JP3719097B2 - Wheel steering device for towed work machine - Google Patents

Wheel steering device for towed work machine Download PDF

Info

Publication number
JP3719097B2
JP3719097B2 JP2000117275A JP2000117275A JP3719097B2 JP 3719097 B2 JP3719097 B2 JP 3719097B2 JP 2000117275 A JP2000117275 A JP 2000117275A JP 2000117275 A JP2000117275 A JP 2000117275A JP 3719097 B2 JP3719097 B2 JP 3719097B2
Authority
JP
Japan
Prior art keywords
angle
wheel
hitch
tractor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000117275A
Other languages
Japanese (ja)
Other versions
JP2001301636A (en
Inventor
秀樹 河辺
晴久 鈴木
秀康 岡田
行雄 宮下
敏伸 大橋
Original Assignee
東洋農機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋農機株式会社 filed Critical 東洋農機株式会社
Priority to JP2000117275A priority Critical patent/JP3719097B2/en
Publication of JP2001301636A publication Critical patent/JP2001301636A/en
Application granted granted Critical
Publication of JP3719097B2 publication Critical patent/JP3719097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Agricultural Machines (AREA)
  • Guiding Agricultural Machines (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トラクタに牽引される作業機の車輪操舵装置に関するものであり、特に、傾斜地圃場において作業機の傾斜方向の流れ防止に好適な車輪操舵装置に係るものである。
【0002】
【従来の技術】
傾斜地に於ける牽引式作業機の牽引は、作業機が圃場の傾斜方向に流され本来の軌道からずれてしまうことを作業者が勘や経験により作業機のステアリングスイッチを操作して流れを補正する作業を強いられており、作業効率の低下、後方確認や機械操作による作業者の疲労の原因となっていた。
【0003】
これまでの自動ステアリング操作を実用化した装置は、牽引式作業機の連結部であるドローバー内にリミットスイッチ等を内蔵し、旋回時にある一定の角度(動作点)にドローバーが回転した場合、牽引作業機のステアリングをドローバーの回転方向と逆方向の車輪舵角限界点まで車輪を操舵し、旋回状態から直進した場合にドローバーが逆回転し再びある一定の角度(動作点)に達すると、牽引作業機のステアリングを中立点に戻す制御を行っていた。しかし、この様な方法では精密なステアリング制御を必要とする傾斜地の流れ止め制御は不可能であった。
【0004】
また現在のオフセット式のヒッチ機構を持つ作業機ではドローバーにアナログセンサーを取り付けたとしても、ドローバーの中立点を作業機フレームの中立点として制御を行うと、圃場の畦に合わせて畦合わせを行う度にセンサーのゼロ点がずれていしまうという問題があった。この問題を物理的方法、例えばヒッチ角を変更させても四節リンク等により直進牽引時の絶対ドローバー角を変化させない方法、又は畦合わせの都度センサーを調整する方法で解決すると、機構が複雑化してコストアップするだけでなく、細かな調整が必要になるため、実用的ではなかった。
【0005】
【発明が解決しようとする課題】
本発明は上記問題を解決するためになされたものであり、その課題とするところは、傾斜地において作業機をトラクタで牽引して作業をするとき、又は、畦合わせにより作業機のヒッチ角が変化するとき、もしくはトラクタのステアリング操作により作業機を旋回するとき、常に作業機がヒッチによってオフセット設定されたトラクタとの位置関係を保持し、かつトラクタ軌道と作業機軌道が一定の間隔となるように作業機の車輪舵角を自動的に制御する車輪操作装置を提供することにある。
【0006】
【課題を解決するための手段】
前記課題を達成するため、本発明が採用する手段は、作業機の車輪操舵装置を、作業機の車輪を操舵する油圧機構と、その油圧機構を制御するコンピュータと、ドローバーとヒッチの交差角のドローバー角を検出するドローバーセンサーと、ヒッチと作業機の車輪車軸の交差角のヒッチ角を検出するヒッチセンサーと、作業機の車輪の実舵角を検出する車輪センサーとから構成し、ドローバーセンサーとヒッチセンサーの検出信号をコンピュータに入力してトラクタの進行方向に対する作業機の進行方向のずれ角を算出し、そのずれ角から車輪の目標舵角を設定し、作業機車輪の実舵角が目標舵角となるようにコンピュータが油圧機構を制御するようにしたことにある。
【0007】
ここで、ヒッチ角(時計回り)をθA、ドローバー角(反時計回り)をθBとすると、トラクタ進行方向と作業機の進行方向が一致する直進時にはθA=θB、傾斜地で作業機が進行方向に対して右にずれるか、又はトラクタが左に旋回するときには、θA>θB、傾斜地で作業機が進行方向に対して左にずれるか、又はトラクタが右に旋回するときには、θA<θBとなる。
【0008】
トラクタと作業機の進行方向のずれ角をθCとすると、θC=θA−θBとなる。このずれ角をθDとするための車輪の車軸に対する舵角は、車輪の中立角をθR(通常は直角)とすると、θD=θR−θCである。コンピュータは、車輪センサーの信号の実舵角θEが目標舵角θDと一致するように、油圧機構を制御する。
【0009】
【発明の実施の形態】
本発明を図1に示す実施例に基づいて説明する。
【0010】
図1は傾斜地で収穫作業を行うトラクタ1と作業機2の平面図である。トラクタ1は太矢印で示す傾斜方向に直交して進行する。ドローバー角120度とヒッチ角120度で牽引されていた作業機2が、傾斜方向に流され、ドローバー角が進行方向に15度ずれて135度となった状態を示す。
【0011】
トラクタ1のドローバー3とヒッチ4の接続部分にドローバーセンサー5が、ヒッチと作業機2の接続部分にはヒッチセンサー6がそれぞれ配設される。作業機2の車軸7の一方の車輪8の取付部分には車輪舵角センサー9が配設され、車輪8は作業機2に配設された油圧シリンダ10により操舵される。油圧シリンダ10を制御するコンピュータ11がトラクタ1に配置され、ドローバーセンサー5は、ドローバー3とヒッチ4の交差角であるドローバー角θBの信号を、ヒッチセンサー6は、ヒッチと作業機2の車軸7の交差角であるヒッチ角θAの信号を、車輪センサー9は、車輪8の車軸7に対する実舵角θEの信号をそれぞれコンピュータ11に入力する。コンピュータ11は、これらの信号に基づいてトラクタ1の進行方向に対する作業機2のずれ角θCを算出し、そのずれ角を修正する車輪8の目標舵角θDを設定し、実舵角θEが目標舵角θDとなるように油圧シリンダ10を作動させる。
【0012】
このコンピュータ11の制御は、図2のフローチャートに示すように、自動ステアリングモードにおいて実施される。ステップ1のモード切替操作において、OFFへの切替をしないと、ステップ2において、車輪の車軸に対する中立角θRがセットされ、ステップ3、4、5においてヒッチ角θA、ドローバー角θB、車輪の実舵角θEが入力され、ステップ6においてノイズ除去のため平均化される。
【0013】
ついで、ステップ7において、θC=θA−θBにより、トラクタ進行方向に対する作業機のずれ角θCが算出され、ステップ8において、θD=θR−θCにより、車輪の目標舵角θDが決定され、ステップ9において、S=θE−θDにより、車輪の実舵角と目標舵角の差Sが算出され、ステップ10において、Sが不感帯の範囲内であれば、ステップ1へ戻り、範囲外であれば、ステップ11において正負を判定し、正であればステップ12において右ステアリングの信号が、負であれば、ステップ13において左ステアリングの信号がそれぞれ油圧シリンダへ出力され、車輪は右又は左へ舵が切られる。ついで、ステップ1へ戻り、再び処理がくり返されるから、作業機2の傾斜方向の流れは自動的に修正され、ドローバー角は始めの120度に戻るから、作業機の進行方向はトラクタの進行方向と一致する。
【0014】
【実施例】
次に、前記実施例を備えた作業機の旋回及びオフセットについて説明する。
【0015】
図3は、定常旋回するトラクタ1が作業機2を120度のドローバー角、ヒッチ角でオフセットさせて牽引し、作業機2がトラクタ1の進行方向に対して5度ずれてトラクタ1と作業機2の進行軌道の間隔が狭くなってきた状態を示す平面図である。
【0016】
コンピュータ11は、ドローバーセンサ5とヒッチセンサ6のドローバー角θBとヒッチ角θAの信号から、ずれ角θC=5度を算出して車輪8の目標舵角θDを85度に設定し、油圧シリンダ10を作動させて車輪センサ9の実舵角θEの信号が85度になるように調整する。その結果、ドローバー角θBは再び120度に戻り、作業機2は始めに設定したオフセット位置を保持し、トラクタ1と作業機2の進行軌道間隔も元の幅になる。
【0017】
図4は、トラクタ1と作業機2が異なる畦幅の圃場13、14を進行する状態を示す平面図である。
【0018】
圃場13において、作業機2を比較的大きなヒッチ角θAでオフセットさせて、作業していたトラクタ1が、畦幅の異なる圃場14に入ると、作業機2を前とは異なる畦幅に合わせるため、トラクタと作業機の車輪幅を変えると共に、ヒッチシリンダ12を作動させてヒッチ角θAを少し小さくし、作業機2のトラクタ1に対するオフセットを少し調整しなければならない。しかし、コンピュータ11は、ヒッチシリンダ12によるヒッチ角とドローバー角の変化には関係なく、トラクタ1と作業機2の進行方向のずれ角を算出して車輪8の目標舵角を設定し、車輪8の実舵角を目標舵角と一致するように制御する。したがって、畦幅の異なる圃場に入るために、作業機2のオフセット位置を変更しても、従来のように、車輪操舵装置のセンサを補正する必要は全くない。
【0019】
【発明の効果】
上記のとおり、本発明の車輪操舵装置は、従来のトラクタとの連結部のドローバーとヒッチの間のドローバー角を検知するドローバーセンサによって車輪を操舵していたものとは異なり、ドローバーセンサと、ヒッチと作業機の車軸の間のヒッチ角を検出するヒッチセンサとからトラクタと作業機の進行方向のずれ角をコンピュータが算出して作業機の車輪の目標舵角を設定し、車輪の実舵角がその目標舵角となるように操舵油圧機構を制御するから、次のような優れた効果を奏する。
1.傾斜地における牽引作業機の流れ止めステアリング操作を自動化することができる。
2.旋回時における牽引作業機のステアリング操作を自動化することができる。3.畦合わせによるヒッチ角の変化に伴うセンサーの調整を不要にすることができる。
4.上記の自動化により、作業効率が向上し、省力化が可能になる。
【図面の簡単な説明】
【図1】本発明実施例の車輪操舵装置を備え、傾斜地で収穫作業を実施するトラクタと作業機を略図的に示す平面図、
【図2】図1の車輪操舵装置のフローチャート、
【図3】旋回中のトラクタと作業機を略図的に示す平面図、
【図4】畦幅の異なる圃場に入ったトラクタと作業機のオフセットを略図的に示す平面図、
【符号の説明】
1:トラクタ
2:作業機
3:ドローバー
4:ヒッチ
5:ドローバーセンサ
6:ヒッチセンサ
7:車軸
8:車輪
9:車輪センサ
10:油圧シリンダ
11:コンピュータ
12:ヒッチシリンダ
θA:ヒッチ角
θB:ドローバー角
θC:ずれ角
θD:目標舵角
θE:実舵角
θR:中立角
S:角差
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wheel steering device for a work machine towed by a tractor, and more particularly to a wheel steering device suitable for preventing a flow of the work machine in a tilt direction in an inclined field.
[0002]
[Prior art]
Towing a towed work machine on a sloping ground, the operator operates the steering switch of the work machine and corrects the flow based on the intuition and experience that the work machine is swung in the direction of the farm field and deviates from the original trajectory. It was forced to perform work, which caused a decrease in work efficiency and fatigue of workers due to backward confirmation and machine operation.
[0003]
The devices that have made practical use of automatic steering operation so far have built-in limit switches etc. in the draw bar that is the connecting part of the towed work machine, and if the draw bar rotates at a certain angle (operating point) during turning, the tow When the steering wheel of the work implement is steered to the wheel steering angle limit point in the direction opposite to the direction of rotation of the drawbar, the drawbar rotates in the reverse direction when it goes straight from the turning state, and when it reaches a certain angle (operating point) again, it is pulled Control was performed to return the steering of the work implement to the neutral point. However, with such a method, it has been impossible to control the flow stop of an inclined land that requires precise steering control.
[0004]
In addition, even if the current working machine with an offset hitch mechanism has an analog sensor attached to the drawbar, if the neutral point of the drawbar is controlled as the neutral point of the work machine frame, it will be adjusted to match the straw on the field. There was a problem that the zero point of the sensor shifted every time. If this problem is solved by a physical method, for example, a method that does not change the absolute drawbar angle during straight towing even if the hitch angle is changed, or a method that adjusts the sensor each time the vehicle is brought together, the mechanism becomes complicated. This is not practical because it not only increases costs but also requires fine adjustments.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and the problem is that the hitch angle of the work implement changes when the work implement is pulled by a tractor on a sloping ground or when the work implement is fitted together. Or when turning the work implement by steering operation of the tractor, the work implement always maintains the positional relationship with the tractor offset by the hitch, and the tractor track and the work implement track are at a constant interval. An object of the present invention is to provide a wheel operation device that automatically controls a wheel steering angle of a work machine.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the means employed by the present invention includes a wheel steering device for a work machine, a hydraulic mechanism for steering the wheel of the work machine, a computer for controlling the hydraulic mechanism, and an intersection angle between the draw bar and the hitch. It consists of a drawbar sensor that detects the drawbar angle, a hitch sensor that detects the hitch angle between the hitch and the wheel axle of the work implement, and a wheel sensor that detects the actual steering angle of the work implement wheel. The detection signal of the hitch sensor is input to the computer to calculate the deviation angle of the work implement traveling direction relative to the tractor traveling direction, and the target rudder angle of the wheel is set from the deviation angle, and the actual rudder angle of the work implement wheel is the target. This is because the computer controls the hydraulic mechanism so that the steering angle is obtained.
[0007]
Here, if the hitch angle (clockwise) is θA and the drawbar angle (counterclockwise) is θB, θA = θB when the tractor traveling direction matches the traveling direction of the work implement, and the work implement moves in the traveling direction on a sloping ground. On the other hand, when the tractor is shifted to the right or the tractor turns to the left, θA> θB, and when the work implement is shifted to the left with respect to the traveling direction on the slope, or the tractor is turned to the right, θA <θB.
[0008]
Assuming that the deviation angle between the traveling direction of the tractor and the work implement is θC, θC = θA−θB. The steering angle with respect to the axle of the wheel for setting the deviation angle to θD is θD = θR−θC, where the neutral angle of the wheel is θR (normally a right angle). The computer controls the hydraulic mechanism such that the actual steering angle θE of the wheel sensor signal matches the target steering angle θD.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described based on the embodiment shown in FIG.
[0010]
FIG. 1 is a plan view of a tractor 1 and a work machine 2 that perform harvesting work on an inclined land. The tractor 1 travels perpendicular to the tilt direction indicated by the thick arrow. The working machine 2 that has been pulled at a drawbar angle of 120 degrees and a hitch angle of 120 degrees is swept in the tilt direction, and the drawbar angle is shifted 15 degrees in the traveling direction to 135 degrees.
[0011]
A draw bar sensor 5 is disposed at a connection portion between the draw bar 3 and the hitch 4 of the tractor 1, and a hitch sensor 6 is disposed at a connection portion between the hitch and the work implement 2. A wheel rudder angle sensor 9 is disposed at the mounting portion of one wheel 8 of the axle 7 of the work machine 2, and the wheel 8 is steered by a hydraulic cylinder 10 disposed in the work machine 2. A computer 11 for controlling the hydraulic cylinder 10 is disposed in the tractor 1, a draw bar sensor 5 outputs a signal of a draw bar angle θB that is an intersection angle between the draw bar 3 and the hitch 4, and the hitch sensor 6 indicates an axle 7 of the hitch and the work implement 2. The wheel sensor 9 inputs a signal of the actual steering angle θE of the wheel 8 with respect to the axle 7 to the computer 11. The computer 11 calculates the deviation angle θC of the work implement 2 with respect to the traveling direction of the tractor 1 based on these signals, sets the target rudder angle θD of the wheel 8 that corrects the deviation angle, and the actual rudder angle θE is the target. The hydraulic cylinder 10 is operated so that the steering angle θD is obtained.
[0012]
The control of the computer 11 is performed in the automatic steering mode as shown in the flowchart of FIG. If switching to OFF is not performed in the mode switching operation in step 1, the neutral angle θR with respect to the axle of the wheel is set in step 2, and the hitch angle θA, the drawbar angle θB, the actual steering of the wheel are set in steps 3, 4, and 5. The angle θE is input and averaged in step 6 for noise removal.
[0013]
Next, in step 7, the deviation angle θC of the work implement with respect to the tractor traveling direction is calculated from θC = θA−θB. In step 8, the target steering angle θD of the wheel is determined by θD = θR−θC. In S10, the difference S between the actual steering angle of the wheel and the target steering angle is calculated by S = θE−θD. In step 10, if S is within the dead zone, the process returns to step 1; In step 11, positive / negative is determined. If positive, a right steering signal is output to the hydraulic cylinder in step 12, and if negative, a left steering signal is output to the hydraulic cylinder in step 13. It is done. Next, the process returns to Step 1 and the process is repeated again. Therefore, the flow in the inclination direction of the work implement 2 is automatically corrected, and the drawbar angle returns to the initial 120 degrees, so the advance direction of the work implement is the advance of the tractor. Match the direction.
[0014]
【Example】
Next, turning and offset of the working machine provided with the embodiment will be described.
[0015]
FIG. 3 shows that the tractor 1 that makes a steady turn pulls the work implement 2 by offsetting it with a drawbar angle and hitch angle of 120 degrees, and the work implement 2 is shifted by 5 degrees with respect to the traveling direction of the tractor 1 and the tractor 1 and the work implement It is a top view which shows the state from which the space | interval of 2 advancing trajectory has become narrow.
[0016]
The computer 11 calculates the deviation angle θC = 5 degrees from the signals of the drawbar angle θB and the hitch angle θA of the drawbar sensor 5 and the hitch sensor 6, sets the target rudder angle θD of the wheel 8 to 85 degrees, and the hydraulic cylinder 10 To adjust the signal of the actual steering angle θE of the wheel sensor 9 to 85 degrees. As a result, the drawbar angle θB returns to 120 degrees again, the work implement 2 maintains the initially set offset position, and the travel trajectory interval between the tractor 1 and the work implement 2 becomes the original width.
[0017]
FIG. 4 is a plan view showing a state in which the tractor 1 and the work implement 2 travel through the field 13 and 14 having different ridge widths.
[0018]
In the field 13, when the work machine 2 is offset by a relatively large hitch angle θA and the tractor 1 that has been working enters the field 14 having a different ridge width, the work machine 2 is adjusted to a different ridge width from the previous one. In addition to changing the wheel widths of the tractor and the work implement, the hitch cylinder 12 is operated to slightly reduce the hitch angle θA, and the offset of the work implement 2 relative to the tractor 1 must be adjusted slightly. However, the computer 11 sets the target rudder angle of the wheel 8 by calculating the deviation angle of the traveling direction of the tractor 1 and the work implement 2 regardless of the change in the hitch angle and the drawbar angle by the hitch cylinder 12. The actual steering angle is controlled to coincide with the target steering angle. Therefore, even if the offset position of the work implement 2 is changed in order to enter a field having a different ridge width, there is no need to correct the sensor of the wheel steering device as in the conventional case.
[0019]
【The invention's effect】
As described above, the wheel steering device of the present invention is different from the conventional one in which the wheel is steered by the draw bar sensor that detects the draw bar angle between the draw bar and the hitch of the connecting portion with the tractor. The computer calculates the deviation angle between the tractor and the work implement in the traveling direction from the hitch sensor that detects the hitch angle between the work implement axle and the work implement axle, and sets the target steer angle of the work implement wheel. Since the steering hydraulic mechanism is controlled so that the target steering angle becomes the target steering angle, the following excellent effects are obtained.
1. It is possible to automate the flow stop steering operation of the towing work machine on an inclined ground.
2. The steering operation of the towing work machine during turning can be automated. 3. It is possible to eliminate the need to adjust the sensor according to the change in the hitch angle due to the alignment.
4). The above automation improves work efficiency and saves labor.
[Brief description of the drawings]
FIG. 1 is a plan view schematically showing a tractor and a working machine that are equipped with a wheel steering device according to an embodiment of the present invention and that perform harvesting work on an inclined land;
FIG. 2 is a flowchart of the wheel steering device of FIG.
FIG. 3 is a plan view schematically showing a tractor and a working machine during turning;
FIG. 4 is a plan view schematically showing an offset between a tractor and a working machine that have entered a farm with different ridge widths;
[Explanation of symbols]
1: Tractor 2: Work implement 3: Draw bar 4: Hitch 5: Draw bar sensor 6: Hitch sensor 7: Axle 8: Wheel 9: Wheel sensor 10: Hydraulic cylinder 11: Computer 12: Hitch cylinder θA: Hitch angle θB: Draw bar angle θC: deviation angle θD: target rudder angle θE: actual rudder angle θR: neutral angle S: angle difference

Claims (1)

トラクタ(1)との連結部のドローバー(3)とヒッチ(4)の間のドローバー角θBを検出するドローバーセンサ(5)と、前記ヒッチとオフセット設定される作業機(2)の車軸(7)の間のヒッチ角θAを検出するヒッチセンサ(6)と、前記作業機の車輪の実舵角θEを検出する車輪センサ(9)と、前記車輪を操舵する油圧機構(10)と、前記油圧機構を制御するコンピュータ(11)とからなる車輪操舵装置において、前記コンピュータは、前記ドローバーセンサと前記ヒッチセンサの信号が入力されると前記トラクタと前記作業機の進行方向のずれ角θC=θA−θBを算出し、前記ずれ角と前記車輪の中立角θR(通常は直角)とから前記車輪の目標舵角θDを設定し、前記実舵角θEが前記目標舵角θDと一致するように前記油圧機構を制御することを特徴とする牽引式作業機の車輪操舵装置。The drawbar sensor (5) for detecting the drawbar angle θB between the drawbar (3) and the hitch (4) at the connecting portion with the tractor (1), and the axle (7) of the work machine (2) set to be offset from the hitch ), A wheel sensor (9) for detecting the actual steering angle θE of the wheel of the working machine, a hydraulic mechanism (10) for steering the wheel, In the wheel steering system comprising a computer (11) for controlling the hydraulic mechanism, the computer , when the signals of the draw bar sensor and the hitch sensor are inputted, is a deviation angle θC = θA in the traveling direction of the tractor and the work implement. -ΘB is calculated, and a target rudder angle θD of the wheel is set from the deviation angle and the neutral angle θR (normally a right angle) of the wheel so that the actual rudder angle θE matches the target rudder angle θD. Above Wheel steering system of the towing type working machine and controlling the pressure mechanism.
JP2000117275A 2000-04-19 2000-04-19 Wheel steering device for towed work machine Expired - Lifetime JP3719097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000117275A JP3719097B2 (en) 2000-04-19 2000-04-19 Wheel steering device for towed work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000117275A JP3719097B2 (en) 2000-04-19 2000-04-19 Wheel steering device for towed work machine

Publications (2)

Publication Number Publication Date
JP2001301636A JP2001301636A (en) 2001-10-31
JP3719097B2 true JP3719097B2 (en) 2005-11-24

Family

ID=18628613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000117275A Expired - Lifetime JP3719097B2 (en) 2000-04-19 2000-04-19 Wheel steering device for towed work machine

Country Status (1)

Country Link
JP (1) JP3719097B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1021871C2 (en) 2002-11-08 2004-05-11 Fedde Marten Hiemstra Trailer steering device, includes output gear wheel with angular rotation following that of input gear wheel
JP5173183B2 (en) * 2005-12-19 2013-03-27 東洋農機株式会社 Steering device for working machine and program for steering device
FR2909632B1 (en) * 2006-12-07 2009-02-13 Monroc METHOD AND DEVICE FOR CONTROLLING THE STEERING WHEELS OF A TRAILER.
CN109168510A (en) * 2018-09-27 2019-01-11 温州大学瓯江学院 Agricultural fertilizer machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273774A (en) * 1988-04-22 1989-11-01 Yuhshin Co Ltd Reversing cornering control device for combination vehicle
JP2503856Y2 (en) * 1991-08-13 1996-07-03 安久津 義人 Tractor-Wheel steering device for towing work machines
JPH08272444A (en) * 1995-04-03 1996-10-18 Suzuki Motor Corp Retreat controllable tractive vehicle
JP2985774B2 (en) * 1996-06-11 1999-12-06 三菱自動車工業株式会社 Steering device for articulated vehicles
JPH10310080A (en) * 1997-05-09 1998-11-24 Toyota Autom Loom Works Ltd Trailer traction steering device, and trailer
JP2000335440A (en) * 1999-05-25 2000-12-05 Sooshin:Kk Steering method and device for trailer, and vehicle such as trailer having the steering method or the steering device

Also Published As

Publication number Publication date
JP2001301636A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
GB2145844A (en) Automatic running work vehicle
JP3719097B2 (en) Wheel steering device for towed work machine
JP5173183B2 (en) Steering device for working machine and program for steering device
JP4195322B2 (en) Agricultural vehicle
JPH05284804A (en) Mechanism for steering agricultural working machine
AU763934B2 (en) Apparatus and method for controlling the position of an arm on a hitch
JP2731663B2 (en) Agricultural work machine steering mechanism
JPH05316807A (en) Method for steering and controlling agricultural traction type working machine
JP2822576B2 (en) Four-wheel steering control device
JP2004130957A (en) Wheel steering device for towed work machine
JP2870893B2 (en) Moving agricultural machine
JP4331360B2 (en) Agricultural work vehicle
JP3055184B2 (en) Powered vehicle four-wheel steering system
JP2001103806A (en) Straight ahead controller of mobile farm machine
JP2003246275A (en) Wheel steering unit for towing type working machine
JP4159432B2 (en) Work vehicle
JP3038771B2 (en) Four-wheel steering control device
JPH01252207A (en) Steer control device for mobile farm machine
JP2534400B2 (en) Steering control device for mobile work vehicle
JPH0655589B2 (en) Automatic steering control device for towed work machines on sloping ground
JP2023150357A (en) work vehicle
JPH0583806U (en) Work vehicle
JPH0851802A (en) Agricultural working machine
JPH1149016A (en) Steering controller for 4-wheel traveling vehicle
JP2949786B2 (en) Powered vehicle steering system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3719097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term