JP3716110B2 - Receiving array - Google Patents

Receiving array Download PDF

Info

Publication number
JP3716110B2
JP3716110B2 JP30711298A JP30711298A JP3716110B2 JP 3716110 B2 JP3716110 B2 JP 3716110B2 JP 30711298 A JP30711298 A JP 30711298A JP 30711298 A JP30711298 A JP 30711298A JP 3716110 B2 JP3716110 B2 JP 3716110B2
Authority
JP
Japan
Prior art keywords
acoustic
sound wave
wave propagation
receiving array
propagation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30711298A
Other languages
Japanese (ja)
Other versions
JP2000134689A (en
Inventor
茂 高木
和洋 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30711298A priority Critical patent/JP3716110B2/en
Publication of JP2000134689A publication Critical patent/JP2000134689A/en
Application granted granted Critical
Publication of JP3716110B2 publication Critical patent/JP3716110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水中、空気中で使用されるソーナー用、音響通信用の音響アンテナ等に用いられる受波アレイに関し、音響的開口部及び音波伝搬経路を複数備えて入射した音響信号を最少のセンサーで受信する構成として装置の構成を簡略化するものである。
【0002】
【従来の技術】
従来のソーナー等に用いられている受波アレイでは、指向性の鋭い受波アレイを構成するにあたり、1つのシステムで多数の音響センサーが使用されている。各音響センサーにはそれぞれ個別の系統からなる受波アンプが設けられているなど、信号処理部のハード構成が大がかりなものとなっていた。
【0003】
【発明が解決しようとする課題】
前述のように従来用いられている受波アレイは、ソーナーの1システムにおいて指向性を高めるために多数の音響センサーが用いられ、各音響センサーの開口から入力する音響入力信号はそれぞれの系において信号処理されるので装置が大がかりとなり、装置の簡素化が望まれていた。
【0004】
そこで、本発明では、受波アレイにおいて、音響入力信号が入射する音響的開口部を複数個設けると共に複数の音波伝搬経路で伝搬し、これら入射した音響信号を最少の音響センサーで検知できるようなシステムとして受波アレイの信号処理部を簡素化し、装置全体を小型化することのできる受波アレイを提供することを課題としてなされたものである。
【0005】
【課題を解決するための手段】
本発明は前述の課題を解決するために次の(1)乃至(4)の手段を提供する。
【0006】
(1)音響信号を透過する音響的開口部を有し、同開口部より入射した信号を伝搬する音波伝搬経路を複数本設け、同複数の音波伝搬経路を集合し、これら各経路に連通する単一の音波伝搬経路と、同単一の音波伝搬経路の終端に設けられ、前記複数の音波伝搬経路より伝搬されてくる音響信号を受信し、電気信号若しくは光信号に変換する音響センサーとを備えてなることを特徴とする受波アレイ。
【0007】
(2)前記単一の音波伝搬経路及び音響センサーは2系統からなり、前記複数の音波伝搬経路にそれぞれ連通することを特徴とする(1)記載の受波アレイ。
【0008】
(3)前記複数の音響的開口部を有する音波伝搬経路及び単一の音波伝搬経路及び音響センサーからなる系統を複数系統組合せたことを特徴とする(1)記載の受波アレイ。
【0009】
(4)前記受波アレイが水中または空気中の容器内に配置されていることを特徴とする(1)から(3)のいずれかに記載の受波アレイ。
【0010】
本発明の(1)においては、音響的開口部を有する音波伝搬経路が複数本配置されるが、各音響的開口部は3次元的に任意の位置に配置できる。複数の任意の位置からの音響信号は各音波伝搬経路により伝搬されて単一の音波伝搬経路へ集合し、ここから1個の音響センサーで受信し、電気信号に変換される。従って音響センサーからの出力信号には観測空間を伝播し、各音響的開口部に伝搬してきた任意の位置の音波の情報が含まれているので、狭い受信ビームの形成が必要なソーナー用受波信号、音響通信用受波信号として使用できる。又、各音響的開口部に音圧センサーを配置する必要がないので、音圧センサーの数を少なくすることができ、また、受波アンプ、信号処理用ハードの数も少なくなり、信号処理部の小型化が可能となる。
【0011】
本発明の(2)では、単一の音波伝搬経路及び音響センサーの系統が2系統からなっているので、各音響センサーからの出力信号が異なった波形となり、上記(1)の効果に加えて、情報量がより一層増すことができ、指向性を向上させることができる。
【0012】
本発明の(3)では、音響的開口部の数が上記(1)の場合よりも増加し、空間を伝搬してくる音波を感知する空間的範囲を拡大することができるので、上記(1)よりも更に狭い受波ビームの形成が可能となる。
【0013】
本発明の(4)においては、上記(3)の受波アレイを水中または空気中の容器内に配置しているので、音響センサーからの出力信号はより狭い受波ビームの形成が必要なソーナー用受波信号、音響通信用受波信号として使用できる。
【0014】
【発明の実施の形態】
まず、本発明で提案する受波アレイは大きく分類すると、次の3つの部分で構成されている。即ち、(A)音響的開口部、(B)音波伝搬経路、(C)音響センサーからなっている。(A)音響的開口部は、水中、空気中等の空間を伝搬してくる音波が、減衰が少ない状態で透過できる構造となっている部分で次に説明する音波伝搬経路の端部となるものであり、3次元的に複数の位置に配置される。
【0015】
(B)音波伝搬経路は、任意の数の任意の音響的開口部に入射した音波が、縦波、横波など弾性波として伝搬する音波伝搬経路である。又、複数個の音響的開口部に入射した音波が最少の音響センサーに伝搬するように伝搬経路が結合している。
【0016】
(C)音響センサーは、縦波、横波など弾性波を電気信号、光信号等に変換するセンサーである。
【0017】
以下、本発明の実施の形態について図面に基づいて具体的に説明する。図1は本発明の実施の第1形態に係る受波アレイを示し、(a)は音波の伝搬を示す図、(b)は受波アレイの側面図である。図1において、a1,a2,a3は音響的開口部で3次元的に複数の位置に配置されている。b1,b2,b3は音波伝搬経路であり、図では3本の伝搬経路から構成されている。c1は音波伝搬経路b1,b2,b3を集合する音波伝搬経路であり、d1は音響センサーで、音波伝搬経路c1の末端に設けられている。
【0018】
上記構成の受波アレイにおいて、空間を伝搬してくる音波Pが各音響的開口部a1,a2,a3に入射する。各音響的開口部a1,a2,a3に入射した音波が、音波伝搬経路b1,b2,b3を伝搬し、音波伝搬経路c1により集合される。
【0019】
音波伝搬経路c1に伝搬してきた音波が、音響センサーd1により受信され、電気信号若しくは光信号等に変換される。音響センサーd1の出力信号には、任意の位置の観測空間を伝搬し各音響的開口部a1,a2,a3に伝搬してきた各音波の情報が含まれており、この出力信号は、狭い受波ビームの形成などが必要なソーナー用受波信号、音響通信用受波信号として使用できる。又、音響センサーd1が1個で良いので受波アンプ、信号処理用ハードの数も少くなり、信号処理部を小型にすることができる。
【0020】
図2は、本発明の実施の第2形態に係る受波アレイを示し、(a)は音波の伝搬を示す図、(b)は受波アレイの側面図を示している。図2においては、図1の実施の第1形態の場合と同様に、音響的開口部、音波伝搬経路、音響センサーの3つの部分で構成されている。a1,a2,a3は音響的開口部、b1,b2,b3は音波伝搬経路であり、図1と同様の構成である。
【0021】
c1,c2は音波伝搬経路b1,b2,b3を集合する音波伝搬経路であり2本が設けられている。d1,d2は音響センサーであり、それぞれ音波伝搬経路c1,c2の末端に設けられている。
【0022】
上記構成の受波アレイにおいて、空間を伝搬してくる音波Pが各音響的開口部a1,a2,a3に入射する。各音響的開口部a1,a2,a3に入射した音波が、音波伝搬経路b1,b2,b3を伝搬し、音波伝搬経路c1,c2により集合される。音波伝搬経路c1,c2に伝搬してきた音波が、それぞれ、音響センサーd1,d2により受信され、電気信号若しくは光信号等に変換される。
【0023】
音響センサーd1,d2の出力信号には、複数の観測空間を伝搬し各音響的開口部に伝搬してきた各音波の情報が含まれており、この出力信号は、狭い受波ビームの形成などが必要なソーナー用受波信号、音響通信用受波信号として使用できる。本実施の第2形態の場合、音響センサーd1,d2の出力信号が異なった波形となるので、実施の第1形態と比べて情報量を増すことができる。又、音響センサーもd1,d2の2個で良いので受波アンプ、信号処理用ハードの数も少くなり、信号処理部を小型にすることができる。
【0024】
図3は本発明の実施の第3形態に係る受波アレイを示し、(a)は音波の伝搬を示す図、(b)は受波アレイの側面図をそれぞれ示す。図3においては、図1に示す実施の第1形態と同様に、音響的開口部、音波伝搬経路、音響センサーの3つの部分で構成されている。a1,a2,a3は音響的開口部、a11,a12,a13も音響的開口部である。
【0025】
b1,b2,b3は音波伝搬経路、b11,b12,b13も音波伝搬経路であり、それぞれの音響的開口部に対応している経路を構成している。c1は音波伝搬経路b1,b2,b3を集合する音波伝搬経路、c11は音波伝搬経路b11,b12,b13を集合する音波伝搬経路、d1,d11はそれぞれ音波伝搬経路c1,c11の末端に設けられた音響センサーである。
【0026】
上記構成の受波アレイにおいて、空間を伝搬してくる音波Pが各音響的開口部a1,a2,a3ならびにa11,a12,a13に入射する。各音響的開口部a1,a2,a3に入射した音波が、音波伝搬経路b1,b2,b3を伝搬し、音波伝搬経路c1により集合され、一方、各音響的開口部a11,a12,a13に入射した音波は、音波伝搬経路b11,b12,b13を伝搬し、音波伝搬経路c11により集合される。音波伝搬経路c1,c11に伝搬してきた音波が、それぞれ、音響センサーd1,d11により受信され、電気信号等に変換される。
【0027】
音響センサーd1,d11の出力信号には、複数の観測空間を伝搬し各音響的開口部a1〜a3,a11〜a13に伝搬してきた各音波の情報が含まれており、この出力信号は、狭い受波ビームの形成などが必要なソーナー用受波信号、音響通信用受波信号として使用できる。
【0028】
上記の実施の第3形態の場合、音響的開口部の数を増し、空間を伝搬してくる音波を感知する空間的な範囲を広くすることができるので、実施の第1,第2形態に比べて、さらに狭い受波ビームの形成などが可能である。又、音響センサーもd1,d11の2個で良いので従来と比べて受波アンプ、信号処理用ハードの数も少くなり、信号処理部を小型にすることができる。
【0029】
図4,図5は実施の第4形態に係る受波アレイを示し、図4は正面図、図5は側面図である。実施の第1,第2,第3形態では、音響的開口部、音波伝搬経路、音響センサーの3つの部分の構成方法について示しているが、図4,図5に、受波アレイを機器等のソーナーあるいは通信用アンテナとして適用した例を示す。
【0030】
図4,図5において、eは機器の外郭であり、音響的開口部、音波伝搬経路、音響センサーを表す記号は図3と同様である。音響的開口部a1,a2,a3ならびにa11,a12,a13が機器の外郭e内の上に設けられている。実施の第3形態と同様な働きにより、音響センサーd1,d11から出力される信号は狭い受波ビームの形成などが必要なソーナー用受波信号、音響通信用受波信号として使用できる。又、従来の水中ソーナーと比べて音響センサーがd1,d11の2個で良いので外郭e内での構成がコンパクトになる。
【0031】
【発明の効果】
本発明の受波アレイは、(1)音響信号を透過する音響的開口部を有し、同開口部より入射した信号を伝搬する音波伝搬経路を複数本設け、同複数の音波伝搬経路を集合し、これら各経路に連通する単一の音波伝搬経路と、同単一の音波伝搬経路の終端に設けられ、前記複数の音波伝搬経路より伝搬されてくる音響信号を受信し、電気信号若しくは光信号に変換する音響センサーとを備えてなることを基本的な構成としている。このような構成により、音響センサーからの出力信号には観測空間を伝搬し、各音響的開口部に伝搬してきた任意の位置の音波の情報が含まれているので、狭い受信ビームの形成が必要なソーナー用受波信号、音響通信用受波信号として使用できる。又、各音響的開口部に音圧センサーを配置する必要がないので、音圧センサーの数を少なくすることができ、また、受波アンプ、信号処理用ハードの数も少なくなり、信号処理部の小型化が可能となる。
【0032】
本発明の(2)では、上記(1)の発明において、単一の音波伝搬経路及び音響センサーの系統が2系統からなっているので、各音響センサーからの出力信号が異なった波形となり、上記(1)の効果に加えて、情報量がより一層増すことができる。
【0033】
本発明の(3)では、上記(1)の発明において、前記複数の音響的開口部を有する音波伝搬経路及び単一の音波伝搬経路及び音響センサーからなる系統を複数系統組合せた構成であり、音響的開口部の数が上記(1)の場合よりも増加し、空間を伝搬してくる音波を感知する空間的範囲を拡大することができるので、上記(1)よりも更に狭い受波ビームの形成が可能となる。
【0034】
本発明の(4)では、上記(3)の発明において、前記受波アレイが容器内に配置されているので、音響センサーからの出力信号はより狭い受波ビームの形成が必要なソーナー用受波信号、音響通信用受波信号として使用できる。
【図面の簡単な説明】
【図1】本発明の実施の第1形態に係る受波アレイを示し、(a)は音波の伝搬を示す図、(b)は受波アレイの側面図である。
【図2】本発明の実施の第2形態に係る受波アレイを示し、(a)は音波の伝搬を示す図、(b)は受波アレイの側面図である。
【図3】本発明の実施の第3形態に係る受波アレイを示し、(a)は音波の伝搬を示す図、(b)は受波アレイの側面図である。
【図4】本発明の実施の第4形態に係る受波アレイの正面図である。
【図5】本発明の実施の第4形態に係る受波アレイの側面図である。
【符号の説明】
a1,a2,a3 音響的開口部
a11,a12,a13 音響的開口部
b1,b2,b3 音波伝搬経路
b11,b12,b13 音波伝搬経路
c1,c11 音波伝搬経路
d1,d2,d11 音響センサー
e 外郭
P 音波
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a receiving array used for an acoustic antenna for sonar and acoustic communication used in water and in the air, and relates to a receiving array having a plurality of acoustic openings and sound wave propagation paths, and having a minimum number of incident acoustic signals. The configuration of the apparatus is simplified as a configuration for receiving data.
[0002]
[Prior art]
In a receiving array used in a conventional sonar or the like, a large number of acoustic sensors are used in one system to form a receiving array with sharp directivity. Each acoustic sensor is provided with a receiving amplifier composed of an individual system, and the hardware configuration of the signal processing unit is large.
[0003]
[Problems to be solved by the invention]
As described above, in the receiving array conventionally used, a large number of acoustic sensors are used to enhance directivity in one sonar system, and the acoustic input signals input from the openings of the respective acoustic sensors are signals in the respective systems. Since processing is performed, the apparatus becomes large, and it is desired to simplify the apparatus.
[0004]
Therefore, in the present invention, the receiving array is provided with a plurality of acoustic openings into which acoustic input signals are incident and propagates through a plurality of sound wave propagation paths, and these incident acoustic signals can be detected by a minimum acoustic sensor. It is an object of the present invention to provide a receiving array that simplifies the signal processing unit of the receiving array as a system and can reduce the size of the entire apparatus.
[0005]
[Means for Solving the Problems]
The present invention provides the following means (1) to (4) to solve the above-mentioned problems.
[0006]
(1) An acoustic opening that transmits an acoustic signal is provided, and a plurality of sound wave propagation paths for propagating a signal incident from the opening are provided, and the plurality of sound wave propagation paths are assembled and communicated with each of these paths. A single sound wave propagation path, and an acoustic sensor provided at the end of the single sound wave propagation path for receiving an acoustic signal propagated from the plurality of sound wave propagation paths and converting it into an electrical signal or an optical signal. A receiving array comprising the receiving array.
[0007]
(2) The wave receiving array according to (1), wherein the single sound wave propagation path and the acoustic sensor are composed of two systems and communicate with the plurality of sound wave propagation paths, respectively.
[0008]
(3) The receiving array according to (1), wherein a plurality of systems composed of a sound wave propagation path having a plurality of acoustic openings, a single sound wave propagation path, and an acoustic sensor are combined.
[0009]
(4) The receiving array according to any one of (1) to (3), wherein the receiving array is disposed in a container in water or air.
[0010]
In (1) of the present invention, a plurality of sound wave propagation paths having acoustic openings are arranged, but each acoustic opening can be arranged three-dimensionally at an arbitrary position. Acoustic signals from a plurality of arbitrary positions are propagated by each sound wave propagation path and gathered into a single sound wave propagation path, and are received by one acoustic sensor from there and converted into an electrical signal. Therefore, the output signal from the acoustic sensor propagates through the observation space and includes information on the sound wave at any position that has propagated to each acoustic aperture. It can be used as a signal and a received signal for acoustic communication. In addition, since there is no need to arrange a sound pressure sensor in each acoustic opening, the number of sound pressure sensors can be reduced, and the number of receiving amplifiers and signal processing hardware is also reduced. Can be miniaturized.
[0011]
In (2) of the present invention, since the single sound wave propagation path and the acoustic sensor system consist of two systems, the output signal from each acoustic sensor has a different waveform, in addition to the effect of (1) above. The amount of information can be further increased, and the directivity can be improved.
[0012]
In (3) of the present invention, the number of acoustic openings is increased as compared with the case of (1), and the spatial range for detecting sound waves propagating through the space can be expanded. It is possible to form a receiving beam that is narrower than ().
[0013]
In (4) of the present invention, since the receiving array of (3) is arranged in a container in water or in air, the output signal from the acoustic sensor is a sonar that requires a narrower receiving beam to be formed. It can be used as a received signal for sound and a received signal for acoustic communication.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
First, the receiving array proposed in the present invention is roughly classified into the following three parts. That is, (A) an acoustic opening, (B) a sound wave propagation path, and (C) an acoustic sensor. (A) The acoustic opening is an end of a sound wave propagation path described below in a portion where a sound wave propagating through a space such as underwater or air can be transmitted with little attenuation. It is arranged at a plurality of positions three-dimensionally.
[0015]
(B) The sound wave propagation path is a sound wave propagation path in which sound waves incident on any number of arbitrary acoustic openings propagate as elastic waves such as longitudinal waves and transverse waves. In addition, the propagation paths are coupled so that the sound wave incident on the plurality of acoustic openings propagates to the least acoustic sensor.
[0016]
(C) The acoustic sensor is a sensor that converts an elastic wave such as a longitudinal wave or a transverse wave into an electric signal, an optical signal, or the like.
[0017]
Embodiments of the present invention will be specifically described below with reference to the drawings. 1A and 1B show a wave receiving array according to a first embodiment of the present invention, in which FIG. 1A is a diagram showing propagation of sound waves, and FIG. 1B is a side view of the wave receiving array. In FIG. 1, a1, a2, and a3 are acoustic openings and are three-dimensionally arranged at a plurality of positions. b1, b2, and b3 are sound wave propagation paths, and are composed of three propagation paths in the figure. c1 is a sound wave propagation path that aggregates the sound wave propagation paths b1, b2, and b3, and d1 is an acoustic sensor provided at the end of the sound wave propagation path c1.
[0018]
In the receiving array having the above configuration, the sound wave P propagating through the space is incident on the acoustic openings a1, a2, and a3. Sound waves incident on the acoustic openings a1, a2, and a3 propagate through the sound wave propagation paths b1, b2, and b3, and are collected by the sound wave propagation paths c1.
[0019]
The sound wave propagated to the sound wave propagation path c1 is received by the acoustic sensor d1 and converted into an electric signal, an optical signal, or the like. The output signal of the acoustic sensor d1 includes information on each sound wave that has propagated through the observation space at an arbitrary position and has propagated to the acoustic openings a1, a2, and a3. It can be used as a received signal for sonar and acoustic communication that require beam formation. Further, since only one acoustic sensor d1 is required, the number of receiving amplifiers and signal processing hardware is reduced, and the signal processing unit can be reduced in size.
[0020]
2A and 2B show a wave receiving array according to the second embodiment of the present invention, in which FIG. 2A shows the propagation of sound waves, and FIG. 2B shows a side view of the wave receiving array. In FIG. 2, as in the case of the first embodiment of FIG. 1, it is composed of three parts: an acoustic opening, a sound wave propagation path, and an acoustic sensor. Reference numerals a1, a2, and a3 denote acoustic openings, and b1, b2, and b3 denote sound wave propagation paths, which have the same configuration as in FIG.
[0021]
c1 and c2 are sound wave propagation paths that aggregate the sound wave propagation paths b1, b2, and b3, and two lines are provided. d1 and d2 are acoustic sensors, which are provided at the ends of the sound wave propagation paths c1 and c2, respectively.
[0022]
In the receiving array having the above configuration, the sound wave P propagating through the space is incident on the acoustic openings a1, a2, and a3. Sound waves incident on the acoustic openings a1, a2, and a3 propagate along the sound wave propagation paths b1, b2, and b3, and are collected by the sound wave propagation paths c1, c2. The sound waves propagating to the sound wave propagation paths c1 and c2 are received by the acoustic sensors d1 and d2, respectively, and converted into electric signals, optical signals, or the like.
[0023]
The output signals of the acoustic sensors d1 and d2 include information on each sound wave that has propagated through a plurality of observation spaces and propagated to each acoustic opening, and this output signal may include the formation of a narrow received beam. It can be used as a necessary sonar reception signal and acoustic communication reception signal. In the case of the second embodiment, since the output signals of the acoustic sensors d1 and d2 have different waveforms, the amount of information can be increased as compared with the first embodiment. Also, since two acoustic sensors d1 and d2 are sufficient, the number of receiving amplifiers and signal processing hardware is reduced, and the signal processing unit can be made compact.
[0024]
3A and 3B show a wave receiving array according to a third embodiment of the present invention, in which FIG. 3A shows the propagation of sound waves, and FIG. 3B shows a side view of the wave receiving array. In FIG. 3, similarly to the first embodiment shown in FIG. 1, it is composed of three parts: an acoustic opening, a sound wave propagation path, and an acoustic sensor. a1, a2, and a3 are acoustic openings, and a11, a12, and a13 are also acoustic openings.
[0025]
b1, b2, and b3 are sound wave propagation paths, and b11, b12, and b13 are sound wave propagation paths, and constitute paths corresponding to the respective acoustic openings. c1 is provided at the end of the wave propagation path, c 11 is wave propagation paths to set the acoustic wave propagation path b11, b12, b13, d1, d11 each wave propagation path c1, c11 to set the acoustic wave propagation path b1, b2, b3 Acoustic sensor.
[0026]
In the receiving array having the above configuration, the sound wave P propagating through the space is incident on the acoustic openings a1, a2, a3 and a11, a12, a13. Sound waves incident on the acoustic openings a1, a2, and a3 propagate along the sound wave propagation paths b1, b2, and b3 and are collected by the sound wave propagation paths c1, while entering the acoustic openings a11, a12, and a13. The transmitted sound waves propagate through the sound wave propagation paths b11, b12, b13 and are collected by the sound wave propagation path c11. The sound waves propagating to the sound wave propagation paths c1 and c11 are received by the acoustic sensors d1 and d11, respectively, and converted into electric signals or the like.
[0027]
The output signals of the acoustic sensors d1 and d11 include information on each sound wave that has propagated through a plurality of observation spaces and propagated to the acoustic openings a1 to a3 and a11 to a13, and this output signal is narrow. It can be used as a received signal for sonar and a received signal for acoustic communication that require formation of a received beam.
[0028]
In the case of the third embodiment described above, the number of acoustic openings can be increased and the spatial range for sensing sound waves propagating through the space can be widened. Compared with this, it is possible to form a narrower received beam. Also, since two acoustic sensors d1 and d11 are sufficient, the number of receiving amplifiers and signal processing hardware is reduced compared to the conventional one, and the signal processing unit can be made compact.
[0029]
4 and 5 show a receiving array according to the fourth embodiment, FIG. 4 is a front view, and FIG. 5 is a side view. In the first, second, and third embodiments, the configuration method of the three portions of the acoustic opening, the sound wave propagation path, and the acoustic sensor is shown. FIG. 4 and FIG. An example applied as a sonar or communication antenna.
[0030]
4 and 5, e is the outline of the device, and symbols representing the acoustic opening, the sound wave propagation path, and the acoustic sensor are the same as those in FIG. Acoustic openings a1, a2, a3 and a11, a12, a13 are provided on the inside of the outer shell e of the device. By the same operation as in the third embodiment, the signals output from the acoustic sensors d1 and d11 can be used as received signals for sonar and acoustic communication that require formation of a narrow received beam. Further, since the two acoustic sensors d1 and d11 are sufficient as compared with the conventional underwater sonar, the configuration in the outer shell e becomes compact.
[0031]
【The invention's effect】
The receiving array of the present invention has (1) an acoustic opening that transmits an acoustic signal, a plurality of sound wave propagation paths for propagating a signal incident from the opening, and a plurality of sound wave propagation paths are assembled. In addition, a single sound wave propagation path communicating with each of these paths and an end of the single sound wave propagation path are received, and an acoustic signal propagated from the plurality of sound wave propagation paths is received, and an electric signal or optical signal is received. The basic configuration is to include an acoustic sensor that converts the signal into a signal. With this configuration, the output signal from the acoustic sensor propagates through the observation space and includes information on the sound wave at any position that has propagated to each acoustic aperture, so a narrow received beam must be formed. It can be used as a received signal for sonar and acoustic communication. In addition, since there is no need to arrange a sound pressure sensor in each acoustic opening, the number of sound pressure sensors can be reduced, and the number of receiving amplifiers and signal processing hardware is also reduced. Can be miniaturized.
[0032]
In (2) of the present invention, in the invention of (1) above, the single sound wave propagation path and the system of acoustic sensors are composed of two systems, so that the output signal from each acoustic sensor has a different waveform, In addition to the effect of (1), the amount of information can be further increased.
[0033]
In (3) of the present invention, in the invention of (1) above, a plurality of systems composed of a sound wave propagation path having a plurality of acoustic openings and a single sound wave propagation path and an acoustic sensor are combined, Since the number of acoustic openings is larger than in the case of (1) and the spatial range for detecting the sound wave propagating through the space can be expanded, the received beam is narrower than that of (1). Can be formed.
[0034]
In (4) of the present invention, in the invention of (3) above, since the receiving array is arranged in the container, the output signal from the acoustic sensor is received for a sonar that requires a narrower receiving beam. It can be used as a wave signal or a received signal for acoustic communication.
[Brief description of the drawings]
FIGS. 1A and 1B show a wave receiving array according to a first embodiment of the present invention, where FIG. 1A is a diagram showing propagation of sound waves, and FIG. 1B is a side view of the wave receiving array.
2A and 2B show a wave receiving array according to a second embodiment of the present invention, in which FIG. 2A is a diagram showing propagation of sound waves, and FIG. 2B is a side view of the wave receiving array.
FIGS. 3A and 3B show a wave receiving array according to a third embodiment of the present invention, in which FIG. 3A is a diagram showing propagation of sound waves, and FIG. 3B is a side view of the wave receiving array;
FIG. 4 is a front view of a receiving array according to a fourth embodiment of the present invention.
FIG. 5 is a side view of a receiving array according to a fourth embodiment of the present invention.
[Explanation of symbols]
a1, a2, a3 Acoustic openings a11, a12, a13 Acoustic openings b1, b2, b3 Sound propagation paths b11, b12, b13 Sound propagation paths c1, c11 Sound propagation paths d1, d2, d11 Acoustic sensor e Sound wave

Claims (4)

音響信号を透過する音響的開口部を有し、同開口部より入射した信号を伝搬する音波伝搬経路を複数本設け、同複数の音波伝搬経路を集合し、これら各経路に連通する単一の音波伝搬経路と、同単一の音波伝搬経路の終端に設けられ、前記複数の音波伝搬経路より伝搬されてくる音響信号を受信し、電気信号若しくは光信号に変換する音響センサーとを備えてなることを特徴とする受波アレイ。A plurality of sound wave propagation paths that have acoustic openings that transmit acoustic signals, propagate signals incident from the openings, collect the sound wave propagation paths, and communicate with each of these paths. A sound wave propagation path, and an acoustic sensor that is provided at the end of the single sound wave propagation path, receives an acoustic signal propagated from the plurality of sound wave propagation paths, and converts it into an electrical signal or an optical signal. A receiving array characterized by that. 前記単一の音波伝搬経路及び音響センサーは2系統からなり、前記複数の音波伝搬経路にそれぞれ連通することを特徴とする請求項1記載の受波アレイ。2. The wave receiving array according to claim 1, wherein the single sound wave propagation path and the acoustic sensor are composed of two systems and communicate with the plurality of sound wave propagation paths, respectively. 前記複数の音響的開口部を有する音波伝搬経路及び単一の音波伝搬経路及び音響センサーからなる系統を複数系統組合せたことを特徴とする請求項1記載の受波アレイ。2. The receiving array according to claim 1, wherein a plurality of systems composed of a sound wave propagation path having a plurality of acoustic openings, a single sound wave propagation path, and an acoustic sensor are combined. 前記受波アレイが水中または空気中の容器内に配置されていることを特徴とする請求項1から3のいずれかに記載の受波アレイ。The receiving array according to any one of claims 1 to 3, wherein the receiving array is arranged in a container in water or air.
JP30711298A 1998-10-28 1998-10-28 Receiving array Expired - Fee Related JP3716110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30711298A JP3716110B2 (en) 1998-10-28 1998-10-28 Receiving array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30711298A JP3716110B2 (en) 1998-10-28 1998-10-28 Receiving array

Publications (2)

Publication Number Publication Date
JP2000134689A JP2000134689A (en) 2000-05-12
JP3716110B2 true JP3716110B2 (en) 2005-11-16

Family

ID=17965185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30711298A Expired - Fee Related JP3716110B2 (en) 1998-10-28 1998-10-28 Receiving array

Country Status (1)

Country Link
JP (1) JP3716110B2 (en)

Also Published As

Publication number Publication date
JP2000134689A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
EP1154269A3 (en) Ultrasonic probe, ultrasonic receiver and ultrasonic diagnostic apparatus
EP1610587A1 (en) Ultrasonic sensor
US8836792B1 (en) Active cloaking with transducers
KR100794645B1 (en) Method of generating image data and ultrasonic diagnostic apparatus using the same
US7596078B2 (en) Method and apparatus for reducing crosstalk in a structural health monitoring system
JP3716110B2 (en) Receiving array
EP0919836A3 (en) Speed measuring apparatus
US9448319B2 (en) All fiber towed array
KR100767821B1 (en) Method and apparatus for acoustic stealth
WO2001042779A1 (en) Apparatus and method for synthetic phase tuning of acoustic guided waves
Shields et al. Smart acoustically active surfaces
JPS6252349A (en) Active sound deadening device
CA2142176C (en) Passive sonar transducer arrangement
US4188609A (en) Low frequency hydrophone
JPH07306188A (en) Receiving transducer
JP3758911B2 (en) Receiver
JP4993331B2 (en) Acoustic target transducer
Blaser et al. A transfer function technique for determining the acoustic characteristics of duct systems with flow
Miles et al. A mechanical analysis of the novel ear of the parasitoid fly Ormia ochracea
KR0174071B1 (en) Low Frequency Acoustic Module of Line Array Sound Detector
CN214011532U (en) Sound collection device for pipeline positioning system
JP2931873B2 (en) Ultrasonic signal transmission device
JPS5934176A (en) Phased array vibrator driving system
JP2754836B2 (en) Underwater digital communication device
JPH10216123A (en) Stereophonic bioacoustic signal system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees