JP3712548B2 - Electroless copper plating apparatus and electroless copper plating method - Google Patents

Electroless copper plating apparatus and electroless copper plating method Download PDF

Info

Publication number
JP3712548B2
JP3712548B2 JP32846098A JP32846098A JP3712548B2 JP 3712548 B2 JP3712548 B2 JP 3712548B2 JP 32846098 A JP32846098 A JP 32846098A JP 32846098 A JP32846098 A JP 32846098A JP 3712548 B2 JP3712548 B2 JP 3712548B2
Authority
JP
Japan
Prior art keywords
plating
plating solution
electroless copper
tank
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32846098A
Other languages
Japanese (ja)
Other versions
JP2000144438A (en
Inventor
敏 千代
直明 小榑
文夫 栗山
徹真 池上
修一 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP32846098A priority Critical patent/JP3712548B2/en
Publication of JP2000144438A publication Critical patent/JP2000144438A/en
Application granted granted Critical
Publication of JP3712548B2 publication Critical patent/JP3712548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無電解銅めっき装置及び無電解銅めっき方法に係り、特に半導体基板に形成された配線用の溝に銅を充填する等の用途の無電解銅めっき装置及び無電解銅めっき方法に関する。
【0002】
【従来の技術】
従来、半導体基板上に配線回路を形成するためには、基板面上にスパッタリング等を用いて導体の成膜を行った後、さらにレジスト等のパターンマスクを用いたケミカルドライエッチングにより膜の不要部分を除去していた。
【0003】
配線回路を形成するための金属材料としては、一般にアルミニウム(Al)又はアルミニウム合金が広く用いられていた。しかしながら、半導体の集積度が高くなるにつれて配線幅が細くなり、電流密度が増加して熱応力や温度上昇を生じ、ストレスマイグレーションやエレクトロマイグレーションによって、ついには断線或いは短絡等のおそれが生じる。この傾向は、アルミ配線が薄膜化するに従いさらに顕著となる傾向にある。
【0004】
そこで、通電による抵抗損失を避けるため、より導電性の高い銅などの材料を配線形成に採用することが要求されている。しかしながら、銅又はその合金はドライエッチングが難しく、基板全面に成膜してからパターンを形成する上記の方法の採用は困難である。そこで、予め所定パターンの配線用の溝を形成しておき、その中に銅又はその合金を充填する工程が考えられる。これによれば、膜をエッチングにより除去する工程は不要で、表面段差を取り除くための研磨工程を行うことで銅配線層を形成できる。また、多層配線回路の上下層を連絡するプラグと呼ばれる部分も同時に形成することができる利点がある。
【0005】
しかしながら、このような配線溝あるいはプラグの形状は、配線幅が微細化するに伴いかなりの高アスペクト比(深さと直径又は幅の比)となり、スパッタリング成膜では均一な金属の充填が困難であった。また、種々の材料の成膜手段として化学的気相成長(CVD)法が用いられるが、銅又はその合金では、適当な気体原料を準備することが困難であり、また、有機原料を採用する場合には、これから堆積膜中へ炭素(C)が混入してマイグレーション性が上がるという問題点があった。そこで、基板をめっき液中に浸漬させて無電解銅めっきを行なう方法が提案されている。係るめっきによる成膜では、高アスペクト比の配線溝を均一に銅で充填することが可能となる。
【0006】
ここに、無電解銅めっきに使用されるめっき液には、ホルマリン(HCHO)やグリオキシル酸(CHOCOOH)などの還元剤が含まれている。また無電解銅めっきでめっき析出速度と皮膜の品質(伸び)を上げる場合のめっき液の適温は、50〜80℃前後であり、このため、めっき液は、一般に加熱装置を備えた恒温槽(めっき液循環槽)内に一定の温度(60℃前後)で貯蔵されていて、めっき処理を行うめっき処理槽との間を循環させるように構成されていた。
【0007】
【発明が解決しようとする課題】
無電解銅めっきに使用されるめっき液には還元剤が含まれているため、この還元剤の副反応であるカニッツァーロ反応、すなわちホルマリンやグリオキシル酸にあっては下記の反応が生じる。
2HCHO+OH→CHOH+HCOO
2CHOCOOH+2OH→C 2−+HOCHCOOH+H
【0008】
そして、この反応を完全に抑制することが不可能であるため、この反応によって生成された副生成物がめっき液の純度や溶存酸素量を低下させ、めっき成長速度に影響を与えてしまう。このため、無電解銅めっきは、管理しにくいめっき方法であるのが現状であった。なお、カニッツァーロ反応に起因するめっき液の劣化を防止するため、めっき液にメタノールを添加することが行われているが、この方法は、カニッツァーロ反応そのものを抑制するものではなく、その効果には一定の限界があった。
【0009】
本発明は上記事情に鑑みて為されたもので、カニッツァーロ反応そのものを極力抑制して、めっき液の寿命を延ばすとともに、めっき液の管理を容易とした無電解銅めっき装置及び無電解銅めっき方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の無電解銅めっき装置は、基板を保持し該基板に無電解銅めっきを施すめっき処理槽と、内部にめっき液を貯め前記めっき処理槽との間でめっき液を循環させるめっき液循環槽と、加熱側に前記めっき処理槽に入るめっき液が、冷却側に前記めっき液循環槽に戻るめっき液がそれぞれ流れるようにした対向式熱交換器を備え、前記めっき処理槽内のめっき液の温度が前記めっき液循環槽内のめっき液の温度よりも高くなるようにしたことを特徴とする。
【0011】
上記本発明によれば、上記カニッツァーロ反応は、熱活性化過程で促進されていると考えられ、めっき液の温度を低下させることで、この反応を抑制することができる。そこで、めっき処理槽内のめっき液の温度を基板のめっき浴の適温に、めっき液循環槽内のめっき液の温度を基板のめっき浴の適温より低い温度にすることで、通常、殆どの時間めっき液が保持されているめっき液循環槽内でのカニッツァーロ反応そのものを抑制することができる。しかも、めっき液の持つ熱量をめっき液の加熱及び冷却に有効に利用して、エネルギの消費を最小限に抑えることができる。
【0015】
また、前記対向式熱交換器とめっき処理槽とを結ぶ経路内に加熱装置が、対向式熱交換器とめっき液循環槽とを結び経路内に冷却装置がそれぞれ設けられていることを特徴とする。これにより、対向式熱交換器による熱量の不足分を加熱装置及び冷却装置で補うことができる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態の無電解銅めっき装置について図面を参照して説明する。この無電解銅めっき装置は、半導体基板の表面の溝に銅めっきを施して、銅層からなる配線層を形成するのに使用され、この工程を図1を参照して説明する。
【0017】
即ち、半導体基板Wには、図1(a)に示すように、半導体素子が形成された半導体基板1上の導電層1aの上にSiOからなる絶縁膜2が堆積され、リソグラフィ・エッチング技術によりコンタクトホール3と配線用の溝4が形成され、その上にTiN等からなるバリア層5が形成されている。
【0018】
そして、図1(b)に示すように、前記半導体基板Wの表面に銅めっきを施すことで、半導体基板1のコンタクトホール3及び溝4内に銅を充填させるとともに、絶縁膜2上に銅層6を堆積させる。その後、化学的機械的研磨(CMP)により、絶縁膜2上の銅層6を除去して、コンタクトホール3および配線用の溝4に充填させた銅層6の表面と絶縁膜2の表面とをほぼ同一平面に研磨する。これにより、図1(c)に示すように銅層6からなる配線が形成される。
【0019】
図2は、本発明の第1の実施の形態の無電解銅めっき装置の概要を示すもので、同図に示すように、このめっき装置には、半導体基板Wを保持し、めっき液10を内部に導入して該半導体基板Wに無電解銅めっきを施すめっき処理槽11と、めっき液10を貯め前記めっき処理槽11との間でめっき液10を循環させるめっき液循環槽12とが備えられている。前記めっき液10には、還元剤として、例えば0.1mol/リットルのホルマリンが含まれている。
【0020】
前記めっき液循環槽12とめっき処理槽11とは、循環経路を構成する往路13と復路14で結ばれ、この往路13には循環用ポンプ15と加熱装置16が、復路14には冷却装置17がそれぞれ設けられている。更に、前記めっき液循環槽12の内部には、ここに貯蔵しためっき液10の温度を一定にするための熱交換器18が配置されている。
【0021】
これにより、めっき液10は、循環用ポンプ15の駆動に伴って、めっき処理槽11内に順次送られ、基板のめっき浴終了後にめっき液循環槽12内に戻される。この時、めっき処理槽11内のめっき液10の温度Tが基板のめっき浴の適温である、例えば60℃前後となるように加熱装置16で加熱される。一方、めっき液循環槽12内に貯められためっき液10は、その温度Tが、前記基板のめっき浴の適温より低温の、例えば30〜50℃程度となるように冷却装置17で冷却されてめっき液循環槽12に戻され、熱交換器18で一定の温度(例えば30〜50℃)に保たれるように構成されている。
【0022】
例えばホルマリン等の還元剤の副反応であるカニッツァーロ反応は、熱活性化過程で促進されており、めっき液10の温度を10℃程度低下させただけで、カニッツァーロ反応の反応速度が半分以下になると考えられる。そのため、めっき液循環槽12内でのめっき液10の温度Tを基板のめっき浴の適温である60℃前後から、これより低温の30〜50℃程度にすることで、めっき液循環槽12内で生じるカニッツァーロ反応そのものを抑制することができる。しかも、めっき液10は、めっき処理槽11内に半導体基板Wを出入れしている間中、めっき液循環槽12内に全て戻っていて、殆どの時間めっき液循環槽12内に存在しており、必要な時のみ基板のめっき浴の適温まで加熱されるので、常時めっきの適温の60℃前後に保持されている場合と比較して、カニッツァーロ反応を大幅に抑制することができる。
【0023】
この実施の形態の無電解銅めっき装置にあっては、めっき液循環槽12内に、例えば30〜50℃に保持しためっき液10を貯めておき、めっき処理槽11内に半導体基板Wを保持した後、めっき処理槽11内にめっき液10を循環させて半導体基板Wにめっき処理を施す。この時、めっきは、その適温の60℃前後で行われ、めっきを行う時以外は、めっき液10は、例えば30〜50℃に保たれて、カニッツァーロ反応が抑制される。
【0024】
図3は、本発明の第2の実施の形態の無電解銅めっき装置を示すもので、このめっき装置は、対向式熱交換器20を備え、この対向式熱交換器20の加熱側21を前記往路13内に配置して該加熱側21に前記めっき処理槽11に入るめっき液10が流れ、冷却側22を前記復路14内に配置して該冷却側22に前記めっき液循環槽12に戻るめっき液10がそれぞれ流れるようにするとともに、対向式熱交換器20とめっき処理槽11とを結ぶ往路13内に加熱装置23を、対向式熱交換器20とめっき液循環槽12とを結び復路14内に冷却装置24をそれぞれ設けたものである。
【0025】
この実施の形態の無電解銅めっき装置によれば、めっき液10の持つ熱量を対向式熱交換器20を介してめっき液10の加熱及び冷却に有効に利用し、しかも、対向式熱交換器20による熱量の不足分を加熱装置23及び冷却装置24で補うことで、エネルギ消費を最小限に抑えることができる。
【0026】
【発明の効果】
以上説明したように、本発明によれば、めっき処理槽内のめっき液の温度を基板のめっき浴の適温に、めっき液循環槽内のめっき液の温度を基板のめっき浴の適温より低い温度にすることで、通常、殆どの時間めっき液が保持されているめっき液循環槽内でのカニッツァーロ反応そのものを抑制することができる。これにより、めっき液の寿命を延ばすとともに、このめっき液の組成維持等の管理を容易に行うことができる。
【図面の簡単な説明】
【図1】本発明の無電解銅めっき装置によってめっきを行う工程の一例を示す断面図である。
【図2】本発明の第1の実施の形態の無電解銅めっき装置の概要を示す図である。
【図3】本発明の第2の実施の形態の無電解銅めっき装置の概要を示す図である。
【符号の説明】
10 めっき液
11 めっき処理槽
12 めっき液循環槽
13 往路
14 復路
16,23 加熱装置
17,24 冷却装置
20 対向式熱交換器
W 半導体基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electroless copper plating apparatus and an electroless copper plating method , and more particularly, to an electroless copper plating apparatus and an electroless copper plating method for uses such as filling a wiring groove formed in a semiconductor substrate with copper. .
[0002]
[Prior art]
Conventionally, in order to form a wiring circuit on a semiconductor substrate, after forming a conductor film on the substrate surface by sputtering or the like, an unnecessary portion of the film is further formed by chemical dry etching using a pattern mask such as a resist. Had been removed.
[0003]
Generally, aluminum (Al) or an aluminum alloy has been widely used as a metal material for forming a wiring circuit. However, as the degree of integration of semiconductors increases, the wiring width becomes narrower, the current density increases, causing thermal stress and temperature rise, and stress migration and electromigration eventually cause disconnection or short circuit. This tendency tends to become more prominent as the aluminum wiring becomes thinner.
[0004]
Therefore, in order to avoid resistance loss due to energization, it is required to adopt a material such as copper having higher conductivity for wiring formation. However, copper or an alloy thereof is difficult to dry-etch, and it is difficult to adopt the above method of forming a pattern after forming a film on the entire surface of the substrate. Therefore, a process of forming a wiring groove having a predetermined pattern in advance and filling copper or an alloy thereof therein may be considered. According to this, the process of removing the film by etching is unnecessary, and the copper wiring layer can be formed by performing the polishing process for removing the surface step. Further, there is an advantage that a portion called a plug that connects the upper and lower layers of the multilayer wiring circuit can be formed at the same time.
[0005]
However, the shape of such a wiring groove or plug has a considerably high aspect ratio (ratio of depth to diameter or width) as the wiring width becomes finer, and uniform metal filling is difficult in sputtering film formation. It was. Also, chemical vapor deposition (CVD) is used as a film forming means for various materials. However, it is difficult to prepare an appropriate gas source for copper or an alloy thereof, and an organic source is used. In this case, there is a problem that carbon (C) is mixed into the deposited film and migration is improved. Therefore, a method for performing electroless copper plating by immersing the substrate in a plating solution has been proposed. In film formation by such plating, high aspect ratio wiring grooves can be uniformly filled with copper.
[0006]
Here, the plating solution used for electroless copper plating contains a reducing agent such as formalin (HCHO) and glyoxylic acid (CHOCOOH). In addition, when the plating deposition rate and the quality (elongation) of the coating are increased by electroless copper plating, the appropriate temperature of the plating solution is about 50 to 80 ° C. Therefore, the plating solution is generally a thermostatic bath equipped with a heating device ( In the plating solution circulation tank), it is stored at a constant temperature (around 60 ° C.), and is configured to circulate between the plating treatment tank for performing the plating treatment.
[0007]
[Problems to be solved by the invention]
Since the plating solution used for electroless copper plating contains a reducing agent, the following reaction occurs in the Cannizzaro reaction which is a side reaction of the reducing agent, that is, formalin or glyoxylic acid.
2HCHO + OH → CH 3 OH + HCOO
2CHOCOOH + 2OH → C 2 O 4 2− + HOCH 2 COOH + H 2 O
[0008]
And since it is impossible to suppress this reaction completely, the by-product produced | generated by this reaction will reduce the purity of a plating solution and the amount of dissolved oxygen, and will affect the plating growth rate. For this reason, electroless copper plating has been a current plating method that is difficult to manage. In order to prevent the deterioration of the plating solution due to the Cannizzaro reaction, methanol is added to the plating solution, but this method does not suppress the Cannizzaro reaction itself, and its effect is constant. There was a limit.
[0009]
The present invention has been made in view of the above circumstances, and an electroless copper plating apparatus and an electroless copper plating method that can suppress the Canizzaro reaction itself as much as possible to extend the life of the plating solution and facilitate the management of the plating solution. The purpose is to provide.
[0010]
[Means for Solving the Problems]
The electroless copper plating apparatus of the present invention is a plating bath that holds a substrate and performs electroless copper plating on the substrate, and a plating solution circulation that stores a plating solution inside and circulates the plating solution between the plating bath. A plating solution in the plating treatment tank, and a plating solution in the plating treatment tank, the plating solution entering the plating treatment bath on the heating side and the plating solution returning to the plating solution circulation bath on the cooling side. The temperature is higher than the temperature of the plating solution in the plating solution circulation tank.
[0011]
According to the present invention, the Cannizzaro reaction is considered to be promoted in the thermal activation process, and this reaction can be suppressed by lowering the temperature of the plating solution. Therefore, by setting the temperature of the plating solution in the plating bath to the appropriate temperature for the plating bath of the substrate and the temperature of the plating solution in the plating solution circulation bath to a temperature lower than the appropriate temperature of the plating bath for the substrate, it is usually most of the time. The Canizzaro reaction itself in the plating solution circulation tank in which the plating solution is held can be suppressed. In addition, the amount of heat of the plating solution can be effectively used for heating and cooling of the plating solution, and energy consumption can be minimized.
[0015]
In addition, a heating device is provided in a path connecting the opposed heat exchanger and the plating treatment tank, and a cooling device is provided in the path connecting the opposed heat exchanger and the plating solution circulation tank. To do. Thereby, the shortage of the amount of heat by the opposed heat exchanger can be compensated by the heating device and the cooling device.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an electroless copper plating apparatus according to an embodiment of the present invention will be described with reference to the drawings. This electroless copper plating apparatus is used to form a wiring layer made of a copper layer by performing copper plating on a groove on the surface of a semiconductor substrate, and this process will be described with reference to FIG.
[0017]
That is, the semiconductor the substrate W, as shown in FIG. 1 (a), an insulating film 2 made of SiO 2 is deposited on a conductive layer 1a on a semiconductor substrate 1 on which semiconductor devices are formed, lithography etching technology Thus, a contact hole 3 and a wiring groove 4 are formed, and a barrier layer 5 made of TiN or the like is formed thereon.
[0018]
Then, as shown in FIG. 1B, the surface of the semiconductor substrate W is plated with copper so that the contact holes 3 and the grooves 4 of the semiconductor substrate 1 are filled with copper, and the copper is formed on the insulating film 2. Layer 6 is deposited. Thereafter, the copper layer 6 on the insulating film 2 is removed by chemical mechanical polishing (CMP), and the surface of the copper layer 6 filled in the contact hole 3 and the wiring groove 4 and the surface of the insulating film 2 Are polished to substantially the same plane. As a result, a wiring made of the copper layer 6 is formed as shown in FIG.
[0019]
FIG. 2 shows an outline of the electroless copper plating apparatus according to the first embodiment of the present invention. As shown in FIG. 2, the plating apparatus holds a semiconductor substrate W and contains a plating solution 10. A plating treatment tank 11 for introducing electroless copper plating onto the semiconductor substrate W and a plating solution circulation tank 12 for storing the plating solution 10 and circulating the plating solution 10 between the plating treatment vessel 11 are provided. It has been. The plating solution 10 contains, for example, 0.1 mol / liter formalin as a reducing agent.
[0020]
The plating solution circulation tank 12 and the plating treatment tank 11 are connected by a forward path 13 and a return path 14 that constitute a circulation path. A circulation pump 15 and a heating device 16 are provided in the forward path 13, and a cooling device 17 is provided in the return path 14. Are provided. Further, a heat exchanger 18 for keeping the temperature of the plating solution 10 stored therein is disposed inside the plating solution circulation tank 12.
[0021]
Accordingly, the plating solution 10 is sequentially sent into the plating treatment tank 11 as the circulation pump 15 is driven, and is returned to the plating solution circulation tank 12 after the plating bath of the substrate is completed. At this time, the temperature T 1 of the plating solution 10 in the plating bath 11 is appropriate temperature of the plating bath of the substrate, it is heated by the heating device 16 as for example a 60 ° C. before and after. On the other hand, the plating solution circulating tank 12 the plating solution 10 that has been accumulated in, the temperature T 2 is a temperature lower than an appropriate temperature of the plating bath of the substrate is cooled in the cooling device 17, as for example of the order of 30 to 50 ° C. Then, it is returned to the plating solution circulation tank 12 and is configured to be maintained at a constant temperature (for example, 30 to 50 ° C.) by the heat exchanger 18.
[0022]
For example, the cannizzaro reaction, which is a side reaction of a reducing agent such as formalin, is promoted in the thermal activation process. Conceivable. Therefore, plating solution temperature T 2 of the plating solution 10 in the circulation tank 12 from around 60 ° C. is appropriate temperature of the plating bath of the substrate, than this by about cold 30 to 50 ° C., the plating solution circulating tank 12 The cannizzaro reaction itself occurring inside can be suppressed. Moreover, the plating solution 10 is completely returned to the plating solution circulation tank 12 while the semiconductor substrate W is put in and out of the plating treatment tank 11, and is present in the plating solution circulation tank 12 for most of the time. In addition, since the substrate is heated to the appropriate temperature of the plating bath only when necessary, the cannizzaro reaction can be greatly suppressed as compared with the case where the temperature is always kept at about 60 ° C., which is the appropriate temperature for plating.
[0023]
In the electroless copper plating apparatus of this embodiment, the plating solution 10 held at, for example, 30 to 50 ° C. is stored in the plating solution circulation tank 12, and the semiconductor substrate W is held in the plating treatment tank 11. After that, the plating solution 10 is circulated in the plating treatment tank 11 and the semiconductor substrate W is plated. At this time, plating is performed at an appropriate temperature of about 60 ° C., and except when plating is performed, the plating solution 10 is maintained at, for example, 30 to 50 ° C., and the Cannizzaro reaction is suppressed.
[0024]
FIG. 3 shows an electroless copper plating apparatus according to a second embodiment of the present invention. This plating apparatus includes an opposed heat exchanger 20, and a heating side 21 of the opposed heat exchanger 20 is provided. The plating solution 10 entering the plating tank 11 flows into the heating side 21 and disposed in the forward path 13, and the cooling side 22 is disposed in the return path 14 to the plating solution circulation tank 12 in the cooling side 22. Each of the returning plating solutions 10 flows, and a heating device 23 is connected in the forward path 13 connecting the opposing heat exchanger 20 and the plating treatment tank 11, and the opposing heat exchanger 20 and the plating solution circulation tank 12 are connected. A cooling device 24 is provided in each return path 14.
[0025]
According to the electroless copper plating apparatus of this embodiment, the amount of heat of the plating solution 10 is effectively used for heating and cooling the plating solution 10 via the opposed heat exchanger 20, and the opposed heat exchanger is used. By supplementing the shortage of the heat quantity due to 20 with the heating device 23 and the cooling device 24, energy consumption can be minimized.
[0026]
【The invention's effect】
As described above, according to the present invention, the temperature of the plating solution in the plating bath is set to an appropriate temperature for the plating bath of the substrate, and the temperature of the plating solution in the plating solution circulation bath is set to a temperature lower than the appropriate temperature of the plating bath for the substrate. By doing so, the cannizzaro reaction itself in the plating solution circulation tank in which the plating solution is usually held for most of the time can be suppressed. Thereby, while extending the lifetime of a plating solution, management, such as a composition maintenance of this plating solution, can be performed easily.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a step of performing plating by an electroless copper plating apparatus of the present invention.
FIG. 2 is a diagram showing an outline of the electroless copper plating apparatus according to the first embodiment of the present invention.
FIG. 3 is a diagram showing an outline of an electroless copper plating apparatus according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Plating solution 11 Plating treatment tank 12 Plating solution circulation tank 13 Outward path 14 Return path 16, 23 Heating device 17, 24 Cooling device 20 Opposite heat exchanger W Semiconductor substrate

Claims (4)

基板を保持し該基板に無電解銅めっきを施すめっき処理槽と、
内部にめっき液を貯め前記めっき処理槽との間でめっき液を循環させるめっき液循環槽と、
加熱側に前記めっき処理槽に入るめっき液が、冷却側に前記めっき液循環槽に戻るめっき液がそれぞれ流れるようにした対向式熱交換器を備え、
前記めっき処理槽内のめっき液の温度が前記めっき液循環槽内のめっき液の温度よりも高くなるようにしたことを特徴とする無電解銅めっき装置。
A plating tank for holding the substrate and applying electroless copper plating to the substrate;
A plating solution circulation tank for storing a plating solution inside and circulating the plating solution with the plating treatment tank;
A plating solution that enters the plating treatment tank on the heating side is provided with an opposing heat exchanger that allows the plating solution that returns to the plating solution circulation tank to flow on the cooling side.
An electroless copper plating apparatus characterized in that the temperature of the plating solution in the plating treatment tank is higher than the temperature of the plating solution in the plating solution circulation tank.
前記対向式熱交換器とめっき処理槽とを結ぶ経路内に加熱装置が、前記対向式熱交換器とめっき液循環槽とを結ぶ経路内に冷却装置がそれぞれ設けられていることを特徴とする請求項1記載の無電解銅めっき装置。  A heating device is provided in a path connecting the opposed heat exchanger and the plating tank, and a cooling device is provided in a path connecting the opposed heat exchanger and the plating solution circulation tank. The electroless copper plating apparatus according to claim 1. 基板を保持し該基板に無電解銅めっきを施すめっき処理槽と、内部にめっき液を貯めるめっき液循環槽との間で、対向式熱交換器の加熱側に前記めっき処理槽に入るめっき液が、冷却側に前記めっき液循環槽に戻るめっき液がそれぞれ流れるようにしてめっき液を循環させ、前記めっき処理槽内のめっき液の温度が前記めっき液循環槽内のめっき液の温度よりも高くなるようにしたことを特徴とする無電解銅めっき方法。  A plating solution that enters the plating treatment tank on the heating side of the opposed heat exchanger between a plating treatment tank that holds the substrate and performs electroless copper plating on the substrate and a plating solution circulation tank that stores the plating solution therein. However, the plating solution is circulated so that the plating solution returning to the plating solution circulation tank flows on the cooling side, and the temperature of the plating solution in the plating treatment tank is higher than the temperature of the plating solution in the plating solution circulation tank. An electroless copper plating method characterized by being made high. 前記対向式熱交換器から前記めっき処理槽内に流入するめっき液を加熱装置で加熱し、前記対向式熱交換器から前記めっき液循環槽内に戻るめっき液を冷却装置で冷却することを特徴とする請求項3記載の無電解銅めっき方法。  The plating solution flowing into the plating tank from the opposed heat exchanger is heated by a heating device, and the plating solution returning from the opposed heat exchanger to the plating solution circulation tank is cooled by a cooling device. The electroless copper plating method according to claim 3.
JP32846098A 1998-11-18 1998-11-18 Electroless copper plating apparatus and electroless copper plating method Expired - Lifetime JP3712548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32846098A JP3712548B2 (en) 1998-11-18 1998-11-18 Electroless copper plating apparatus and electroless copper plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32846098A JP3712548B2 (en) 1998-11-18 1998-11-18 Electroless copper plating apparatus and electroless copper plating method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005213228A Division JP2005307356A (en) 2005-07-22 2005-07-22 Electroless copper-plating method

Publications (2)

Publication Number Publication Date
JP2000144438A JP2000144438A (en) 2000-05-26
JP3712548B2 true JP3712548B2 (en) 2005-11-02

Family

ID=18210523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32846098A Expired - Lifetime JP3712548B2 (en) 1998-11-18 1998-11-18 Electroless copper plating apparatus and electroless copper plating method

Country Status (1)

Country Link
JP (1) JP3712548B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053972A (en) * 2000-08-04 2002-02-19 Sony Corp Electroless plating device and electroless plating method
JP4482744B2 (en) 2001-02-23 2010-06-16 株式会社日立製作所 Electroless copper plating solution, electroless copper plating method, wiring board manufacturing method
US6875691B2 (en) * 2002-06-21 2005-04-05 Mattson Technology, Inc. Temperature control sequence of electroless plating baths
JP2012153936A (en) * 2011-01-25 2012-08-16 Tokyo Electron Ltd Plating processing apparatus, plating processing method, and storage medium
JP5496925B2 (en) * 2011-01-25 2014-05-21 東京エレクトロン株式会社 Plating processing apparatus, plating processing method, and storage medium
JP6190278B2 (en) * 2014-01-08 2017-08-30 東京エレクトロン株式会社 Heat exchange system and substrate processing apparatus having the same heat exchange system

Also Published As

Publication number Publication date
JP2000144438A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
US6713122B1 (en) Methods and apparatus for airflow and heat management in electroless plating
US6517894B1 (en) Method for plating a first layer on a substrate and a second layer on the first layer
US6821902B2 (en) Electroless plating liquid and semiconductor device
US6284652B1 (en) Adhesion promotion method for electro-chemical copper metallization in IC applications
US7141274B2 (en) Substrate processing apparatus and method
US20020066671A1 (en) Seed layer deposition
US20030116439A1 (en) Method for forming encapsulated metal interconnect structures in semiconductor integrated circuit devices
KR20040030428A (en) Plating device and method
JP2005539369A (en) Electroless deposition equipment
KR20020074175A (en) Device and method for electroless plating
JP3985858B2 (en) Plating equipment
JP3712548B2 (en) Electroless copper plating apparatus and electroless copper plating method
JP3939124B2 (en) Wiring formation method
US20050224359A1 (en) Method and apparatus for electroplating
US10138556B2 (en) Plating method, plating apparatus, and storage medium
JP3836252B2 (en) Substrate plating method
US20040197485A1 (en) Plating apparatus and plating method
JP4346593B2 (en) Wiring formation method
JP2005307356A (en) Electroless copper-plating method
JP2004300576A (en) Method and apparatus for substrate treatment
JP4112879B2 (en) Electrolytic treatment equipment
JP3611545B2 (en) Plating equipment
JP4189876B2 (en) Substrate processing equipment
EP1146143B1 (en) Process and apparatus for nickel plating
JP2019203179A (en) Electroless plating equipment and electroless plating method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term