JP3714089B2 - Screw fluid machinery - Google Patents

Screw fluid machinery Download PDF

Info

Publication number
JP3714089B2
JP3714089B2 JP2000041390A JP2000041390A JP3714089B2 JP 3714089 B2 JP3714089 B2 JP 3714089B2 JP 2000041390 A JP2000041390 A JP 2000041390A JP 2000041390 A JP2000041390 A JP 2000041390A JP 3714089 B2 JP3714089 B2 JP 3714089B2
Authority
JP
Japan
Prior art keywords
tooth profile
rotor
radius
profile curve
male
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000041390A
Other languages
Japanese (ja)
Other versions
JP2001227485A (en
Inventor
英智 茂利
裕敬 亀谷
仁 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000041390A priority Critical patent/JP3714089B2/en
Publication of JP2001227485A publication Critical patent/JP2001227485A/en
Application granted granted Critical
Publication of JP3714089B2 publication Critical patent/JP3714089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無給油式スクリュー圧縮機,油冷式スクリュー圧縮機,無給油式スクリュー膨張機及び油冷式スクリュー膨張機などのスクリュー流体機械に用いられるスクリューロータに関し、特に両ロータ間のかみ合い線の長さを短く形成した歯形曲線を有するスクリューロータに関する。
【0002】
【従来の技術】
平行な二軸の回りをかみ合って回転する雄ロータ及び雌ロータからなるスクリューロータの従来の歯形曲線を、特開昭57−176303号公報を例にとって説明する。スクリューロータの歯形曲線はロータの軸直角断面において定義され、前記公報の雄,雌ロータの歯形曲線はそれぞれ大きく六つのフランクに分けられ、雌ロータの前進面(雌ロータ歯底より雌ロータの回転方向に向かう歯形曲線)の第1フランクは放物線が用いられ、第2フランクは円弧が用いられておりその中心は歯形曲線に関して前記放物線の焦点と反対側にある。これらとかみ合う雄ロータの前進面の第1及び第2フランクは前記雌ロータの第1及び第2フランクによって軌跡創成される曲線となっている。他のフランクについても同様に円弧と円弧によって軌跡創成される曲線となっている。
【0003】
すなわち、従来の歯形曲線は前記公報に見るように既知の曲線、主として2次曲線(円弧,放物線,双曲線などで直線も含む)を一方のロータのあるフランクに当てはめ、これとかみ合う他のロータのフランクは前記の曲線によって軌跡創成される曲線としている。当てはめる曲線は滑らかに接続させ、従って雄,雌ロータの歯形曲線は滑らかに接続した曲線になるように形成している。
【0004】
【発明が解決しようとする課題】
しかし、このように形成された歯形曲線でも、歯形曲線に沿う曲率半径は当てはめた曲線の接続点で不連続になることが多い。前記特開昭57−176303号公報の歯形曲線についてみると、第1フランクの放物線に沿っての曲率半径の値を正に表すと、第2フランクでの曲率半径は負であり値の絶対値は第2フランクを形成する円弧の半径となる。すなわち、前記第1と第2フランクの接続点において曲率半径は不連続となる。
【0005】
このように歯形曲線の曲率半径が歯形曲線に沿って滑らかに変化せず不連続になると、両ロータ間のかみ合い線は折れ曲ったり蛇行したりして、短いかみ合い戦を実現することができない。
【0006】
前述のように従来のスクリューロータの歯形形成では、先ず最初に歯形曲線が決められるため、ロータ間のかみ合い線の折れ曲りや蛇行、更に歯形曲線に沿う歯形曲線の曲率半径の不連続などが生じる。
【0007】
スクリュー流体機械の性能面から考えると、歯形曲線の形状よりもまず第一にかみ合い線の長さが問題であり、雄,雌ロータ間のすきまからの作動ガスの漏洩はかみ合い線の長さにほぼ比例するので、機械の性能はこのかみ合い線の長さに左右される。
【0008】
従って、従来のようなスクリューロータの歯形曲線の形成法では前記の本質的な要求に対する回答にはなっていない。
【0009】
本発明の課題は、上記のような点に鑑み、ロータ間のかみ合い線の折れ曲りや蛇行がなく、歯形曲線に沿う歯形曲線の曲率半径が連続的に変化し、かつ短いかみ合い線長さを実現できるという数学的根拠のある歯形曲線のスクリューロータを求めることである。そのためには、両ロータ間のかみ合い線を直接的に取り扱い、機構学的必要条件を満足し、かみ合い線に必要な境界条件を満足し、さらにかみ合い線を短くできるという数学的根拠にのっとってかみ合い線を定め、このかみ合い線を雄ロータ軸及び雌ロータ軸の回りにそれぞれのロータのリードでねじって雄ロータ歯面及び雌ロータ歯面をそれぞれ作り、両歯面を両軸に直角な平面(本発明ではこれをx―y平面とする)で切って両ロータの歯形曲線を定める。
【0010】
【課題を解決するための手段】
平行な二軸の回りをかみ合って回転し、ねじれた歯を有する雄ロータ及び雌ロータからなるスクリューロータにおいて、前記雌ロータの軸直角断面上における輪郭である歯形曲線の主要な部分に関し、最も半径の小さい歯底点から運転時の回転方向に向かう歯形曲線の曲率半径が、歯底点から離れるに従って次第に大きくなり、遂には曲率半径の最大値に至った後に減少傾向に転じ、ピッチ円に向かうとともに、前記歯底点から前記曲率半径最大点までの歯形曲線に沿った長さが、前記曲率半径最大点から前記ピッチ半径までの歯形曲線に沿った長さよりも長くすることにより前記の課題を解決した。
【0011】
即ち、上記のようにスクリューロータを形成すると、歯形曲線に沿う歯形曲線の曲率半径は滑らかに連続する曲線となり、かみ合い線も滑らかに連続する曲線となり、かつ、かみ合い線の長さを短くすることができる。
【0012】
従って、スクリュー流体機械のロータ間のガスの漏洩を少なくすることができ、高性能なスクリュー流体機械を実現できる。
【0013】
【発明の実施の形態】
本発明をスクリューロータの前進面側歯形曲線に適用した例について説明する。本発明の第1の実施例を図1から図3に示す。
【0014】
図1は、静止した雄,雌ロータの歯形曲線及びかみ合い線を軸方向からみた図である。Om は雄ロータの回転中心、Of は雌ロータの回転中心であり、各ロータは図示した方向に回転するものとする。1は雄ロータのピッチ円を、2は雌ロータのピッチ円を示し、雄,雌ピッチ円の接点をPとするとPはOm ,Of を結ぶ直線の上にあり、この点をピッチ点と呼ぶ。3及び4はそれぞれ雄,雌ロータの外径、5及び6はそれぞれ雄,雌ロータの谷底径である。図は各ロータがアデンダム及びデデンダムを有する場合を示す。各寸法及び座標値は雄ロータのピッチ円の半径を単位として無次元化して表示する。すなわち、雄ピッチ円半径を1とし、雌ピッチ円半径をε、雄ロータのアデンダムをρ1 、デデンダムをρ2 とする。本実施例では雄ロータを右ねじれ、雌ロータを左ねじれとした。
【0015】
ピッチ点Pを原点とし、PよりにOf 向かう方向にx軸をとり、これと直交する方向にy軸をとる。z軸は紙面に垂直方向にとり、右手系の座標とし、この座標によりかみ合い線を表す。また、Om を中心とし雄ロータを表す座標を図示のように(xm ,ym ,zm)とし、右手系の座標とする。Ofを中心とし雌ロータを表す座標を図示のように(xf ,yf ,zf )とし、右手系の座標とする。
【0016】
【数1】

Figure 0003714089
【0017】
【数2】
Figure 0003714089
【0018】
【数3】
Figure 0003714089
【0019】
【数4】
Figure 0003714089
【0020】
【数5】
Figure 0003714089
【0021】
【数6】
Figure 0003714089
【0022】
【数7】
Figure 0003714089
【0023】
【数8】
Figure 0003714089
【0024】
【数9】
Figure 0003714089
【0025】
【数10】
Figure 0003714089
【0026】
【数11】
Figure 0003714089
【0027】
【数12】
Figure 0003714089
【0028】
【数13】
Figure 0003714089
【0029】
【数14】
Figure 0003714089
【0030】
互いにかみ合い一定の回転速度比で使用する雄,雌ロータには両ロータのかみ合い線上で雄,雌ロータのねじ曲面に立てた共通法線は、x−y平面に投影するとピッチ点Pを通らなければならないという機構学的必要条件がある。x−y平面に投影したかみ合い線を図1に示すように、動径ρと偏角θで表すと、前記の機構学的必要条件は式(数1)のように表されることを見出した。以後、Aのθによる微係数を式(数2)のようにA′と表す。式(数1)を機構学的必要条件の式と呼ぶ。
【0031】
また、θ=0のT1 よりかみ合い線に沿って測ったかみ合い線の長さをsとすると、s′は式(数3)のように表され、式(数3)に式(数1)を入れると、s′は式(数4)のように表される。
【0032】
また、雌ロータの歯形曲線の曲率半径ρf は式(数5)のように表され、T1 からの雌ロータの歯形曲線の長さsf の微係数は式(数6)のように表される。式(数5)を微分することにより、雌ロータの歯形曲線の曲率半径ρf の微係数は式(数7)のようになる。また、雌ロータの歯形曲線の曲率半径ρf の雌ロータの歯形曲線の長さsf による微係数は式(数8)であらわされる。
【0033】
次に、かみ合い線の境界条件について、式(数1)及び式(数4)を基に考える。まず、θ=0のT1 点では、ρ=ρ1 であり、z′=0とすればs′は最小値ρ1 をとり、ρf=ρ1,ρf′=−βz″(0),sf′=ρ1 となる。θ=Δθの小さい角度のとき、式(数1)を用いるとρ′=z″(0)(Δθ)2となり、かみ合い線を短くするためにはρ′<0でなければならないのでz″(0)<0である。従って、式(数8)により
Figure 0003714089
【0034】
となる。
【0035】
また、ピッチ点Pにおいてはρ=0であるから、ここでもz′=0とすれば
s′は最小値0をとり、式(数5)よりρf =0となる。
【0036】
すなわち、雌ロータの軸直角断面上における輪郭である歯形曲線に関し、最も回転半径の小さい歯底点から運転時の回転方向に向かう歯形曲線の曲率半径が、歯底点においてρ1 であり、歯底点から離れるに従って次第に大きくなるが、ピッチ円に至ると曲率半径は0となることより、歯底点とピッチ円との間に少なくとも1つの曲率半径の極大点があることになるが、歯形曲線の単調性より極大点は1つであるべきであり、従って、雌ロータの歯形曲線の曲率半径は歯底点とピッチ円との間に最大値を有するべきであることが見出される。
【0037】
P点におけるθをθ0 とし、θ0 =90°として上記の境界条件を満足する
z′を式(数9)のように選ぶとρ′及びρは式(数10)及び式(数11)のようになるが、境界条件により、
Figure 0003714089
【0038】
となる。これらの式を用いて、式(数5)により雌ロータの歯形曲線の曲率半径ρf が計算できる。また、T1 からの雌ロータの歯形曲線の長さsf の微係数及びs′が式(数6)及び式(数4)により求まるので数値積分を行うことによりsf 及びsを計算できる。
【0039】
図1から図3の破線は前記の特開昭57−176303号公報による歯形曲線およびかみ合い線で、実線は本実施例の歯形曲線およびかみ合い線である。計算は雄ロータ歯数を5,雌ロータ歯数を6,従ってε=1.2とした。またρ1 =0.478、ρ2=0.031とし、βを雄ロータのピッチ円の周長を雄ロータのリードで除した値とするときβ=1.1812とした。従来例として特開昭57−176303 号公報の歯形曲線による計算も行ったが、第1フランクの放物線の焦点距離を雄ロータのピッチ円半径で割って無次元化した値として0.233 、第2フランクの円弧の半径を同様に無次元化して0.207 とした。
【0040】
破線の7,8及び9はそれぞれ雄,雌ロータの歯形曲線、歯形曲線7および8によるかみ合い線をx−y平面に投影して示したものである。また実線10,
11及び12は軸方向から見た、本実施例のスクリューロータの形成法によって得た雄ロータ歯形曲線,雌ロータ歯形曲線及びかみ合い線である。
【0041】
図2はかみ合い線をz−y座標で示したものである。
【0042】
図1及び図2より、本実施例のかみ合い線は特開昭57−176303号公報によるものより滑らかな曲線となっていることが明らかである。
【0043】
図3は雌ロータの歯形曲線に沿う歯形曲線の長さsf と、歯形曲線の曲率半径ρf 及びかみ合い線の長さsとの関係を示した図で、歯形曲線の長さsf は雌ロータの歯底点T1 より雌ロータのピッチ円に向かう方向に測り、その最大値sf0で除して無次元化した値を横軸にとった。また、ρf 及びsはρ1 で除して無次元化して示す。
【0044】
破線の15及び16は特開昭57−176303号公報による歯形曲線について計算したρf/ρ1及びs/ρ1で、ρf/ρ1はsf/sf0 が0.75付近で不連続に変化しており、この付近からs/ρ1 は急激に大きくなっている。実線の17及び18は本実施例について計算したρf/ρ1及びs/ρ1 を示す。本実施例では、歯底点T1 で曲率半径はρ1 に等しく、歯底点T1 からピッチ円に向かうとき、歯形曲線の曲率半径が歯底点から離れるに従って次第に大きくなり、遂には曲率半径の最大値に至った後に曲率半径は縮小傾向に転じ、ピッチ半径に至ると0となる。曲率半径はsf/sf0 が0.60程度のとき最大値0.35程度の値となる。本実施例ではβの値を変えてもρf/ρ1とsf/sf0 との関係は図3に示したものと同じになる。
【0045】
【表1】
Figure 0003714089
【0046】
本発明の第2の実施例を図4から図6及び表1に示す。本実施例のかみ合い線は、式(数12)に示されるかみ合い線の長さsを汎関数とし、式(数1)に示される機構学的必要条件の式を拘束条件とし、変分法を用いて最も短いかみ合い線を求めたものである。式(数13)及び式(数14)に変分法におけるオイラーの方程式を示す。ここに、λは未定の関数である。独立変数はθ、未知関数はρ,z,s及びλである。なお、式(数14)のc1 は積分定数である。境界条件としてはθ=0°において、ρ=ρ1,z=0,s=0とし、θ=θ0=90°において、ρ=0,s=s0 ,z=z0 とした。
【0047】
計算に用いたρ1 ,ε及びβの値は第1の実施例に用いたものと同じである。
【0048】
図4は軸方向から見た歯形曲線及びかみ合い線で、式(数14)中のc1 =0の場合を実線で、c1=0.2の場合を一点鎖線で、c1=―0.2の場合を二点鎖線で示す。20,23及び26は雄ロータの歯形曲線、21,24及び27は雌ロータの歯形曲線、22,25及び28は軸方向に見たかみ合い線をそれぞれ示す。図5の29,30及び31は長手方向より見たかみ合い線である。図4において、雄ロータの歯形曲線が雄ロータのピッチ円と交わる点をQとし、QとOm とを結ぶ線分がXm 軸となす角をφ0とすると、c1 が小さくなると、φ0は大きくなり、z0 は小さくなる。
【0049】
図6は、図3と同様にρf/ρ1及びs/ρ1とsf/sf0の関係を示したもので、前図と同じくc1 =0の場合を実線で、c1=0.2の場合を一点鎖線で、c1=―0.2の場合を二点鎖線で示す。実線の32及び33はc1=0の場合、一点鎖線の34及び35はc1=0.2の場合、二点鎖線の36及び37はc1=―0.2について計算したρf/ρ1及びs/ρ1を示す。
【0050】
本実施例では、歯底点T1での曲率半径は、c1=0の場合ρ1に等しく、c1 =0.2の場合はρ1より小さく、c1 =―0.2の場合はρ1より大きくなる。しかし、雌ロータの歯形曲線が歯底点T1 から雌ロータのピッチ円に向かうとき、歯形曲線の曲率半径が歯底点から離れるに従って次第に大きくなり、遂には曲率半径の最大値に至った後に曲率半径は縮小傾向に転じ、ピッチ半径に至ると0となる傾向はc1 の値に関わらず同じである。曲率半径はc1 が変わってもsf/sf0が0.65程度のとき最大値をとり、その最大値はc1が小さいほど大きい。また、s/ρ1とsf/sf0の関係はc1 が変わってもあまり大きな差は生じない。
【0051】
表1はc1 の値とs0/ρ1,z0/ρ1及びφ0 との関係を数値で示したもので、c1 が変わるとz0/ρ1及びφ0 は大きく変わるが、s0/ρ1の値はほとんど一定であり、最も短いかみ合い線の長さとなっている。
【0052】
【表2】
Figure 0003714089
【0053】
本発明の第3の実施例を図7から図9及び表2に示す。本実施例のかみ合い線は、第2の実施例におけるc1 =0のかみ合い線を、雄雌ロータの歯形曲線の主要な部分を形成するかみ合い線T1―R1 及びT1―R2 の38及び40に用い、R1―P及びR2―R3 の39及び41には直線を当てはめたものである。直線R1―Pとx軸とのなす角をθ2 とし、θ2=70°の場合についての計算例を示す。
【0054】
計算に用いたρ1 ,ε及びβの値は第1の実施例に用いたものと同じである。
【0055】
これらのかみ合い線によって作られる雄ロータの歯形曲線42,43の内、42は図4の20と同じであるが、43はインボリュート曲線となる。また、雌ロータの歯形曲線44,45の内、44は図4の21と同じであるが、45はインボリュート曲線となる。従って、雄雌ロータをかみ合わせたとき、ピッチ円付近のかみ合いはインボリュート曲線同士のかみ合いとなり、はすば歯車におけるかみ合いと同じになる。これは油冷式スクリュー圧縮機などのように、ロータ歯面でトルク伝達を行う場合は大きなメリットがあり、特に、雌ロータで雄ロータを駆動する場合などのように大きなトルクを伝達しなければならないときは有効である。
【0056】
図9は、図3及び図6と同様にρf/ρ1及びs/ρ1とsf/sf0の関係を示したものである。本図においても、46は図6の32と同じであるが、47はインボリュート曲線のρf/ρ1で負の値となる。しかし、ρf/ρ1が最大値をとった後0.8 程度まで小さくなったところからインボリュ−ト曲線のρf/ρ1となっているため、49でのs/ρ1の増加はそれほど大きくない。
【0057】
表2はθ2 の値とs0/ρ1,z0/ρ1及びφ0 との関係を数値で示したもので、θ2 =90°の場合はインボリュート部は存在せず、表1のc1 =0の場合と同じである。θ2 =70°の場合もs0/ρ1,z0/ρ1及びφ0 などの値は、θ2 =90°の場合とほとんど変わらず、最短のかみ合い線長さをほぼ維持している。
【0058】
本実施例によればθ2 の値を70°程度まで小さく選べ、しかもかみ合い線の長さをほぼ最小の値に保持することができ、トルク伝達に有効な歯形曲線とすることができる。
【0059】
なお、本発明の実施例では雌ロータピッチ円の内部のかみ合い線について示したが、雌ロータピッチ円の外側のかみ合い線についても同様の取り扱いにより、かみ合い線の短い歯形曲線を形成することができる。
【0060】
【発明の効果】
本発明によれば、前進面の歯形曲線の主要な部分について、歯形曲線に沿う歯形曲線の曲率半径を滑らかに連続する曲線とすることができ、かみ合い線も滑らかに連続する曲線となり、かつ、かみ合い線の長さの短いスクリューロータを実現することができる。
【0061】
従って、スクリュー流体機械のロータ間のガスの漏洩を少なくすることができ、高性能なスクリュー流体機械を実現できる。
【図面の簡単な説明】
【図1】本発明の第1の実施例であるスクリューロータの前進面側歯形曲線を示す図。
【図2】図1のかみ合い線をz−y座標で示した図。
【図3】雌ロータの歯形曲線に沿う歯形曲線を示す図。
【図4】本発明の第2の実施例である軸方向から見た歯形曲線及びかみ合い線を示す図。
【図5】本発明の第2の実施例である軸方向から見たかみ合い線を示す図。
【図6】本発明の第2の実施例である雌ロータの歯形曲線に沿う歯形曲線を示す図。
【図7】本発明の第3の実施例を示すかみ合い線を示す図。
【図8】本発明の第3の実施例を示すかみ合い線を示す図。
【図9】本発明の第3の実施例である雌ロータの歯形曲線を示す図。
【符号の説明】
m,Of…雄,雌ロータの回転中心、1,2…雄,雌ロータのピッチ円、3,4…雄,雌ロータの外径、5,6…雄,雌ロータの谷底径、9,12…軸方向から見たかみ合い線、13,14…長手方向から見たかみ合い線、7,10…雄ロータ歯形曲線、8,11…雌ロータ歯形曲線、T1 …雌ロータ歯底点、P…ピッチ点。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a screw rotor used in screw fluid machines such as an oil-free screw compressor, an oil-cooled screw compressor, an oil-free screw expander, and an oil-cooled screw expander, and in particular, a meshing line between both rotors. The present invention relates to a screw rotor having a tooth profile curve formed by shortening the length.
[0002]
[Prior art]
A conventional tooth profile curve of a screw rotor composed of a male rotor and a female rotor that rotate while meshing around two parallel axes will be described with reference to Japanese Patent Laid-Open No. 57-176303. The tooth profile curve of the screw rotor is defined in the cross section perpendicular to the axis of the rotor, and the tooth profile curves of the male and female rotors in the above publication are roughly divided into six flank, and the advance surface of the female rotor (the rotation of the female rotor from the bottom of the female rotor) A parabola is used for the first flank of the tooth profile curve in the direction), and a circular arc is used for the second flank, the center of which is opposite to the focal point of the parabola with respect to the tooth profile curve. The first and second flank of the advancing surface of the male rotor meshing with these are curves created by the first and second flank of the female rotor. Similarly, the other flank is a curved line created by a circular arc and a circular arc.
[0003]
That is, as shown in the above publication, the conventional tooth profile curve is a known curve, mainly a quadratic curve (including a straight line such as an arc, a parabola, a hyperbola, etc.) applied to a flank on one rotor and the other rotor meshing with it. Frank is a curve created by the above curve. The curve to be applied is connected smoothly, and therefore the tooth profile curve of the male and female rotors is formed to be a smoothly connected curve.
[0004]
[Problems to be solved by the invention]
However, even in the tooth profile curve formed in this way, the radius of curvature along the tooth profile curve is often discontinuous at the connection point of the fitted curve. Looking at the tooth profile curve of JP-A-57-176303, when the value of the radius of curvature along the parabola of the first flank is positive, the radius of curvature at the second flank is negative and the absolute value of the value Is the radius of the arc forming the second flank. That is, the radius of curvature is discontinuous at the connection point between the first and second flank.
[0005]
When the radius of curvature of the tooth profile curve does not change smoothly along the tooth profile curve and becomes discontinuous in this way, the engagement line between the rotors bends or meanders, and a short engagement battle cannot be realized.
[0006]
As described above, in the tooth profile formation of the conventional screw rotor, since the tooth profile curve is first determined, the meshing line between the rotors is bent or meandered, and further, the discontinuity of the curvature radius of the tooth profile curve along the tooth profile curve occurs. .
[0007]
Considering the performance of the screw fluid machine, the length of the mesh line is the first problem rather than the shape of the tooth profile curve. The leakage of working gas from the gap between the male and female rotors is the length of the mesh line. Since it is approximately proportional, the machine performance depends on the length of this mating line.
[0008]
Therefore, the conventional method for forming the tooth profile curve of the screw rotor is not an answer to the essential requirement.
[0009]
In view of the above points, the problem of the present invention is that the meshing line between the rotors is not bent or meandering, the radius of curvature of the tooth profile curve along the tooth profile curve is continuously changed, and a short mesh line length is obtained. It is to obtain a screw rotor having a tooth profile curve that has a mathematical basis that it can be realized. For this purpose, the meshing line between the two rotors is handled directly, the mechanical requirements are satisfied, the boundary conditions necessary for the meshing line are satisfied, and the meshing line is meshed according to a mathematical basis. A line is defined, and this meshing line is twisted around the male rotor shaft and the female rotor shaft with the lead of each rotor to form a male rotor tooth surface and a female rotor tooth surface, and both tooth surfaces are planes perpendicular to both axes ( In the present invention, this is defined as an xy plane) and the tooth profile curves of both rotors are determined.
[0010]
[Means for Solving the Problems]
In a screw rotor composed of a male rotor and a female rotor, which are rotated around two parallel axes and have twisted teeth, it is the most radiused with respect to the main part of the tooth profile curve which is the contour on the cross section perpendicular to the axis of the female rotor. The radius of curvature of the tooth profile curve from the bottom point of the tooth toward the rotational direction during operation gradually increases as it moves away from the root point, and finally reaches a maximum value of the radius of curvature and then begins to decrease, toward the pitch circle. In addition, the length along the tooth profile curve from the root point to the maximum radius of curvature is longer than the length along the tooth profile curve from the maximum radius of curvature to the pitch radius. Settled.
[0011]
That is, when the screw rotor is formed as described above, the radius of curvature of the tooth profile curve along the tooth profile curve becomes a smoothly continuous curve, the meshing line also becomes a smoothly continuous curve, and the length of the meshing line is shortened. Can do.
[0012]
Accordingly, gas leakage between the rotors of the screw fluid machine can be reduced, and a high-performance screw fluid machine can be realized.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An example in which the present invention is applied to a tooth profile curve on the advancing surface side of a screw rotor will be described. A first embodiment of the present invention is shown in FIGS.
[0014]
FIG. 1 is a view of the tooth profile curves and meshing lines of stationary male and female rotors as seen from the axial direction. O m The center of rotation of the male rotor, O f is the rotation center of the female rotor, each rotor shall be rotated in the direction shown. 1 a pitch circle of the male rotor, 2 denotes the pitch circle of the female rotor, male, P when the contact point is P of the female pitch circle is on the straight line connecting the O m, O f, pitch point this point Call it. 3 and 4 are the outer diameters of the male and female rotors, respectively, and 5 and 6 are the valley diameters of the male and female rotors, respectively. The figure shows the case where each rotor has an addendum and a dedendam. Each dimension and coordinate value are displayed in a dimensionless manner with the radius of the pitch circle of the male rotor as a unit. That is, the male pitch circle radius is 1, the female pitch circle radius is ε, the male rotor addendum is ρ 1 , and the dedendam is ρ 2 . In this embodiment, the male rotor is twisted right and the female rotor is twisted left.
[0015]
The pitch point P as an origin, take x-axis O f toward the direction from P, it takes a y-axis in a direction perpendicular thereto. The z-axis is taken in the direction perpendicular to the plane of the paper, and is the right-handed coordinate system, which represents the meshing line. Further, the coordinates representing the male rotor with O m as the center are (x m , y m , z m ) as shown in the figure, and are the coordinates of the right-handed system. The coordinates representing the female rotor with O f as the center are (x f , y f , z f ) as shown in the figure, and are the coordinates of the right-handed system.
[0016]
[Expression 1]
Figure 0003714089
[0017]
[Expression 2]
Figure 0003714089
[0018]
[Equation 3]
Figure 0003714089
[0019]
[Expression 4]
Figure 0003714089
[0020]
[Equation 5]
Figure 0003714089
[0021]
[Formula 6]
Figure 0003714089
[0022]
[Expression 7]
Figure 0003714089
[0023]
[Equation 8]
Figure 0003714089
[0024]
[Equation 9]
Figure 0003714089
[0025]
[Expression 10]
Figure 0003714089
[0026]
[Expression 11]
Figure 0003714089
[0027]
[Expression 12]
Figure 0003714089
[0028]
[Formula 13]
Figure 0003714089
[0029]
[Expression 14]
Figure 0003714089
[0030]
For the male and female rotors that are meshed with each other and used at a constant rotational speed ratio, the common normal raised on the threaded surfaces of the male and female rotors on the meshing line of both rotors must pass through the pitch point P when projected onto the xy plane. There are mechanistic requirements that must be met. As shown in FIG. 1, when the meshing line projected on the xy plane is expressed by a radius ρ and a declination angle θ, it is found that the above-mentioned mechanical requirement is expressed by the equation (Equation 1). It was. Hereinafter, the derivative of A by θ is expressed as A ′ as shown in Equation (Equation 2). The equation (Equation 1) is called the equation of mechanistic requirement.
[0031]
Further, when the length of the meshing line measured along the meshing line from T 1 at θ = 0 is represented by s, s ′ is represented by the formula (Formula 3), and the formula (Formula 3) is represented by the formula (Formula 1). ), S ′ is expressed as shown in Equation (Equation 4).
[0032]
Further, the radius of curvature ρ f of the tooth profile curve of the female rotor is expressed by the following equation (Equation 5), and the derivative of the length s f of the tooth profile curve of the female rotor from T 1 is expressed by the following equation (Equation 6). expressed. By differentiating the equation (Equation 5), the derivative of the curvature radius ρ f of the tooth profile curve of the female rotor is expressed by the equation (Equation 7). Further, the derivative of the curvature radius ρ f of the tooth profile curve of the female rotor and the length s f of the tooth profile curve of the female rotor is expressed by the following equation (Equation 8).
[0033]
Next, the boundary condition of the meshing line will be considered based on the equation (Equation 1) and the equation (Equation 4). First, at T 1 point at θ = 0, ρ = ρ 1 , and if z ′ = 0, s ′ takes the minimum value ρ 1 , and ρ f = ρ 1 , ρ f ′ = −βz ″ (0 ), S f ′ = ρ 1. When θ = Δθ is small, using equation (1), ρ ′ = z ″ (0) (Δθ) 2 , and in order to shorten the meshing line, Since ρ ′ <0, z ″ (0) <0.
Figure 0003714089
[0034]
It becomes.
[0035]
Since ρ = 0 at the pitch point P, if z ′ = 0 again, s ′ takes the minimum value 0, and ρ f = 0 from the equation (Equation 5).
[0036]
That is, regarding the tooth profile curve which is the contour on the cross section perpendicular to the axis of the female rotor, the radius of curvature of the tooth profile curve from the root point having the smallest rotation radius toward the rotation direction during operation is ρ 1 at the root point, and Although it gradually increases as the distance from the bottom point increases, the radius of curvature becomes 0 when the pitch circle is reached, so that there is at least one maximum point of curvature radius between the root point and the pitch circle. It is found that the maximum point should be one than the monotonicity of the curve, and therefore the radius of curvature of the tooth profile curve of the female rotor should have a maximum between the root point and the pitch circle.
[0037]
When θ at the point P is θ 0 and θ 0 = 90 ° and z ′ satisfying the above boundary condition is selected as in the equation (Equation 9), ρ ′ and ρ are expressed by the equation (Equation 10) and the equation (Equation 11). ), But due to boundary conditions,
Figure 0003714089
[0038]
It becomes. Using these equations, the radius of curvature ρ f of the tooth profile curve of the female rotor can be calculated by the equation (Equation 5). Further, since the derivative and length s' of the length s f of the tooth profile curve of the female rotor from T 1 are obtained by the equations (Equation 6) and (Equation 4), s f and s can be calculated by performing numerical integration. .
[0039]
The broken line in FIGS. 1 to 3 is a tooth profile curve and a mesh line according to the above-mentioned Japanese Patent Laid-Open No. 57-176303, and the solid line is a tooth profile curve and a mesh line in this embodiment. In the calculation, the number of teeth of the male rotor is 5, the number of teeth of the female rotor is 6, and ε = 1.2. Further, ρ 1 = 0.478 and ρ 2 = 0.031, and β = 1.812 when β is a value obtained by dividing the circumference of the pitch circle of the male rotor by the lead of the male rotor. As a conventional example, calculation by a tooth profile curve of Japanese Patent Laid-Open No. 57-176303 was also performed, but 0.233 was obtained as a dimensionless value obtained by dividing the focal length of the parabola of the first flank by the pitch circle radius of the male rotor. Similarly, the radius of the 2-flank arc was made non-dimensional to 0.207.
[0040]
Dashed lines 7, 8 and 9 show the tooth profile curves of the male and female rotors, and the meshing lines formed by the tooth profile curves 7 and 8, respectively, projected onto the xy plane. Solid line 10,
11 and 12 are a male rotor tooth profile curve, a female rotor tooth profile curve, and a mesh line obtained by the screw rotor forming method of the present embodiment, as viewed from the axial direction.
[0041]
FIG. 2 shows the meshing line in z-y coordinates.
[0042]
From FIG. 1 and FIG. 2, it is clear that the meshing line of the present example is a smoother curve than that according to Japanese Patent Laid-Open No. 57-176303.
[0043]
FIG. 3 is a diagram showing the relationship between the tooth profile curve length s f along the tooth profile curve of the female rotor, the curvature radius ρ f of the tooth profile curve, and the length s of the meshing line, and the length s f of the tooth profile curve is The value measured in the direction from the root point T 1 of the female rotor toward the pitch circle of the female rotor and divided by the maximum value s f0 is taken as the dimensionless value on the horizontal axis. In addition, ρ f and s are divided by ρ 1 to be dimensionless.
[0044]
Broken lines 15 and 16 are ρ f / ρ 1 and s / ρ 1 calculated for the tooth profile curve according to Japanese Patent Application Laid-Open No. 57-176303, and ρ f / ρ 1 is not good when s f / s f0 is around 0.75. From this vicinity, s / ρ 1 increases rapidly. Solid lines 17 and 18 indicate ρ f / ρ 1 and s / ρ 1 calculated for this example. In this embodiment, equal to the radius of curvature [rho 1 tooth bottom point T 1, when going from the tooth bottom point T 1 to the pitch circle, gradually increases in accordance with the radius of curvature of the tooth profile curve away from the tooth bottom point, finally curvature After reaching the maximum value of the radius, the radius of curvature starts to shrink, and becomes zero when the pitch radius is reached. The radius of curvature has a maximum value of about 0.35 when s f / s f0 is about 0.60. In this embodiment, even if the value of β is changed, the relationship between ρ f / ρ 1 and s f / s f0 is the same as that shown in FIG.
[0045]
[Table 1]
Figure 0003714089
[0046]
A second embodiment of the present invention is shown in FIGS. The meshing line of the present embodiment is a variational method in which the length s of the meshing line shown in the formula (Equation 12) is a functional, the mechanical requirement formula shown in the formula (Equation 1) is a constraint condition. Is used to find the shortest mating line. Equations (13) and (14) show Euler's equations in the variational method. Here, λ is an undetermined function. The independent variable is θ, and the unknown functions are ρ, z, s, and λ. Incidentally, c 1 of equation (14) is an integration constant. As the boundary conditions, ρ = ρ 1 , z = 0, s = 0 at θ = 0 °, and ρ = 0, s = s 0 , z = z 0 at θ = θ 0 = 90 °.
[0047]
The values of ρ 1 , ε, and β used for the calculation are the same as those used in the first embodiment.
[0048]
FIG. 4 is a tooth profile curve and meshing line as seen from the axial direction. In the formula (Equation 14), the case of c 1 = 0 is a solid line, the case of c 1 = 0.2 is a one-dot chain line, and c 1 = −0. The case of .2 is indicated by a two-dot chain line. 20, 23 and 26 are tooth profile curves of the male rotor, 21, 24 and 27 are tooth profile curves of the female rotor, and 22, 25 and 28 are engagement lines viewed in the axial direction, respectively. Reference numerals 29, 30 and 31 in FIG. 5 are engagement lines viewed from the longitudinal direction. 4, the point at which tooth profile of the male rotor intersects the pitch circle of the male rotor and Q, the line segment connecting the Q and O m is an X m-axis and the angle formed with phi 0, when c 1 becomes small, φ 0 increases and z 0 decreases.
[0049]
FIG. 6 shows the relationship between ρ f / ρ 1 and s / ρ 1 and s f / s f0 in the same manner as in FIG. 3, and the case where c 1 = 0 is indicated by a solid line, and c 1 = The case of 0.2 is indicated by a one-dot chain line, and the case of c 1 = −0.2 is indicated by a two-dot chain line. When solid lines 32 and 33 are c 1 = 0, one-dot chain lines 34 and 35 are c 1 = 0.2, two-dot chain lines 36 and 37 are calculated for c 1 = −0.2, ρ f / ρ 1 And s / ρ 1 .
[0050]
In this embodiment, the radius of curvature at the root point T 1 is equal to ρ 1 when c 1 = 0, smaller than ρ 1 when c 1 = 0.2, and when c 1 = −0.2. Is greater than ρ 1 . However, when the tooth profile of the female rotor towards the pitch circle of the female rotor from the tooth bottom point T 1, gradually increases as the radius of curvature of the tooth profile curve away from the tooth bottom point, is finally after having reached a maximum value of the radius of curvature The radius of curvature turns to a decreasing tendency, and the tendency to become zero when reaching the pitch radius is the same regardless of the value of c 1 . Even if c 1 changes, the curvature radius takes a maximum value when s f / s f0 is about 0.65, and the maximum value is larger as c 1 is smaller. In addition, the relationship between s / ρ 1 and s f / s f0 does not vary so much even if c 1 changes.
[0051]
Table 1 shows numerically the relationship between the value of c 1 and s 0 / ρ 1 , z 0 / ρ 1 and φ 0 , and z 0 / ρ 1 and φ 0 change greatly when c 1 changes. , S 0 / ρ 1 is almost constant, which is the shortest length of the mesh line.
[0052]
[Table 2]
Figure 0003714089
[0053]
A third embodiment of the present invention is shown in FIGS. The mesh line of this embodiment is the mesh line of c 1 = 0 in the second embodiment of the mesh lines T 1 -R 1 and T 1 -R 2 forming the main part of the tooth profile curve of the male and female rotors. Used for 38 and 40, straight lines are fitted to 39 and 41 of R 1 -P and R 2 -R 3 . An example of calculation for the case where the angle between the straight line R 1 -P and the x-axis is θ 2 and θ 2 = 70 ° is shown.
[0054]
The values of ρ 1 , ε, and β used for the calculation are the same as those used in the first embodiment.
[0055]
Of the tooth profile curves 42 and 43 of the male rotor formed by these meshing lines, 42 is the same as 20 in FIG. 4, but 43 is an involute curve. Of the tooth profile curves 44 and 45 of the female rotor, 44 is the same as 21 in FIG. 4, but 45 is an involute curve. Therefore, when the male and female rotors are engaged, the engagement in the vicinity of the pitch circle is the engagement between the involute curves, and is the same as the engagement in the helical gear. This is a great advantage when torque transmission is performed on the rotor tooth surface, such as an oil-cooled screw compressor, and particularly when large torque is not transmitted, such as when a male rotor is driven by a female rotor. It is effective when it is not necessary.
[0056]
FIG. 9 shows the relationship between ρ f / ρ 1 and s / ρ 1 and s f / s f0 as in FIGS. 3 and 6. Also in this figure, 46 is the same as 32 in FIG. 6, but 47 is a negative value of ρ f / ρ 1 of the involute curve. However, Inboryu from where ρ f / ρ 1 is reduced to about 0.8 after taking the maximum value - for that is the ρ f / ρ 1 of the door curve, the increase in s / ρ 1 of 49 Not so big.
[0057]
Table 2 shows the relationship between the value of θ 2 and s 0 / ρ 1 , z 0 / ρ 1 and φ 0 by numerical values. When θ 2 = 90 °, there is no involute part. This is the same as the case of c 1 = 0. Even in the case of θ 2 = 70 °, the values of s 0 / ρ 1 , z 0 / ρ 1 and φ 0 are almost the same as those in the case of θ 2 = 90 °, and the shortest mesh line length is substantially maintained. Yes.
[0058]
According to the present embodiment, the value of θ 2 can be selected as small as about 70 °, and the length of the meshing line can be kept at a substantially minimum value, so that a tooth profile curve effective for torque transmission can be obtained.
[0059]
In the embodiment of the present invention, the meshing line inside the female rotor pitch circle is shown, but the meshing line outside the female rotor pitch circle can be formed in the same manner with the tooth profile curve having a short meshing line. .
[0060]
【The invention's effect】
According to the present invention, for the main part of the tooth profile curve of the advancing surface, the radius of curvature of the tooth profile curve along the tooth profile curve can be a smoothly continuous curve, the meshing line also becomes a smoothly continuous curve, and A screw rotor with a short length of meshing line can be realized.
[0061]
Accordingly, gas leakage between the rotors of the screw fluid machine can be reduced, and a high-performance screw fluid machine can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing a tooth profile curve on a forward surface side of a screw rotor according to a first embodiment of the present invention.
FIG. 2 is a diagram showing meshing lines in FIG. 1 in zy coordinates.
FIG. 3 is a diagram showing a tooth profile curve along a tooth profile curve of a female rotor.
FIG. 4 is a diagram showing a tooth profile curve and meshing line as viewed from the axial direction according to a second embodiment of the present invention.
FIG. 5 is a diagram showing an engagement line viewed from an axial direction according to a second embodiment of the present invention.
FIG. 6 is a diagram showing a tooth profile curve along a tooth profile curve of a female rotor according to a second embodiment of the present invention.
FIG. 7 is a diagram showing meshing lines showing a third embodiment of the present invention.
FIG. 8 is a diagram showing meshing lines showing a third embodiment of the present invention.
FIG. 9 is a diagram showing a tooth profile curve of a female rotor according to a third embodiment of the present invention.
[Explanation of symbols]
O m, O f ... male, the female rotor center of rotation, 1,2 ... male pitch circle of the female rotor, 3,4 ... male, the outer diameter of the female rotor, 5,6 ... male root diameter of the female rotor, 9, 12 ... engagement line viewed from the axial direction, 13, 14 ... engagement line viewed from the longitudinal direction, 7, 10 ... male rotor tooth profile curve, 8, 11 ... female rotor tooth profile curve, T 1 ... female rotor tooth bottom point , P: Pitch point.

Claims (2)

ガスを圧縮または膨張させるスクリュー流体機械に用いられ、平行な二軸の回りを互いにかみ合って回転し、ねじれた歯を有する一対の雄ロータ及び雌ロータよりなり、前記雄ロータの歯の大部分が雄ピッチ円の外側に形成され、前記雌ロータの歯の大部分が雌ピッチ円の内側に形成されたスクリューロータにおいて、前記雌ロータの軸直角断面上における輪郭である歯形曲線の主要な部分に関し、最も半径の小さい歯底点から運転時の回転方向に向かう歯形曲線の曲率半径が、歯底点から離れるに従って次第に大きくなり、遂には曲率半径の最大値に至った後に減少傾向に転じ、ピッチ円に向かうとともに、前記歯底点から前記曲率半径最大点までの歯形曲線に沿った長さが、前記曲率半径最大点から前記ピッチ半径までの歯形曲線に沿った長さよりも長いことを特徴とするスクリュー流体機械。It is used in a screw fluid machine that compresses or expands gas, and is composed of a pair of male and female rotors that rotate in mesh with each other around two parallel axes, and most of the teeth of the male rotor In the screw rotor formed outside the male pitch circle, and most of the teeth of the female rotor are formed inside the female pitch circle, the main part of the tooth profile curve which is the contour on the cross section perpendicular to the axis of the female rotor The radius of curvature of the tooth profile curve from the root point with the smallest radius in the rotational direction during operation gradually increases as the distance from the root point increases, and finally decreases after reaching the maximum value of the radius of curvature. The length along the tooth profile curve from the root point to the maximum curvature radius point is along the tooth profile curve from the maximum curvature radius point to the pitch radius. Screw fluid machine according to claim longer than the length. 請求項1記載のスクリュー流体機械において、前記雄,雌ロータのかみ合い線に、機構学的必要条件の式を満足し、境界条件を満足する連続した曲線を当てはめ、このかみ合い線を各ロータ軸の回りにそれぞれのリードでねじって各ロータのねじ面を形成したことを特徴とするスクリュー流体機械。2. The screw fluid machine according to claim 1, wherein a continuous curve satisfying an equation of mechanical requirements and satisfying a boundary condition is applied to the meshing line of the male and female rotors, and the meshing line is applied to each rotor shaft. A screw fluid machine characterized in that a screw face of each rotor is formed by twisting around each lead.
JP2000041390A 2000-02-15 2000-02-15 Screw fluid machinery Expired - Fee Related JP3714089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000041390A JP3714089B2 (en) 2000-02-15 2000-02-15 Screw fluid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000041390A JP3714089B2 (en) 2000-02-15 2000-02-15 Screw fluid machinery

Publications (2)

Publication Number Publication Date
JP2001227485A JP2001227485A (en) 2001-08-24
JP3714089B2 true JP3714089B2 (en) 2005-11-09

Family

ID=18564640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000041390A Expired - Fee Related JP3714089B2 (en) 2000-02-15 2000-02-15 Screw fluid machinery

Country Status (1)

Country Link
JP (1) JP3714089B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114151335A (en) * 2021-11-19 2022-03-08 上海齐耀膨胀机有限公司 Rotor end face tooth profile of high-temperature-resistant double-screw machine

Also Published As

Publication number Publication date
JP2001227485A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
JP3593365B2 (en) Variable helix angle gear
JP2904719B2 (en) Screw rotor, method for determining cross-sectional shape of tooth profile perpendicular to axis, and screw machine
US8360762B2 (en) Oil pump rotor
JP3483570B2 (en) Negative overtaking toothed gears with flexible meshing
JP2011144916A (en) Wave gear device having three-dimensionally contacting positive shifted tooth profile
US4666384A (en) Roots type blower with reduced gaps between the rotors
WO2013140217A1 (en) Gear mechanism and manufacturing method of gear mechanism
JP2000065163A (en) Gear profile calculating device and method used for shaft-driven device
CN116480581A (en) Screw assembly and vacuum pump
JP6211591B2 (en) Screw expander, screw machine design method, screw machine manufacturing method, screw machine and generator
JP3714089B2 (en) Screw fluid machinery
JP3132777B2 (en) Flexible mesh gear
JPH034757B2 (en)
JP2019108958A (en) Structure of spiral tooth profile gear
JP2005163566A (en) Improvement of screw rotor tooth form
JP3823573B2 (en) Screw fluid machinery
CN108843739B (en) Multi-head double-lead line contact offset worm transmission pair tooth form angle optimization method
JP6080300B2 (en) Manufacturing method of gear pump and inner rotor
JP4803442B2 (en) Oil pump rotor
CN110802280A (en) Involute spiral bevel gear tooth surface design method
CN116592114A (en) Parabolic tooth trace gear mechanism with end face arc and involute combined tooth profile
CN109812544B (en) Arc tooth surface gear transmission pair and design method
CN112182795B (en) Different tooth form comparison modeling method for harmonic speed reducer
CN107829931A (en) A kind of Twin-screw vacuum pump molded lines of rotor
WO2013057761A1 (en) Screw pump and rotor for screw pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees