JP3719675B2 - Fmcwレーダ装置およびfmcwレーダ用信号処理方法 - Google Patents

Fmcwレーダ装置およびfmcwレーダ用信号処理方法 Download PDF

Info

Publication number
JP3719675B2
JP3719675B2 JP2003099795A JP2003099795A JP3719675B2 JP 3719675 B2 JP3719675 B2 JP 3719675B2 JP 2003099795 A JP2003099795 A JP 2003099795A JP 2003099795 A JP2003099795 A JP 2003099795A JP 3719675 B2 JP3719675 B2 JP 3719675B2
Authority
JP
Japan
Prior art keywords
frequency
signal
target
beat
fmcw radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003099795A
Other languages
English (en)
Other versions
JP2004309192A (ja
Inventor
雅 三本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003099795A priority Critical patent/JP3719675B2/ja
Publication of JP2004309192A publication Critical patent/JP2004309192A/ja
Application granted granted Critical
Publication of JP3719675B2 publication Critical patent/JP3719675B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はFMCW(Frequency Modulated Continuous Wave)レーダ装置およびFMCWレーダ用信号処理方法に関し、特に、たとえば車両等の移動体に搭載され、観測対象(以下目標と記す)を検知してその距離や速度を測定するFMCWレーダ装置およびFMCWレーダ用信号処理方法に関するものである。
【0002】
【従来の技術】
FMCWレーダでは、送信信号として時間に対して線形な周波数変調信号を使用し、時間の経過につれて周波数が高くなる変調期間(アップフェーズ)と、時間の経過につれて周波数が低くなる変調期間(ダウンフェーズ)で観測を行う(例えば、特許文献1(特に、図8)参照)。
【0003】
【特許文献1】
特開平7−55924号公報
【0004】
観測結果を基に、送信信号と受信信号のミキシングによりビート信号を生成する。ビート信号の周波数は、送信信号と受信信号の周波数差となる。
【0005】
このビート信号に対して、FFT(Fast Fourier Transform)処理などを実施することにより、周波数パワースペクトルを得ることができ、設定しきい値以上のパワーレベルであるピーク周波数の検出処理を行うと、アップフェーズにおけるビート周波数と、ダウンフェーズにおけるビート周波数が得られる。
【0006】
このとき、送信信号の周波数変調における線形性が確保されていないと、ビート周波数が時間につれて変動するため、目標の周波数パワースペクトルのピークにおいてパワーの拡散が起こり、ピーク形状が急峻でなくなる。この結果、目標の検知性能や、距離・速度の測定精度が劣化することが知られている。
【0007】
このため、送信信号の周波数変調における線形性を確保するための技術が提案されている(例えば、上記の特許文献1および特許文献2〜4)。
【0008】
【特許文献2】
特開2002−62355号公報
【特許文献3】
特開2002−90447号公報
【特許文献4】
特開2002−156447号公報
【0009】
特許文献1〜4はいずれも、あらかじめ測定したデータを基に、FMCWレーダ装置で使用されるVCO(Voltage Controlled Oscillator)に印加される電圧を制御・調整することで送信信号の周波数変調における線形性を確保しようとしている。
【0010】
例えば、特許文献4の図1に示されているFMCW距離計測装置では、マイクロコンピュータに内蔵された、プログラムを実行するためのCPU(Central Processing Unit)が、あらかじめ記憶されたディジタルデータを呼び出して、DAC(Digital to Analog Converter)に入力する。DACは入力されたディジタルデータに対応して、アナログ制御用電圧を出力する。このアナログ制御用電圧は、ローパスフィルタによって不要な高域周波数を遮断された後、VCOに印加される。VCOは印加されたアナログ制御用電圧に対応して発振周波数を変化させて周波数変調信号を生成する。これが送信信号として方向性結合器に入力される。方向性結合器は、入力された送信信号の大部分をサーキュレータへ出力し、残りの一部をミキサへ出力する。サーキュレータへ入力された送信信号は、アンテナにより空中に電波として放射される。
【0011】
このとき、目標(図示せず)が存在すれば、放射された電波は目標で反射してその一部がアンテナで受信され、受信信号としてサーキュレータを介してミキサへ入力される。ミキサでは方向性結合器から入力された送信信号と、サーキュレータから入力された受信信号をミキシングしてビート信号を生成し、マイクロコンピュータ又はホストコンピュータへ出力する。マイクロコンピュータ又はホストコンピュータは、入力されたビート信号から、目標に対応するビート周波数を得て、目標の距離と速度を算出する。
【0012】
なお、CPUが呼び出すディジタルデータは、上記観測動作が実施される前に以下のようにして記憶される。プリスケーラが、VCOから出力される送信信号の一部を入力して、分周した送信信号をマイクロコンピュータ内のカウンタへ出力し、カウンタは分周後の送信周波数を測定する。マイクロコンピュータはこの分周後の送信周波数を利用して、送信信号が生成される際に変調周波数の線形性が確保されるようなアナログ制御電圧を発生するようにディジタルデータを算出し、マイクロコンピュータ内のメモリに記憶する。
【0013】
また、記憶されているディジタルデータは、一定時間毎や観測動作を所定回数実施した時点で更新される。
【0014】
【発明が解決しようとする課題】
従来のFMCWレーダ装置は以上のように構成されており、プリスケーラで分周された送信信号周波数を測定し、この周波数を利用して送信信号の周波数変調を制御・調整するためのデータを作成している。しかし、あらかじめ測定された結果から作成した制御・調整用データを基に制御・調整を行っているため、データが次に更新されるまでの間に、VCOの発振特性が変化するなどして、送信信号の周波数変調における線形性が確保されなくなった場合には対応できないという問題点があった。また、データの更新中は観測ができないという問題点もあった。
【0015】
この発明はかかる問題点を解決するためになされたものであり、あらかじめ測定した制御・調整用データによらず、観測されたビート信号の特性を利用して、送信信号の周波数変調における線形性が確保されないことによる性能劣化を改善できるFMCWレーダ装置およびFMCWレーダ用信号処理方法を得ることを目的とする。
【0016】
【課題を解決するための手段】
この発明は、周波数変調された送信信号と受信信号をミキシングして生成されるビート信号から、観測対象の目標を検知して、当該目標との相対距離および相対速度を測定するためのFMCWレーダ装置であって、前記ビート信号が入力されて、当該ビート信号を、時間的に変動する周波数成分と前記目標に対応する一定値の目標ビート周波数成分とに分離させた測定用信号を算出する不要周波数成分分離手段と、前記測定用信号を周波数パワースペクトルに変換する周波数パワースペクトル変換手段と、前記周波数パワースペクトルに基づいて、目標ビート周波数を検出して出力する目標ビート周波数検出手段と、前記目標ビート周波数に基づいて、前記目標との相対距離および相対速度を算出して出力する距離・速度算出手段とを備えている。
【0017】
【発明の実施の形態】
以下、この発明の実施の形態について図を参照して説明する。図1は本発明の実施の形態1に係るFMCWレーダ装置の構成図である。
【0018】
図1において、100はFMCWレーダ装置の各構成要素を制御する制御部、110は制御部100からの制御によって、あらかじめ設定されたアナログ電圧をVCO4へ印加する電圧生成部、120はビート信号をサンプリングしてアナログ−ディジタル変換し、得られたディジタル電圧値を出力するADC(Analog to Digital Converter:アナログ−ディジタル変換器)、130はディジタル電圧値を記憶するメモリ、140はメモリ130に記憶されたディジタル電圧値を読み出して、目標の検知と当該目標との相対距離および相対速度の測定結果を出力する信号処理部、141はビート信号が入力されて、当該ビート信号を時間的に変動する周波数成分と前記目標に対応する一定値の目標ビート周波数成分とに分離した測定用信号を算出する不要周波数成分分離手段、142は測定用信号を周波数パワースペクトルに変換する周波数パワースペクトル変換手段、143は周波数パワースペクトルに基づいて目標ビート周波数を検出して出力する目標ビート周波数検出手段、144は目標ビート周波数に基づいて、前記目標との相対距離および相対速度を算出して出力する距離・速度算出手段、4はVCO、5は方向性結合器、6はサーキュレータ、7はミキサ、8はアンテナである。なお、4〜8の動作については、上述の従来技術で説明したものと同様の動作であるため、ここでは説明を省略する。
【0019】
制御部100は、例えばマイクロコンピュータから構成されて、FMCWレーダ装置の各構成要素を制御する。電圧生成部110は、例えば、DAC(Digital to Analog Converter:D/A変換器)とローパスフィルタから構成されており、制御部100からの制御によって、あらかじめ設定されたアナログ電圧をVCO4へ印加する。VCO4は印加されたアナログ電圧に対応して発振周波数を変化させて周波数変調信号を生成し、これが送信信号として方向性結合器5に入力される。方向性結合器5は、入力された送信信号の大部分をサーキュレータ6へ出力し、残りの一部をミキサ7へ出力する。サーキュレータ6へ入力された送信信号は、アンテナ8により空中に電波として放射される。
【0020】
このとき、目標(図示せず)が存在すれば、放射された電波は目標で反射してその一部がアンテナ8で受信され、受信信号としてサーキュレータ6を介してミキサ7へ入力される。ミキサ7では方向性結合器5から入力された送信信号と、サーキュレータ6から入力された受信信号をミキシングしてビート信号を生成し、ADC120へ出力する。ADC120は、制御部100からの制御により、入力されたビート信号の振幅電圧をサンプリングしてアナログ−ディジタル変換し、得られたディジタル電圧値はメモリ130に記憶される。
【0021】
アップフェーズ、または、ダウンフェーズが終了した時点で、制御部100からの制御により、信号処理部140がメモリ130に記憶されたビート信号のディジタル電圧値を読み出す。
【0022】
なお、参考までに、図7に、本発明のFMCWレーダにおける各信号の時間に対する周波数を示す。図7において、Stは送信信号、Srは受信信号、Sbはビート信号である。
【0023】
以降、信号処理部140は図2に示す処理手順に従ってビート信号のディジタル電圧値を処理する。
【0024】
まず、ステップ1では、アップフェーズ分のビート信号のディジタル電圧値Su(t){t=1,2,・・・,T}がメモリ130から読み出され、不要周波数成分分離手段141へ入力される。
【0025】
ここで、観測されたビート信号の特性を利用して不要周波数成分を分離する原理について述べる。
【0026】
送信信号の周波数変調における線形性が理想的に確保されている場合、目標ビート周波数Bi(t)は、(1)式に示されるように、時間に対して一定値Fbであるとする。
Bi(t)=Fb (1)
この場合、周波数パワースペクトルは、図8の実線のように、パワーが周波数Fbに集中し、そのピーク形状は急峻である。
【0027】
これに対して実際の場合には、送信信号の周波数変調における線形性が確保されないため、目標ビート周波数B(t)は、(2)式に示されるように、時間的に変動する成分x(t)が加わる。
B(t)=Fb+x(t) (2)
【0028】
ここで、時間的に変動する成分x(t)が、真値であるFbを中心に変調時間T[s]の間にα[Hz]分増大(あるいは減少)する場合、x(t)は式(3)で表せる。
【0029】
【数1】
Figure 0003719675
【0030】
このとき、x(t)を時間について積分した結果得られるX(t)は式(4)で表される。
【0031】
【数2】
Figure 0003719675
【0032】
X(t)により、ビート信号Sb(t)は式(5)で表される。
【0033】
【数3】
Figure 0003719675
【0034】
Sb(t)の周波数パワースペクトルは図8の破線のようにFb付近でパワーが拡散し、そのピーク形状は急峻でなくなる。
【0035】
ここで、式(6)で表される観測期間T内で時間方向を逆にした信号Sb(T−t)より、
【0036】
【数4】
Figure 0003719675
【0037】
Sb(t)にSb(T−t)を乗じた信号SSb(t)について、式を展開し整理すると、式(7)が得られる。
【0038】
【数5】
Figure 0003719675
【0039】
式(7)より、第1項の位相部分を時間について微分してその周波数FF1を求めると、式(8)となりビート周波数の変動成分x(t)を2倍した周波数である。
【0040】
【数6】
Figure 0003719675
【0041】
一方、式(7)の第2項の位相部分を時間について微分してその周波数FF2を求めると、式(9)となり目標ビート周波数Fbを2倍した周波数である。
【0042】
【数7】
Figure 0003719675
【0043】
従って、SSb(t)では、目標ビート周波数Fbと変動成分x(t)が周波数上で分離されている。
【0044】
そのため、SSb(t)から得た周波数パワースペクトルでは、図3の点線のようにx(t)に起因する周波数成分と目標ビート周波数Fbは分離され、x(t)に起因する周波数成分が低域周波数に現れる。ただし、目標ビート周波数のスペクトルピークは真値の周波数の2倍周波数に現れる。
【0045】
このようなSSb(t)の特性を利用して目標ビート周波数と変動成分を分離するため、ステップ2では、不要周波数成分分離手段141が、Su(t)にSu(T−t+1)を乗じた測定用信号SSu(t){t=1,2,・・・,T}を算出する。
【0046】
続くステップ3では、周波数パワースペクトル変換手段142がSSu(t)を入力し、例えばFFT処理を実施して周波数パワースペクトルSSu(f)を得る。
【0047】
ステップ4では、目標ビート周波数検出手段143がSSu(f)を入力して、例えばパワーレベルに関してピーク探索を行い、そのピークレベルが設定したしきい値以上で、ピークのパワーレベルのy%以上である周波数範囲幅が設定した幅より狭い場合に検出とする周波数検出処理によって、アップフェーズにおけるビート周波数Uuを検出する。ただし、Uuはアップフェーズにおける真のビート周波数の2倍の値である。
【0048】
ステップ5ではステップ1と同様に、ダウンフェーズ分のビート信号のディジタル電圧値Sd(t){t=1,2,・・・,T}がメモリ130から読み出され、不要周波数成分分離手段141へ入力される。
【0049】
ステップ6ではステップ2と同様に、不要周波数成分分離手段141がSd(t)にSd(T−t+1)を乗じて測定用信号SSd(t){t=1,2,・・・,T}を算出する。
【0050】
ステップ7ではステップ3と同様に、周波数パワースペクトル変換手段142がSSd(t)を入力し、FFT処理などを実施して周波数パワースペクトルSSd(f)を得る。
【0051】
ステップ8ではステップ4と同様に、目標ビート周波数検出手段143がSSd(f)を入力して、周波数検出処理によってダウンフェーズにおけるビート周波数Ddを検出する。ただし、Ddはダウンフェーズにおける真のビート周波数の2倍の値である。
【0052】
ステップ9では、距離・速度算出手段144が、ステップ4で検出されたUuと、ステップ8で検出されたDdから式(10),(11)により相対距離rと相対速度vを算出する。
【0053】
【数8】
Figure 0003719675
【0054】
ステップ10では、信号処理部140が制御部100からの制御として観測終了が入力されているかを判定し、入力されていなければステップ1に戻り、入力されていれば信号処理動作を終了する。
【0055】
以上のように、本実施の形態によれば、周波数変調された送信信号と受信信号をミキシングして生成されるビート信号から、観測対象の目標を検知して、当該目標との相対距離および相対速度を測定するためのFMCWレーダ装置において、前記ビート信号をサンプリングしてそのディジタル電圧値を出力するADC120と、ディジタル電圧値を記憶するメモリ130と、メモリ130に記憶された当該ディジタル電圧値を読み出して、目標の検知と当該目標との相対距離および相対速度の測定結果を出力する信号処理部140で構成され、信号処理部140が、ビート信号を入力して時間的に変動する周波数成分と目標に対応する一定周波数成分とを分離した測定用信号として出力する不要周波数成分分離手段141と、測定用信号を入力して周波数パワースペクトルへ変換して出力する周波数パワースペクトル変換手段142と、前記周波数パワースペクトルを入力して目標に対応する一定周波数(目標ビート周波数)を検出して出力する目標ビート周波数検出手段143と、前記目標ビート周波数を入力して目標との相対距離および相対速度を算出して出力する距離・速度算出手段144を備えているので、あらかじめ測定した制御・調整用データによらず、送信信号の周波数変調において線形性が確保されないことで発生する目標の周波数パワースペクトルにおけるピークパワーの拡散を減じて急峻なピークを得て、目標の検知性能や、距離・速度の測定精度の劣化を改善することができるという効果が得られる。
【0056】
また、本実施の形態によれば、不要周波数成分分離手段141として、期間Tで観測されたビート信号Sb(t)に対してSb(T−t)を乗じる処理を備えているので、制御・調整用データを測定する必要が無く、観測不可能な時間がないという効果が得られる。
【0057】
実施の形態2.
以下、この発明の他の実施の形態について図を参照して説明する。図4は本発明の実施の形態2に係るFMCWレーダ装置の構成図である。
【0058】
図4において、200は第2の信号処理部、201は測定用信号に対して周波数の大きさに比例したゲインを与えて出力する周波数フィルタであり、その他の構成要素は、上記発明の実施の形態1の図1で示したものと同等である。すなわち、本実施の形態の構成と図1に示した実施の形態1の構成との違いは、図4に示すように、信号処理部内の不要周波数成分分離手段141と周波数パワースペクトル変換手段142との間に、測定用信号に対して周波数の大きさに比例したゲインを与えて出力する周波数フィルタ201が付加されている点である。
【0059】
まず、制御部100、電圧生成部110、VCO4、方向性結合器5、サーキュレータ6、ミキサ7、アンテナ8、ADC120、メモリ130が上記発明の実施の形態1と同様に動作して、目標のビート信号の振幅電圧がディジタル値でメモリ130に記憶される。
【0060】
メモリ130に記憶されたビート信号のディジタル電圧値は、アップフェーズ、またはダウンフェーズが終了した時点で、制御部100からの制御により、第2の信号処理部200へ入力される。
【0061】
以降、第2の信号処理部200は図5に示す処理手順に従ってビート信号のディジタル電圧値を処理する。
【0062】
まず、ステップ1では、アップフェーズ分のビート信号のディジタル電圧値Su(t){t=1,2,・・・,T}がメモリ130から読み出され、不要周波数成分分離手段141へ入力される。
【0063】
続くステップ2では、不要周波数成分分離手段141がSu(t)にSu(T−t+1)を乗じた測定用信号SSu(t){t=1,2,・・・,T}を算出する。
【0064】
一般に、時間領域における微分演算は、周波数の大きさに比例してゲインが単調増加する周波数フィルタと等価である。従って、前記のSSb(t)に対して微分演算を行うと、上記実施の形態1の図3の点線で示されているSSb(t)の周波数パワースペクトルは、図6の点線のように低域周波数に現れるx(t)に起因する周波数成分のパワーレベルが低減される。
【0065】
この微分演算による特性を利用するため、ステップ11では、周波数フィルタ201がSSu(t)を入力して、SSu(t)のn回微分SSu(n)(t)を算出する。
【0066】
続くステップ3では、周波数パワースペクトル変換手段142がSSu(n)(t)を入力し、FFT処理などを実施して周波数パワースペクトルSSun(f)を得る。
【0067】
ステップ4では、目標ビート周波数検出手段143がSSun(f)を入力して、上記実施の形態1と同様な周波数検出処理を実施して、アップフェーズにおけるビート周波数Uuを検出する。ただし、Uuはアップフェーズにおける真のビート周波数の2倍の値である。
【0068】
ステップ5ではステップ1と同様に、ダウンフェーズ分のビート信号のディジタル電圧値Sd(t){t=1,2,・・・,T}がメモリ130から読み出され、不要周波数成分分離手段141へ入力される。
【0069】
ステップ6ではステップ2と同様に、不要周波数成分分離手段141がSd(t)にSd(T−t+1)を乗じて測定用信号SSd(t){t=1,2,・・・,T}を算出する。
【0070】
続くステップ12ではステップ11と同様に、周波数フィルタ201がSSd(t)を入力して、SSd(t)のn回微分SSd(n)(t)を算出する。
【0071】
ステップ7ではステップ3と同様に、周波数パワースペクトル変換手段142がSSd(n)(t)を入力し、FFT処理などを実施して周波数パワースペクトルSSdn(f)を得る。
【0072】
ステップ8ではステップ4と同様に、目標ビート周波数検出手段143がSSdn(f)を入力して、周波数検出処理によってダウンフェーズにおけるビート周波数Ddを検出する。ただし、Ddはダウンフェーズにおける真のビート周波数の2倍の値である。
【0073】
ステップ9では、距離・速度算出手段144が、ステップ4で検出されたUuと、ステップ8で検出されたDdから式(14),(15)より相対距離rと相対速度vを算出する。
【0074】
ステップ10では、第2の信号処理部200が制御部100からの制御として観測終了が入力されているかを判定し、入力されていなければステップ1に戻り、入力されていれば信号処理動作を終了する。
【0075】
以上のように、本実施の形態によれば、上記の実施の形態1と同様の効果が得られるとともに、測定用信号を入力して周波数の大きさに比例したゲインを与えて出力する周波数フィルタ201をさらに備えているので、周波数パワースペクトルにおいて低域周波数に現れる変動成分のパワーレベルを低減して、目標の検知性能の劣化を改善することができるという効果が得られる。
【0076】
上述の周波数の大きさに比例したゲインを与えて出力する周波数フィルタ201として、時間についての微分演算処理を備えているので、再現性の高い安定した周波数特性が得られ、目標の検知性能の劣化を改善できるという効果が得られる。
【0077】
【発明の効果】
この発明は、周波数変調された送信信号と受信信号をミキシングして生成されるビート信号から、観測対象の目標を検知して、当該目標との相対距離および相対速度を測定するためのFMCWレーダ装置であって、前記ビート信号が入力されて、当該ビート信号を、時間的に変動する周波数成分と前記目標に対応する一定値の目標ビート周波数成分とに分離させた測定用信号を算出する不要周波数成分分離手段と、前記測定用信号を周波数パワースペクトルに変換する周波数パワースペクトル変換手段と、前記周波数パワースペクトルに基づいて、目標ビート周波数を検出して出力する目標ビート周波数検出手段と、前記目標ビート周波数に基づいて、前記目標との相対距離および相対速度を算出して出力する距離・速度算出手段とを備えているので、あらかじめ測定した制御・調整用データによらず、送信信号の周波数変調において線形性が確保されないことで発生する目標の周波数パワースペクトルにおけるピークパワーの拡散を減じて急峻なピークを得て、目標の検知性能や、距離・速度の測定精度の劣化を改善できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係るFMCWレーダ装置の構成を示したブロック図である。
【図2】 本発明の実施の形態1に係るFMCWレーダ装置の信号処理部における処理手順を示した説明図である。
【図3】 本発明の実施の形態1に係るFMCWレーダ装置での周波数パワースペクトルを示した説明図である。
【図4】 本発明の実施の形態2に係るFMCWレーダ装置の構成を示したブロック図である。
【図5】 本発明の実施の形態2に係るFMCWレーダ装置の信号処理部における処理手順を示した説明図である。
【図6】 本発明の実施の形態2に係るFMCWレーダ装置での周波数パワースペクトルを示した説明図である。
【図7】 FMCWレーダにおける各信号の時間に対する周波数を示した説明図である。
【図8】 FMCWレーダにおける周波数パワースペクトルを示す説明図である。
【符号の説明】
1 マイクロコンピュータ、2 DAC(Digital to Analog Converter)、3 ローパスフィルタ、4 VCO(Voltage Controlled Oscilator)、5 方向性結合器、6 サーキュレータ、7 ミキサ、8 アンテナ、9 プリスケーラ、11 CPU(Central Processing Unit)、12 カウンタ、100制御部、110 電圧生成部、120 ADC(Analog to Digital Converter)、130 メモリ、140 信号処理部、141 不要周波数成分分離手段、142 周波数パワースペクトル変換手段、143 目標ビート周波数検出手段、144 距離・速度算出手段、200 第2の信号処理部、201 周波数フィルタ。

Claims (8)

  1. 周波数変調された送信信号と受信信号をミキシングして生成されるビート信号から、観測対象の目標を検知して、当該目標との相対距離および相対速度を測定するためのFMCWレーダ装置であって、
    前記ビート信号が入力されて、当該ビート信号を、時間的に変動する周波数成分と前記目標に対応する一定値の目標ビート周波数成分とに分離させた測定用信号を算出する不要周波数成分分離手段と、
    前記測定用信号を周波数パワースペクトルに変換する周波数パワースペクトル変換手段と、
    前記周波数パワースペクトルに基づいて、目標ビート周波数を検出して出力する目標ビート周波数検出手段と、
    前記目標ビート周波数に基づいて、前記目標との相対距離および相対速度を算出して出力する距離・速度算出手段と
    を備えていることを特徴とするFMCWレーダ装置。
  2. 前記不要周波数成分分離手段は、
    観測期間T内で観測されたビート信号Sb(t)に対して、当該観測期間T内で時間方向を逆にした信号Sb(T−t)を乗じることにより、前記測定用信号を算出する
    ことを特徴とする請求項1に記載のFMCWレーダ装置。
  3. 前記不要周波数成分分離手段と前記周波数パワースペクトル変換手段との間に設けられ、前記測定用信号に対して周波数の大きさに比例したゲインを与えて出力する周波数フィルタを
    さらに備えたことを特徴とする請求項1または2に記載のFMCWレーダ装置。
  4. 前記周波数フィルタは、前記測定用信号に対して時間についての微分演算処理を行う
    ことを特徴とする請求項3に記載のFMCWレーダ装置。
  5. 周波数変調された送信信号と受信信号をミキシングして生成されるビート信号から、観測対象の目標を検知して、当該目標との相対距離および相対速度を測定するためのFMCWレーダ用信号処理方法であって、
    前記ビート信号を入力して、当該ビート信号を、時間的に変動する周波数成分と前記目標に対応する一定値の目標ビート周波数成分とに分離させた測定用信号を算出する不要周波数成分分離ステップと、
    前記測定用信号を周波数パワースペクトルに変換する周波数パワースペクトル変換ステップと、
    前記周波数パワースペクトルに基づいて、目標ビート周波数を検出する目標ビート周波数検出ステップと、
    前記目標ビート周波数に基づいて、前記目標との相対距離および相対速度を算出する距離・速度算出ステップと
    を備えたことを特徴とするFMCWレーダ用信号処理方法。
  6. 前記不要周波数成分分離ステップは、
    観測期間T内で観測されたビート信号Sb(t)に対して、当該観測期間T内で時間方向を逆にした信号Sb(T−t)を乗じることにより、前記測定用信号を算出する
    ことを特徴とする請求項5に記載のFMCWレーダ用信号処理方法。
  7. 前記不要周波数成分分離ステップと前記周波数パワースペクトル変換ステップとの間に設けられ、前記測定用信号に対して周波数の大きさに比例したゲインを与えて出力する周波数フィルタ処理ステップを
    さらに備えることを特徴とする請求項5または6に記載のFMCWレーダ用信号処理方法。
  8. 前記周波数フィルタ処理ステップは、前記測定用信号に対して時間についての微分演算処理を行うことを特徴とする請求項7に記載のFMCWレーダ用信号処理方法。
JP2003099795A 2003-04-03 2003-04-03 Fmcwレーダ装置およびfmcwレーダ用信号処理方法 Expired - Fee Related JP3719675B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099795A JP3719675B2 (ja) 2003-04-03 2003-04-03 Fmcwレーダ装置およびfmcwレーダ用信号処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099795A JP3719675B2 (ja) 2003-04-03 2003-04-03 Fmcwレーダ装置およびfmcwレーダ用信号処理方法

Publications (2)

Publication Number Publication Date
JP2004309192A JP2004309192A (ja) 2004-11-04
JP3719675B2 true JP3719675B2 (ja) 2005-11-24

Family

ID=33464101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099795A Expired - Fee Related JP3719675B2 (ja) 2003-04-03 2003-04-03 Fmcwレーダ装置およびfmcwレーダ用信号処理方法

Country Status (1)

Country Link
JP (1) JP3719675B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101264287B1 (ko) 2011-11-10 2013-05-22 재단법인대구경북과학기술원 Fmcw 레이더의 거리 정밀 측정방법 및 그 장치
US9709433B2 (en) * 2014-06-30 2017-07-18 Rosemount Tank Radar Ab Pulsed radar level gauging with efficient start-up
JP6337751B2 (ja) * 2014-11-26 2018-06-06 三菱電機株式会社 レーダ信号解析装置、レーダ装置、レーダ信号解析方法およびプログラム
WO2019224950A1 (ja) * 2018-05-23 2019-11-28 三菱電機株式会社 レーダ装置

Also Published As

Publication number Publication date
JP2004309192A (ja) 2004-11-04

Similar Documents

Publication Publication Date Title
US6597308B2 (en) Radar apparatus
JP4769684B2 (ja) 電子走査式レーダ装置
US8232914B2 (en) Radar apparatus
US7834804B2 (en) Radar apparatus
WO2015190565A1 (ja) チャープ波を使用するレーダ装置及びレーダ装置における信号処理方法
JP2017026604A (ja) レーダシステム
WO2005109033A1 (ja) レーダ
US20090033538A1 (en) Ramp Linearization for FMCW Radar Using Digital Down-Conversion of a Sampled VCO Signal
JP4038009B2 (ja) 相関関数測定方法及び装置
JP5097467B2 (ja) 車載用レーダ装置
US6674395B2 (en) Radar system and method of adjusting characteristics thereof
EP1837678B1 (en) Measuring apparatus and measuring method
JP2008128673A (ja) 測定システムおよび方法、測定装置および方法、並びに、情報処理装置および方法
JP2020511647A (ja) 電磁波を用いたコンクリートの構造の探査
JP3719675B2 (ja) Fmcwレーダ装置およびfmcwレーダ用信号処理方法
US7466141B2 (en) Phase measurement device, method, program, and recording medium
JP2008541025A (ja) 目標物体との距離を確定するための方法および装置
JP5093051B2 (ja) レーダ装置
JP4317948B2 (ja) 周波数分析装置の伝達関数測定方法
JPH11271428A (ja) Fm−cwレーダ装置
CN112119328A (zh) 雷达装置
JP2002090447A (ja) Fmcwレーダ装置およびその時間・周波数特性測定方法
WO2010134367A1 (ja) 位相情報を用いた高分解能距離測定方法及び距離測定装置
JP2005030809A (ja) 移動体のレ−ダ方式、レ−ダ装置、レーダ信号処理方法、及びレーダ信号処理装置
JP4131461B2 (ja) レーダ装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees