JP3719268B2 - Vibration isolator - Google Patents

Vibration isolator Download PDF

Info

Publication number
JP3719268B2
JP3719268B2 JP5566894A JP5566894A JP3719268B2 JP 3719268 B2 JP3719268 B2 JP 3719268B2 JP 5566894 A JP5566894 A JP 5566894A JP 5566894 A JP5566894 A JP 5566894A JP 3719268 B2 JP3719268 B2 JP 3719268B2
Authority
JP
Japan
Prior art keywords
pressure receiving
chamber
receiving chamber
partition
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5566894A
Other languages
Japanese (ja)
Other versions
JPH07259920A (en
Inventor
洋一 河本
純生 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Kako Co Ltd
Original Assignee
Kurashiki Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Kako Co Ltd filed Critical Kurashiki Kako Co Ltd
Priority to JP5566894A priority Critical patent/JP3719268B2/en
Publication of JPH07259920A publication Critical patent/JPH07259920A/en
Application granted granted Critical
Publication of JP3719268B2 publication Critical patent/JP3719268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、自動車のエンジンマウントなどとして用いられるものであって、内部の流体室が仕切体により2つの室に仕切られオリフィスを通して両室間を流動する流体の液柱共振により振動減衰が行われる防振装置に関する。
【0002】
【従来の技術】
従来より、この種の防振装置として、仕切体の一側を弾性支承体の変形により液圧変動が生じる受圧室とし、他側を弾性薄膜製のダイヤフラムにより画成して上記受圧室の液圧変動によりオリフィスを通して流動する液体を受けて拡縮する平衡室としたものが広く知られている(例えば、特開昭62−261729号公報、実開昭63−166738号公報、もしくは、特開平4−46233号公報参照)。
【0003】
ところが、このようなダイヤフラムにより平衡室を形成する防振装置においては、上記ダイヤフラムの周囲を液体が漏出しないように液密・気密に固定する必要があるために、ダイヤフラムの外周囲を上下方向から挟み付けて所定量圧縮した状態で取付けており、この取付け作業に手間がかかるという製造上の難点がある上、十分なシール性を得ることができないおそれがある。
【0004】
このため、上記ダイヤフラムを省略して仕切体の上側に剛体のケーシングにより平衡室を画成しこの平衡室に空気を封入して、この空気の膨脹・圧縮作用により液圧変動を吸収させるようにしたものが提案されている(例えば、特開平5−149368号公報参照)。
【0005】
【発明が解決しようとする課題】
しかし、ダイヤフラムにより平衡室を形成して内部に液体を封入したものにおいては、液体の封入工程において内部の液室内に空気の混入が発生するおそれがある。そして、この混入気泡が受圧室内の液体中に残留すると、その気泡が残留した分、オリフィスを通過する流量が減少し、減衰特性の悪化を招くことになる。また、上記のダイヤフラムを省略して空気を封入したものにおいては、大衝撃荷重が作用すると内部の液体が大流動する結果、空気部分から液体に気泡が混入して受圧室内に入りそのまま残留するおそれがある。この場合にも、上記と同様に、気泡の残留により減衰特性の悪化を招くことになる。
【0006】
このため、上記の空気を封入したものにおいて、空気部分から液体中への気泡の混入を防止すべく、平衡室内の液体と空気との間に上記液体より高粘性でかつ低比重の混合防止液を層にして介在させ両者の混合を防止しようとするものが提案されている(特開平5−126202号公報参照)。しかしながら、この場合においても、衝撃力などの大荷重の入力により上記混合防止液の層が破壊されて受圧室内の液体中に空気が混入するおそれがあり、この気泡が仕切体の下面などに滞留したままとなって残留するおそれがある。
【0007】
本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、液体のみを封入したものにおいてその液体封入工程で気体が混入した場合、または、液体と気体とを封入したものにおいて液体中に気体が混入した場合、その気体が受圧室内の液体中に入っても速やかに排出させて受圧室内の液体中に気泡が残留しないようにすることにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、上側に配置されて振動発生源および振動受部の一方に連結される第1取付部材と、下側に配置されて上記振動発生源および振動受部の他方に連結される第2取付部材と、これら第1および第2の両取付部材を連結するよう設けられて上記振動発生源からの振動により変形される弾性支承体と、この弾性支承体とその上方に設けられた弾性薄膜部材とにより密閉状態に画成されて液体が封入された流体室と、上記流体室の上下方向中間位置に配置されて流体室を上記弾性支承体の変形により拡縮される受圧室とこの受圧室より上側に位置して上記弾性薄膜部材の変形により拡縮可能な平衡室とに仕切る仕切体と、上記受圧室と平衡室とを互いに連通するオリフィスとを備えたものを前提とする。このものにおいて、上記仕切体の中央部に、上記オリフィスを上下方向に延びるよう貫通して形成する一方、上記受圧室に面する仕切体の下面に、上記受圧室内の気泡を上記オリフィスの受圧室側開口に導くよう上記仕切体の外周囲から上記オリフィスの受圧室側開口に向って上り勾配の案内面を形成する。そして、第1取付部材に、筒軸を上下方向に向けて配置された筒体を備え、弾性薄膜部材を、上記筒体の上端開口部を覆う弾性薄膜部と、この弾性薄膜部の外周囲に一体形成された筒状取付部と、この筒状取付部の内部に埋め込まれた補強筒とを備えるものとし、上記弾性薄膜部材を、上記筒状取付部の外周面が上記筒体の上端開口部の内周面に圧入した状態で、上記筒体に対し固定する構成とするものである。
【0009】
請求項2記載の発明は、上側に配置されて振動発生源および振動受部の一方に連結される第1取付部材と、下側に配置されて上記振動発生源および振動受部の他方に連結される第2取付部材と、これら第1および第2の両取付部材を連結するよう設けられて上記振動発生源からの振動により変形される弾性支承体と、この弾性支承体とその上方に設けられた弾性薄膜部材とにより密閉状態に画成されて液体が封入された流体室と、上記流体室の上下方向中間位置に配置されて流体室を上記弾性支承体の変形により拡縮される受圧室とこの受圧室より上側に位置して上記弾性薄膜部材の変形により拡縮可能な平衡室とに仕切る仕切体と、上記受圧室と平衡室とを互いに連通するオリフィスとを備えたものを前提とする。このものにおいて、上記流体室の内周面に、上記仕切体が上記受圧室の液圧変動を受けて上下方向に微小変位するよう上記仕切体の外周端部を上下方向両側から挟みかつ上記仕切体の外周端部との間に受圧室から平衡室に気泡が通過するよう環状の微小な隙間を形成する凹溝部を形成する。そして、上記仕切体の中央部に、上記オリフィスを貫通して形成する一方、上記受圧室に面する仕切体の下面に、上記受圧室内の気泡を上記凹溝部に案内するよう中央部から外周囲に向って上り勾配の案内面を形成する。そして、第1取付部材に、筒軸を上下方向に向けて配置された筒体を備え、弾性薄膜部材を、上記筒体の上端開口部を覆う弾性薄膜部と、この弾性薄膜部の外周囲に一体形成された筒状取付部と、この筒状取付部の内部に埋め込まれた補強筒とを備えるものとし、上記弾性薄膜部材を、上記筒状取付部の外周面が上記筒体の上端開口部の内周面に圧入した状態で、上記筒体に対し固定する構成とするものである。
【0010】
請求項3記載の発明は、請求項1または請求項2記載の発明において、筒体の内周面に弾性支承体から連続して厚肉層を形成してその上端に環状の上向き面を形成する。そして、この上向き面と、弾性薄膜部材の筒状取付部の下端面とにより、仕切体を上下方向に微小変位可能に保持する凹溝部を形成する構成とするものである。
【0011】
【作用】
上記の構成により、請求項1記載の発明では、振動の入力により弾性支承体が変形すると、受圧室と平衡室との間でオリフィスを通した液体の流動が生じ、このオリフィスを介した液体の液柱共振により上記入力振動の減衰が行われる。この液体の流動の際、平衡室の弾性薄膜部材が液圧変動を受けて撓むため、平衡室内が拡縮して平衡室内の液体量の増減が許容される。また、このような防振装置の製造時において、流体室への液体の封入工程で気体が流体室内に混入し、その気体が上記液体の流動に伴って受圧室側に入っても、その気泡は仕切体下面の案内面に沿って上方に上記オリフィスまで導かれ、そのオリフィス内を上昇して平衡室に移動する。そして、平衡室の頂部の弾性薄膜部材の下面に沿って滞積する。このため、製造時混入した気体が受圧室内の液体中に入っても、上記案内面およびオリフィスによって自然に平衡室頂部まで排出され、受圧室内の液体中に気泡が残留することがなく所定の減衰特性が発揮される。また、オリフィスを上下方向に延ばして貫通形成する一方、このオリフィスに気泡が比重差により集まるように案内面を仕切体下面に形成しているため、これにより、上記オリフィスを気泡抜きの孔として共用可能となる上、このようなオリフィスと気泡抜きの孔とが仕切体の形成により同時に形成することが可能となる。
【0012】
また、平衡室を形成するための弾性薄膜部材の第1取付部材への取付けにおいて、上記弾性薄膜部材の外周囲に一体形成されて補強筒により補強された筒状取付部が第1取付部材の筒体内に圧入されて上記筒状取付部の外周面が上記筒体の内周面に対して圧着固定されているため、上記弾性薄膜部材の外周端部と第1取付部材との間が上記の外周面と内周面との周面同士の密着によって確実に液密,気密に保たれる。しかも、周面同士の密着により取付けとシールとを行っているため、従来行われていた弾性薄膜部材の外周端部を保護キャップで上下方向から圧縮した状態で取付ける手間の省略が可能となる上、構成の容易化が図られる。
【0013】
請求項2記載の発明では、請求項1記載の発明の場合と同様に、振動の入力によりオリフィスを通した液体の流動が生じ、このオリフィスを介した液体の液柱共振により上記入力振動の減衰が行われる。この液体の流動の際、平衡室の弾性薄膜部材が液圧変動を受けて撓むため、平衡室内が拡縮して平衡室内の液体量の増減が許容される。また、特に小振幅,高周波域の振動の入力により上記オリフィスが目詰まり現象を起こしてロックするような場合であっても、受圧室の液圧上昇を受けて仕切体が凹溝内を上下方向に微小変位して受圧室内の体積を増大させるため、上記高周波振動による液圧上昇を緩和して振動伝達率の低減が図られる。
【0014】
一方、このような防振装置において、流体室への液体の封入工程において気体の混入が生じ、その気体が上記液体の流動に伴って受圧室側に入った場合、その気泡は受圧室内の液体中を上昇して仕切体下面に当たった後、この仕切体下面の案内面に沿って外周側に導かれ、凹溝部の受圧室側に溜る。そして、上記振動入力時の液圧変動を受けて仕切体が上記凹溝部内を上下方向に微小変位する際に、上記凹溝部の受圧室側に溜っていた気泡がその凹溝部内の環状隙間を通して平衡室側に導出され、そして、平衡室の頂部の弾性薄膜部材の下面に沿って滞積する。このため、製造時に混入した気体が受圧室内の液体中に混入しても、上記案内面および凹溝部によって自然に平衡室頂部まで導出され、受圧室内の液体中に気泡が残留することがなく所定の減衰特性が発揮される。また、この場合、オリフィスと気泡の案内面とが一体形成された仕切体を上記凹溝部に組み付けることにより、受圧室から平衡室への気泡抜きのための通路としての隙間と、仕切体の微小変位機構とが同時に形成することが可能となる。
【0015】
また、請求項1記載の発明の場合と同様に、平衡室を形成するための弾性薄膜部材の第1取付部材への取付けにおいて、上記弾性薄膜部材の外周囲に一体形成されて補強筒により補強された筒状取付部が第1取付部材の筒体内に圧入されて上記筒状取付部の外周面が上記筒体の内周面に対して圧着固定されているため、上記弾性薄膜部材の外周端部と第1取付部材との間が上記の外周面と内周面との周面同士の密着によって確実に液密,気密に保たれる。しかも、周面同士の密着により取付けとシールとを行っているため、従来行われていた弾性薄膜部材の外周端部を保護キャップで上下方向から圧縮した状態で取付ける手間の省略が可能となる上、構成の容易化が図られる。
【0016】
請求項3記載の発明では、請求項1または請求項2記載の発明による作用に加えて、凹溝部の上下方向の内面が、第1取付部材の筒体の内周面に形成された厚肉層の環状の上向き面と、弾性薄膜部材の筒状取付部の下端面とにより形成されているため、仕切体を上下方向に微小変位可能に保持するための凹溝部の形成の容易化、部品点数の減少が図られる。
【0017】
【実施例】
以下、本発明の実施例を図面に基いて説明する。
【0018】
参考例
図1は、本発明の参考例に係る防振装置を示している。同図において、1は筒軸Xを上下方向に向けた支持筒体、2は上記支持筒体1の上端開口側を閉止する上下逆向きのカップ状筒部材であり、このカップ状筒部材2には上記筒軸Xに沿って取付ボルト2aが上向きに突出されて振動発生源である例えばエンジンに連結されるようになっている。そして、上記カップ状筒部材2は上記支持筒体1の上端部内周面に圧入されて上記支持筒体1と一体化され、両者1,2により第1取付部材3が構成されている。
【0019】
また、4はこの支持筒体1の下端開口側の位置であって上記筒軸X上に配置された第2取付部材であり、この第2取付部材4には上記筒軸Xに沿って取付けボルト4aが下向きに突出されて振動受部である例えば車体に連結されるようになっている。5はこの第2取付部材4と上記第1取付部材3の支持持体1とを互いに連結する環状の弾性支承体であり、この弾性支承体5が上記第2取付部材4および支持筒体1と一体加硫成形されて第1取付部材3と第2取付部材4とを互いに連結している。そして、上記弾性支承体5と第1取付部材3とによって密閉された流体室6が画成され、この流体室6に非圧縮性の液体7と圧縮性の気体としての空気8とが封入されている。
【0020】
さらに、9は上記流体室6内の上下方向中間位置において筒軸Xに直交する方向に配設された仕切体であり、この仕切体9によって上記流体室6が上側の平衡室10と下側の受圧室11とに仕切られている。加えて、上記仕切体9の中央部には上記平衡室10と受圧室11とを互いに連通するオリフィス12が上下方向に一直線状に延びるよう貫通して形成されている。
【0021】
そして、このような構造において、上記流体室6内には、液体7が上記オリフィス12の平衡室10側の開口12aの位置より上方位置に液面7aが位置するように封入されている一方、空気8が上記液面7aより上方の平衡室10の上半部に充満するように封入されている。これにより、上記平衡室10は、上記空気8の充満した気室部10aの圧縮,膨脹によって液体7の充満した液室部10bの容積が拡縮されて受圧室11との間の液体7の流動が行われるようになっている。
【0022】
次に、上記の全体構成をより詳細に説明すると、上記カップ状筒部材2の下端部に拡径部2bが形成されており、この拡径部2bが上記支持筒体1の上端開口から圧入されこの拡径部2bがその支持筒体1の上端かしめ部1aによりかしめ固定されて、上記支持筒体1とカップ状筒部材2とが液密・気密に一体化されている。また、上記支持筒体1の内周面には弾性支承体5から連続して上記拡径部2bの下端面から所定寸法だけ下方の位置まで比較的厚肉の厚肉層5aが形成されている。この厚肉層5aの上端面である環状の上向き面5bと、上記拡径部2bの下端面2cとの間が上記仕切体9の外周端部9aの上下方向の厚みより所定寸法大きい間隔に設定されており、上記上向き面5bと下端面2cと支持筒体1の内周面とによって流体室6の内周面に凹溝部13が形成されている。そして、この凹溝部13内に上記仕切体9の外周端部9aが配置され、この仕切体9は上記凹溝部13によって上下方向に微小変位可能に保持されている。つまり、上下方向に所定間隔に設定された上記凹溝部13に仕切体9の外周端部9aを配設することにより、液圧変動に基いて仕切体9を上下方向に変位させる微小変位機構(がた機構)が構成されている。
【0023】
上記仕切体9は、オリフィス12の設けられた中央部が頂部となるよう全体がほぼ円錐形状となるように合成樹脂により一体形成されたものである。そして、この仕切体9の下面には、上記外周端部9aから上記オリフィス12の受圧室11側の開口12bに向って上り勾配となる逆漏斗状の滑らかな案内面14が形成されている。
【0024】
つぎに、上記参考例の作用・効果を説明する。
【0025】
流体室6において、通常時は、液体7と空気8との比重差により空気8は液体7の上方に位置して平衡室10内は液室部10bと気室部10aとに分けられ、受圧室11内の液体7と平衡室10内の液体7とはオリフィス12を介して連続している。
【0026】
そして、第1取付部材3もしくは第2取付部材4のいずれかの側から大振幅の低周波振動が入力した場合、弾性支承体5が上下方向に撓んで受圧室11内の液体7を圧縮・膨脹させるため、オリフィス12を通して上記受圧室11と平衡室10の液室部10bとの間で液体の流動が生じる。この際、上記平衡室10の気室部10aの空気が圧縮・膨脹されて、上記液室部10bの容積が拡大・縮小する。そして、上記の液体7の流動によりオリフィス12を介した受圧室11と平衡室10との間の液柱共振により上記入力振動の減衰が行われる。また、この際、上記受圧室11内の液体7の圧縮・膨脹による液圧変動を受けて仕切体9が凹溝部13内を上下方向に変位するため、大振幅の振動もしくは衝撃力の入力を受けた際の受圧室11内の液圧の急上昇の緩和に寄与することができる。
【0027】
一方、上記弾性支承体5に上記の衝撃などの大荷重が入力して弾性支承体が5が大変形し、上記気室部10aの気体8が流動する液体7により乱されて液体7中に気泡が混入し、それがオリフィス12を通して受圧室11内に入る場合がある。この場合、その気泡は受圧室11内の液体7中を仕切体9の下面に当たるまで上昇し、その気泡が案内面14に沿って頂点のオリフィス12の受圧室側開口12bまで導かれた後、そのオリフィス12内を上昇し平衡室10に導出されて上記気室部10aに戻される。これにより、液体7中に気室部10aの空気8が混入してその気泡が液体7の流動と共に受圧室11内に入っても、この受圧室11内の液体7中に気泡が残留することを確実に防止することができ、オリフィス12を流動する液体7の量を所定のものに維持することができる。この結果、受圧室11の液体7中に気泡が残留することに伴う減衰特性の悪化の発生を確実に防止することができる。
【0028】
加えて、このように減衰作用を果たすオリフィス12を上下方向に一直線状に延ばして仕切体9の中央部に貫通形成し、このオリフィス12の受圧室側開口12bに受圧室11内の気泡が集まるよう逆漏斗状の案内面14を上記仕切体9の下面に形成しているため、上記オリフィス12を受圧室11から平衡室10への気泡抜きのための孔として共用することができる上、これらオリフィス12と案内面14とを仕切体9の合成樹脂による一体成形によって仕切体9と同時にかつ容易に形成することができる。これにより、構成の簡易化を図ることができる上、部品点数の低減化,製造コストの低減化を図ることができる。
【0029】
また、小振幅の高周波振動の入力により、上記オリフィス12が目詰まり現象を起こしてロックするような場合であっても、上記入力に伴う受圧室11内の液圧変動を受けて仕切体9が凹溝部13内で上下方向に微小変位し、その分、上記受圧室11の容積を拡縮させるため、上記高周波振動の入力による受圧室1内の液圧上昇を緩和して振動伝達率の低減を図ることができる。加えて、このような仕切体9のがた機構を構成する凹溝部13を、弾性支承体5と一体に成形される厚肉層5aの端面(上向き面5b)と、第1取付部材3を構成するカップ状筒部材2の下端面2cとにより形成しているため、他の特別な構成部品を設けることによる部品点数の増大を防止しつつ容易に形成することができる。
【0030】
第1実施例
図2は本発明の第1実施例に係る防振装置を示している。この第1実施例は、ダイヤフラムを用いて平衡室を拡縮可能に画成したものであり、図2には液体封入工程において空気が混入した場合の状態が示されている。
【0031】
同図において、21は第1取付部材としての支持筒体、22はこの支持筒体21の上端開口を遮蔽する弾性薄膜部材としてのダイヤフラム、23はこのダイヤフラム22と弾性支承体5との間に画成された流体室であり、この流体室23は仕切体9′によって上記ダイヤフラム22の側の平衡室24と上記弾性支承体5の側の受圧室25とに仕切られている。
【0032】
上記支持筒体21の上端かしめ部21aが形成され、この上端かしめ部21a下方の内周側には段部21bが形成され、この段部21bと上記上端かしめ部21aとにより上記ダイヤフラム22の後述の外周フランジ部22dが挟み込まれて上記ダイヤフラム22の上下方向に対する位置固定が行われている。
【0033】
上記ダイヤフラム22は、上記支持筒体21の上端開口を遮蔽して液圧変動を受けて変形する弾性薄膜部22aと、この薄膜部22aの外周囲に設けられた筒状取付部22bと、この筒状取付部22b内に埋め込まれた補強筒22cとを備えており、これらがゴムの加硫成形により一体に形成されたものである。上記筒状取付部22bは、上記支持筒体21の筒軸Xを中心とする外周方向に突出する外周フランジ部22dと、上記筒軸Xと同軸に所定の下方位置まで延びる筒部22eとから横断面形状が上下逆転したL字状に形成されており、上記補強筒22cの横断面形状もこの筒状取付部22bと対応する形状に形成されている。そして、上記筒部22eの外周面と外周フランジ部22dの外周面とが支持筒体21の内周面に上方から圧入された状態で、上記外周フランジ部22dが上記の段部21bと上端かしめ部21aとの間に挟み込まれて支持筒体21への位置固定が行われている。
【0034】
また、上記ダイヤフラム22の筒部22eの下向きの下端面22fと、弾性支承体5の厚肉層5aの上向き面5bとの間が仕切体9′の外周端部9a′の肉厚より微小寸法大きい所定の間隔に設定されており、これら下端面22fと上向き面5bと支持筒体21の内周面とにより、上記仕切体9′を上下方向に微小変位可能に保持する凹溝部26が形成されている。なお、上記仕切体9′は、参考例と同様に、中央部を貫通して上下方向に延びるオリフィス12′を頂部として略円錐状に合成樹脂成形により形成され、その下面には上記凹溝部26内に配置された外周端部9a′から上記オリフィス12′の受圧室25の側の開口12b′に向けて上り勾配の逆漏斗状の案内面14′が形成されている。
【0035】
上記流体室23には液体7が封入されており、この液体7の封入は、例えば、上記ダイヤフラム22の支持筒体21への取付けを液体7が溜められた容器内で行う、または、上記ダイヤフラム22の取付け後に真空引きにより内部に液体7の注入を行うなどの液体封入工程によって行われる。
【0036】
なお、上記防振装置のその他の構成は参考例のものと同様であるために、同一部材には同一符号を付して、その説明は省略する。
【0037】
そして、上記第1実施例の場合、支持筒体21もしくは第2取付部材4のいずれかの側から大振幅の低周波振動が入力した場合、弾性支承体5が上下方向に撓んで受圧室25内の液体7を圧縮・膨脹させるため、オリフィス12′を通して上記受圧室25と平衡室24との間で液体の流動が生じる。この際、上記平衡室24を画成するダイヤフラム22が液圧変動に応じて変形するため、上記平衡室24の容積が拡大・縮小する。そして、上記の液体7の流動によりオリフィス12′を介した受圧室25と平衡室24との間の液柱共振により上記入力振動の減衰が行われる。また、この際、上記受圧室25内の液圧変動を受けて仕切体9′が凹溝部26内を上下方向に変位するため、参考例と同様に、受圧室25内の液圧の急上昇の緩和に寄与することができる。
【0038】
一方、本防振装置の製造時において、液体封入工程で空気が流体室23内に混入し受圧室25内の液体7中に気泡が入った場合、参考例と同様に、受圧室25内の液体7中を上昇した気泡が案内面14′に沿って頂点のオリフィス12′の受圧室側開口12b′まで導かれた後、そのオリフィス12′内を上昇して平衡室24に導出されダイヤフラム22の下面に沿って溜る(図2のG参照)。これにより、混入した空気が受圧室25内に入っても、この受圧室25内の液体7中に気泡が残留することを確実に防止することができ、オリフィス12′を流動する液体7の量を所定のものに維持することができる。この結果、受圧室25の液体7中に気泡が残留することに伴う減衰特性の悪化の発生を確実に防止することができる。加えて、このように空気の混入による減衰特性の悪化を防止することができるため、製造時、液体封入工程での作業の簡易化,容易化を図ることができる。
【0039】
加えて、参考例と同様に、減衰作用を果たすオリフィス12を受圧室25から平衡室24への気泡抜きのための孔として共用することができる上、このオリフィス12′と案内面14′とを合成樹脂による一体成形によって仕切体9′と同時にかつ容易に形成することができ、これにより、構成の簡易化、部品点数の低減化、および、製造コストの低減化を図ることができる。また、小振幅の高周波振動に入力により仕切体9′が凹溝部26内で上下方向に微小変位するため、上記参考例と同様に、上記高周波振動の入力による受圧室1内の液圧上昇を緩和して振動伝達率の低減を図ることができる。そして、このような仕切体9′のがた機構を構成する凹溝部26を、弾性支承体5と一体に成形される厚肉層5aの端面(上向き面5b)と、ダイヤフラム22の筒部22eの下端面22fとにより形成することができ、他の特別な構成部品を設けることによる部品点数の増大を防止しつつ、その形成を容易に行うことができる。
【0040】
さらに、本第1実施例の場合、ダイヤフラム22の支持筒体21への取付けにおいて、補強筒22cにより補強された筒状取付部22bが支持筒体21内に圧入されて上記筒状取付部22bの外周面(主として筒部22eの外周面)が上記支持筒体21の内周面に対して圧着固定されているため、上記ダイヤフラム22と支持筒体21との間を上記の外周面と内周面との周面同士の密着によって確実に液密,気密に保つことができる。しかも、周面同士の圧着により取付けとシールとを行っているため、従来行われていたダイヤフラムの外周端部を保護キャップ等で上下方向から圧縮した状態で取付ける手間の省略や、その際に介装される所定の圧縮状態にするためのスペーサリング等の部品の省略をすることができる上、構成の容易化を図ることができる。
【0041】
第2実施例
図3は本発明の第2実施例に係る防振装置を示している。この第2実施例は、上記の第1実施例を基本として第1実施例とは異なる構成の仕切体を用いたものであり、図3には液体封入工程において空気が混入した場合の状態が示されている。同図において、31は仕切体であり、この仕切体31によりダイヤフラム22の側の平衡室32と弾性支承体5の側の受圧室33とに仕切られている。
【0042】
上記仕切体31は、中央部を貫通して下方に一直線状に延びるオリフィス34を備え、このオリフィス34の平衡室32側の開口34aを底とする漏斗状に合成樹脂成形により一体に形成されている。加えて、上記仕切体31の下面には、上記オリフィス34の受圧室33側の開口34bを最下点として外周端部31aに向けて上り勾配の案内面35が形成されている。また、流体室23の内周面には、流体室23の内方側に開口し支持筒体21の周面を底としてダイヤフラム22の筒部22bの下端面22fと厚肉層5aの上向き面5bとにより、所定の水平方向深さと上下方向間隔とを有する凹溝部36が形成されており、この凹溝部36内に上記仕切体31の外周端部31aが配置されている。そして、この仕切体31の外周端部31aの外径は、上記凹溝部36の流体室23側の直径より大きく、かつ、凹溝部36の底側の直径より小さく設定される一方、上記凹溝部36の上下方向間隔は、上記外周端部31aの上下方向への微小変位を許容する間隔に設定されている。これにより、上記外周端部31aと凹溝部31aの底との間に微小な所定幅の環状隙間37が形成され、上記外周端部31aの上下方向変位に伴い上記環状隙間37を通して受圧室33と平衡室32とが互いに連通するようになっている。
【0043】
なお、上記防振装置のその他の構成は第1実施例のものと同様であるために、同一部材には同一符号を付して、その説明は省略する。
【0044】
そして、上記第2実施例の場合、支持筒体21もしくは第2取付部材4のいずれかの側から大振幅の低周波振動が入力すると、第1実施例と同様に、オリフィス34を通して上記受圧室33と平衡室32との間で液体の流動が生じて、ダイヤフラム22の変形により上記平衡室24の容積が拡大・縮小する。そして、液体7の流動によりオリフィス34を介した液柱共振により上記入力振動の減衰が行われる。また、小振幅の高周波振動に入力に伴う受圧室33内の液圧変動を受けて上記のごとく仕切体31が凹溝部26内で上下方向に微小変位するため、上記第1実施例と同様に、上記高周波振動の入力による受圧室1内の液圧上昇を緩和して振動伝達率の低減を図ることができる。
【0045】
一方、本防振装置の製造時において、液体封入工程で空気が流体室23内に混入し受圧室33内の液体7中に気泡が入った場合、図4に例示するように、その気泡Vは受圧室33内の液体7中を上昇して仕切体31下面の案内面35に当たり、この案内面35に沿って外周端部31aまで導かれる。そして、受圧室33内の液圧変動を受けて仕切体31が凹溝部36内を上下方向に変位することにより環状隙間37が受圧室33と平衡室32との双方に連通するため、上記外周端部31aまで導かれた気泡がその環状隙間37を通して平衡室32側に導出されて、ダイヤフラム22の下面に沿って溜る(図3,図4のG参照)。これにより、混入した空気が受圧室33内に入っても、この受圧室33内の液体7中に気泡が残留することを確実に防止することができ、オリフィス34を流動する液体7の量を所定のものに維持することができる。この結果、受圧室33の液体7中に気泡が残留することに伴う減衰特性の悪化の発生を、参考例もしくは第1実施例と同様に確実に防止することができる。
【0046】
加えて、案内面35を形成した仕切体31を所定形状の凹溝36内に配置して保持させるという簡易な構成により、上記のごとき気泡抜きおよび仕切体31のがた機構を実現することができる上、その製造もオリフィス34および案内面35と共に一体形成した仕切体31を凹溝部36内に配置するだけという容易な作業により行うことができる。さらに、このような気泡抜きおよびがた機構を実現する凹溝部36をダイヤフラム22の筒部22eの下端面22fと厚肉層5aの端面(上向き面5b)とで構成しているため、上記ダイヤフラム22の支持筒体21への取付けを行うだけで、他の特別な構成部品の追加による部品点数の増大を防止しつつ、上記凹溝部36の形成を容易かつ確実に行うことができる。
【0047】
なお、本発明は上記第1及び第2実施例に限定されるものではなく、その他種々の変形例を包含するものである。すなわち、上記実施例では、仕切体9,9′,31の形成を合成樹脂成形により行っているが、これに限らず、例えば金属製板状体を用いてプレス加工等により形成するようにしてもよい。
【0048】
また、上記実施例における案内面14,14′35の形状は連続する上り勾配であれば直線状、曲線状の種々のものを適用してもよい。
【0049】
さらに、気泡抜きと液体の流動による減衰とを行うオリフィスについて、上記第1実施例におけるオリフィス12,12′は上下方向に一直線状に延びるよう形成しているが、これに限らず、上下方向に延びて気泡をその比重差により上昇させ得れば、一直線状でなくても曲線状であってもよく、また、傾斜路としてもよい。
【0050】
【発明の効果】
以上説明したように、請求項1記載の発明における防振装置によれば、流体室をダイヤフラム側の平衡室と弾性支承体側の受圧室とに仕切る仕切体の中央部にオリフィスを上下方向に延びるように貫通させて形成する一方、受圧室に面する仕切体の下面に受圧室内の気泡を液体との比重差により上記オリフィスの受圧室側開口に導くよう上記仕切体の外周囲からその受圧室側開口まで上り勾配にした案内面を形成しているため、上記流体室への液体の封入工程において気体が流体室内に混入し、その気体が上記液体の流動に伴って受圧室側に入っても、その気泡を仕切体下面の案内面によりオリフィスまで確実に導くことができるとともに、そのオリフィス内を通して平衡室まで確実に導出させることができる。このため、製造時に混入した気体が受圧室内の液体中に混入しても、受圧室内の液体中に気泡が残留することを確実に防止することができ、気泡の残留による減衰特性の悪化を確実に防止することができる。しかも、上記オリフィスを気泡抜きの孔として共用することができる上、このようなオリフィスと気泡抜きの孔とを仕切体の形成により同時に形成することができる。このため、構成の簡易化、製造の容易化を図ることができ、これによるコストの低減化にも寄与することができる。
【0051】
また、平衡室を形成するための弾性薄膜部材の第1取付部材への取付けにおいて、上記弾性薄膜部材の外周囲に一体形成されて補強筒により補強された筒状取付部を第1取付部材の筒体内に圧入して上記筒状取付部の外周面を上記筒体の内周面に対して圧着固定させているため、上記弾性薄膜部材の外周端部と第1取付部材との間を上記の外周面と内周面との周面同士の密着によって確実に液密,気密に保つことができる。しかも、周面同士の密着により取付けとシールとを行っているため、従来行われていた弾性薄膜部材の外周端部を保護キャップで上下方向から圧縮した状態で取付ける手間を省略して、製造の容易化、構成の簡易化を図ることができ、これによるコストの低減化にも寄与することができる。構成の容易化を図ることができる。
【0052】
請求項2記載の発明によれば、流体室の内周面に、受圧室の液圧変動を受けて仕切体が上下方向に微小変位するよう上記仕切体の外周端部を上下方向両側から挟みかつ上記仕切体の外周端部との間に受圧室から平衡室に気泡が通過するよう環状の微小な隙間を形成する凹溝部を形成する一方、仕切体の中央部にオリフィスを上下方向に延びて貫通するよう形成するとともに、上記受圧室に面する仕切体の下面に上記受圧室内の気泡を上記凹溝部に案内するよう中央部から外周囲に向けて上り勾配の案内面を形成しているため、特に小振幅,高周波域の振動の入力により上記オリフィスが目詰まり現象を起こしてロックするような場合であっても、受圧室の液圧上昇を受けて仕切体が凹溝内を上下方向に微小変位して受圧室内の体積を増大させるため、上記高周波振動による液圧上昇を緩和して振動伝達率の低減を図ることができる。加えて、上記流体室への液体の封入工程において気体の混入が生じ、その気体が上記液体の流動に伴って受圧室側に入っても、その気泡を仕切体下面の案内面により外周囲の凹溝部まで確実に導くことができるとともに、上記の仕切体の上下方向変位に伴い受圧室および平衡室の双方に連通した環状隙間を通して平衡室まで確実に導出させることができる。このため、製造時に混入した気体が受圧室内の液体中に混入しても、その気体の受圧室への残留を確実に防止することができ、気泡の残留による減衰特性の悪化を確実に防止することができる。しかも、案内面を一体に形成した仕切体を上記凹溝部に組み付けることにより、受圧室から平衡室への気泡抜きのための通路としての隙間と、仕切体の微小変位機構とを同時に形成することができ、このため、構成の簡易化、製造の容易化を図ることができ、これによるコストの低減化にも寄与することができる。
【0053】
また、請求項1記載の発明の場合と同様に、平衡室を形成するための弾性薄膜部材の第 1取付部材への取付けにおいて、上記弾性薄膜部材の外周囲に一体形成されて補強筒により補強された筒状取付部を第1取付部材の筒体内に圧入して上記筒状取付部の外周面を上記筒体の内周面に対して圧着固定させているため、上記弾性薄膜部材の外周端部と第1取付部材との間を上記の外周面と内周面との周面同士の密着によって確実に液密,気密に保つことができる。しかも、周面同士の密着により取付けとシールとを行っているため、従来行われていた弾性薄膜部材の外周端部を保護キャップで上下方向から圧縮した状態で取付ける手間を省略して、製造の容易化、構成の簡易化を図ることができ、これによるコストの低減化にも寄与することができる。構成の容易化を図ることができる。
【0054】
請求項3記載の発明によれば、請求項1または請求項2記載の発明による効果に加えて、凹溝部の上下方向の内面を、第1取付部材の筒体の内周面に形成された厚肉層の環状の上向き面と、弾性薄膜部材の筒状取付部の下端面とにより形成しているため、仕切体を上下方向に微小変位可能に保持するための凹溝部を容易に形成することができ、部品点数の減少を図ることができる。
【図面の簡単な説明】
【図1】 本発明の参考例を示す縦断面図である。
【図2】 本発明の第1実施例を示す縦断面図である。
【図3】 本発明の第2実施例を示す縦断面図である。
【図4】 図3の部分拡大図である。
【符号の説明】
1,21 支持筒体(第1取付部材の筒体)
3 第1取付部材
4 第2取付部材
5 弾性支承体
5a 厚肉層
5b 厚肉層の上向き面
6,23 流体室
7 液体
8 空気(気体)
9,9′,31 仕切体
9a,9a′,31a 仕切体の外周端部
10,24,32 平衡室
11,25,33 受圧室
12,12′,34 オリフィス
12a 平衡室側開口
12b 受圧室側開口
13,26,36 凹溝部
14,14′,35 案内面
22 ダイヤフラム(弾性薄膜部材)
22a,34a 薄膜部
22b,34b 筒状取付部
22f 筒部の下端面
37 環状隙間
X 筒軸
[0001]
[Industrial application fields]
  The present invention is used as an automobile engine mount or the like, and an internal fluid chamber is partitioned into two chambers by a partition, and vibration damping is performed by liquid column resonance of fluid flowing between the two chambers through an orifice. The present invention relates to a vibration isolator.
[0002]
[Prior art]
  Conventionally, as a vibration isolator of this type, one side of the partition body is a pressure receiving chamber in which the hydraulic pressure fluctuates due to deformation of the elastic support body, and the other side is defined by a diaphragm made of an elastic thin film and the liquid in the pressure receiving chamber is defined. An equilibrium chamber that expands and contracts by receiving a fluid flowing through an orifice due to pressure fluctuation is widely known (for example, Japanese Patent Laid-Open No. 62-261729, Japanese Utility Model Laid-Open No. 63-166738, or Japanese Patent Laid-Open No. Hei 4). -46233).
[0003]
  However, in such a vibration isolator that forms an equilibrium chamber with a diaphragm, it is necessary to fix the periphery of the diaphragm in a liquid-tight and air-tight manner so that liquid does not leak out. It is attached in a state where it is sandwiched and compressed by a predetermined amount, and there is a manufacturing difficulty that this installation work takes time and there is a possibility that sufficient sealing performance cannot be obtained.
[0004]
  For this reason, the diaphragm is omitted, an equilibrium chamber is defined by a rigid casing on the upper side of the partition, and air is enclosed in the equilibrium chamber, so that fluctuations in hydraulic pressure are absorbed by the expansion and compression of the air. Have been proposed (see, for example, JP-A-5-149368).
[0005]
[Problems to be solved by the invention]
  However, in the case where an equilibrium chamber is formed by a diaphragm and a liquid is sealed inside, there is a possibility that air is mixed in the liquid chamber in the liquid sealing step. When the mixed bubbles remain in the liquid in the pressure receiving chamber, the flow rate passing through the orifice is reduced by the amount of the bubbles remaining, leading to deterioration of the attenuation characteristics. Also, in the case where the above diaphragm is omitted and air is enclosed, if a large impact load is applied, the internal liquid may flow greatly, and as a result, bubbles may enter the liquid from the air and remain in the pressure receiving chamber. There is. Also in this case, as described above, the attenuation characteristics are deteriorated due to residual bubbles.
[0006]
  For this reason, in the case where the air is enclosed, in order to prevent air bubbles from being mixed into the liquid from the air portion, the anti-mixing liquid having higher viscosity and lower specific gravity than the liquid between the liquid in the equilibrium chamber and the air. In order to prevent the mixing of the two, a layer has been proposed (see JP-A-5-126202). However, even in this case, there is a possibility that air will be mixed into the liquid in the pressure receiving chamber due to the input of a large load such as impact force, and the bubbles may stay on the lower surface of the partition. There is a risk of remaining.
[0007]
  The present invention has been made in view of such circumstances, and the object of the present invention is to enclose only liquid and enclose the liquid and gas when gas is mixed in the liquid enclosing process. In this case, when a gas is mixed in the liquid, even if the gas enters the liquid in the pressure receiving chamber, the gas is quickly discharged to prevent bubbles from remaining in the liquid in the pressure receiving chamber.
[0008]
[Means for Solving the Problems]
  In order to achieve the above object, the invention described in claim 1 is characterized in that a first mounting member disposed on the upper side and connected to one of the vibration generating source and the vibration receiving portion and the vibration generating source disposed on the lower side. And a second mounting member connected to the other of the vibration receiving portions, an elastic support body provided to connect both the first and second mounting members and deformed by vibration from the vibration generating source, and A fluid chamber which is defined in a sealed state by an elastic support body and an elastic thin film member provided thereabove and in which a liquid is sealed; and a fluid chamber which is disposed at an intermediate position in the vertical direction of the fluid chamber and which is disposed in the elastic support body A partition body that is divided into a pressure receiving chamber that is expanded and contracted by the deformation and an equilibrium chamber that is located above the pressure receiving chamber and can be expanded and contracted by the deformation of the elastic thin film member; an orifice that communicates the pressure receiving chamber and the equilibrium chamber with each other; On the assumption that . In this structure, the orifice is formed in the central portion of the partition so as to extend in the vertical direction, while bubbles in the pressure receiving chamber are formed on the lower surface of the partition facing the pressure receiving chamber. A guide surface having an upward slope is formed from the outer periphery of the partition toward the pressure receiving chamber side opening of the orifice so as to be led to the side opening. And the 1st attachment member is provided with the cylinder arranged with the cylinder axis turned up and down, the elastic thin film member, the elastic thin film part which covers the upper-end opening part of the above-mentioned cylinder, and the outer circumference of this elastic thin film part A cylindrical mounting portion integrally formed with the reinforcing tube embedded in the cylindrical mounting portion,The elastic thin film memberThe outer peripheral surface of the cylindrical mounting portion is press-fitted into the inner peripheral surface of the upper end opening of the cylindrical body.In this state, fix to the cylinderIt is to be configured.
[0009]
  According to a second aspect of the present invention, there is provided a first mounting member disposed on the upper side and connected to one of the vibration generating source and the vibration receiving portion, and disposed on the lower side and connected to the other of the vibration generating source and the vibration receiving portion. A second mounting member, an elastic support body that is provided so as to connect both the first and second mounting members and is deformed by vibration from the vibration generating source, and the elastic support body and the upper side thereof. A fluid chamber which is defined in a sealed state by a formed elastic thin film member and in which a liquid is sealed, and a pressure receiving chamber which is disposed at an intermediate position in the vertical direction of the fluid chamber and is expanded and contracted by deformation of the elastic support body And a partition body that is positioned above the pressure receiving chamber and partitions into an equilibrium chamber that can be expanded and contracted by deformation of the elastic thin film member, and an orifice that communicates the pressure receiving chamber and the equilibrium chamber with each other. . In this structure, the partition body is sandwiched from both sides in the vertical direction so that the partition body is slightly displaced in the vertical direction due to the fluid pressure fluctuation of the pressure receiving chamber on the inner peripheral surface of the fluid chamber. A concave groove is formed between the outer peripheral end of the body and forming an annular minute gap so that bubbles pass from the pressure receiving chamber to the equilibrium chamber. Then, while forming the orifice through the orifice in the central portion of the partition, the outer periphery from the center to guide the air bubbles in the pressure receiving chamber to the concave groove portion on the lower surface of the partition facing the pressure receiving chamber An upwardly inclined guide surface is formed toward And the 1st attachment member is provided with the cylinder arranged with the cylinder axis turned up and down, the elastic thin film member, the elastic thin film part which covers the upper-end opening part of the above-mentioned cylinder, and the outer circumference of this elastic thin film part A cylindrical mounting portion integrally formed with the reinforcing tube embedded in the cylindrical mounting portion,The elastic thin film memberThe outer peripheral surface of the cylindrical mounting portion is press-fitted into the inner peripheral surface of the upper end opening of the cylindrical body.In this state, fix to the cylinderIt is to be configured.
[0010]
  Claim 3The described inventionClaim 1 or claim 2In the described invention, a thick layer is continuously formed on the inner peripheral surface of the cylindrical body from the elastic support body, and an annular upward surface is formed on the upper end thereof. And it is set as the structure which forms the ditch | groove part which hold | maintains a partition body in the up-down direction so that a fine displacement is possible by this upward surface and the lower end surface of the cylindrical attachment part of an elastic thin film member.
[0011]
[Action]
  With the above configuration,Claim 1In the described invention, the input of vibrationWhen the elastic bearing body is deformed, it is between the pressure receiving chamber and the equilibrium chamber.The liquid flows through the orifice, and the input vibration is attenuated by the liquid column resonance of the liquid through the orifice. When the liquid flows, the elastic thin film member in the equilibrium chamber bends due to fluid pressure fluctuations, so that the equilibrium chamber is expanded and contracted to allow the liquid volume in the equilibrium chamber to be increased or decreased. Further, when manufacturing such a vibration isolator, even if the gas is mixed in the fluid chamber in the process of filling the liquid into the fluid chamber and the gas enters the pressure receiving chamber side as the liquid flows, the bubbles Is guided upward to the orifice along the guide surface on the lower surface of the partition, and moves up into the orifice and moves to the equilibrium chamber. And it stagnates along the lower surface of the elastic thin film member at the top of the equilibrium chamber. For this reason, even if gas mixed during manufacture enters the liquid in the pressure receiving chamber, it is naturally discharged to the top of the equilibrium chamber by the guide surface and the orifice, so that bubbles do not remain in the liquid in the pressure receiving chamber and a predetermined attenuation is achieved. The characteristic is exhibited. In addition, while the orifice is extended and formed in the vertical direction, the guide surface is formed on the lower surface of the partition so that the bubbles gather due to the difference in specific gravity. In addition, such an orifice and a hole for removing bubbles can be formed at the same time by forming a partition.
[0012]
  In addition, when the elastic thin film member for forming the equilibrium chamber is attached to the first mounting member, the cylindrical mounting portion integrally formed around the outer periphery of the elastic thin film member and reinforced by the reinforcing cylinder is the first mounting member. Since the outer peripheral surface of the cylindrical mounting portion is press-fitted into the cylindrical body and is crimped and fixed to the inner peripheral surface of the cylindrical body, the gap between the outer peripheral end of the elastic thin film member and the first mounting member is the above The outer peripheral surface and the inner peripheral surface of the inner surface of the outer peripheral surface of the inner surface are surely kept liquid-tight and air-tight. In addition, since the attachment and sealing are performed by the close contact between the peripheral surfaces, it is possible to eliminate the trouble of attaching the outer peripheral end of the elastic thin film member, which has been conventionally performed, with the protective cap compressed in the vertical direction. This facilitates the configuration.
[0013]
  Claim 2In the described invention,Claim 1As in the case of the described invention, the flow of the liquid through the orifice is caused by the input of the vibration, and the input vibration is attenuated by the liquid column resonance of the liquid through the orifice. When the liquid flows, the elastic thin film member in the equilibrium chamber bends due to fluid pressure fluctuations, so that the equilibrium chamber is expanded and contracted to allow the liquid volume in the equilibrium chamber to be increased or decreased. Even when the orifice is clogged due to the input of vibrations in the small amplitude and high frequency range, the partition body moves up and down in the groove due to the increase in the fluid pressure in the pressure receiving chamber. Therefore, the volume of the pressure receiving chamber is increased by a slight displacement, so that the increase in the hydraulic pressure due to the high frequency vibration is alleviated and the vibration transmissibility is reduced.
[0014]
  On the other hand, in such an anti-vibration device, when gas is mixed in the liquid filling process in the fluid chamber and the gas enters the pressure receiving chamber side with the flow of the liquid, the bubbles are liquid in the pressure receiving chamber. After going up and hitting the lower surface of the partition, it is guided to the outer peripheral side along the guide surface of the lower surface of the partition and accumulates on the pressure receiving chamber side of the concave groove. Then, when the partition body is slightly displaced in the vertical direction in the concave groove portion due to the hydraulic pressure fluctuation at the time of the vibration input, the bubbles accumulated on the pressure receiving chamber side of the concave groove portion are annular gaps in the concave groove portion. And is accumulated along the lower surface of the elastic thin film member at the top of the equilibrium chamber. For this reason, even if the gas mixed in the manufacturing process is mixed into the liquid in the pressure receiving chamber, the gas is naturally led out to the top of the equilibrium chamber by the guide surface and the concave groove portion, and there is no bubble remaining in the liquid in the pressure receiving chamber. The attenuation characteristics are exhibited. Further, in this case, by assembling a partition body in which the orifice and the bubble guide surface are integrally formed in the concave groove portion, a gap as a passage for removing bubbles from the pressure receiving chamber to the equilibrium chamber, and a minute amount of the partition body The displacement mechanism can be formed simultaneously.
[0015]
  Similarly to the first aspect of the invention, when the elastic thin film member for forming the equilibrium chamber is attached to the first attachment member, the elastic thin film member is integrally formed on the outer periphery of the elastic thin film member and is reinforced by the reinforcing cylinder. The cylindrical mounting portion thus pressed is press-fitted into the cylindrical body of the first mounting member, and the outer peripheral surface of the cylindrical mounting portion is crimped and fixed to the inner peripheral surface of the cylindrical body. The space between the end portion and the first mounting member is reliably liquid-tight and air-tight due to the close contact between the peripheral surfaces of the outer peripheral surface and the inner peripheral surface. In addition, since the attachment and sealing are performed by the close contact between the peripheral surfaces, it is possible to eliminate the trouble of attaching the outer peripheral end of the elastic thin film member, which has been conventionally performed, with the protective cap compressed in the vertical direction. This facilitates the configuration.
[0016]
  Claim 3In the described invention,Claim 1 or claim 2In addition to the operation according to the invention described above, the inner surface in the vertical direction of the concave groove portion is the annular upward surface of the thick layer formed on the inner peripheral surface of the cylindrical body of the first mounting member, and the cylindrical mounting of the elastic thin film member Since it is formed by the lower end surface of the part, it is possible to facilitate the formation of the recessed groove part and to reduce the number of parts for holding the partition body in a vertically displaceable manner.
[0017]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings.
[0018]
  <Reference example>
  FIG. 1 illustrates the present invention.Reference exampleThe vibration isolator which concerns on is shown. In the figure, reference numeral 1 denotes a support cylinder with the cylinder axis X oriented in the up-down direction, and 2 denotes a cup-shaped cylinder member that is upside down and closes the upper end opening side of the support cylinder 1. The mounting bolt 2a protrudes upward along the cylinder axis X and is connected to a vibration generating source such as an engine. The cup-shaped cylinder member 2 is press-fitted into the inner peripheral surface of the upper end portion of the support cylinder 1 and integrated with the support cylinder 1, and the first attachment member 3 is configured by both 1 and 2.
[0019]
  Reference numeral 4 denotes a second attachment member disposed on the cylinder axis X at a position on the lower end opening side of the support cylinder 1, and is attached to the second attachment member 4 along the cylinder axis X. The bolt 4a protrudes downward and is connected to a vibration receiving portion such as a vehicle body. Reference numeral 5 denotes an annular elastic support body for connecting the second mounting member 4 and the support holder 1 of the first mounting member 3 to each other. The elastic support body 5 is the second mounting member 4 and the support cylinder 1. And the first mounting member 3 and the second mounting member 4 are connected to each other. And the fluid chamber 6 sealed with the said elastic support body 5 and the 1st attachment member 3 is demarcated, and the incompressible liquid 7 and the air 8 as compressible gas are enclosed with this fluid chamber 6. FIG. ing.
[0020]
  Further, reference numeral 9 denotes a partition that is disposed in a direction perpendicular to the cylinder axis X at an intermediate position in the vertical direction in the fluid chamber 6. The partition 9 allows the fluid chamber 6 to be connected to the upper equilibrium chamber 10 and the lower side. The pressure receiving chamber 11 is partitioned. In addition, an orifice 12 that communicates the equilibrium chamber 10 and the pressure receiving chamber 11 with each other is formed through the central portion of the partition 9 so as to extend in a straight line in the vertical direction.
[0021]
  In such a structure, the fluid 7 is sealed in the fluid chamber 6 so that the liquid surface 7a is positioned above the position of the opening 12a on the equilibrium chamber 10 side of the orifice 12. Air 8 is sealed so as to fill the upper half of the equilibrium chamber 10 above the liquid level 7a. Thereby, the volume of the liquid chamber portion 10b filled with the liquid 7 is expanded and contracted by the compression and expansion of the air chamber portion 10a filled with the air 8, and the flow of the liquid 7 between the equilibrium chamber 10 and the pressure receiving chamber 11 is increased. Is to be done.
[0022]
  Next, the overall configuration will be described in more detail. A diameter-increased portion 2b is formed at the lower end portion of the cup-shaped cylinder member 2, and the diameter-increased portion 2b is press-fitted from the upper end opening of the support cylinder 1. The enlarged diameter portion 2b is caulked and fixed by the upper end caulking portion 1a of the support cylinder 1, so that the support cylinder 1 and the cup-shaped cylinder member 2 are integrated in a liquid-tight and air-tight manner. In addition, a relatively thick thick layer 5a is formed on the inner peripheral surface of the support cylinder 1 continuously from the elastic support 5 to a position below the lower end surface of the enlarged diameter portion 2b by a predetermined dimension. Yes. The gap between the annular upward surface 5b, which is the upper end surface of the thick layer 5a, and the lower end surface 2c of the enlarged diameter portion 2b is larger than the vertical thickness of the outer peripheral end portion 9a of the partition 9 by a predetermined dimension. The groove 13 is formed on the inner peripheral surface of the fluid chamber 6 by the upward surface 5 b, the lower end surface 2 c, and the inner peripheral surface of the support cylinder 1. An outer peripheral end 9 a of the partition 9 is disposed in the groove 13, and the partition 9 is held by the groove 13 so as to be slightly displaceable in the vertical direction. That is, by disposing the outer peripheral end 9a of the partition 9 in the concave groove 13 set at a predetermined interval in the vertical direction, a minute displacement mechanism (displacement of the partition 9 in the vertical direction based on hydraulic pressure fluctuation) Is configured.
[0023]
  The partition body 9 is integrally formed of synthetic resin so that the whole has a substantially conical shape so that the central portion where the orifice 12 is provided becomes the top portion. On the lower surface of the partition 9, a reverse funnel-shaped smooth guide surface 14 is formed which has an upward slope from the outer peripheral end 9a toward the opening 12b of the orifice 12 on the pressure receiving chamber 11 side.
[0024]
  Next, the aboveReference exampleThe operation and effect of the will be described.
[0025]
  Normally, in the fluid chamber 6, the air 8 is positioned above the liquid 7 due to the difference in specific gravity between the liquid 7 and the air 8, and the equilibrium chamber 10 is divided into a liquid chamber portion 10 b and an air chamber portion 10 a. The liquid 7 in the chamber 11 and the liquid 7 in the equilibrium chamber 10 are continuous via the orifice 12.
[0026]
  When a large-amplitude low-frequency vibration is input from either the first mounting member 3 or the second mounting member 4, the elastic support body 5 is bent in the vertical direction to compress the liquid 7 in the pressure receiving chamber 11. In order to expand, liquid flows between the pressure receiving chamber 11 and the liquid chamber portion 10 b of the equilibrium chamber 10 through the orifice 12. At this time, the air in the air chamber portion 10a of the equilibrium chamber 10 is compressed and expanded, and the volume of the liquid chamber portion 10b is expanded / reduced. The input vibration is attenuated by the liquid column resonance between the pressure receiving chamber 11 and the equilibrium chamber 10 through the orifice 12 due to the flow of the liquid 7. At this time, since the partition member 9 is displaced in the vertical direction in the groove 13 due to the fluid pressure fluctuation caused by the compression / expansion of the liquid 7 in the pressure receiving chamber 11, a large amplitude vibration or impact force is input. This can contribute to alleviating the sudden rise in the hydraulic pressure in the pressure receiving chamber 11 when it is received.
[0027]
  On the other hand, a large load such as the above-described impact is input to the elastic support 5 so that the elastic support 5 is greatly deformed, and the gas 8 in the air chamber portion 10a is disturbed by the flowing liquid 7 and enters the liquid 7. Bubbles may be mixed in and enter the pressure receiving chamber 11 through the orifice 12 in some cases. In this case, the bubble rises in the liquid 7 in the pressure receiving chamber 11 until it hits the lower surface of the partition 9, and after the bubble is guided along the guide surface 14 to the pressure receiving chamber side opening 12b of the apex orifice 12, The inside of the orifice 12 is raised, led out to the equilibrium chamber 10, and returned to the air chamber portion 10a. As a result, even if the air 8 in the air chamber 10 a is mixed in the liquid 7 and the bubbles enter the pressure receiving chamber 11 together with the flow of the liquid 7, the bubbles remain in the liquid 7 in the pressure receiving chamber 11. Can be reliably prevented, and the amount of the liquid 7 flowing through the orifice 12 can be maintained at a predetermined value. As a result, it is possible to reliably prevent the deterioration of the attenuation characteristics due to the bubbles remaining in the liquid 7 of the pressure receiving chamber 11.
[0028]
  In addition, the orifice 12 that performs the damping action as described above extends in a straight line in the vertical direction and is formed so as to penetrate the central portion of the partition body 9, and bubbles in the pressure receiving chamber 11 gather in the pressure receiving chamber side opening 12 b of the orifice 12. Since the reverse funnel-shaped guide surface 14 is formed on the lower surface of the partition 9, the orifice 12 can be used as a hole for removing air bubbles from the pressure receiving chamber 11 to the equilibrium chamber 10. The orifice 12 and the guide surface 14 can be easily formed simultaneously with the partition 9 by integral molding of the partition 9 with synthetic resin. As a result, the configuration can be simplified, and the number of parts and the manufacturing cost can be reduced.
[0029]
  Even when the orifice 12 is clogged and locked due to the input of small amplitude high frequency vibration, the partition member 9 receives the fluid pressure fluctuation in the pressure receiving chamber 11 due to the input. In order to expand and contract the volume of the pressure receiving chamber 11 by a small amount in the vertical direction within the groove 13, the increase in the hydraulic pressure in the pressure receiving chamber 1 due to the input of the high frequency vibration is alleviated to reduce the vibration transmissibility. Can be planned. In addition, the concave groove portion 13 constituting the ratchet mechanism of the partition body 9 is formed by connecting the end surface (upward surface 5 b) of the thick layer 5 a formed integrally with the elastic support body 5 and the first mounting member 3. Since it forms with the lower end surface 2c of the cup-shaped cylinder member 2 to comprise, it can form easily, preventing the increase in a number of parts by providing another special component.
[0030]
  <First embodiment>
  FIG. 2 illustrates the present invention.First embodimentThe vibration isolator which concerns on is shown. thisFirst embodimentFIG. 2 shows a state in which the equilibrium chamber can be expanded and contracted using a diaphragm, and FIG. 2 shows a state in which air is mixed in the liquid filling step.
[0031]
  In this figure, 21 is a support cylinder as a first mounting member, 22 is a diaphragm as an elastic thin film member that shields the upper end opening of the support cylinder 21, and 23 is between the diaphragm 22 and the elastic support 5. This fluid chamber 23 is partitioned into a balance chamber 24 on the diaphragm 22 side and a pressure receiving chamber 25 on the elastic support body 5 side by a partition 9 '.
[0032]
  An upper end caulking portion 21a of the support cylinder 21 is formed, and a step portion 21b is formed on the inner peripheral side below the upper end caulking portion 21a. The step portion 21b and the upper end caulking portion 21a form the diaphragm 22 to be described later. The outer peripheral flange portion 22d is sandwiched so that the position of the diaphragm 22 in the vertical direction is fixed.
[0033]
  The diaphragm 22 includes an elastic thin film portion 22a that shields the upper end opening of the support cylindrical body 21 and deforms in response to a change in hydraulic pressure, a cylindrical mounting portion 22b provided on the outer periphery of the thin film portion 22a, A reinforcing cylinder 22c embedded in the cylindrical mounting portion 22b is provided, and these are integrally formed by rubber vulcanization molding. The cylindrical mounting portion 22b includes an outer peripheral flange portion 22d that protrudes in the outer peripheral direction around the cylindrical axis X of the support cylindrical body 21, and a cylindrical portion 22e that extends coaxially with the cylindrical axis X to a predetermined lower position. The transverse cross-sectional shape is formed in an L shape that is upside down, and the cross-sectional shape of the reinforcing cylinder 22c is also formed in a shape corresponding to the cylindrical mounting portion 22b. Then, the outer peripheral flange portion 22d and the outer peripheral surface of the outer peripheral flange portion 22d are press-fitted into the inner peripheral surface of the support cylinder 21 from above, and the outer peripheral flange portion 22d is caulked to the upper end of the stepped portion 21b. The position is fixed to the support cylinder 21 by being sandwiched between the portions 21a.
[0034]
  Further, the space between the downward lower end surface 22f of the cylindrical portion 22e of the diaphragm 22 and the upward surface 5b of the thick layer 5a of the elastic support 5 is smaller than the thickness of the outer peripheral end portion 9a 'of the partition 9'. A large predetermined interval is set, and the lower end surface 22f, the upward surface 5b, and the inner peripheral surface of the support cylinder 21 form a concave groove portion 26 that holds the partition 9 'in a vertically displaceable manner. Has been. The partition 9 'isReference exampleIn the same manner as above, it is formed by synthetic resin molding in a substantially conical shape with an orifice 12 'penetrating through the center portion extending in the vertical direction as a top portion, and an outer peripheral end portion 9a' disposed in the concave groove portion 26 on the lower surface thereof. An upwardly inclined reverse funnel-shaped guide surface 14 'is formed toward the opening 12b' on the pressure receiving chamber 25 side of the orifice 12 '.
[0035]
  The fluid 7 is sealed in the fluid chamber 23, and the sealing of the liquid 7 is performed, for example, by attaching the diaphragm 22 to the support cylinder 21 in a container in which the liquid 7 is stored, or the diaphragm After the attachment of the liquid 22, a liquid sealing process such as injecting the liquid 7 into the inside by evacuation is performed.
[0036]
  The other components of the above vibration isolator areReference exampleTherefore, the same members are denoted by the same reference numerals, and the description thereof is omitted.
[0037]
  And aboveFirst embodimentIn this case, when large-amplitude low-frequency vibration is input from either the support cylinder 21 or the second mounting member 4, the elastic support body 5 is bent in the vertical direction to compress the liquid 7 in the pressure receiving chamber 25. In order to expand, liquid flows between the pressure receiving chamber 25 and the equilibrium chamber 24 through the orifice 12 ′. At this time, since the diaphragm 22 defining the equilibrium chamber 24 is deformed in accordance with the fluid pressure fluctuation, the volume of the equilibrium chamber 24 is expanded or reduced. The input vibration is attenuated by the liquid column resonance between the pressure receiving chamber 25 and the equilibrium chamber 24 through the orifice 12 ′ by the flow of the liquid 7. Further, at this time, the partition body 9 ′ is displaced in the vertical direction in the concave groove portion 26 due to the hydraulic pressure fluctuation in the pressure receiving chamber 25.Reference exampleSimilarly to the above, it is possible to contribute to the mitigation of the sudden rise in the hydraulic pressure in the pressure receiving chamber 25.
[0038]
  On the other hand, at the time of manufacturing the vibration isolator, when air is mixed in the fluid chamber 23 in the liquid filling step and bubbles are contained in the liquid 7 in the pressure receiving chamber 25,Reference exampleSimilarly to the above, after the bubble rising in the liquid 7 in the pressure receiving chamber 25 is guided along the guide surface 14 'to the pressure receiving chamber side opening 12b' of the apex orifice 12 ', the bubble rises in the orifice 12'. Then, it is led out to the equilibrium chamber 24 and collected along the lower surface of the diaphragm 22 (see G in FIG. 2). Thus, even if mixed air enters the pressure receiving chamber 25, it is possible to reliably prevent bubbles from remaining in the liquid 7 in the pressure receiving chamber 25, and the amount of the liquid 7 flowing through the orifice 12 '. Can be maintained at a predetermined value. As a result, it is possible to reliably prevent the deterioration of the attenuation characteristics due to the bubbles remaining in the liquid 7 in the pressure receiving chamber 25. In addition, since it is possible to prevent the deterioration of the attenuation characteristics due to the mixing of air in this way, it is possible to simplify and facilitate the work in the liquid filling process at the time of manufacturing.
[0039]
  in addition,Reference exampleSimilarly to the above, the orifice 12 having a damping action can be used as a hole for removing air bubbles from the pressure receiving chamber 25 to the equilibrium chamber 24, and the orifice 12 'and the guide surface 14' are integrally formed of a synthetic resin. Thus, it can be easily formed simultaneously with the partition member 9 ', thereby simplifying the configuration, reducing the number of parts, and reducing the manufacturing cost. In addition, since the partition 9 'is slightly displaced in the vertical direction in the concave groove portion 26 by the input to the small amplitude high frequency vibration,Reference exampleSimilarly, the increase in the hydraulic pressure in the pressure receiving chamber 1 due to the input of the high frequency vibration can be mitigated to reduce the vibration transmissibility. And the concave groove part 26 which comprises such a ratchet mechanism of the partition 9 'is made into the end surface (upward surface 5b) of the thick layer 5a shape | molded integrally with the elastic support body 5, and the cylinder part 22e of the diaphragm 22. The lower end surface 22f can be formed and can be easily formed while preventing an increase in the number of parts due to the provision of other special components.
[0040]
  In addition, bookFirst embodimentIn the case of attaching the diaphragm 22 to the support cylinder 21, the cylindrical attachment portion 22b reinforced by the reinforcement cylinder 22c is press-fitted into the support cylinder 21, and the outer peripheral surface of the cylindrical attachment portion 22b (mainly the cylinder portion). 22e) is fixed by crimping to the inner peripheral surface of the support cylinder 21, so that the peripheral surfaces of the outer peripheral surface and the inner peripheral surface are between the diaphragm 22 and the support cylinder 21. The liquid tightness and airtightness can be surely maintained. In addition, since the attachment and sealing are performed by crimping the peripheral surfaces, the trouble of attaching the outer peripheral end of the diaphragm in a compressed state from above and below with a protective cap or the like can be omitted. It is possible to omit components such as a spacer ring to be put into a predetermined compressed state and to facilitate the configuration.
[0041]
  <Second embodiment>
  FIG. 3 illustrates the present invention.Second embodimentThe vibration isolator which concerns on is shown. thisSecond embodimentThe aboveFirst embodimentBased onFirst embodimentFIG. 3 shows a state in which air is mixed in the liquid filling step. In the figure, reference numeral 31 denotes a partition body, which is partitioned into an equilibrium chamber 32 on the diaphragm 22 side and a pressure receiving chamber 33 on the elastic support body 5 side.
[0042]
  The partition body 31 includes an orifice 34 that passes through the central portion and extends downward in a straight line, and is integrally formed by synthetic resin molding in a funnel shape having an opening 34a on the equilibrium chamber 32 side of the orifice 34 as a bottom. Yes. In addition, an upwardly inclined guide surface 35 is formed on the lower surface of the partition 31 with the opening 34b of the orifice 34 on the pressure receiving chamber 33 side as the lowest point toward the outer peripheral end portion 31a. Further, on the inner peripheral surface of the fluid chamber 23, the bottom surface 22f of the cylindrical portion 22b of the diaphragm 22 and the upward surface of the thick layer 5a are opened to the inner side of the fluid chamber 23 and the peripheral surface of the support cylinder 21 is the bottom. The groove portion 36 having a predetermined horizontal depth and a vertical interval is formed by 5b, and the outer peripheral end portion 31a of the partition 31 is disposed in the groove portion 36. The outer diameter of the outer peripheral end 31a of the partition 31 is set larger than the diameter of the concave groove 36 on the fluid chamber 23 side and smaller than the diameter of the bottom of the concave groove 36. The vertical interval 36 is set to allow the minute displacement in the vertical direction of the outer peripheral end portion 31a. As a result, an annular gap 37 having a minute predetermined width is formed between the outer peripheral end portion 31a and the bottom of the recessed groove portion 31a, and the pressure receiving chamber 33 passes through the annular gap 37 with the vertical displacement of the outer peripheral end portion 31a. The equilibrium chamber 32 communicates with each other.
[0043]
  The other components of the above vibration isolator areFirst embodimentTherefore, the same members are denoted by the same reference numerals, and the description thereof is omitted.
[0044]
  And aboveSecond embodimentIn this case, when a large-amplitude low-frequency vibration is input from either the support cylinder 21 or the second mounting member 4,First embodimentSimilarly, a fluid flow occurs between the pressure receiving chamber 33 and the equilibrium chamber 32 through the orifice 34, and the volume of the equilibrium chamber 24 is expanded / reduced by the deformation of the diaphragm 22. The input vibration is attenuated by liquid column resonance via the orifice 34 due to the flow of the liquid 7. Further, the partition body 31 is slightly displaced in the vertical direction in the concave groove portion 26 as described above in response to the hydraulic pressure fluctuation in the pressure receiving chamber 33 due to the input of the small amplitude high frequency vibration.First embodimentSimilarly, the increase in the hydraulic pressure in the pressure receiving chamber 1 due to the input of the high frequency vibration can be mitigated to reduce the vibration transmissibility.
[0045]
  On the other hand, when the vibration isolator is manufactured, if air is mixed into the fluid chamber 23 in the liquid filling step and bubbles are contained in the liquid 7 in the pressure receiving chamber 33, as shown in FIG. Rises in the liquid 7 in the pressure receiving chamber 33, hits the guide surface 35 on the lower surface of the partition 31, and is guided along the guide surface 35 to the outer peripheral end portion 31 a. Then, the annular gap 37 communicates with both the pressure receiving chamber 33 and the equilibrium chamber 32 by the partition 31 being displaced in the vertical direction in the concave groove portion 36 in response to the hydraulic pressure fluctuation in the pressure receiving chamber 33, so that the outer circumference Bubbles guided to the end 31a are led out to the balance chamber 32 side through the annular gap 37 and accumulate along the lower surface of the diaphragm 22 (see G in FIGS. 3 and 4). Thereby, even if mixed air enters the pressure receiving chamber 33, it is possible to reliably prevent bubbles from remaining in the liquid 7 in the pressure receiving chamber 33, and the amount of the liquid 7 flowing through the orifice 34 can be reduced. It can be maintained at a predetermined one. As a result, the occurrence of deterioration of the attenuation characteristics due to the bubbles remaining in the liquid 7 of the pressure receiving chamber 33 isReference exampleOrFirst embodimentCan be reliably prevented in the same manner.
[0046]
  In addition, it is possible to realize the above-described air bubble removal and backlash mechanism of the partition body 31 by a simple configuration in which the partition body 31 on which the guide surface 35 is formed is disposed and held in the concave groove 36 having a predetermined shape. In addition, the manufacturing can also be performed by an easy operation of simply arranging the partition body 31 integrally formed with the orifice 34 and the guide surface 35 in the recessed groove portion 36. Furthermore, since the concave groove portion 36 that realizes such a bubble venting and rattling mechanism is constituted by the lower end surface 22f of the cylindrical portion 22e of the diaphragm 22 and the end surface (upward surface 5b) of the thick layer 5a, the diaphragm described above. By simply attaching 22 to the support cylinder 21, it is possible to easily and reliably form the groove 36 while preventing an increase in the number of parts due to the addition of other special components.
[0047]
  In the present invention, the aboveFirst and second embodimentsThe present invention is not limited to the above, and includes other various modifications. That is, in the above embodiment, the partitions 9, 9 ', 31 are formed by synthetic resin molding. However, the present invention is not limited to this. For example, the partition bodies 9, 9', 31 may be formed by pressing using a metal plate. Also good.
[0048]
  In addition, as long as the guide surfaces 14 and 14'35 in the above embodiment have a continuous upward slope, various shapes such as a straight line and a curved line may be applied.
[0049]
  Furthermore, for the orifice that performs bubble removal and attenuation by liquid flow, the aboveFirst embodimentThe orifices 12 and 12 'are formed so as to extend in a straight line in the vertical direction. However, the present invention is not limited to this, and it is not limited to this. It may be a shape or may be a ramp.
[0050]
【The invention's effect】
  As explained above,Claim 1According to the vibration isolator in the described invention, the fluid chamber is formed by penetrating the orifice so as to extend in the vertical direction in the center portion of the partition that partitions the diaphragm side into the equilibrium chamber on the diaphragm side and the pressure receiving chamber on the elastic support body side, A guide surface inclined upward from the outer periphery of the partition to the pressure chamber side opening so as to guide bubbles in the pressure chamber to the pressure chamber side opening of the orifice due to a difference in specific gravity with the liquid on the lower surface of the partition surface facing the pressure chamber. Therefore, even if the gas is mixed into the fluid chamber in the liquid sealing step into the fluid chamber and the gas enters the pressure receiving chamber side as the liquid flows, the bubbles are formed on the lower surface of the partition body. The guide surface can reliably lead to the orifice, and can reliably lead to the equilibrium chamber through the orifice. For this reason, even if a gas mixed during manufacturing is mixed in the liquid in the pressure receiving chamber, it is possible to reliably prevent bubbles from remaining in the liquid in the pressure receiving chamber, and it is possible to reliably deteriorate the attenuation characteristics due to the remaining bubbles. Can be prevented. In addition, the orifice can be used as a bubble removal hole, and the orifice and the bubble removal hole can be formed simultaneously by forming a partition. For this reason, simplification of the configuration and facilitation of manufacturing can be achieved, which can contribute to cost reduction.
[0051]
  Further, in attaching the elastic thin film member to the first mounting member for forming the equilibrium chamber, the cylindrical mounting portion integrally formed on the outer periphery of the elastic thin film member and reinforced by the reinforcing cylinder is provided on the first mounting member. Since the outer peripheral surface of the cylindrical mounting portion is press-fitted and fixed to the inner peripheral surface of the cylindrical body by press-fitting into the cylindrical body, the gap between the outer peripheral end of the elastic thin film member and the first mounting member is The liquid-tight and air-tight can be reliably maintained by the close contact between the peripheral surfaces of the outer peripheral surface and the inner peripheral surface. In addition, since the attachment and sealing are performed by the close contact between the peripheral surfaces, the labor of attaching the outer peripheral end portion of the elastic thin film member, which has been conventionally performed, with the protective cap compressed from the vertical direction is omitted, Simplification and simplification of the configuration can be achieved, which can contribute to cost reduction. The configuration can be facilitated.
[0052]
  Claim 2According to the described invention, the outer peripheral end portion of the partition body is sandwiched from both sides in the vertical direction so that the partition body is slightly displaced in the vertical direction in response to the fluid pressure fluctuation of the pressure receiving chamber on the inner peripheral surface of the fluid chamber. A concave groove that forms an annular minute gap is formed between the outer peripheral end of the body and the pressure receiving chamber to the equilibrium chamber, while the orifice extends vertically through the central portion of the partition. In addition, since an upwardly inclined guide surface is formed from the central portion toward the outer periphery so as to guide the bubbles in the pressure receiving chamber to the concave groove portion on the lower surface of the partition facing the pressure receiving chamber, Even when the orifice is clogged and locked due to the input of vibration in the small amplitude and high frequency range, the partition body is slightly displaced vertically in the groove due to the increase in the fluid pressure in the pressure receiving chamber. In order to increase the volume in the pressure receiving chamber, It can be alleviated hydraulic rise by serial high-frequency vibrations reduced vibration transmissibility. In addition, even if the gas is mixed in the fluid sealing step into the fluid chamber and the gas enters the pressure receiving chamber side as the liquid flows, the bubbles are surrounded by the guide surface on the lower surface of the partition body. In addition to being able to reliably lead to the concave groove portion, it is possible to reliably lead to the equilibrium chamber through the annular gap communicating with both the pressure receiving chamber and the equilibrium chamber as the partition body is displaced in the vertical direction. For this reason, even if the gas mixed at the time of manufacture mixes in the liquid in the pressure receiving chamber, the gas can be reliably prevented from remaining in the pressure receiving chamber, and the deterioration of the attenuation characteristics due to residual bubbles can be reliably prevented. be able to. In addition, by assembling the partition body integrally formed with the guide surface in the concave groove portion, a gap as a passage for removing bubbles from the pressure receiving chamber to the equilibrium chamber and a minute displacement mechanism of the partition body can be simultaneously formed. Therefore, the configuration can be simplified and the manufacturing can be facilitated, which can contribute to the cost reduction.
[0053]
  Further, as in the case of the invention of claim 1, the elastic thin film member for forming the equilibrium chamber In mounting to one mounting member, a cylindrical mounting portion integrally formed on the outer periphery of the elastic thin film member and reinforced by a reinforcing cylinder is press-fitted into the cylindrical body of the first mounting member, and the outer peripheral surface of the cylindrical mounting portion Is fixed to the inner peripheral surface of the cylindrical body by pressure bonding, so that the peripheral surfaces of the outer peripheral surface and the inner peripheral surface are in close contact between the outer peripheral end of the elastic thin film member and the first mounting member. Can be surely kept liquid-tight and air-tight. In addition, since the attachment and sealing are performed by the close contact between the peripheral surfaces, the labor of attaching the outer peripheral end portion of the elastic thin film member, which has been conventionally performed, with the protective cap compressed from the vertical direction is omitted, Simplification and simplification of the configuration can be achieved, which can contribute to cost reduction. The configuration can be facilitated.
[0054]
  Claim 3According to the described invention,Claim 1 or claim 2In addition to the effects of the invention described above, the inner surface in the vertical direction of the concave groove portion is formed with an annular upward surface of the thick layer formed on the inner peripheral surface of the cylindrical body of the first mounting member, and the cylindrical mounting of the elastic thin film member Since it is formed by the lower end surface of the part, the concave groove part for holding the partition body in the vertical direction so as to be minutely displaceable can be easily formed, and the number of parts can be reduced.
[Brief description of the drawings]
FIG. 1 of the present inventionReference exampleFIG.
FIG. 2 of the present inventionFirst embodimentFIG.
FIG. 3 of the present inventionSecond embodimentFIG.
FIG. 4 is a partially enlarged view of FIG. 3;
[Explanation of symbols]
1,21 Support cylinder (cylinder of first mounting member)
3 First mounting member
4 Second mounting member
5 Elastic bearing body
5a thick layer
5b Thick layer upward surface
6,23 Fluid chamber
7 Liquid
8 Air (gas)
9, 9 ', 31 partition
9a, 9a ', 31a The outer peripheral edge of the partition
10, 24, 32 Equilibrium chamber
11, 25, 33 pressure receiving chamber
12, 12 ', 34 Orifice
12a Equilibrium chamber side opening
12b Pressure receiving chamber side opening
13, 26, 36 Concave groove
14, 14 ', 35 Guide surface
22 Diaphragm (elastic thin film member)
22a, 34a Thin film part
22b, 34b Cylindrical mounting part
22f Bottom end of the cylinder
37 annular gap
X Tube axis

Claims (3)

上側に配置されて振動発生源および振動受部の一方に連結される第1取付部材と、下側に配置されて上記振動発生源および振動受部の他方に連結される第2取付部材と、これら第1および第2の両取付部材を連結するよう設けられて上記振動発生源からの振動により変形される弾性支承体と、この弾性支承体とその上方に設けられた弾性薄膜部材とにより密閉状態に画成されて液体が封入された流体室と、上記流体室の上下方向中間位置に配置されて流体室を上記弾性支承体の変形により拡縮される受圧室とこの受圧室より上側に位置して上記弾性薄膜部材の変形により拡縮可能な平衡室とに仕切る仕切体と、上記受圧室と平衡室とを互いに連通するオリフィスとを備えた防振装置において、
上記仕切体の中央部には上記オリフィスが上下方向に延びるよう貫通して形成されている一方、上記受圧室に面する仕切体の下面には上記受圧室内の気泡を上記オリフィスの受圧室側開口に導くよう上記仕切体の外周囲から上記オリフィスの受圧室側開口に向って上り勾配の案内面が形成され、
上記第1取付部材が、筒軸を上下方向に向けて配置された筒体を備えており、
上記弾性薄膜部材は、上記筒体の上端開口部を覆う弾性薄膜部と、この弾性薄膜部の外周囲に一体形成された筒状取付部と、この筒状取付部の内部に埋め込まれた補強筒とを備え、
上記弾性薄膜部材は、上記筒状取付部の外周面が上記筒体の上端開口部の内周面に圧入された状態で、上記筒体に対し固定されている防振装置。
A first mounting member disposed on the upper side and connected to one of the vibration generating source and the vibration receiving unit; a second mounting member disposed on the lower side and coupled to the other of the vibration generating source and the vibration receiving unit; The first and second mounting members are connected to each other and are sealed by an elastic support body that is deformed by vibration from the vibration source, and the elastic support body and an elastic thin film member provided thereabove. A fluid chamber that is defined in a state and filled with liquid; a pressure receiving chamber that is disposed at an intermediate position in the vertical direction of the fluid chamber and is expanded and contracted by deformation of the elastic support body; and a position above the pressure receiving chamber And a vibration isolator comprising a partition that partitions into an equilibrium chamber that can be expanded and contracted by deformation of the elastic thin film member, and an orifice that communicates the pressure receiving chamber and the equilibrium chamber.
The orifice is formed through the center of the partition so as to extend in the vertical direction. On the lower surface of the partition facing the pressure receiving chamber, bubbles in the pressure receiving chamber are opened on the pressure receiving chamber side of the orifice. An upwardly inclined guide surface is formed from the outer periphery of the partition to the pressure receiving chamber side opening of the orifice so as to lead to
The first mounting member includes a cylindrical body arranged with a cylindrical axis facing the vertical direction,
The elastic thin film member includes an elastic thin film portion covering the upper end opening of the cylindrical body, a cylindrical mounting portion integrally formed on the outer periphery of the elastic thin film portion, and a reinforcement embedded in the cylindrical mounting portion. With a cylinder,
The elastic thin film member is a vibration isolator fixed to the cylindrical body in a state where the outer peripheral surface of the cylindrical mounting portion is press-fitted into the inner peripheral surface of the upper end opening of the cylindrical body .
上側に配置されて振動発生源および振動受部の一方に連結される第1取付部材と、下側に配置されて上記振動発生源および振動受部の他方に連結される第2取付部材と、これら第1および第2の両取付部材を連結するよう設けられて上記振動発生源からの振動により変形される弾性支承体と、この弾性支承体とその上方に設けられた弾性薄膜部材とにより密閉状態に画成されて液体が封入された流体室と、上記流体室の上下方向中間位置に配置されて流体室を上記弾性支承体の変形により拡縮される受圧室とこの受圧室より上側に位置して上記弾性薄膜部材の変形により拡縮可能な平衡室とに仕切る仕切体と、上記受圧室と平衡室とを互いに連通するオリフィスとを備えた防振装置において、
上記流体室の内周面には、上記仕切体が上記受圧室の液圧変動を受けて上下方向に微小変位するよう上記仕切体の外周端部を上下方向両側から挟みかつ上記仕切体の外周端部との間に受圧室から平衡室に気泡が通過するよう環状の微小な隙間を形成する凹溝部が形成されており、
上記仕切体の中央部には上記オリフィスが貫通して形成されている一方、上記受圧室に面する仕切体の下面には上記受圧室内の気泡を上記凹溝部に案内するよう中央部から外周囲に向って上り勾配の案内面が形成され、
上記第1取付部材が、筒軸を上下方向に向けて配置された筒体を備えており、
上記弾性薄膜部材は、上記筒体の上端開口部を覆う弾性薄膜部と、この弾性薄膜部の外周囲に一体形成された筒状取付部と、この筒状取付部の内部に埋め込まれた補強筒とを備え、
上記弾性薄膜部材は、上記筒状取付部の外周面が上記筒体の上端開口部の内周面に圧入された状態で、上記筒体に対し固定されている防振装置。
A first mounting member disposed on the upper side and connected to one of the vibration generating source and the vibration receiving unit; a second mounting member disposed on the lower side and coupled to the other of the vibration generating source and the vibration receiving unit; The first and second mounting members are connected to each other and are sealed by an elastic support body that is deformed by vibration from the vibration source, and the elastic support body and an elastic thin film member provided thereabove. A fluid chamber that is defined in a state and filled with liquid; a pressure receiving chamber that is disposed at an intermediate position in the vertical direction of the fluid chamber and is expanded and contracted by deformation of the elastic support body; and a position above the pressure receiving chamber And a vibration isolator comprising a partition that partitions into an equilibrium chamber that can be expanded and contracted by deformation of the elastic thin film member, and an orifice that communicates the pressure receiving chamber and the equilibrium chamber.
On the inner peripheral surface of the fluid chamber, the outer peripheral end of the partition is sandwiched from both sides in the vertical direction so that the partition receives a fluid pressure fluctuation in the pressure receiving chamber and is slightly displaced in the vertical direction. A concave groove part is formed between the end part to form an annular minute gap so that bubbles pass from the pressure receiving chamber to the equilibrium chamber,
The orifice is formed through the central portion of the partition body, while the lower surface of the partition surface facing the pressure receiving chamber has an outer periphery from the central portion so as to guide the bubbles in the pressure receiving chamber to the concave groove portion. An upwardly inclined guide surface is formed toward
The first mounting member includes a cylindrical body arranged with a cylindrical axis facing the vertical direction,
The elastic thin film member includes an elastic thin film portion covering the upper end opening of the cylindrical body, a cylindrical mounting portion integrally formed on the outer periphery of the elastic thin film portion, and a reinforcement embedded in the cylindrical mounting portion. With a cylinder,
The elastic thin film member is a vibration isolator fixed to the cylindrical body in a state where the outer peripheral surface of the cylindrical mounting portion is press-fitted into the inner peripheral surface of the upper end opening of the cylindrical body .
請求項1または請求項2において、
筒体の内周面には弾性支承体から連続して厚肉層が形成されてその上端に環状の上向き面が形成されており、この上向き面と、弾性薄膜部材の筒状取付部の下端面とにより、仕切体を上下方向に微小変位可能に保持する凹溝部が形成されている防振装置。
In claim 1 or claim 2 ,
A thick layer is continuously formed on the inner peripheral surface of the cylindrical body from the elastic support body, and an annular upward surface is formed at the upper end thereof. The upward surface and the bottom of the cylindrical mounting portion of the elastic thin film member are formed. An anti-vibration device in which a concave groove for holding the partition body in a vertically movable manner is formed by the end face.
JP5566894A 1994-03-25 1994-03-25 Vibration isolator Expired - Fee Related JP3719268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5566894A JP3719268B2 (en) 1994-03-25 1994-03-25 Vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5566894A JP3719268B2 (en) 1994-03-25 1994-03-25 Vibration isolator

Publications (2)

Publication Number Publication Date
JPH07259920A JPH07259920A (en) 1995-10-13
JP3719268B2 true JP3719268B2 (en) 2005-11-24

Family

ID=13005249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5566894A Expired - Fee Related JP3719268B2 (en) 1994-03-25 1994-03-25 Vibration isolator

Country Status (1)

Country Link
JP (1) JP3719268B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5469926B2 (en) * 2009-06-10 2014-04-16 株式会社ブリヂストン Vibration isolator

Also Published As

Publication number Publication date
JPH07259920A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
US5183243A (en) Fluid-filled elastic mount having caulked portion for sealing off fluid chamber
JP2510903B2 (en) Fluid-filled mount device and manufacturing method thereof
JP4228219B2 (en) Fluid filled vibration isolator
US5628498A (en) Fluid-filled elastic mount
EP0058408A2 (en) Fluid-filled engine mount device
JP3697565B2 (en) Liquid-filled vibration isolator
JP2007127274A (en) Hydraulic anti-vibration device
JP4842078B2 (en) Fluid-filled vibration isolator and manufacturing method thereof
EP2700840B1 (en) Fluid filled vibration damping device
EP1887250B1 (en) Fluid-sealed anti-vibration device
JP5000282B2 (en) Liquid seal vibration isolator
JP3719268B2 (en) Vibration isolator
JP3682813B2 (en) Liquid-filled mount and assembly method thereof
JP4198771B2 (en) Controlled liquid-filled vibration isolator
JP4989620B2 (en) Liquid-filled vibration isolator
JPH109333A (en) Vibration isolating device
JP4202796B2 (en) Liquid-filled vibration isolator
JP4188751B2 (en) Liquid-filled vibration isolator
JP2003004088A (en) Liquid sealed vibration isolator
JP4131410B2 (en) Method for manufacturing fluid-filled cylindrical mount
JP2827841B2 (en) Fluid-filled anti-vibration assembly
JP2002310222A (en) Liquid sealed vibration isolator
JP2877940B2 (en) Cylindrical mount and method of manufacturing the same
JPH0828623A (en) Fluid sealing type mount device and its manufacture
JP2005282662A (en) Liquid sealed mount

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040831

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050816

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050830

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090916

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100916

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110916

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110916

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130916

LAPS Cancellation because of no payment of annual fees