JP3714191B2 - Manufacturing method of watertight cross-linked polyethylene insulated wire. - Google Patents

Manufacturing method of watertight cross-linked polyethylene insulated wire. Download PDF

Info

Publication number
JP3714191B2
JP3714191B2 JP2001147563A JP2001147563A JP3714191B2 JP 3714191 B2 JP3714191 B2 JP 3714191B2 JP 2001147563 A JP2001147563 A JP 2001147563A JP 2001147563 A JP2001147563 A JP 2001147563A JP 3714191 B2 JP3714191 B2 JP 3714191B2
Authority
JP
Japan
Prior art keywords
watertight
watertight material
conductor
mpa
polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001147563A
Other languages
Japanese (ja)
Other versions
JP2002343164A (en
Inventor
紀明 白土
剛 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001147563A priority Critical patent/JP3714191B2/en
Publication of JP2002343164A publication Critical patent/JP2002343164A/en
Application granted granted Critical
Publication of JP3714191B2 publication Critical patent/JP3714191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水密型架橋ポリエチレン絶縁電線の製造方法に関するものである。
【0002】
【従来の技術】
架空線用の架橋ポリエチレン絶縁電線(以下OCと称する)にあっては、端末からの雨水などの進入を防止するために、撚り線導体の隙間に樹脂(以下水密材料と称する)を充填したタイプのものが広く使用されていて、OC−Wと称されている。
【0003】
OC−Wをパーオキサイドを用いた化学架橋で製造する場合は、架橋工程に於いて、電線が高温、高圧に曝されるので、水密材料は、溶融状態で、絶縁体の外部から導体に押し付けられ、撚り線導体の隙間が充分に埋められ、導体との接着性も良くなる。
従って、化学架橋で製造されたOC−Wは、水密性の効果を充分に発揮することができる。
しかし、化学架橋をするためには、高圧設備、加硫管など、大掛かりな設備が必要であり、多額の設備投資が必要である。そこで、より簡易な設備でOC−Wを製造する方法として、シラン架橋方式が採用されるようになってきた。
【0004】
【発明が解決しようとする課題】
シラン架橋方式の場合は、シラン架橋剤入りのポリエチレンを押出し被覆した後、常圧蒸気中または温水中で、前記の押出し被覆したポリエチレンをシラン架橋させることができる。しかし、このことは、逆に言えば、電線が高温、高圧の状態になることがなく、水密材料で撚り線導体の隙間を埋めたり、導体との接着性を良くすることがやりにくくなることを意味する。
OC−Wをシラン架橋方式で製造するには、この点を充分に吟味した上で実施することが必要である。
水密性について言えば、融点が低く、流動性の大きい樹脂組成物を水密材料に選ぶことが好ましい。しかし、そういう樹脂組成物を水密材料として用いたOC−Wは、通常、皮剥ぎ性が悪い。すなわち、架線工事の際に端末の絶縁体を剥いで、導体を露出させる処理に大変手間がかかる。
【0005】
【課題を解決するための手段】
本発明は、上述の問題点を解消し、水密性が良く、かつ、皮剥ぎ性にも優れたOC−Wをシラン架橋方式で製造する方法を提供するもので、100%モジュラスが、2.7MPa以下の樹脂組成物を第1の水密材料として選び、導体の撚り合わせ時に、前記水密材料を導体に被覆することにより、前記第1の水密材料を導体内層間隙に充填し、前記第1の水密材料を導体内層間隙に充填した撚り線導体の外周に、100%モジュラスが0.6MPa以上、2.7MPa以下の樹脂組成物を第2の水密材料として選んで、これを被覆し、その後、その外周に、シラン架橋剤入りのポリエチレンを押出し被覆し、60℃〜90℃の温度範囲で、かつ、前記の第2の水密材料の融点以上の温度で、前記押出し被覆したポリエチレンを、シラン架橋して、OC−Wを製造することを特徴とする。
【0006】
【発明の実施の形態】
本発明に於いては、次に挙げるポリマーおよび、それらを相互にブレンドした樹脂組成物の中から100%モジュラス値をキーとして、第1および第2の水密材料を選定し、それを使用することができる。

Figure 0003714191
【0007】
本願発明者等は、後に述べる第1ステップの検討により、次に述べる通り、水密材料の100%モジュラス、および、ポリエチレンを架橋する際の架橋温度の両方が、水密性にも、皮剥ぎ性にも大きな影響を及ぼすことを見出した。
すなわち、
100%モジュラスが、できるだけ小さい樹脂組成物を水密材料として選定すれば、水密性は良好になる。しかし、100%モジュラスが0.60MPa未満の樹脂組成物を水密材料として使用すると、皮剥ぎ性を実用可能なレベルにすることが著しく困難になる。
一方、100%モジュラスが2.70MPaより大きい樹脂組成物を水密材料として選定すると、水密性を良好にすることが困難である。
【0008】
シラン架橋剤入りのポリエチレンを絶縁層として押出し被覆した後、温水または常圧の水蒸気中で、絶縁層のポリエチレンを架橋させるが、ポリエチレンの架橋温度を90℃以上とするには、大掛かりな設備が必要であり、ポリエチレンの架橋温度を60℃以下にしたのでは、架橋時間が長くなり過ぎて好ましくない。また、水密性を良くするには、架橋温度を高くすることが好ましく、皮剥ぎ性を良くするには架橋温度は低い方が好ましい。
【0009】
以上の知見に基づいて、本発明等は、次のようなプロセスに従って、シラン架橋方式で、OC−Wを製造することを考えた。
▲1▼ 導体の撚り合わせ時に、第1の水密材料を導体に被覆して、第1の水密材料を導体内層間隙に充填する。
▲2▼ 第1の水密材料を導体内層間隙に充填した撚り線導体の外周に、第2の水密材料を被覆し、その後、その外周に、シラン架橋剤入りのポリエチレンを押出し被覆する。
▲3▼ 温水または常圧(1気圧以下)の水蒸気中で、前記押出し被覆したポリエチレンを架橋させる。
上記のように、同じOC−Wに於いて、複数樹脂組成物を水密材料に使用することで、水密材料の選択の幅をひろげることができ、水密性に優れ、かつ、皮剥ぎ性にも優れたOC−Wをシラン架橋方式で容易に製造することができる。
【0010】
(第1ステップの検討)
表1に示したサンプル1〜サンプル8のEEAを、水密材料として使用し、それぞれの水密材料を撚り線導体の外から圧入し、シラン架橋剤入りのポリエチレンを押出し被覆し、次いで、架橋温度を数種類変化させて、押出し被覆したそれぞれのポリエチレンをシラン架橋させ、OC−Wを試作した。そして、試作したそれぞれの電線の水密性、皮剥ぎ性を調査した。
【0011】
【表1】
Figure 0003714191
【0012】
試作した電線の水密性、皮剥ぎ性は、以下に述べるような方法、および判定基準を用いて評価した。
[水密性]
長さ2mの電線の片端に、差圧が0.01気圧になるように水圧を掛け、24時間後の水の進入長を測定し、時間当たりの水の進入速度(mm/H)を求め、これを水密性の指標とし、判定の基準を次の通りとした。( ◎、○、△は実用可能。×は実用できない。)
水密性 水の進入速度
A判定( ◎ ) : 1mm/H未満
B判定( ○ ) : 1〜10mm/H
C判定( △ ) : 10〜100mm/H
D判定 ( × ): 100mm/H以上
【0013】
[皮剥ぎ性]
間隔を80cm離して作業台に固定された1対のバイスに、長さ約1mの電線の両端を挟んで、挟まれた電線の中央部を約40cm、専用皮剥工具(GSピラ−古川電機製)で皮剥ぎする。尚、皮剥ぎ時の周囲温度は常温(25±5℃)とする。
そして、皮剥ぎ性の判定基準は次の通りとした。
Figure 0003714191
【0014】
試作した電線の水密性、皮剥ぎ性の評価結果を表2に示す。
表2に於いて、サンプルの欄の( )内に示した数字は、それぞれのサンプルの100%モジュラスの値(MPa)を示す。
また、水密材料の融点と架橋温度との温度差は、水密材料の融点から、ポリエチレンの架橋温度を引いて求めたもので、プラスは、水密材料の融点より低い温度でポリエチレンをシラン架橋させることを示し、マイナスは、水密材料の融点より高い温度でポリエチレンをシラン架橋させることを示している。
また、サンプルの100%モジュラスの値(MPa)をX軸にとり、水密材料の融点と架橋温度との温度差をY軸にとって、表2の結果のそれぞれをグラフ上に示すと図1のようになる。
グラフ上の各座標に於いて、当該座標のX値を水密材料の100%モジュラスの値、Y値を温度差(水密材料の融点−架橋温度)としたときの水密性、皮剥ぎ性を調査した結果を示し、上段は水密性の評価結果、下段は皮剥ぎ性の評価結果を示す。
【0015】
【表2】
Figure 0003714191
【0016】
表2および図1に示した水密性、皮剥ぎ性の評価結果から、次のことがわかる。
100%モジュラスが、それぞれ、3.05、3.28MPaのサンプル7、または、サンプル8を水密材料として使用した場合は、いずれも、水密性が実用可能なレベルに達しなかったが、100%モジュラスが0.61〜2.63MPaのサンプル1〜サンプル6のいずれかを水密材料として使用した場合は、いずれも、水密性が良好である。そして、100%モジュラスが小さいものほど水密性がより良好な傾向が認められる。
しかし、皮剥ぎ性は、100%モジュラスが大きいほど、より良好な傾向が認められる。
そして、表2に於いて、水密性、皮剥ぎ性が共にA判定( ◎ )になっているのは、サンプル3を用いて、温度差(前記の選ばれた水密材料の融点−架橋温度)が12℃という温度条件で、ポリエチレンをシラン架橋させる場合のみである。
このように、水密材料を1種類のみとすると、水密性、皮剥ぎ性が共に充分に良好なOC−Wを製造するための条件の幅は、大変狭いものとなる。
【0017】
しかし、前記の本発明のプロセスに従って、複数の水密材料を使用することにすれば、撚り線導体の内層間隙に充填する第1の水密材料は、100%モジュラスが2.63MPa以下という条件で、水密性を重視して、比較的幅広い範囲から選ぶことができる。
そして、100%モジュラスが0.6MPa以上、2.7MPa以下の樹脂組成物の中から、皮剥ぎ性を重視して、第2の水密材料を選んで、これを撚り線導体の外周に、被覆し、その後、その外周に、シラン架橋剤入りのポリエチレンを押出し被覆し、温度差(前記の選ばれた第2の水密材料の融点−架橋温度)がゼロ℃以上、30℃以下で、かつ、ポリエチレンのシラン架橋温度が60℃以上の条件で、前記押出し被覆したポリエチレンをシラン架橋させることにより、水密性が特に優れていて、かつ、皮剥ぎ性にも優れたOC−Wを製造することができる。
【0018】
以上は、EEAの例について示したが、他の樹脂組成物についても、100%モジュラスが、2.7MPa以下の樹脂組成物を第1の水密材料として選び、導体の撚り合わせ時に、前記第1の水密材料を導体に被覆することにより、導体内層間隙に、前記第1の水密材料を充填し、導体内層間隙に、前記第1の水密材料が充填された撚り線導体の外周に、100%モジュラスが0.6MPa以上、2.7MPa以下の樹脂組成物を第2の水密材料として選んで、これを被覆し、その後、その外周に、シラン架橋剤入りのポリエチレンを押出し被覆し、温度差(前記の選ばれた第2の水密材料の融点−架橋温度)がゼロ℃以上、30℃以下で、かつ、ポリエチレンのシラン架橋温度が60℃以上の条件で、前記押出し被覆したポリエチレンをシラン架橋させれば、水密性が特に優れていて、かつ、皮剥ぎ性にも優れたOC−Wを製造することができる。
【0019】
特に、極性を持たない熱可塑性エラストマー(SIS、SEBS、TPO、TPU)は、導体との接着に対して、架橋温度の影響が少ないので、100%モジュラスが前記の範囲のものを選んで第2の水密材料とすれば、EEAよりも広い範囲の架橋温度で、水密性が良く、かつ、皮剥ぎ性にも優れたOC−Wを製造することができるので好ましい。
【0020】
【発明の効果】
100%モジュラスが、2.7MPa以下の樹脂組成物を第1の水密材料として選び、導体の撚り合わせ時に、前記第1の水密材料を導体に被覆することにより、導体内層間隙に、前記第1の水密材料を充填し、導体内層間隙に、前記第1の水密材料が充填された撚り線導体の外周に、100%モジュラスが0.6MPa以上、2.7MPa以下の樹脂組成物を第2の水密材料として選んで、これを被覆し、その後、その外周に、シラン架橋剤入りのポリエチレンを押出し被覆し、温度差(前記の選ばれた第2の水密材料の融点−架橋温度)がゼロ℃以上、30℃以下で、かつ、ポリエチレンのシラン架橋温度が60℃以上の条件で、前記押出し被覆したポリエチレンをシラン架橋させて得られるOC−Wは、水密性が良く、かつ、皮剥ぎ性にも優れている。
このように、性能の優れたOC−Wがシラン架橋方式で製造できることは、工業的に大変価値の高いことである。
【図面の簡単な説明】
【図1】各種EEA100%モジュラスの値(MPa)について、水密材料の融点と架橋温度との温度差に於ける水密性/皮剥ぎ性を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a watertight cross-linked polyethylene insulated wire.
[0002]
[Prior art]
In a cross-linked polyethylene insulated wire for overhead wires (hereinafter referred to as OC), a type in which resin (hereinafter referred to as watertight material) is filled in the gaps of the stranded wire conductors in order to prevent rainwater from entering from the terminal. Is widely used and is referred to as OC-W.
[0003]
When OC-W is manufactured by chemical cross-linking using peroxide, the wire is exposed to high temperature and high pressure in the cross-linking step, so the watertight material is pressed against the conductor from the outside of the insulator in the molten state. The gap between the stranded wire conductors is sufficiently filled, and the adhesion to the conductor is improved.
Therefore, OC-W manufactured by chemical cross-linking can fully exhibit the effect of watertightness.
However, in order to perform chemical crosslinking, large-scale facilities such as high-pressure facilities and vulcanized pipes are required, and a large amount of capital investment is required. Therefore, a silane crosslinking method has been adopted as a method for producing OC-W with simpler equipment.
[0004]
[Problems to be solved by the invention]
In the case of the silane crosslinking method, after extrusion-coating polyethylene containing a silane crosslinking agent, the extrusion-coated polyethylene can be silane-crosslinked in atmospheric steam or warm water. However, conversely, this means that the wires do not become hot and high-pressure, making it difficult to fill the gaps between the stranded conductors with a watertight material or improve the adhesion to the conductors. Means.
In order to produce OC-W by the silane crosslinking method, it is necessary to carry out after thoroughly examining this point.
Regarding watertightness, it is preferable to select a resin composition having a low melting point and high fluidity as the watertight material. However, OC-W using such a resin composition as a watertight material usually has poor peelability. That is, it takes a lot of work to strip the insulator of the terminal during the construction of the overhead wire and expose the conductor.
[0005]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, provides a method for producing OC-W having good water tightness and excellent peelability by a silane crosslinking method, and 100% modulus is 2. A resin composition of 7 MPa or less is selected as the first watertight material, and the conductor is covered with the watertight material at the time of twisting of the conductor, thereby filling the gap between the first watertight material and the first inner layer. A resin composition having a 100% modulus of 0.6 MPa or more and 2.7 MPa or less is selected as the second water-tight material on the outer periphery of the stranded wire conductor filled with the water-tight material in the gap between the inner layers of the conductor. The outer circumference is extrusion coated with polyethylene containing a silane crosslinking agent, and the extrusion coated polyethylene is silane crosslinked at a temperature range of 60 ° C. to 90 ° C. and at a temperature equal to or higher than the melting point of the second watertight material. Shi , Characterized in that to produce the OC-W.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the first and second watertight materials are selected from the following polymers and resin compositions obtained by blending them with each other using the 100% modulus value as a key and used. Can do.
Figure 0003714191
[0007]
The inventors of the present application examined the first step described later, and as described below, both the 100% modulus of the watertight material and the crosslinking temperature when crosslinking polyethylene are both watertight and peelable. Also found a significant impact.
That is,
If a resin composition having a 100% modulus as small as possible is selected as the watertight material, the watertightness will be good. However, when a resin composition having a 100% modulus of less than 0.60 MPa is used as a watertight material, it becomes extremely difficult to bring the peelability to a practical level.
On the other hand, when a resin composition having a 100% modulus greater than 2.70 MPa is selected as the watertight material, it is difficult to improve the watertightness.
[0008]
After extrusion-coating polyethylene containing a silane crosslinking agent as an insulation layer, the polyethylene in the insulation layer is crosslinked in warm water or water vapor at normal pressure. To increase the crosslinking temperature of the polyethylene to 90 ° C or more, a large facility is required. It is necessary, and if the crosslinking temperature of polyethylene is 60 ° C. or lower, the crosslinking time becomes too long, which is not preferable. In order to improve water tightness, it is preferable to increase the crosslinking temperature, and in order to improve peelability, it is preferable that the crosslinking temperature is low.
[0009]
Based on the above knowledge, this invention etc. considered producing OC-W by a silane bridge | crosslinking system according to the following processes.
{Circle around (1)} When the conductors are twisted together, the conductor is coated with the first watertight material, and the first watertight material is filled in the gap between the inner layers of the conductor.
{Circle around (2)} The second water-tight material is coated on the outer periphery of the stranded wire conductor filled with the first water-tight material in the gap between the inner layers of the conductor, and then the outer periphery is extrusion-coated with polyethylene containing a silane crosslinking agent.
(3) The extrusion-coated polyethylene is cross-linked in warm water or steam at normal pressure (1 atm or less).
As described above, in the same OC-W, by using a plurality of resin compositions as a watertight material, the range of selection of the watertight material can be expanded, the watertightness is excellent, and the peelability is also improved. Excellent OC-W can be easily produced by a silane crosslinking method.
[0010]
(Examination of the first step)
The EEAs of Sample 1 to Sample 8 shown in Table 1 are used as watertight materials, each watertight material is press-fitted from the outside of the stranded conductor, the polyethylene containing the silane crosslinking agent is extrusion coated, and then the crosslinking temperature is set. Several types were changed, and each extrusion-coated polyethylene was crosslinked with silane to produce OC-W as a prototype. Then, the watertightness and peelability of each prototyped electric wire were investigated.
[0011]
[Table 1]
Figure 0003714191
[0012]
The watertightness and peelability of the prototyped electric wires were evaluated using the methods and criteria described below.
[Watertightness]
Water pressure is applied to one end of a 2 m long wire so that the differential pressure is 0.01 atm. The water entry length after 24 hours is measured, and the water entry speed (mm / H) per hour is obtained. This was used as an indicator of water tightness, and the criteria for determination were as follows. (◎, ○, and △ are practical. × is not practical.)
Watertightness Water entry speed A judgment (◎): Less than 1 mm / H B judgment (○): 1-10 mm / H
C judgment ((triangle | delta)): 10-100mm / H
D determination (×): 100 mm / H or more
[Skin peelability]
A pair of vices fixed on the workbench with a spacing of 80 cm between both ends of a 1 meter long wire, the center of the sandwiched wire is about 40 cm, and a special stripping tool (GS Pillar-Furukawa Electric) ). In addition, the ambient temperature at the time of skinning shall be room temperature (25 ± 5 ° C.).
The criteria for peelability were as follows.
Figure 0003714191
[0014]
Table 2 shows the evaluation results of watertightness and peelability of the prototyped electric wires.
In Table 2, the numbers shown in parentheses in the sample column indicate 100% modulus values (MPa) of the respective samples.
Also, the temperature difference between the melting point of the watertight material and the crosslinking temperature is obtained by subtracting the crosslinking temperature of polyethylene from the melting point of the watertight material. Plus, the polyethylene is silane-crosslinked at a temperature lower than the melting point of the watertight material. The minus sign indicates that polyethylene is silane-crosslinked at a temperature higher than the melting point of the watertight material.
Further, when the value of 100% modulus (MPa) of the sample is taken on the X-axis, the temperature difference between the melting point of the watertight material and the crosslinking temperature is taken on the Y-axis, each result of Table 2 is shown on the graph as shown in FIG. Become.
For each coordinate on the graph, investigate the water tightness and peelability when the X value of the coordinate is the 100% modulus value of the water tight material and the Y value is the temperature difference (melting point of the water tight material-crosslinking temperature). The upper part shows the evaluation result of water tightness, and the lower part shows the evaluation result of peelability.
[0015]
[Table 2]
Figure 0003714191
[0016]
From the evaluation results of water tightness and peelability shown in Table 2 and FIG.
When 100% modulus was 3.05 and 3.28 MPa, respectively, sample 7 or sample 8 was used as a watertight material, the watertightness did not reach a practical level. When any one of Samples 1 to 6 having 0.61 to 2.63 MPa is used as a watertight material, the watertightness is good. And the tendency for watertightness to be more favorable is recognized, so that a 100% modulus is small.
However, the better the peelability, the higher the 100% modulus.
In Table 2, the water-tightness and peelability are both judged as A (◎) using Sample 3 with a temperature difference (melting point-crosslinking temperature of the selected water-tight material). This is only when polyethylene is silane-crosslinked under a temperature condition of 12 ° C.
Thus, if only one type of watertight material is used, the range of conditions for producing OC-W with sufficiently good watertightness and peelability is very narrow.
[0017]
However, according to the process of the present invention, if a plurality of watertight materials are used, the first watertight material filled in the inner layer gap of the stranded conductor has a 100% modulus of 2.63 MPa or less. Emphasizing water tightness, you can choose from a relatively wide range.
Then, from the resin composition having a 100% modulus of 0.6 MPa or more and 2.7 MPa or less, the second watertight material is selected with emphasis on peelability, and this is coated on the outer periphery of the stranded conductor. Then, the outer periphery of the polyethylene containing a silane cross-linking agent is extruded and coated, and the temperature difference (the melting point of the second watertight material selected above-the cross-linking temperature) is not less than 0 ° C and not more than 30 ° C, and It is possible to produce OC-W having particularly excellent water-tightness and excellent peelability by silane-crosslinking the extrusion-coated polyethylene under the condition that the silane crosslinking temperature of polyethylene is 60 ° C. or higher. it can.
[0018]
The above is an example of EEA, but for other resin compositions, a resin composition having a 100% modulus of 2.7 MPa or less is selected as the first watertight material, and when the conductor is twisted, the first The conductor inner layer gap is filled with the first watertight material, and the conductor inner layer gap is filled with 100% of the outer circumference of the stranded conductor filled with the first watertight material. A resin composition having a modulus of 0.6 MPa or more and 2.7 MPa or less is selected as the second watertight material, and this is coated, and then the outer periphery thereof is extrusion coated with polyethylene containing a silane crosslinking agent, and a temperature difference ( The extrusion-coated polyethylene was coated under the conditions that the melting point of the second watertight material selected above was 0 ° C. or higher and 30 ° C. or lower and the silane crosslinking temperature of the polyethylene was 60 ° C. or higher. If brought into down crosslinked and watertightness particularly excellent, and can be produced an excellent OC-W in skinning properties.
[0019]
In particular, thermoplastic elastomers having no polarity (SIS, SEBS, TPO, TPU) are less affected by the cross-linking temperature with respect to the adhesion to the conductor. The water-tight material is preferable because it can produce OC-W having good water-tightness and excellent peelability at a cross-linking temperature in a wider range than EEA.
[0020]
【The invention's effect】
A resin composition having a 100% modulus of 2.7 MPa or less is selected as the first watertight material, and the conductor is coated with the first watertight material when the conductors are twisted together, so that the first inner layer gap is formed in the conductor inner layer gap. A resin composition having a 100% modulus of 0.6 MPa or more and 2.7 MPa or less is formed on the outer periphery of the stranded wire conductor filled with the first watertight material in the conductor inner layer gap. This is selected as a watertight material and coated, and then the outer periphery thereof is extrusion coated with polyethylene containing a silane crosslinking agent, and the temperature difference (the melting point of the selected second watertight material minus the crosslinking temperature) is zero ° C. As described above, OC-W obtained by silane cross-linking the extrusion-coated polyethylene under the conditions of 30 ° C. or lower and a polyethylene silane cross-linking temperature of 60 ° C. or higher has good water tightness and peelability. It is also excellent.
Thus, it is industrially very valuable that OC-W which was excellent in performance can be manufactured by a silane crosslinking method.
[Brief description of the drawings]
FIG. 1 shows water tightness / peeling property at a temperature difference between a melting point of a water tight material and a crosslinking temperature with respect to various EEA 100% modulus values (MPa).

Claims (3)

100%モジュラスが、2.7MPa以下の樹脂組成物を第1の水密材料として選び、導体の撚り合わせ時に、前記第1の水密材料を導体に被覆することにより、前記第1の水密材料を導体内層間隙に充填し、前記第1の水密材料を導体内層間隙に充填した撚り線導体の外周に、100%モジュラスが0.6MPa以上、2.7MPa以下の樹脂組成物を第2の水密材料として選んで、被覆し、その後、その外周に、シラン架橋剤入りのポリエチレンを押出し被覆し、60℃〜90℃の温度範囲で、かつ、前記の第2の水密材料の融点以上の温度で、前記押出し被覆したポリエチレンをシラン架橋させることを特徴とする水密型架橋ポリエチレン絶縁電線の製造方法。A resin composition having a 100% modulus of 2.7 MPa or less is selected as the first watertight material, and the conductor is coated with the first watertight material when the conductors are twisted together. A resin composition having a 100% modulus of 0.6 MPa or more and 2.7 MPa or less is used as a second watertight material on the outer periphery of the stranded wire conductor filled in the inner layer gap and filled with the first watertight material in the conductor inner layer gap. Select, coat, and then extrude-coil polyethylene containing a silane crosslinking agent on its outer periphery, at a temperature range of 60 ° C. to 90 ° C., and at a temperature equal to or higher than the melting point of the second watertight material. A method for producing a watertight cross-linked polyethylene insulated wire, characterized in that the extrusion-coated polyethylene is subjected to silane cross-linking. 第2の水密材料が、エチレン−エチルアクリレート共重合樹脂であることを特徴とする請求項1に記載の水密型架橋ポリエチレン絶縁電線の製造方法。The method for producing a watertight cross-linked polyethylene insulated wire according to claim 1, wherein the second watertight material is an ethylene-ethyl acrylate copolymer resin. 第2の水密材料が、極性を持たない熱可塑性エラストマーであることを特徴とする請求項1に記載の水密型架橋ポリエチレン絶縁電線の製造方法。The method for producing a watertight crosslinked polyethylene insulated wire according to claim 1, wherein the second watertight material is a thermoplastic elastomer having no polarity.
JP2001147563A 2001-05-17 2001-05-17 Manufacturing method of watertight cross-linked polyethylene insulated wire. Expired - Fee Related JP3714191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001147563A JP3714191B2 (en) 2001-05-17 2001-05-17 Manufacturing method of watertight cross-linked polyethylene insulated wire.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001147563A JP3714191B2 (en) 2001-05-17 2001-05-17 Manufacturing method of watertight cross-linked polyethylene insulated wire.

Publications (2)

Publication Number Publication Date
JP2002343164A JP2002343164A (en) 2002-11-29
JP3714191B2 true JP3714191B2 (en) 2005-11-09

Family

ID=18993031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001147563A Expired - Fee Related JP3714191B2 (en) 2001-05-17 2001-05-17 Manufacturing method of watertight cross-linked polyethylene insulated wire.

Country Status (1)

Country Link
JP (1) JP3714191B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5547300B2 (en) 2010-11-29 2014-07-09 株式会社ジェイ・パワーシステムズ Running water type underwater power cable

Also Published As

Publication number Publication date
JP2002343164A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
US4150193A (en) Insulated electrical conductors
EP0892979B1 (en) Ethylene polymer composition for cable applications
JP3692315B2 (en) A watertight insulated wire using a compressed conductor.
JPH10269859A (en) Cable
JP3714191B2 (en) Manufacturing method of watertight cross-linked polyethylene insulated wire.
US4483808A (en) Methods of making a compositely insulated conductor having a layer of irradiation cross-linked polymeric material
JP3695335B2 (en) Manufacturing method of watertight cross-linked polyethylene insulated wire.
US4430385A (en) Compositely insulated conductor having a layer of irradiation cross-linked polymeric plastic material
JPS62170107A (en) Heat resistant/oil resistant insulated wire
JP2010161040A (en) Watertight material, watertight insulated wire, method of manufacturing the same, and power cable
JP2588888B2 (en) Watertight OW electric wire
JPH03297011A (en) Thin insulated wire
JPS6034205B2 (en) watertight wire or cable
JPH10233125A (en) Cable
JP2918910B2 (en) Watertight insulated wire core
JPS63297446A (en) Watertight mixture
JPH0757852A (en) Waterproof heating element unit
JPS598742A (en) Composition for conductive material having watertightness
JP2918900B2 (en) Watertight conductor
JPS645404B2 (en)
JPH0498713A (en) Aerial insulated wire
JPH0133004B2 (en)
JPS63297445A (en) Watertight mixture
JPH09324161A (en) Hot-melt adhesive and heat recovering article using the same
JPS61232505A (en) Crosslinked polyethylene insulated wire

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3714191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees