどで熱処理すると、前記化学式4のような第1の共重合ポリイミド化合物を得ることができる。
【0027】
[実施形態2−1]
同じモル数の1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)テトラフルオロベンゼン4.503g、0.009モルと2,2−ビス(ジカルボキシフェニル)ヘキサフルオロプロパンジヒドリド4g、0.009モルとを溶媒であるジメチルアセトアミド42.5gに溶解させた後、窒素雰囲気で24時間攪拌させてポリアミック酸を合成した。その後、前記ポリアミック酸溶液をシリコン基板にスピンコーティングし、これを窒素雰囲気のオーブンで100℃/30分、200℃/1時間、350℃/1時間熱処理して透明なポリイミドフィルムを得た。この際、前記ポリイミドの屈折率は1550nmでTEモードの場合は1.5099、TMモードの場合は1.5024である。
【0028】
[実施形態2−2]
同じモル数の1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン3.855g、0.009モルと2,2−ビス(ジカルボキシフェニル)ヘキサフルオロプロパンジヒドリド4g、0.009モルとを溶媒であるジメチルアセトアミド42.5gに溶解させた後、窒素雰囲気で24時間攪拌させてポリアミック酸を合成した。その後、前記ポリアミック酸溶液をシリコン基板にスピンコーティングし、これを窒素雰囲気のオーブンで100℃/30分、200℃/1時間、350℃/1時間熱処理して透明なポリイミドフィルムを得た。この際、前記ポリイミドの屈折率は1550nmでTEモードの場合は1.5289、TMモードの場合は1.5224である。
【0029】
[実施形態2−3]
同じモル数の1,3−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)−4,6−ジクロロベンゼン4.475g、0.009モルと2,2−ビス(ジカルボキシフェニル)ヘキサフルオロプロパンジヒドリド4g、0.009モルとを溶媒であるジメチルアセトアミド42.4gに溶解させた後、窒素雰囲気で24時間攪拌させてポリアミック酸を合成した。その後、前記ポリアミック酸溶液をシリコン基板にスピンコーティングし、これを窒素雰囲気のオーブンで100℃/30分、200℃/1時間、350℃/1時間熱処理して透明なポリイミドフィルムを得た。この際、前記ポリイミドの屈折率は1550nmでTEモードの場合は1.5344、TMモードの場合は1.5303である。
【0030】
(2) 第2の共重合ポリイミド化合物及びその製造方法
本発明の実施形態による第2の共重合ポリイミド化合物は相異なるポリイミド単量体、すなわち、1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)テトラフルオロベンゼン、1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン、1,3−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)−4,6−ジクロロベンゼンのうち、いずれか一つを1,2,4,5−ベンゼンテトラカルボキシアンヒドリド(PDMA)と共重合させることにより生成され、化学式5により定義される。
【0031】
【化11】
Figure 0003719898
(ここで、Xは塩素、ブロム又は沃素のハロゲン元素であるか、ハロゲン化アルキル基であり、Ar及びAr'は芳香族環基又はハロゲン化芳香族環基である)
【0032】
本発明の第2の共重合ポリイミド化合物の製造過程を調べると、ポリイミド単量体と1,2,4,5−ベンゼンテトラカルボキシアンヒドリドをジメチルアセトアミドに溶解させる。次に、前記溶解過程による生成物を窒素雰囲気で攪拌させて中間体のポリアミック酸を形成させる。その後、前記ポリアミック酸をシリコン基板にスピンコーティングした後、前記ポリアミック酸コーティングのシリコン基板をオーブンなどで熱処理すると、前記化学式5のような第2共重合ポリイミド化合物を得ることができる。
【0033】
[実施形態3−1]
同じモル数の1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)テトラフルオロベンゼン4.503g、0.009モルと1,2,4,5−ベンゼンテトラカルボキシアンヒドリド1.963g、0.009モルとを溶媒であるジメチルアセトアミド32.3gに溶解させた後、窒素雰囲気で24時間攪拌させてポリアミック酸を合成した。その後、前記ポリアミック酸溶液をシリコン基板にスピンコーティングし、これを窒素雰囲気のオーブンで100℃/30分、200℃/1時間、350℃/1時間熱処理して透明なポリイミドフィルムを得た。この際、前記ポリイミドの屈折率は1550nmでTEモードの場合は1.5397、TMモードの場合は1.5239である。
【0034】
[実施形態3−2]
同じモル数の1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン3.855g、0.009モルと1,2,4,5−ベンゼンテトラカルボキシアンヒドリド1.963g、0.009モルとを溶媒であるジメチルアセトアミド29.1gに溶解させた後、窒素雰囲気で24時間攪拌させてポリアミック酸を合成した。その後、前記ポリアミック酸溶液をシリコン基板にスピンコーティングし、これを窒素雰囲気のオーブンで100℃/30分、200℃/1時間、350℃/1時間熱処理して透明なポリイミドフィルムを得た。この際、前記ポリイミドの屈折率は1550nmでTEモードの場合は1.5671、TMモードの場合は1.5513である。
【0035】
[実施形態3−3]
同じモル数の1,3−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)−4,6−ジクロロベンゼン4.475g、0.009モルと1,2,4,5−ベンゼンテトラカルボキシアンヒドリド1.963g、0.009モルとを溶媒であるジメチルアセトアミド32.3gに溶解させた後、窒素雰囲気で24時間攪拌させてポリアミック酸を合成した。その後、前記ポリアミック酸溶液をシリコン基板にスピンコーティングし、これを窒素雰囲気のオーブンで100℃/30分、200℃/1時間、350℃/1時間熱処理して透明なポリイミドフィルムを得た。この際、前記ポリイミドの屈折率は1550nmでTEモードの場合は1.5727、TMモードの場合は1.5670である。
【0036】
[実施形態3−4]
二種のジアミン、1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)テトラフルオロベンゼン1.576g、0.00315モル及び1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン2.506g、0.00585モルを1,2,4,5−ベンゼンテトラカルボキシアンヒドリドとともに溶媒であるジメチルアセトアミド30.2gに溶解させた後、窒素雰囲気で24時間攪拌させてポリアミック酸を合成した。その後、前記ポリアミック酸溶液をシリコン基板にスピンコーティングし、これを窒素雰囲気のオーブンで100℃/30分、200℃/1時間、350℃/1時間熱処理して透明なポリイミドフィルムを得た。この際、前記ポリイミドの屈折率は1550nmでTEモードの場合は1.5597、TMモードの場合は1.5400である。
【0037】
【発明の効果】
上述したように、本発明の実施形態による光学用のポリイミド単量体、ポリイミド化合物及びその製造方法はフルオロ化ポリイミド化合物の低い光吸収損失及び高い耐熱特性はそのまま維持しながら、食刻工程時の薄膜のきれ現象を防止することができる。
かつ、本発明の実施形態による光学用のポリイミド単量体、ポリイミド化合物及びその製造方法は1300−1550nmの光通信波長帯域で低い光吸収損失を示すため、比較的広い領域で様々な屈折率の調節によりコアとクラッドの材料選択幅を広げることができる。
【図面の簡単な説明】
【図1】本発明の実施形態によるポリイミド単量体の製造方法を示した流れ図である。
【図2】本発明の実施形態によるポリイミド化合物の製造方法を示した流れ図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical linear polymer material, and more particularly to an optical polyimide monomer, a polyimide compound, and a method for producing the same.
[0002]
[Prior art]
In general, linear polymer materials for optics are materials used for various optical elements that are the core components of the next generation high-speed, large-capacity information and communications business. Photoelectric integrated circuits, photoelectric mixed wiring tubes, hybrid integrated elements, It is used to manufacture an optical element for guiding an optical multi-substrate element and a plastic optical fiber.
In the past, inorganic crystals such as LiNbO 3 have been used as the material of optical elements. However, since the inorganic crystals are difficult to manufacture and process due to their characteristics and there is a limit to mass production, material design and processing are currently limited. Research on organic polymer materials that are easy to handle is underway.
[0003]
Among these organic polymer materials, polyimide is used as a buffer for protecting semiconductors due to excellent thermal and mechanical properties. In order to utilize the polyimide as an optical polymer material, C—H Research has been conducted to reduce light absorption loss by substituting fluorine or deuterium for hydrogen instead of bonding hydrogen. In general, a polymer material absorbs light in the near infrared region of 1000 to 1700 nm. Such light absorption loss occurs due to high-frequency overtones caused by stretching and deformation vibrations of CH bonds in the main chain of the polymer. In order to reduce this, the absorption wavelength of light should be moved to a longer wavelength or shorter wavelength side than the near infrared region. For this reason, the hydrogen of the C—H bond is replaced with fluorine or deuterium.
[0004]
In the case of the polyimide in which hydrogen is substituted with deuterium, light absorption occurs in the 1550 nm wavelength band, so that it is not suitable for a material for an optical communication element. However, in the case of polyimide in which hydrogen is replaced with fluorine, light absorption loss in the wavelength band of 1000 to 1700 nm can be minimized, and it has been developed as a material for optical communication elements. When manufacturing an optical waveguide using polyimide substituted with fluorine, the mixing ratio of the monomer containing fluorine and the monomer not containing fluorine is appropriately set in order to satisfy the difference in refractive index between the core layer and the cladding layer. The core layer and the clad layer are manufactured by adjusting and copolymerizing.
[0005]
However, since conventional polyimide substituted with fluorine, ie, fluorinated polyimide compound, has a low refractive index due to the inclusion of fluorine, a clad layer having a lower refractive index than the core layer is formed when a core layer is formed using this. The choice of materials used to do so is limited. In addition, when the clad layer is formed using the polyimide substituted with fluorine, there is a problem that the absorption loss of light increases because the content of C—H bonds increases due to the decrease in fluorine content.
In addition, the conventional polyimide has a flexible chain structure having a low birefringence, but when the depth of the polyimide having such a chain structure becomes deep during the etching process, the thermal expansion coefficient between the silicon substrate and the polyimide is low. There is also a problem that the thin film is broken due to the difference.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide an optical polyimide unit that can prevent the thin film cracking phenomenon during the etching process while maintaining the low light absorption loss and high heat resistance of the conventional fluorinated polyimide compound. It is in providing a body, a polyimide compound, and its manufacturing method.
Another object of the present invention is for optical use that has a low optical absorption loss in the optical communication wavelength band of 1300 to 1550 nm, thereby expanding the material selection range of the core and the clad by adjusting various refractive indexes in a relatively wide region. It is providing the polyimide monomer, a polyimide compound, and its manufacturing method.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a polyimide monomer, a polyimide compound and a method for producing the same for use as an optical polymer material. The polyimide monomer according to the present invention prevents a thin film cracking phenomenon caused by a difference in thermal expansion coefficient between the silicon substrate and the polyimide when the etching depth is deep in the etching process for manufacturing the polyimide compound. Provided to. The polyimide compound of the present invention is manufactured by dissolving the polyimide monomer and dianhydride in a solvent to synthesize an intermediate polyamic acid (amic acid), coating the polyamic acid on a silicon substrate, and heat-treating it. The
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the polyimide monomer for optics, its manufacturing method, a polyimide compound, and its manufacturing method are demonstrated.
1. Polyimide monomer and manufacturing method thereof The polyimide monomer according to the present invention is generated due to a difference in thermal expansion coefficient between the silicon substrate and the polyimide when the etching depth becomes deep in the etching process for manufacturing the polyimide compound. Provided to prevent thin film breakage.
The polyimide monomer of the present invention is defined as the following chemical formula 1.
[0009]
[Chemical 7]
Figure 0003719898
(Where X is a halogen element of chlorine, bromine or iodine, or is a halogenated alkyl group, and Ar is an aromatic ring group or a halogenated aromatic ring group)
[0010]
FIG. 1 is a flowchart illustrating a method for producing a polyimide monomer according to an embodiment of the present invention. As shown in FIG. 1, the polyimide monomer is manufactured through processes including a dissolution process (110), a heating process (120), a recrystallization process (130), and a reduction process (140).
The dissolution process (110) is a process of dissolving diol and 2-chloro-5-nitrobenzotrifluoride in N, N-dimethylacetamide. Examples of the diol include 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, tetrafluoro-1,4, hydroquinone, and tetrachloro-1,4, hydroquinone. Hydroquinone and 4,6-dichlororesorcinol can be used.
[0011]
The heating process (120) is a process in which potassium carbonate, tert-butylammonium chloride and copper powder are added to the product of the dissolution process (110) and heat is applied. The heating temperature and the heating time of the heating process 120 have variable values according to the embodiment.
The recrystallization process 130 is a process in which copper is removed from the product of the heating process 120 and precipitated, and then recrystallized with acetic acid to obtain a dinitro compound. The solvent used for precipitation in the recrystallization process (130) is determined according to the type of diol used in the dissolution process. That is, when 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, tetrafluoro-1,4-hydroquinone and hydroquinone are used as the diol, methanol- Precipitating a 1: 1 mixture of water, concentrated sulfuric acid when tetrachloro-1,4-hydroquinone is used as the diol, and water added with hydrochloric acid when 4,6-dichlororesorcinol is used as the diol. Used as a solvent for
[0012]
The reduction process (140) is a process of forming a diamine compound by dissolving the dinitro compound in tetrahydrofuran and then reducing it using a catalyst. The reduction process 140 is performed in a hydrogen gas atmosphere, and palladium is used as the catalyst. The palladium and hydrogen serve to reduce NO 2 to NH 2 .
The polyimide monomer of the present invention can improve the problem of change in birefringence between a core and a clad made of a polyimide compound. In addition, the polyimide monomer of the present invention can expand the selection range of the core and clad material by substituting various halogenated aromatic ring groups in the Ar portion of the chemical formula 1 to adjust the refractive index in a wide range. .
[0013]
[Embodiment 1-1]
2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane (5.1 g), 0.0152 mol and 2-chloro-5-nitrobenzotrifluoride (7.518 g), 0.0333 mol was dissolved in 63 ml of NN-dimethylacetamide (about 20% solid powder content) as a solvent and then 6.91 g, 0.05 mol of potassium carbonate and 0.0975 g of tert-butylammonium chloride. And after adding 0.195 g of copper powder, it was made to heat-react at 100 degreeC for 2 hours. Thereafter, the reaction solution was filtered to remove copper, and then put into a 1: 1 mixed solvent of methanol and water, and when a precipitate was formed, it was recrystallized with aceto acid and 8.497 g of a yellow dinitro compound ( 78.5% yield). After dissolving 5.0 g of this compound in tetrahydrofuran, it was reduced with a palladium (10% in activated carbon) catalyst in a hydrogen gas atmosphere to obtain 2.633 g (60.0% of diamine compound) defined by the above chemical formula 1. Yield).
[0014]
[Embodiment 1-2]
51 ml (about 20) of NN-dimethylacetamide as a solvent was prepared by using 2.761 g of tetrafluoro-1,4-hydroquinone, 0.0152 mol and 7.518 g of 2-chloro-5-nitrobenzotrifluoride, 0.0333 mol. % Solid powder content), potassium carbonate 6.91 g, 0.05 mol, tert-butylammonium chloride 0.0975 g and copper powder 0.195 g were added, followed by heating at 110 ° C. for 16 hours. It was. Thereafter, the reaction solution was filtered to remove copper, and then put into a 1: 1 mixed solvent of methanol-water, and when a precipitate was formed, it was recrystallized with aceto acid to give 5.505 g of skin-colored dinitro compound ( 64.8% yield). After dissolving 5.0 g of this compound in tetrahydrofuran and reducing it with a palladium (10% in activated carbon) catalyst in a hydrogen gas atmosphere, 3.407 g (76.3% of diamine compound) defined by the above chemical formula 1 was used. Yield).
[0015]
[Embodiment 1-3]
56 ml of NN-dimethylacetamide (about 20 ml) containing 3.768 g of tetrachloro-1,4-hydroquinone and 0.0152 mol and 7.518 g of 2-chloro-5-nitrobenzotrifluoride and 0.0333 mol as a solvent. % Solid powder content), potassium carbonate 6.91 g, 0.05 mol, tert-butylammonium chloride 0.0975 g and copper powder 0.195 g were added, followed by heating at 80 ° C. for 24 hours. It was. Thereafter, the reaction solution was filtered to remove copper, and then added to concentrated sulfuric acid to form a precipitate, which was recrystallized with aceto acid to give 5.90 g of a yellow dinitro compound (62.0% yield). ) After dissolving 5.0 g of this compound in tetrahydrofuran, it was reduced using a palladium (10% in activated carbon) catalyst in a hydrogen gas atmosphere to obtain 3.148 g (69.6% of diamine compound) defined by Formula 1 above. Yield).
[0016]
[Embodiment 1-4]
Hydroquinone (1.674 g, 0.0152 mol) and 2-chloro-5-nitrobenzotrifluoride (7.518 g, 0.0333 mol) in 46 ml of NN-dimethylacetamide (about 20% solid powder content) as a solvent After dissolution, 6.91 g, 0.05 mol of potassium carbonate, 0.0975 g of tert-butylammonium chloride and 0.195 g of copper powder were added, followed by heating at 110 ° C. for 3 hours. Thereafter, the reaction solution was filtered to remove copper, and then put into a 1: 1 mixed solvent of methanol and water, and when a precipitate was formed, it was recrystallized with aceto acid to give 5.337 g of a yellow dinitro compound ( 71.9% yield). After 5.0 g of this compound was dissolved in tetrahydrofuran, it was reduced with a palladium (10% in activated carbon) catalyst in a hydrogen gas atmosphere to obtain 3.313 g (75.5% of diamine compound) defined by Formula 1 above. Yield).
[0017]
Embodiment 1-5
46 ml of NN-dimethylacetamide (about 20%) was prepared by using 2.721 g of 4,6-dichlororesorcinol, 0.0152 mol and 7.518 g of 2-chloro-5-nitrobenzotrifluoride, 0.0333 mol as solvent. After being dissolved in (solid powder content), 6.91 g of potassium carbonate, 0.05 mol, 0.0975 g of tert-butylammonium chloride and 0.195 g of copper powder were added, followed by heating at 80 ° C. for 15 hours. Thereafter, the reaction solution was filtered to remove copper, and then added to water to which hydrochloric acid had been added. When a precipitate was formed, it was recrystallized from aceto acid to give 5.287 g (62.4%) of a yellow dinitro compound. Yield). After dissolving 5.0 g of this compound in tetrahydrofuran, it was reduced using a catalyst of palladium (10% in activated carbon) in a hydrogen gas atmosphere to obtain 2.347 g (53.5% of diamine compound) defined by Formula 1 above. Yield).
[0018]
2. Polyimide compound and production method thereof The polyimide compound of the present invention is prepared by dissolving the polyimide monomer and dianhydride produced as described above in a solvent to synthesize an intermediate polyamic acid, and coating the synthetic polyamic acid on a silicon substrate. Then, it is manufactured by heat treatment. At this time, the dianhydride is defined by the following chemical formula 2, and the polyimide compound of the present invention is defined by the following chemical formula 3.
[0019]
[Chemical 8]
Figure 0003719898
(Where Z is a partial / fully fluorinated aromatic chain, a partial / fully chlorinated aromatic chain, a partial / fully fluorinated cycloaliphatic, a partial / fully chlorinated cycloaliphatic, a partial / fully fluorinated aliphatic, (Partially / fully chlorinated aliphatic or a structure in which these are connected by a hetero atom)
[0020]
[Chemical 9]
Figure 0003719898
(Where X is a halogen element of chlorine, bromine or iodine, or a halogenated alkyl group, Ar is an aromatic ring group or a halogenated aromatic ring group, and Z is a partially / fully fluorinated aromatic group. Chain, part / fully chlorinated aromatic chain, part / fully fluorinated cycloaliphatic, part / fully chlorinated cycloaliphatic, part / fully fluorinated aliphatic, part / fully chlorinated aliphatic or these are heteroatoms (This is a connected structure)
[0021]
FIG. 2 is a flowchart illustrating a method for manufacturing a polyimide compound according to an embodiment of the present invention. As shown in FIG. 2, the polyimide compound of the present invention is manufactured through processes including a dissolution process (210), an intermediate formation process (220), a coating process (230), and a heat treatment process (240).
The dissolution process (210) is a process of dissolving the polyimide monomer according to Chemical Formula 1 and the dianhydride according to Chemical Formula 2 in dimethylacetamide. Examples of the polyimide monomer include 1,4-bis (4-amino-2-trifluoromethylphenoxy) tetrafluorobenzene, 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene, 1,3 -Bis (4-amino-2-trifluoromethylphenoxy) -4,6-dichlorobenzene and the like can be used, and as the dianhydride, 2,2-bis (dicarboxyphenyl) hexafluoropropane dianhydride and 1 2,4,5-benzenetetracarboxyanhydride is used.
[0022]
The intermediate formation process 220 is a process in which the product of the dissolution process 210 is stirred in a nitrogen atmosphere to form an intermediate polyamic acid.
The coating process 230 is a process of coating the silicon substrate with the polyamic acid solution formed in the intermediate formation process 220.
The heat treatment process 240 is a process of finally forming a polyimide compound by heat-treating the polyamic acid-coated substrate. The heat treatment process 240 is performed in an oven in a nitrogen atmosphere, and the nitrogen prevents moisture penetration into the polyimide compound and prevents chain connection breakage of the polymer structure.
[0023]
3. Copolymerized polyimide compound and production method thereof The copolymerized polyimide compound of the present invention is produced by copolymerizing different polyimide monomers defined by Chemical Formula 1 with dianhydride of Chemical Formula 2 in different ratios, as described above. The produced copolymer polyimide compound has different refractive indexes.
[0024]
(1) First Copolymerized Polyimide Compound and Method for Producing the Same The first copolymerized polyimide compound according to the embodiment of the present invention includes different polyimide monomers, that is, 1,4-bis (4-amino-2-trimethyl). Fluoromethylphenoxy) tetrafluorobenzene, 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene, 1,3-bis (4-amino-2-trifluoromethylphenoxy) -4,6-di It is produced by copolymerizing chlorobenzene or the like with 2,2-bis (dicarboxyphenyl) hexafluoropropane dianhydride (6FDA), and is defined by Chemical Formula 4.
[0025]
[Chemical Formula 10]
Figure 0003719898
(Where X is a halogen element of chlorine, bromine or iodine or a halogenated alkyl group, and Ar and Ar ′ are an aromatic ring group or a halogenated aromatic ring group)
[0026]
When the production process of the first copolymerized polyimide compound of the present invention is examined, the same number of moles of polyimide monomer and 2,2-bis (dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) are dissolved in dimethylacetamide. . The product resulting from the dissolution process is stirred in a nitrogen atmosphere to form an intermediate polyamic acid. Then, after spin-coating the polyamic acid on a silicon substrate, the silicon substrate coated with the polyamic acid is heat-treated in an oven or the like to obtain the first copolymer polyimide compound represented by the chemical formula 4.
[0027]
[Embodiment 2-1]
4.53 g of 1,4-bis (4-amino-2-trifluoromethylphenoxy) tetrafluorobenzene of the same number of moles, 0.009 mol and 4 g of 2,2-bis (dicarboxyphenyl) hexafluoropropane dihydride, After dissolving 0.009 mol in 42.5 g of dimethylacetamide as a solvent, the mixture was stirred in a nitrogen atmosphere for 24 hours to synthesize a polyamic acid. Thereafter, the polyamic acid solution was spin-coated on a silicon substrate, and this was heat-treated in an oven in a nitrogen atmosphere at 100 ° C./30 minutes, 200 ° C./1 hour, 350 ° C./1 hour to obtain a transparent polyimide film. At this time, the refractive index of the polyimide is 1550 nm and is 1.5099 in the TE mode and 1.5024 in the TM mode.
[0028]
[Embodiment 2-2]
1.855 g of 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene of the same number of moles, 0.009 mol and 4 g of 2,2-bis (dicarboxyphenyl) hexafluoropropane dihydride; 009 mol was dissolved in 42.5 g of dimethylacetamide as a solvent, and then stirred for 24 hours in a nitrogen atmosphere to synthesize a polyamic acid. Thereafter, the polyamic acid solution was spin-coated on a silicon substrate, and this was heat-treated in an oven in a nitrogen atmosphere at 100 ° C./30 minutes, 200 ° C./1 hour, 350 ° C./1 hour to obtain a transparent polyimide film. At this time, the refractive index of the polyimide is 1550 nm, 1.5289 in the TE mode, and 1.5224 in the TM mode.
[0029]
[Embodiment 2-3]
1.475 of 1,3-bis (4-amino-2-trifluoromethylphenoxy) -4,6-dichlorobenzene of the same mole number, 0.009 mole and 2,2-bis (dicarboxyphenyl) hexafluoropropane 4 g of dihydride and 0.009 mol were dissolved in 42.4 g of dimethylacetamide as a solvent, and then stirred for 24 hours in a nitrogen atmosphere to synthesize a polyamic acid. Thereafter, the polyamic acid solution was spin-coated on a silicon substrate, and this was heat-treated in an oven in a nitrogen atmosphere at 100 ° C./30 minutes, 200 ° C./1 hour, 350 ° C./1 hour to obtain a transparent polyimide film. At this time, the refractive index of the polyimide is 1550 nm, 1.5344 for the TE mode, and 1.5303 for the TM mode.
[0030]
(2) Second Copolymerized Polyimide Compound and Method for Producing the Same The second copolymerized polyimide compound according to the embodiment of the present invention is a different polyimide monomer, that is, 1,4-bis (4-amino-2-trimethyl). Fluoromethylphenoxy) tetrafluorobenzene, 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene, 1,3-bis (4-amino-2-trifluoromethylphenoxy) -4,6-di It is produced by copolymerizing any one of chlorobenzene with 1,2,4,5-benzenetetracarboxyanhydride (PDMA), and is defined by Chemical Formula 5.
[0031]
Embedded image
Figure 0003719898
(Where X is a halogen element of chlorine, bromine or iodine or a halogenated alkyl group, and Ar and Ar ′ are an aromatic ring group or a halogenated aromatic ring group)
[0032]
When the production process of the second copolymerized polyimide compound of the present invention is examined, the polyimide monomer and 1,2,4,5-benzenetetracarboxyanhydride are dissolved in dimethylacetamide. Next, the product resulting from the dissolution process is stirred in a nitrogen atmosphere to form an intermediate polyamic acid. Thereafter, the polyamic acid is spin-coated on a silicon substrate, and then the silicon substrate coated with the polyamic acid is heat-treated in an oven or the like, whereby a second copolymerized polyimide compound represented by Formula 5 can be obtained.
[0033]
[Embodiment 3-1]
4.503 g of 1,4-bis (4-amino-2-trifluoromethylphenoxy) tetrafluorobenzene of the same number of moles, 0.009 mol and 1.963 g of 1,2,4,5-benzenetetracarboxyanhydride, 0.009 mol was dissolved in 32.3 g of dimethylacetamide as a solvent, and then stirred for 24 hours in a nitrogen atmosphere to synthesize a polyamic acid. Thereafter, the polyamic acid solution was spin-coated on a silicon substrate, and this was heat-treated in an oven in a nitrogen atmosphere at 100 ° C./30 minutes, 200 ° C./1 hour, 350 ° C./1 hour to obtain a transparent polyimide film. At this time, the refractive index of the polyimide is 1550 nm, 1.5397 for the TE mode, and 1.5239 for the TM mode.
[0034]
[Embodiment 3-2]
1.855 g, 0.009 mol of 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene of the same mole number, 1.963 g of 1,9,4,5-benzenetetracarboxyanhydride; 009 mol was dissolved in 29.1 g of dimethylacetamide as a solvent, and then stirred for 24 hours in a nitrogen atmosphere to synthesize a polyamic acid. Thereafter, the polyamic acid solution was spin-coated on a silicon substrate, and this was heat-treated in an oven in a nitrogen atmosphere at 100 ° C./30 minutes, 200 ° C./1 hour, 350 ° C./1 hour to obtain a transparent polyimide film. At this time, the refractive index of the polyimide is 1550 nm, 1.5671 in the TE mode, and 1.5513 in the TM mode.
[0035]
[Embodiment 3-3]
1.475 g of 1,3-bis (4-amino-2-trifluoromethylphenoxy) -4,6-dichlorobenzene of the same number of moles, 0.009 mol and 1,2,4,5-benzenetetracarboxyanhydride 1.963 g and 0.009 mol were dissolved in 32.3 g of dimethylacetamide as a solvent, and then stirred for 24 hours in a nitrogen atmosphere to synthesize a polyamic acid. Thereafter, the polyamic acid solution was spin-coated on a silicon substrate, and this was heat-treated in an oven in a nitrogen atmosphere at 100 ° C./30 minutes, 200 ° C./1 hour, 350 ° C./1 hour to obtain a transparent polyimide film. At this time, the refractive index of the polyimide is 1550 nm, 1.5727 in the TE mode, and 1.5670 in the TM mode.
[0036]
[Embodiment 3-4]
Two diamines, 1,4-bis (4-amino-2-trifluoromethylphenoxy) tetrafluorobenzene 1.576 g, 0.00315 mol and 1,4-bis (4-amino-2-trifluoromethylphenoxy) ) After dissolving 2.506 g of benzene and 0.00585 mol in 30.2 g of dimethylacetamide as a solvent together with 1,2,4,5-benzenetetracarboxyanhydride, the mixture was stirred in a nitrogen atmosphere for 24 hours to give a polyamic acid. Synthesized. Thereafter, the polyamic acid solution was spin-coated on a silicon substrate, and this was heat-treated in an oven in a nitrogen atmosphere at 100 ° C./30 minutes, 200 ° C./1 hour, 350 ° C./1 hour to obtain a transparent polyimide film. At this time, the refractive index of the polyimide is 1550 nm, 1.5597 for the TE mode, and 1.5400 for the TM mode.
[0037]
【The invention's effect】
As described above, the optical polyimide monomer, the polyimide compound, and the manufacturing method thereof according to the embodiment of the present invention maintain the low light absorption loss and the high heat resistance of the fluorinated polyimide compound as they are, while the etching process is performed. Thin film breakage can be prevented.
In addition, since the optical polyimide monomer, the polyimide compound, and the manufacturing method thereof according to the embodiment of the present invention exhibit low optical absorption loss in the optical communication wavelength band of 1300 to 1550 nm, various refractive indexes are obtained in a relatively wide region. Adjustments can expand the material selection range for the core and cladding.
[Brief description of the drawings]
FIG. 1 is a flowchart illustrating a method for producing a polyimide monomer according to an embodiment of the present invention.
FIG. 2 is a flowchart illustrating a method for producing a polyimide compound according to an embodiment of the present invention.

Claims (6)

下記の化学式1:
Figure 0003719898
(ここで、Xは塩素、ブロム又は沃素のハロゲン元素であるか、ハロゲン化アルキル基であり、Ar はハロゲン化芳香族環基である):
により定義される、光学用高分子材料用のポリイミド単量体。
The following chemical formula 1:
Figure 0003719898
(Where X is a halogen element of chlorine, bromine or iodine, or a halogenated alkyl group, and Ar is a halogenated aromatic ring group ):
Polyimide monomer for optical polymer material , defined by
テトラフルオロ− 1,3 −ヒドロキノン及びテトラクロロ− 1,4 −ヒドロキノンからなる群から選択される化合物と2−クロロ−5−ニトロベンゾトリフルオライドをN,N−ジメチルアセトアミドに溶解させる過程と、
前記溶解過程による生成物に炭酸カリウム、第三ブチルアンモニウムクロライド及び銅パウダーを入れて熱を加える過程と、
前記加熱過程による生成物で銅を取り除いて沈殿させた後、アセト酸で再結晶してジニトロ化合物を得る過程と、
前記ジニトロ化合物をテトラヒドロフランに溶解させた後、触媒を用いて還元させることにより、ジアミン化合物を生成する過程とを備えることを特徴とする光学用のポリイミド単量体の製造方法。
Dissolving a compound selected from the group consisting of tetrafluoro- 1,3 -hydroquinone and tetrachloro- 1,4 -hydroquinone and 2-chloro-5-nitrobenzotrifluoride in N, N-dimethylacetamide;
Adding potassium carbonate, tert-butylammonium chloride and copper powder to the product of the dissolution process and applying heat;
Removing and precipitating copper from the product of the heating process, and then recrystallizing with aceto acid to obtain a dinitro compound;
A process for producing a diamine compound by dissolving the dinitro compound in tetrahydrofuran and then reducing the dinitro compound using a catalyst.
下記の化学式3:
Figure 0003719898
(ここで、Xは塩素、ブロム又は沃素のハロゲン元素であるか、ハロゲン化アルキル基であり、Arはハロゲン化芳香族環基であり、Zは部分/完全フッ素化芳香族鎖、部分/完全塩素化芳香族鎖、部分/完全フッ素化環形脂肪族、部分/完全塩素化環形脂肪族、部分/完全フッ素化脂肪族、部分/完全塩素化脂肪族或いはこれらがヘテロ原子で連結される構造である)
により定義される、ポリイミド化合物からなる光学用高分子。
The following chemical formula 3:
Figure 0003719898
(Where X is a halogen element of chlorine, bromine or iodine, or a halogenated alkyl group, Ar is a halogenated aromatic ring group , Z is a partially / fully fluorinated aromatic chain, partially / completely Chlorinated aromatic chain, part / fully fluorinated cycloaliphatic, part / fully chlorinated cycloaliphatic, part / fully fluorinated aliphatic, part / fully chlorinated aliphatic, or a structure in which these are connected by heteroatoms is there)
An optical polymer comprising a polyimide compound defined by
光学用の高分子材料を製造する方法において、下記の化学式1:
Figure 0003719898
(ここで、Xは塩素、ブロム又は沃素のハロゲン元素であるか、ハロゲン化アルキル基であり、Ar はハロゲン化芳香族環基である):
によるポリイミド単量体と下記の化学式2:
Figure 0003719898
(ここで、Zは部分/完全フッ素化芳香族鎖、部分/完全塩素化芳香族鎖、部分/完全フッ素化環形脂肪族、部分/完全塩素化環形脂肪族、部分/完全フッ素化脂肪族、部分/完全塩素化脂肪族或いはこれらがヘテロ原子で連結される構造である);
によるジアンヒドリドをジメチルアセトアミドに溶解させる過程と、
前記溶解過程による生成物を窒素雰囲気で攪拌させてポリアミック酸を形成する中間体形成過程と、
前記中間体形成過程によるポリアミック酸をシリコン基板にコーティングする過程と、
前記ポリアミック酸でコーティングされた基板を熱処理してポリイミド化合物を生成する過程とを備えることを特徴とする光学用のポリイミド化合物の製造方法。
In a method for producing an optical polymer material, the following chemical formula 1:
Figure 0003719898
(Where X is a halogen element of chlorine, bromine or iodine, or a halogenated alkyl group, and Ar is a halogenated aromatic ring group ):
And the following chemical formula 2:
Figure 0003719898
(Where Z is a partial / fully fluorinated aromatic chain, a partial / fully chlorinated aromatic chain, a partial / fully fluorinated cycloaliphatic, a partial / fully chlorinated cycloaliphatic, a partial / fully fluorinated aliphatic, Partial / fully chlorinated aliphatic or a structure in which these are connected by a hetero atom);
A process of dissolving dianhydride by dimethylacetamide,
An intermediate formation process in which the product of the dissolution process is stirred in a nitrogen atmosphere to form a polyamic acid;
A process of coating a silicon substrate with polyamic acid by the intermediate formation process;
A process for producing a polyimide compound by heat-treating the substrate coated with the polyamic acid.
下記の化学式4:
Figure 0003719898
(ここで、Xは塩素、ブロム又は沃素のハロゲン元素であるか、ハロゲン化アルキル基であり、Ar及びAr ' はハロゲン化芳香族環基である):
により定義されることを特徴とする光学用のポリイミド化合物。
The following chemical formula 4:
Figure 0003719898
(Where X is a halogen element of chlorine, bromine or iodine, or a halogenated alkyl group, and Ar and Ar are halogenated aromatic ring groups ):
An optical polyimide compound characterized by the above.
下記の化学式5:
Figure 0003719898
(ここで、Xは塩素、ブロム又は沃素のハロゲン元素であるか、ハロゲン化アルキル基であり、Ar及びAr'は芳香族環基又はハロゲン化芳香族環基である) :
により定義される、ポリイミド化合物からなる光学用高分子。
The following chemical formula 5:
Figure 0003719898
(Where X is a halogen element of chlorine, bromine or iodine, or is a halogenated alkyl group, and Ar and Ar ′ are an aromatic ring group or a halogenated aromatic ring group):
An optical polymer comprising a polyimide compound defined by
JP2000064045A 2000-03-08 2000-03-08 Optical polyimide monomer, polyimide compound and production method thereof Expired - Fee Related JP3719898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000064045A JP3719898B2 (en) 2000-03-08 2000-03-08 Optical polyimide monomer, polyimide compound and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000064045A JP3719898B2 (en) 2000-03-08 2000-03-08 Optical polyimide monomer, polyimide compound and production method thereof

Publications (2)

Publication Number Publication Date
JP2001247523A JP2001247523A (en) 2001-09-11
JP3719898B2 true JP3719898B2 (en) 2005-11-24

Family

ID=18583813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000064045A Expired - Fee Related JP3719898B2 (en) 2000-03-08 2000-03-08 Optical polyimide monomer, polyimide compound and production method thereof

Country Status (1)

Country Link
JP (1) JP3719898B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101536398B1 (en) * 2013-04-24 2015-07-13 유니마이크론 테크놀로지 코퍼레이션 Diamine monomer with side group, polyimide with side group and manufacturing method thereof
KR101912738B1 (en) * 2017-05-23 2018-10-30 주식회사 대림코퍼레이션 High Transparency polyimide precursor resin composition having excellent Optical Characteristics and phase Retardation, method for manufacturing polyimide film using the same, and polyimide film thereof

Also Published As

Publication number Publication date
JP2001247523A (en) 2001-09-11

Similar Documents

Publication Publication Date Title
JP7181023B2 (en) Poly(amide-imide) copolymers, compositions for making poly(amide-imide) copolymers, molded articles and indicating devices containing poly(amide-imide) copolymers
JP2018193569A (en) Polyimide, and polyimide precursor
JP3034236B2 (en) Optical communication device
CA2247578C (en) Polyimide for optical communications and method for preparing the same
US6891067B2 (en) Optical polyimide precursor, optical polyimide compound and fabricating method thereof
CA2256974C (en) Bis (dialkylmaleimide) derivative and polyetherimide for optical communications formed therefrom
JP3719898B2 (en) Optical polyimide monomer, polyimide compound and production method thereof
JP3335608B2 (en) Polyimide for optical communication
US7585984B2 (en) Perdeuterated polyimides, their process of preparation and their use as materials which are transparent within the region from 2500 to 3500 cm-1
JP2000169579A (en) Organic solvent-soluble polyimide and manufacture thereof
JP3490010B2 (en) Bis (trichlorotrimellitic anhydride) derivative and polyesterimide for optical communication formed therefrom
JP2004182962A (en) Polyimide resin having triptycene skeleton and optical component
US6028159A (en) Polyamideimide for optical communications and method for preparing the same
JPH08184701A (en) Polarizable film and its production and waveguide type optical device formed by using the same
WO2019245200A1 (en) Branched copolymer, and photosensitive resin composition, photosensitive resin film and optical device which use same
KR20200058812A (en) Diamine compound, polyimide precursor and polyimide film prepared by using same
US6842576B2 (en) Polymer lightguide
JP3425854B2 (en) Low refractive index transparent polyimide copolymer, precursor solution thereof, and production method thereof
JP2009067936A (en) Polyamic acid and imidized polymer
KR20200072418A (en) Diamine compound, polyimide precursor and polyimide film prepared by using same
KR100292800B1 (en) Fluorine-substituted polyarylene ether copolymer and polymer optical device using the same
JP4931007B2 (en) Polyamic acid and imidized polymer
KR102247318B1 (en) Diamine compound, polyimide precursor and polyimide film prepared by using same
KR102224984B1 (en) Diamine compound and polyimide precursor and polyimide film prepared by using same
KR102103552B1 (en) Chalcogenide diamine compound, polyamic acid prepared therefrom, polyimide prepared therefrom, and polyimide film including polyimde

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3719898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees