JP3718561B2 - Structural vibration instability prevention device and method, magnetic bearing control device - Google Patents

Structural vibration instability prevention device and method, magnetic bearing control device Download PDF

Info

Publication number
JP3718561B2
JP3718561B2 JP18218796A JP18218796A JP3718561B2 JP 3718561 B2 JP3718561 B2 JP 3718561B2 JP 18218796 A JP18218796 A JP 18218796A JP 18218796 A JP18218796 A JP 18218796A JP 3718561 B2 JP3718561 B2 JP 3718561B2
Authority
JP
Japan
Prior art keywords
plane
magnetic bearing
phase
output
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18218796A
Other languages
Japanese (ja)
Other versions
JPH1026137A (en
Inventor
直彦 ▲高▼橋
治雄 三浦
康雄 福島
Original Assignee
株式会社 日立インダストリイズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立インダストリイズ filed Critical 株式会社 日立インダストリイズ
Priority to JP18218796A priority Critical patent/JP3718561B2/en
Publication of JPH1026137A publication Critical patent/JPH1026137A/en
Application granted granted Critical
Publication of JP3718561B2 publication Critical patent/JP3718561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Description

【0001】
【発明の属する技術分野】
本発明は構造系の振動を防止するための構造振動不安定化防止装置とその方法、及び磁気軸受制御装置に係わり、特に磁気軸受、磁気ディスクのヘッド、マニュピレータなどの位置決めに好適な構造振動不安定化防止装置とその方法、及び磁気軸受制御装置に関する。
【0002】
【従来の技術】
磁気軸受、磁気ディスクのヘッドなどの位置決め制御装置においては、制御対象の位置、あるいは速度などの状態量を予め定められた目標関数に追従させるフィードバック制御系が用いられる。制御対象は機械的、構造的ダイナミクスを有しているので、制御系の設計においてはこれらの振動モードの安定化が必要である。
【0003】
図4は磁気軸受制御系のブロック図である。ロータ1は互いに対向する電磁石3a、3bによって吸引され、空中で支持される。ロータ1を安定に支持するために、変位センサ2によって常にロータ1の位置を監視し、測定し、センサ変換器4、ノッチフィルタ9、安定化補償回路5(一般にはPID制御回路)、正負選別器6、パワーアンプ7a、7bを介して電磁石3a、3bの電流を制御する。ノッチフィルタ9は、ロータの高次曲げモードの周波数帯を遮断して、高次曲げモードの発振を防ぐために用いられている。なお、この種の磁気軸受の基本技術は、「磁気浮上と磁気軸受(コロナ社1993年6月30日発行)」に詳細に述べられている。
【0004】
【本発明が解決しようとする課題】
前述の磁気軸受の制御系において、軸受の剛性あるいは減衰性の向上を図るために、安定化補償回路の位相進み量やフィードバック・ループの利得を大きくするとロータの高次モードが不安定化して発振を起こすことがあった。このような発振を回避するために、発振を起こす高次モードの周波数域帯を遮断するノッチフィルタを追加することが一般的に行なわれてる。ノッチフィルタの使われ方は、一般には発振成分を遮断するという利得安定化が殆んどの場合であるが、ノッチフィルタの位相推移特性を利用して位相安定化を行う場合もある。
【0005】
しかしながら、フィードバック・ループの利得を曲げの固有振動周波数ω1で大きく落すことによって、ループがω1の近傍で発振しないようする利得安定化の方法では、周波数ω1で制御がきかないから、周波数ω1の外乱を抑圧できないという欠点がある。また、高次モードの振動応答の感度が低次モードの応答感度と同等程度に大きい場合には、ノッチフィルタによる遮断効果あるいは位相推移効果の不足のために、発振を抑えられない場合が出てくるという問題があった。
【0006】
一方、ノッチフィルタの改善策として、特開平7−114420号に示されているように、周波数ω1でループの利得を持ち上げ、ω1でも制御可能とするとともに、発振を止めるのは位相調整による方法が提案されている。しかしながら、この方法は利得を持ち上げることで逆に安定化のための調整が難しくなる。
【0007】
本発明の目的は、上述のノッチフィルタの欠点を補った移相回路を追加することにより、安定性に優れた構造振動不安定化防止装置とその方法、及び磁気軸受制御装置を提供することである。
【0008】
【課題を解決するための手段】
本発明は、制御対象の振動状態量を検出するための検出手段と、
該手段の検出値に上記制御対象に生じる高次モードの周波数帯域で位相推移を与えるための、複素共役零点をs平面の右半平面、又はz平面の単位円外に配置した伝達関数を有する移相手段と、
該手段の出力に補償演算を施すための補償手段と、
該手段の出力に応じて制御対象を制御するための操作手段とを備えたことを特徴とする構造振動不安定化防止装置開示する。
【0009】
更に本発明は、制御対象の振動状態量を検出するための手段から出力される信号を、上記制御対象に生じる高次モードの周波数帯域で位相推移を有するように複素共役零点をs平面の右半平面、又はz平面の単位円外に配置した伝達関数を有する補償手段を介して上記振動状態量の制御手段にフィードバックすることを特徴とする構造振動不安定化防止方法を開示する。
【0010】
更に本発明は、磁気軸受により支持されるロータの振動量を検出するための検出手段と、
該手段の検出値に上記ロータに生じる高次モードの周波数帯域で位相推移を与えるための、複素共役零点をs平面の右半平面、又はz平面の単位円外に配置した伝達関数を有する移相手段と、
該手段の出力に補償演算を施すための補償手段と、
該手段の出力に応じて制御対象を制御するための操作手段とを備えたことを特徴とする磁気軸受制御装置を開示する。
【0011】
【発明の実施の形態】
以下、本発明を実施の形態を用いて詳細に説明する。
図1は本発明になる磁気軸受制御装置の例を示すブロック図である。本図は図4とほゞ同じあり、図4と共通する引用番号は図4に示す制御系と同じ部分を示し、唯一の相異点はノッチフィルタ回路9の代りに本発明の特徴である移相回路8が設けられていることである。移相回路の出力を受けて補償回路5はPID制御あるいは位相進み/遅れ演算を行う。パワーアンプ7a、7bは正負選別器6によって正負に分けられた信号を受けて電磁石3a、3bに供給する電流を制御する。
【0012】
移相回路8の伝達関数は次式のように設計される。
【数1】
H(s)=(s−2ζωs+ω )/(s+2ζωs+ω )
こゝで、ζ>0、ζ>0とし、また、通常はω≧ωとなるように設計する。(数1)の分子に表れる複素共役零点は(ζω、±jω(1−ζ 1/2)であり、ζに負号を付したことで、移相回路8の零点はs平面上の右半平面に配置されたことになり、非最小位相推移系の位相特性を有することになる。なお、ζ=0、ω=ωとすると、通常のノッチフィルタ回路となる。
【0013】
図2は、(数1)の周波数特性例を実線で示したもので、比較のために通常のノッチフィルタ回路の周波数特性例を破線で示した。移相回路8の位相は0から−2πまで連続的に推移するのに対し、ノッチフィルタの位相は一πを含む範囲の値となることはなく、それ以外の範囲でしか推移しないことが分かる。一方振幅特性の方は、曲げモードの固有振動周波数ω1においてある程度減衰しているが、ノッチフィルタのように完全に周波数ω1の成分をカットするものではない。従って移相回路8は、位相特性を調節することにより、安定化を行う。このためには、位相特性を任意に調節することが望ましいが、上記のように移相回路8は0から−2πまでの位相推移が得られ、理想的である。ノッチフィルタを使った位相調整では本発明よりも狭い範囲の調整しかできない。
【0014】
図3は本発明になる磁気軸受制御装置の周波数特性と、ロータの周波数特性例を示したものである。磁気軸受制御装置の特性というのは、図1のループ一巡の周波数特性である。ロータの曲げ1次および曲げの2次の固有振動数ω1、ω2に対して、曲げ2次の固有振動数ω2の手前で、位相が急峻に推移して、周波数ω2では再び位相進み(2nπ<θ<(2n+1)π、nは整数)になっている。磁気軸受の制御系では通常の場合、位相進みにすることで安定化が得られるが、本発明の構成によると容易に所望の位相進みを実現でき、安定化が図られたことになる。
【0015】
なお、本発明の特徴とする移相回路を実際に作る場合、オペアンプ等を使って、アナログ回路で構成することもできるが、ディジタル処理を使ってIIR( Infinite Impulse Response )フィルタとして実現した方が容易である。IIRフィルタの演算係 数はs−z変換を使って求めることができる。このs−z変換により、s平面上の右半平面に配置された複素共役零点は、z平面の単位円外へと配置される。このことは数学上から当然の結果である。すなわち、(数1)において、例えば次式のような変換を行う。
【数2】
s=(2/T)・(1-1/z)/(1+1/z)
こゝで、Tはディジタル処理のサンプリング時間で、1/zは1サンプル遅らせる演算子である。この変換を(数1)に施して、1/zの係数を求めればIIRフィルタとして本発明の移相回路を実現することができる。
【0016】
【発明の効果】
零点を上記のように配置するとフィルタが非最小位相推位系となり、位相推移量がノッチフィルタよりも広範囲に変えられる。したがって、制御系の位相特性の調整が広範囲にできるようになり、高次の曲げモードの発振を効果的に防止することができる。
【図面の簡単な説明】
【図1】本発明になる磁気軸受制御装置の構成例を示すブロック図である。
【図2】図1の移相回路とノッチフィルタ回路の周波数特性を比較する図である。
【図3】図1の制御装置の周波数特性例とロータの特性図を示す図である。
【図4】従来の磁気軸受制御系の構成を示すブロック図である。
【符号の説明】
1 ロータ
2 変位センサ
3a、3b 電磁石
4 センサ変換器
5 補償回路
6 正負選別器
7a、7b パワーアンプ
8 移相回路
9 ノッチフィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structural vibration instability prevention device and method for preventing vibration of a structural system, and a magnetic bearing control device. In particular, the present invention relates to structural vibration resistance suitable for positioning magnetic bearings, magnetic disk heads, manipulators, and the like. The present invention relates to a stabilization prevention device and method, and a magnetic bearing control device.
[0002]
[Prior art]
In a positioning control device such as a magnetic bearing or a magnetic disk head, a feedback control system is used for causing a position of a control target or a state quantity such as speed to follow a predetermined target function. Since the object to be controlled has mechanical and structural dynamics, it is necessary to stabilize these vibration modes in the design of the control system.
[0003]
FIG. 4 is a block diagram of the magnetic bearing control system. The rotor 1 is attracted by the electromagnets 3a and 3b facing each other and supported in the air. In order to stably support the rotor 1, the position of the rotor 1 is constantly monitored and measured by the displacement sensor 2, the sensor converter 4, the notch filter 9, the stabilization compensation circuit 5 (generally a PID control circuit), and the positive / negative selection. The current of the electromagnets 3a and 3b is controlled via the device 6 and the power amplifiers 7a and 7b. The notch filter 9 is used to cut off the frequency band of the higher-order bending mode of the rotor and prevent oscillation of the higher-order bending mode. The basic technology of this type of magnetic bearing is described in detail in “Magnetic Levitation and Magnetic Bearing (issued on June 30, 1993)”.
[0004]
[Problems to be solved by the present invention]
In the above-mentioned magnetic bearing control system, increasing the phase advance amount of the stabilization compensation circuit or the gain of the feedback loop in order to improve the bearing rigidity or damping performance causes the higher-order mode of the rotor to become unstable and oscillate. There was a case. In order to avoid such oscillation, it is generally performed to add a notch filter that cuts off a high-order mode frequency band that causes oscillation. In general, the notch filter is used in most cases where the gain is stabilized by cutting off the oscillation component, but the phase is stabilized by using the phase transition characteristic of the notch filter.
[0005]
However, the gain stabilization method that prevents the loop from oscillating in the vicinity of ω 1 by greatly reducing the gain of the feedback loop at the bending natural vibration frequency ω 1 cannot be controlled at the frequency ω 1. There is a drawback that the disturbance of 1 cannot be suppressed. In addition, if the sensitivity of the vibration response of the higher order mode is as large as the response sensitivity of the lower order mode, the oscillation may not be suppressed due to the lack of the blocking effect or phase transition effect by the notch filter. There was a problem of coming.
[0006]
On the other hand, as a measure for improving the notch filter, as shown in Japanese Patent Laid-Open No. 7-114420, the gain of the loop is raised at the frequency ω 1 so that it can be controlled even at ω 1 and the oscillation is stopped by phase adjustment. A method has been proposed. However, this method makes it difficult to adjust for stabilization by increasing the gain.
[0007]
The object of the present invention is to provide a structural vibration instability prevention device and method, and a magnetic bearing control device that are excellent in stability by adding a phase shift circuit that compensates for the disadvantages of the notch filter described above. is there.
[0008]
[Means for Solving the Problems]
The present invention comprises a detecting means for detecting a vibration state quantity of a controlled object;
A transfer function in which complex conjugate zeros are arranged outside the unit circle on the right half plane of the s plane or the z plane for giving a phase transition to the detected value of the means in the frequency band of the higher-order mode generated in the control target Phase shifting means;
Compensation means for performing a compensation operation on the output of the means;
Disclosed is an apparatus for preventing structural vibration instability, comprising operation means for controlling a controlled object in accordance with the output of the means.
[0009]
Further, the present invention sets the complex conjugate zero to the right of the s plane so that the signal output from the means for detecting the vibration state quantity of the controlled object has a phase transition in the higher-order mode frequency band generated in the controlled object. Disclosed is a structural vibration instability prevention method that feeds back to the vibration state quantity control means via a compensation means having a transfer function arranged outside a unit circle on a half plane or z plane.
[0010]
The present invention further includes a detecting means for detecting the vibration amount of the rotor supported by the magnetic bearing;
A transfer function having a transfer function in which a complex conjugate zero is arranged outside the unit circle in the right half plane of the s plane or the z plane in order to give a phase transition to the detected value of the means in the frequency band of the higher order mode generated in the rotor. Phase means,
Compensation means for performing a compensation operation on the output of the means;
Disclosed is a magnetic bearing control device comprising operating means for controlling a controlled object in accordance with the output of the means.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail using embodiments.
FIG. 1 is a block diagram showing an example of a magnetic bearing control device according to the present invention. This figure is almost the same as FIG. 4, and the reference numerals common to FIG. 4 indicate the same parts as the control system shown in FIG. 4, and the only difference is the feature of the present invention instead of the notch filter circuit 9. This is that a phase shift circuit 8 is provided. In response to the output of the phase shift circuit, the compensation circuit 5 performs PID control or phase advance / delay calculation. The power amplifiers 7a and 7b control the current supplied to the electromagnets 3a and 3b in response to the signal divided into positive and negative by the positive / negative selector 6.
[0012]
The transfer function of the phase shift circuit 8 is designed as follows.
[Expression 1]
H (s) = (s 2 - 2 ω 2 s + ω 2 2) / (s 2 + 2ζ 1 ω 1 s + ω 1 2)
Here, ζ 2 > 0, ζ 1 > 0, and normally, ω 2 ≧ ω 1 is designed. The complex conjugate zeros appearing in the numerator of (Equation 1) are (ζ 2 ω 2 , ± jω 2 (1-ζ 2 2 ) 1/2 ), and the phase shift circuit 8 is obtained by attaching a negative sign to ζ 2. Are placed in the right half plane on the s plane and have phase characteristics of a non-minimum phase transition system. When ζ 2 = 0 and ω 2 = ω 1 , a normal notch filter circuit is obtained.
[0013]
FIG. 2 shows a frequency characteristic example of (Equation 1) by a solid line, and a frequency characteristic example of a normal notch filter circuit is shown by a broken line for comparison. It can be seen that the phase of the phase shift circuit 8 continuously changes from 0 to −2π, whereas the phase of the notch filter does not have a value in a range including 1π, and changes only in other ranges. . On the other hand, the amplitude characteristic is attenuated to some extent at the natural vibration frequency ω 1 of the bending mode, but does not completely cut the component of the frequency ω 1 unlike the notch filter. Therefore, the phase shift circuit 8 performs stabilization by adjusting the phase characteristics. For this purpose, it is desirable to arbitrarily adjust the phase characteristic. However, as described above, the phase shift circuit 8 can obtain a phase transition from 0 to −2π, and is ideal. In phase adjustment using a notch filter, only a narrower range of adjustment than in the present invention can be achieved.
[0014]
FIG. 3 shows a frequency characteristic of the magnetic bearing control device according to the present invention and an example of the frequency characteristic of the rotor. The characteristic of the magnetic bearing control device is the frequency characteristic of the loop in FIG. Natural frequency omega 1 of the bending first-order and the bending of the secondary rotor, with respect to omega 2, in the second-order natural frequency omega 2 of the front bending, the phase is steeply changes, the frequency omega 2 in again phase Advance (2nπ <θ <(2n + 1) π, where n is an integer). In a normal control system for a magnetic bearing, stabilization can be obtained by setting the phase advance. However, according to the configuration of the present invention, a desired phase advance can be easily realized and stabilization is achieved.
[0015]
In the case of actually making the phase shift circuit, which is a feature of the present invention, it can be configured as an analog circuit using an operational amplifier or the like, but it is better to realize it as an IIR (Infinite Impulse Response) filter using digital processing. Easy. The arithmetic coefficient of the IIR filter can be obtained using sz conversion. By this sz conversion, the complex conjugate zeros arranged in the right half plane on the s plane are arranged outside the unit circle on the z plane. This is a natural consequence of mathematics. That is, in (Equation 1), for example, the following conversion is performed.
[Expression 2]
s = (2 / T) ・ (1-1 / z) / (1 + 1 / z)
Here, T is a sampling time for digital processing, and 1 / z is an operator for delaying one sample. By applying this conversion to (Equation 1) to obtain the 1 / z coefficient, the phase shift circuit of the present invention can be realized as an IIR filter.
[0016]
【The invention's effect】
When the zeros are arranged as described above, the filter becomes a non-minimum phase positioning system, and the phase transition amount can be changed over a wider range than the notch filter. Therefore, the phase characteristics of the control system can be adjusted over a wide range, and high-order bending mode oscillation can be effectively prevented.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration example of a magnetic bearing control device according to the present invention.
FIG. 2 is a diagram comparing frequency characteristics of the phase shift circuit of FIG. 1 and a notch filter circuit.
FIG. 3 is a diagram showing an example of frequency characteristics of the control device of FIG. 1 and a characteristic diagram of a rotor.
FIG. 4 is a block diagram showing a configuration of a conventional magnetic bearing control system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotor 2 Displacement sensor 3a, 3b Electromagnet 4 Sensor converter 5 Compensation circuit 6 Positive / negative sorter 7a, 7b Power amplifier 8 Phase shift circuit 9 Notch filter

Claims (3)

制御対象の振動状態量を検出するための検出手段と、
該手段の検出値に上記制御対象に生じる高次モードの周波数帯域で位相推移を与えるための、複素共役零点をs平面の右半平面、又はz平面の単位円外に配置した伝達関数を有する移相手段と、
該手段の出力に補償演算を施すための補償手段と、
該手段の出力に応じて制御対象を制御するための操作手段とを備えたことを特徴とする構造振動不安定化防止装置。
Detection means for detecting the vibration state quantity of the control object;
A transfer function in which complex conjugate zeros are arranged outside the unit circle on the right half plane of the s plane or the z plane for giving a phase transition to the detected value of the means in the frequency band of the higher-order mode generated in the control target Phase shifting means;
Compensation means for performing a compensation operation on the output of the means;
An apparatus for preventing structural vibration instability, comprising: operating means for controlling an object to be controlled in accordance with the output of the means.
制御対象の振動状態量を検出するための手段から出力される信号を、上記制御対象に生じる高次モードの周波数帯域で位相推移を有するように複素共役零点をs平面の右半平面、又はz平面の単位円外に配置した伝達関数を有する補償手段を介して上記振動状態量の制御手段にフィードバックすることを特徴とする構造振動不安定化防止方法。  The signal output from the means for detecting the vibration state quantity of the controlled object is a complex conjugate zero point in the right half plane of the s plane, or z so that it has a phase transition in the high-order mode frequency band generated in the controlled object. A method for preventing structural vibration instability, comprising feeding back to the vibration state quantity control means via a compensation means having a transfer function arranged outside a unit circle on a plane. 磁気軸受により支持されるロータの振動量を検出するための検出手段と、
該手段の検出値に上記ロータに生じる高次モードの周波数帯域で位相推移を与えるための、複素共役零点をs平面の右半平面、又はz平面の単位円外に配置した伝達関数を有する移相手段と、
該手段の出力に補償演算を施すための補償手段と、
該手段の出力に応じて制御対象を制御するための操作手段とを備えたことを特徴とする磁気軸受制御装置。
Detecting means for detecting the vibration amount of the rotor supported by the magnetic bearing;
A transfer function having a transfer function in which a complex conjugate zero is arranged outside the unit circle in the right half plane of the s plane or the z plane in order to give a phase transition to the detected value of the means in the frequency band of the higher order mode generated in the rotor. Phase means,
Compensation means for performing a compensation operation on the output of the means;
A magnetic bearing control device comprising: operating means for controlling a controlled object in accordance with the output of the means.
JP18218796A 1996-07-11 1996-07-11 Structural vibration instability prevention device and method, magnetic bearing control device Expired - Fee Related JP3718561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18218796A JP3718561B2 (en) 1996-07-11 1996-07-11 Structural vibration instability prevention device and method, magnetic bearing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18218796A JP3718561B2 (en) 1996-07-11 1996-07-11 Structural vibration instability prevention device and method, magnetic bearing control device

Publications (2)

Publication Number Publication Date
JPH1026137A JPH1026137A (en) 1998-01-27
JP3718561B2 true JP3718561B2 (en) 2005-11-24

Family

ID=16113866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18218796A Expired - Fee Related JP3718561B2 (en) 1996-07-11 1996-07-11 Structural vibration instability prevention device and method, magnetic bearing control device

Country Status (1)

Country Link
JP (1) JP3718561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3701115B2 (en) * 1998-02-12 2005-09-28 株式会社荏原製作所 Magnetic bearing control device

Also Published As

Publication number Publication date
JPH1026137A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
KR100342727B1 (en) Active control for stabilizing a servo-controlled actuator system
JP2504307B2 (en) Electric motor speed controller
KR950005842B1 (en) Control apparatus for magnetic bearing
US4795927A (en) Control system for a magnetic type bearing
JPH1082419A (en) Magnetic bearing device
US7057319B2 (en) Magnetic bearing device stably carrying a rotary shaft, program for executing a computer to control the magnetic bearing stably carrying the rotary shaft and computer-readable record medium storing the program
JP3718561B2 (en) Structural vibration instability prevention device and method, magnetic bearing control device
JPH11285283A (en) Disturbance compensation control device
EP0193609A1 (en) Controlled radial magnetic bearing device
US20050033500A1 (en) Stability and response of control systems
JP4427652B2 (en) Low frequency gain doubling control in magnetic support balance device
JP3306893B2 (en) Magnetic bearing device
JP3114089B2 (en) Magnetic bearing device
JP2957222B2 (en) Active bearing rotor support controller
JP2002349566A (en) Magnetic bearing control device
JPH01137302A (en) Controller for magnetic bearing
JP3752701B2 (en) Self-excited vibration type vibration control device
KR0166055B1 (en) Displacement control system
JPH07114420A (en) Device for vibration control and method therefor
JP2002350455A (en) Rotating speed detecting device
JP3110204B2 (en) Magnetic bearing control device
JP3049448B2 (en) Electromagnetic bearing control device and method
JPH0914265A (en) Magnetic bearing compensating circuit
KR100794893B1 (en) Motor control apparatus
JPH08200364A (en) Control method for magnetic bearing and device thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees