JP3715352B2 - Blade temperature monitoring device and gas turbine - Google Patents

Blade temperature monitoring device and gas turbine Download PDF

Info

Publication number
JP3715352B2
JP3715352B2 JP21031495A JP21031495A JP3715352B2 JP 3715352 B2 JP3715352 B2 JP 3715352B2 JP 21031495 A JP21031495 A JP 21031495A JP 21031495 A JP21031495 A JP 21031495A JP 3715352 B2 JP3715352 B2 JP 3715352B2
Authority
JP
Japan
Prior art keywords
blade
temperature
tip
monitoring device
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21031495A
Other languages
Japanese (ja)
Other versions
JPH0953463A (en
Inventor
泰則 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21031495A priority Critical patent/JP3715352B2/en
Publication of JPH0953463A publication Critical patent/JPH0953463A/en
Application granted granted Critical
Publication of JP3715352B2 publication Critical patent/JP3715352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内部に冷却用流体を流通させるガスタービンの翼温度監視装置に関する。
【0002】
【従来の技術】
図4は、ガスタービン発電プラントのガスタービンのタービン入口の断面図である。
圧縮器1は、ガスタービン2と同軸的に設けられ、この圧縮器1の駆動により圧縮された空気を燃焼器3へ供給している。燃料は、燃焼器3のライナ部3aで燃焼し、高温の燃焼ガスは、トランジションピース4、およびガスタービンの静翼5を経て動翼6に案内される。この動翼6の回転により、ガスタービン2に仕事をさせる。
翼に何らかの異常が発生した場合、温度上昇によって翼に機械的な損傷が発生し、この損傷により軸振動が発生して初めて異常に気付く場合が多い。
【0003】
【発明が解決しようとする課題】
ガスタービンは精密な回転機械であるため、翼は、微少なクリアランスを隔てて高速で動く他の翼や部品と接している。したがって、僅かな機械的損傷が発生しても、これが周囲に波及し、殆ど機械全体にわたる損傷を引き起こす場合が多い。以上から翼が機械的損傷を引き起こす前に冷却用流体等の異常と、これによる翼温度の異常を検知することが必要である。
【0004】
本発明の目的は、ガスタービン翼の表面温度を監視し、異常の有無、異常原因を判定することにより、異常の早期発見を可能とする翼温度監視装置を得ることにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明においては、内部に冷却用流体を流通させるガスタービン翼と、この翼の翼付け根部から先端部まで翼長さ方向に複数点の表面温度を検出する温度検出器と、この温度検出器により得られる運転中の翼表面温度パターンから異常発生の有無および予め用意した複数の異常原因の中から異常原因の判定を行なう判定手段とを備えることを特徴とする翼温度監視装置およびガスタービンを提供する。
これにより、翼表面温度異常発生時に異常の有無およびその原因を判定することができる。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態を図1から図3を参照して説明する。
図1は、本発明に係る翼温度監視装置の実施の形態の温度検出器近傍を示し、ガスタービンのタービン入口部分を拡大して示す断面図である。
【0007】
タービンケーシング11のタービン入口には燃焼ガスを導入するためのトランジションピース4が接続されている。このトランジションピース4の先端には、静翼5が形成されている。この静翼5は、タービンケーシング11の内面に固着されているシュラウド12により外輪部5aが保持されている。この静翼5の後方には、動翼6が配置されている。この動翼6は、付け根部がタービンロータ13の先端に植設されている。動翼6の先端と対向するタービンケーシング11の内面にはシュラウド12に連接したシュラウド14が設けられている。
【0008】
タービンケーシング11と外輪部5aには、取付孔15が設けられている。この取付孔15には、温度検出器である放射温度計の検出部16が設けられている。この放射温度計の検出部16の先端には、レンズ17が装着されており、動翼の表面6aの温度を計測できるように構成されている。放射温度計の検出部16は、図示しない箇所に、さらに2台設けられており、それぞれ、動翼6の長さ方向に異なる箇所の測定をしている。
【0009】
放射温度計は、例えば測定対象の放射する赤外線量を測定しこれにより温度を求めるもので、離れた対象を短時間に測定できるので、ガスタービン動翼の表面温度等、高速の回転体の温度を回転と同期をとることにより静止部から測定することができる。
【0010】
放射温度計の検出部16は、放射温度計の本体18に接続され、放射温度計の本体18は、計算機で構成される判定手段19に接続されている。
図2は、動翼6と、図1中、放射温度計で示す温度検出器とを抽出した模式図である。
【0011】
3台の温度検出器20a,20b,20cは、各々翼表面の21a,21b,21c部の温度の温度を測定している。判定手段19は、測定された温度から異常有無および異常原因の判定を行なう。表示装置22は、判定手段19の判定結果を表示する。なお、図中dは冷却用流体の流れ、23は冷却用流体の流路を示す。
【0012】
ガスタービンの動翼6および静翼5は、高温のガス流にさらされた状態で使用される。したがって、そのままでは高温により構造材料の強度が急激に低下するので、内部に冷却用の流体を流通させ、これにより冷却しながら使用する場合が多い。
【0013】
冷却用流体の流路23の異物のつまりや、破孔による流体の漏出等により流体の流量が変化すると、翼の冷却条件が変わるので運転状態における翼の表面温度が変化する。 そこで、正常時の翼表面温度を測定しておき、これを同じ運転状態での翼表面温度測定値と比較し、両者が一定の値以上隔っている場合には、前記のような何らかの異常が発生しているものと判定することができる。
【0014】
同じ運転状態を示す指標としては、ガスタービン出力、回転数、IGV角度、燃料流量等を用いることができる。
翼温度分布異常に対しては、翼表面温度検出器を翼長さ方向に複数個設置し、温度分布を求めることにより、異常原因を判定することができる。図2の例では、3台設置している。
【0015】
図3は、判定手段19の判定ロジックのテーブルである。
冷却用流体の流路23につまりや閉塞が発生したときは、冷却用流体の流量が低下するので、翼付け根から先端にわたって全ての計測点で温度が上昇する。従って全ての計測点での温度が同じ運転状態での正常時の計測点より上昇した場合は、冷却用流体流路23のつまりまたは閉塞が原因であると判定することができる(1)。
【0016】
翼の付け根と先端の中間で、クラックや破孔が発生し、冷却用流体が漏出するような場合には、冷却用流体の流量は翼付け根から破孔部までは増加し、破孔部から先端部までは低下する。そこで翼付け根から特定の測定点まで正常時よりも温度が低く、次の測定点から先端までは、正常時よりも温度が高い場合には、特定の測定点と次の測定点の間のクラックまたは破孔が温度分布異常の原因と判定することができる(2),(3)。
【0017】
翼先端部の冷却用流体の出口部や、さらにその先の流路で、破孔の発生や摩擦等による流路の拡大が発生した場合には、翼を通過する冷却用流体の流量が増加するため、翼付け根から先端までの全ての点で温度が低下する。そこで、翼付け根から先端までの全ての測定点で温度が正常時よりも低下する場合は、翼先端の冷却用流体出口部や、さらにその先の流路での破孔や摩耗等による流路拡大が温度分布異常の原因と判定することができる(4)。
【0018】
翼の温度監視は、温度が低下する場合よりも上昇してしまう場合のほうが機械の破損につながる分、重要であるが、翼の冷却用流体は、特に動翼6では翼先端に向けて遠心力が働くため翼付け根から先端に向けて流通させるため、流路23の閉塞や流体の漏れ等流量低下時には、翼の先端部が影響を受けやすく、異常な温度上昇を発生しやすい。温度検出器の設置数を例えば1台のみに限定する場合には、冷却面からは翼の先端を計測するのが良いが、ガスタービンのガス流は、流路の中央つまり翼の付け根と先端の中間の部分が温度が高く、端に行くに従い温度が低下する。したがって、ガスタービンのガス流の温度分布の測定結果や、冷却用流体流路のトラブルの発生状況から温度検出器の設置数を1台とする場合は、図2に示すように、翼付け根から先端に到る翼弦長の75%の位置21dを測定するのが最適である。
【0019】
なお、翼表面温度検出手段としては、特に動翼等回転部分については、放射温度計が好適であるが、熱電対による方法も考えられる。
また、複数点の温度の計測に、この実施の形態では、複数の放射温度計を用いたが、放射温度計に首振り機能を持たせ、一台の放射温度計で複数点を計測しても良い。
【0020】
以上述べたように、この実施の形態によれば、ガスタービン翼について、異常発生時に直ちにこれを検知し、その原因を判定し表示することにより異常の拡大や修理のための停止期間を最少にし、設備の経済性を高め、資源の有効利用を図ることができる。
【0021】
【発明の効果】
本発明によれば、内部に冷却用流体の流路を持つガスタービン翼について、翼の表面温度分布から異常の有無および原因の判定を行なうことができる。
【図面の簡単な説明】
【図1】本発明に係る実施の形態の温度検出器近傍を示し、ガスタービンのタービン入口部分を拡大して示す断面図。
【図2】本発明に係る実施の形態の動翼と温度検出器とを抽出した模式図。
【図3】本発明に係る実施の形態の判定手段の判定ロジックのテーブル。
【図4】ガスタービン発電プラントのガスタービンのタービン入口の断面図。
【符号の説明】
2…ガスタービン、5…静翼、6…動翼、16…放射温度計の検出部、18…放射温度計の本体、19…判定手段、20a,20b,20c…温度検出器、21a,21b,21c,21d…測定点、23…流路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blade temperature monitoring device for a gas turbine in which a cooling fluid is circulated.
[0002]
[Prior art]
FIG. 4 is a cross-sectional view of the turbine inlet of the gas turbine of the gas turbine power plant.
The compressor 1 is provided coaxially with the gas turbine 2, and supplies air compressed by driving the compressor 1 to the combustor 3. The fuel burns in the liner portion 3a of the combustor 3, and the high-temperature combustion gas is guided to the moving blade 6 through the transition piece 4 and the stationary blade 5 of the gas turbine. The rotation of the rotor blade 6 causes the gas turbine 2 to work.
When an abnormality occurs in a blade, mechanical damage occurs in the blade due to temperature rise, and it is often noticed abnormally only when shaft vibration occurs due to this damage.
[0003]
[Problems to be solved by the invention]
Since the gas turbine is a precision rotating machine, the blades are in contact with other blades and parts that move at high speed with a small clearance. Therefore, even if slight mechanical damage occurs, it often spreads to the surroundings and causes damage almost throughout the machine. From the above, before the blade causes mechanical damage, it is necessary to detect an abnormality in the cooling fluid and the like and an abnormality in the blade temperature due to this.
[0004]
An object of the present invention is to obtain a blade temperature monitoring device that enables early detection of an abnormality by monitoring the surface temperature of a gas turbine blade and determining the presence or absence of an abnormality and the cause of the abnormality.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, a gas turbine blade through which a cooling fluid is circulated, and a temperature at which multiple surface temperatures are detected in the blade length direction from the blade root to the tip of the blade. A detector and a determination means for determining whether or not an abnormality has occurred from a blade surface temperature pattern during operation obtained by the temperature detector and determining the cause of the abnormality from a plurality of abnormality causes prepared in advance. A blade temperature monitoring device and a gas turbine are provided.
Thereby, when the blade surface temperature abnormality occurs, the presence or absence of the abnormality and the cause thereof can be determined.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.
FIG. 1 is a sectional view showing the vicinity of a temperature detector according to an embodiment of a blade temperature monitoring device according to the present invention and enlarging a turbine inlet portion of a gas turbine.
[0007]
A transition piece 4 for introducing combustion gas is connected to the turbine inlet of the turbine casing 11. A stationary blade 5 is formed at the tip of the transition piece 4. The stationary blade 5 has an outer ring portion 5 a held by a shroud 12 fixed to the inner surface of the turbine casing 11. A moving blade 6 is disposed behind the stationary blade 5. The rotor blade 6 is rooted at the tip of the turbine rotor 13. A shroud 14 connected to the shroud 12 is provided on the inner surface of the turbine casing 11 facing the tip of the moving blade 6.
[0008]
A mounting hole 15 is provided in the turbine casing 11 and the outer ring portion 5a. The attachment hole 15 is provided with a detection unit 16 of a radiation thermometer which is a temperature detector. A lens 17 is attached to the tip of the detection unit 16 of the radiation thermometer so that the temperature of the surface 6a of the moving blade can be measured. Two detectors 16 of the radiation thermometer are further provided at locations not shown in the drawing, and each of the detectors 16 measures different locations in the length direction of the moving blade 6.
[0009]
A radiation thermometer, for example, measures the amount of infrared rays radiated from a measurement object and obtains the temperature thereby, and can measure a distant object in a short time, so the temperature of a high-speed rotating body such as the surface temperature of a gas turbine blade Can be measured from the stationary part by synchronizing with the rotation.
[0010]
The detection unit 16 of the radiation thermometer is connected to a main body 18 of the radiation thermometer, and the main body 18 of the radiation thermometer is connected to a determination means 19 composed of a computer.
FIG. 2 is a schematic diagram in which the moving blade 6 and a temperature detector indicated by a radiation thermometer in FIG. 1 are extracted.
[0011]
The three temperature detectors 20a, 20b, and 20c measure the temperatures of the temperatures of the portions 21a, 21b, and 21c on the blade surface, respectively. The determination means 19 determines the presence or absence of an abnormality and the cause of the abnormality from the measured temperature. The display device 22 displays the determination result of the determination unit 19. In the figure, d indicates the flow of the cooling fluid, and 23 indicates the flow path of the cooling fluid.
[0012]
The moving blade 6 and the stationary blade 5 of the gas turbine are used in a state where they are exposed to a high-temperature gas flow. Therefore, since the strength of the structural material rapidly decreases as it is due to high temperatures as it is, there are many cases where a cooling fluid is circulated inside and used while cooling.
[0013]
When the flow rate of the fluid changes due to clogging of foreign matter in the cooling fluid flow path 23, fluid leakage due to a broken hole, or the like, the blade cooling conditions change, so the blade surface temperature in the operating state changes. Therefore, the blade surface temperature at normal time is measured, and compared with the blade surface temperature measurement value in the same operating state. Can be determined to have occurred.
[0014]
As an index indicating the same operation state, gas turbine output, rotation speed, IGV angle, fuel flow rate, and the like can be used.
For blade temperature distribution abnormality, a plurality of blade surface temperature detectors are installed in the blade length direction, and the cause of abnormality can be determined by obtaining the temperature distribution. In the example of FIG. 2, three units are installed.
[0015]
FIG. 3 is a table of determination logic of the determination unit 19.
When the cooling fluid passage 23 is clogged, the flow rate of the cooling fluid decreases, and the temperature rises at all measurement points from the blade root to the tip. Therefore, when the temperature at all measurement points rises above the normal measurement point in the same operating state, it can be determined that the cooling fluid flow path 23 is clogged or blocked (1).
[0016]
If a crack or hole occurs between the blade root and tip, and the cooling fluid leaks out, the flow rate of the cooling fluid increases from the blade root to the hole, and from the hole. It drops to the tip. Therefore, if the temperature from the blade root to a specific measurement point is lower than normal and the temperature from the next measurement point to the tip is higher than normal, the crack between the specific measurement point and the next measurement point Alternatively, it can be determined that the broken hole is the cause of the temperature distribution abnormality (2), (3).
[0017]
If the cooling fluid outlet at the tip of the blade and the flow channel ahead of it, the flow of cooling fluid that passes through the blade increases when the flow channel expands due to the occurrence of a broken hole or friction. Therefore, the temperature decreases at all points from the blade root to the tip. Therefore, if the temperature is lower than normal at all measurement points from the root of the blade to the tip, the cooling fluid outlet at the tip of the blade and the flow path due to broken holes or wear in the flow path ahead of it. It can be determined that the expansion is the cause of the temperature distribution abnormality (4).
[0018]
The blade temperature monitoring is more important when the temperature rises than when the temperature drops, leading to mechanical damage. However, the blade cooling fluid, particularly in the blade 6, is centrifuged toward the blade tip. Since the force is applied and circulates from the root of the blade toward the tip, the tip of the blade is easily affected when the flow rate is reduced, such as blockage of the flow path 23 or fluid leakage, and an abnormal temperature rise is likely to occur. When the number of temperature detectors is limited to, for example, only one, it is better to measure the tip of the blade from the cooling surface, but the gas flow of the gas turbine is at the center of the flow path, that is, the root and tip of the blade. The middle part of the temperature is high, and the temperature decreases as it goes to the end. Therefore, when the number of temperature detectors to be installed is one from the measurement result of the temperature distribution of the gas flow of the gas turbine or the occurrence of troubles in the cooling fluid flow path, as shown in FIG. It is optimal to measure a position 21d that is 75% of the chord length reaching the tip.
[0019]
As the blade surface temperature detecting means, a radiation thermometer is suitable particularly for rotating parts such as moving blades, but a method using a thermocouple is also conceivable.
In this embodiment, a plurality of radiation thermometers are used to measure the temperature at a plurality of points.However, the radiation thermometer has a swing function, and a plurality of points are measured with a single radiation thermometer. Also good.
[0020]
As described above, according to this embodiment, when an abnormality occurs in the gas turbine blade, this is immediately detected, and the cause is determined and displayed, thereby minimizing the outage period for abnormality and repairing. It is possible to improve the economics of facilities and to effectively use resources.
[0021]
【The invention's effect】
According to the present invention, for a gas turbine blade having a cooling fluid flow path therein, it is possible to determine the presence / absence of an abnormality and the cause from the surface temperature distribution of the blade.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the vicinity of a temperature detector according to an embodiment of the present invention and enlarging a turbine inlet portion of a gas turbine.
FIG. 2 is a schematic diagram in which a moving blade and a temperature detector according to an embodiment of the present invention are extracted.
FIG. 3 is a table of determination logic of a determination unit according to the embodiment of the present invention.
FIG. 4 is a cross-sectional view of a turbine inlet of a gas turbine of a gas turbine power plant.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 2 ... Gas turbine, 5 ... Stator blade, 6 ... Moving blade, 16 ... Detection part of radiation thermometer, 18 ... Main body of radiation thermometer, 19 ... Determination means, 20a, 20b, 20c ... Temperature detector, 21a, 21b , 21c, 21d ... measurement points, 23 ... channels.

Claims (6)

内部に冷却用流体を流通させるガスタービン翼と、
この翼の翼付け根部から先端部まで翼長さ方向に複数点の表面温度を検出する温度検出器と、
この温度検出器により得られる運転中の翼表面温度パターンから異常発生の有無および予め用意した複数の異常原因の中から異常原因の判定を行なう判定手段とを備えることを特徴とする翼温度監視装置。
A gas turbine blade for circulating a cooling fluid therein;
A temperature detector for detecting the surface temperature at a plurality of points in the blade length direction from the blade root to the tip of the blade;
A blade temperature monitoring device comprising: a blade surface temperature pattern during operation obtained by the temperature detector; and a determination means for determining whether or not an abnormality has occurred and a plurality of previously prepared abnormality causes. .
前記温度検出器として放射温度計を用いることを特徴とする請求項1記載の翼温度監視装置。  The blade temperature monitoring apparatus according to claim 1, wherein a radiation thermometer is used as the temperature detector. 前記判定手段は、翼表面温度が、同じ運転状態における実績値から一定値以上離れた場合に異常有と判定することを特徴とする請求項1記載の翼温度監視装置。  The blade temperature monitoring device according to claim 1, wherein the determination unit determines that the blade surface temperature is abnormal when the blade surface temperature is a predetermined value or more away from the actual value in the same operation state. 前記判定手段は、翼付け根部から先端部までの前記温度検出器の計測値の全てが同じ運転状態における通常値より一定値以上高い場合に、異常の原因を冷却流体の流通路のつまりと判定することを特徴とする請求項記載の翼温度監視装置。The determination means determines that the cause of the abnormality is a clogging path of the cooling fluid when all of the measured values of the temperature detector from the blade root to the tip are higher than a normal value in the same operating state by a certain value or more. The blade temperature monitoring device according to claim 1, wherein 前記判定手段は、翼付け根部から先端部までの前記温度検出器の計測値が、付け根部と先端部の間の位置を境目として付け根側で、同じ運転状態における通常値より一定の値以上低下し、先端側では同じ運転状態における通常値より一定の値以上上昇している場合に、異常の原因を通常値より上昇した測定点と低下した測定点の中間での冷却流体用流路の破孔発生であると判定することを特徴とする請求項記載の翼温度監視装置。The determination means is such that the measured value of the temperature detector from the blade root to the tip is lower than the normal value in the same operation state by a certain value or more on the root side with the position between the root and the tip as a boundary. However, if the tip side is higher than the normal value in the same operating state by a certain value or more, the cause of the abnormality is the breakage of the cooling fluid flow channel between the measurement point that is higher than the normal value and the measurement point that is lower than the normal value. The blade temperature monitoring device according to claim 1 , wherein the blade temperature is determined to be generated. 請求項1から5の翼温度監視装置を備えるガスタービン。A gas turbine comprising the blade temperature monitoring device according to claim 1.
JP21031495A 1995-08-18 1995-08-18 Blade temperature monitoring device and gas turbine Expired - Fee Related JP3715352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21031495A JP3715352B2 (en) 1995-08-18 1995-08-18 Blade temperature monitoring device and gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21031495A JP3715352B2 (en) 1995-08-18 1995-08-18 Blade temperature monitoring device and gas turbine

Publications (2)

Publication Number Publication Date
JPH0953463A JPH0953463A (en) 1997-02-25
JP3715352B2 true JP3715352B2 (en) 2005-11-09

Family

ID=16587374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21031495A Expired - Fee Related JP3715352B2 (en) 1995-08-18 1995-08-18 Blade temperature monitoring device and gas turbine

Country Status (1)

Country Link
JP (1) JP3715352B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1696102B1 (en) * 2005-02-28 2015-07-29 Siemens Aktiengesellschaft Gas turbine and method of monitoring the operation of such a gasturbine
US20090228230A1 (en) * 2008-03-06 2009-09-10 General Electric Company System and method for real-time detection of gas turbine or aircraft engine blade problems
JP2011007677A (en) * 2009-06-26 2011-01-13 Ihi Corp Vibration analysis system for turbine blade
US20140182292A1 (en) * 2012-12-29 2014-07-03 United Technologies Corporation Integral instrumentation in additively manufactured components of gas turbine engines
US9791352B2 (en) * 2014-09-17 2017-10-17 General Electric Company Automated prognostics systems and methods
WO2020202364A1 (en) * 2019-03-29 2020-10-08 平田機工株式会社 Measurement device

Also Published As

Publication number Publication date
JPH0953463A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
US7762153B2 (en) Method and systems for measuring blade deformation in turbines
US7412320B2 (en) Detection of gas turbine airfoil failure
JP5264517B2 (en) Turbine engine operating method and system
EP0039706B1 (en) Air purging unit for an optical pyrometer of a gas turbine engine
EP1813778B1 (en) Method of monitoring blade vibration in a turbine engine
JP5825811B2 (en) Method, system, and apparatus for calculating tip clearance in turbine engine
EP2065567A2 (en) System for measuring blade deformation in turbines
US6715984B2 (en) Stall prediction method for axial flow compressor
US20090297336A1 (en) Online systems and methods for thermal inspection of parts
US5306088A (en) Method and apparatus for monitoring the temperature in a turbine component
US20170184472A1 (en) Sensor arrangement and measurement method for a turbomachine
JP3715352B2 (en) Blade temperature monitoring device and gas turbine
CN115165337A (en) Turbine blade rotation thermal-mechanical fatigue test device and method
JP5638707B2 (en) Method for determining the diameter of a rotor with rotor blades in a turbomachine
US10619998B2 (en) Method of measuring clearance between rotating and static components
US20100296918A1 (en) Method for determining the remaining service life of a rotor of a thermally loaded turboengine
US9670793B2 (en) IR sensor/system for detection of heating associated with crack propagation during operation of rotating equipment
EP2131168A1 (en) Method and device for detecting capacity changes in a fluid and turbine
JPH0882225A (en) Abnormality monitor system for gas turbine blade
RU2657391C2 (en) Turbomachine containing crankcase wear indicator
Lock et al. Influence of fluid-dynamics on heat transfer in a pre-swirl rotating-disc system
Payne et al. Experimental investigation on the effect of varying purge flow in a newly commissioned single stage turbine test facility
Rohy et al. Radiation pyrometer for gas turbine blades
US20240159161A1 (en) Temperature measurement system and temperature measurement method
EP4134643A1 (en) Non-contact high temperature measurement system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees