JP3711328B2 - Electromagnetic wave shield defect detection device - Google Patents

Electromagnetic wave shield defect detection device Download PDF

Info

Publication number
JP3711328B2
JP3711328B2 JP2001009374A JP2001009374A JP3711328B2 JP 3711328 B2 JP3711328 B2 JP 3711328B2 JP 2001009374 A JP2001009374 A JP 2001009374A JP 2001009374 A JP2001009374 A JP 2001009374A JP 3711328 B2 JP3711328 B2 JP 3711328B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
electrode
current
shield
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001009374A
Other languages
Japanese (ja)
Other versions
JP2002214201A (en
Inventor
広一 瀬上
勝己 富山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001009374A priority Critical patent/JP3711328B2/en
Publication of JP2002214201A publication Critical patent/JP2002214201A/en
Application granted granted Critical
Publication of JP3711328B2 publication Critical patent/JP3711328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、電子装置の設置場所において行われる電子装置の放射妨害波を低減させる電磁妨害波対策の効果を測定し評価するための装置に関する。
【0002】
【従来の技術】
従来の電磁波シールド評価法は、例えば特開平08−220164号公報に開示されているように電磁波シールド対策を施した建物の完成後に、実際に建物内の電子装置を駆動させて建物の外における電磁波シールド対策の効果をアンテナ等による測定により評価するものであった。
【0003】
【発明が解決しようとする課題】
このような従来の方法では、建物内で実際に電子装置を駆動させて評価を行うため、評価は実質的に建物の完成後となり、シールドの不全を検出した場合でも、その保修のための工事が改めて必要となり、工期、経費等の点で不利な面があるという課題があった。
【0004】
この発明は上記のような課題を解決するためになされたもので、建物の壁等における電磁波シールドの不全を施工中に検出し、その時点で対策を施すことにより工期の短縮とともに経費の節減を図った電磁波シールド欠陥検出装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の目的に鑑み、この発明は、電磁波シールドを施した面の両側に対になって平行に配置された複数の電極と、前記対になった電極間に電流を流す電流供給手段と、磁束検知器により前記電流による磁界を検出して前記面でのシールドの欠陥部を検出する検出手段と、を備え、前記電流供給手段が、電流を発生する信号発生器と、この信号発生器からの電流を各電極に供給する導線と、前記面の両側に配置され電極に沿ってそれぞれ延びるガイドと、前記電極側に張り出しこれらと電気的接触をとる可撓性の導体板を設け前記ガイドに沿って移動可能な可動ノブと、を設け前記導線が前記可動ノブに接続されて構成されたことを特徴とする電磁波シールド欠陥検出装置にある。
【0006】
また、前記可動ノブが異なる電極に接触する複数枚の可撓性の導体板を有することを特徴とする。
【0007】
また、電磁波シールドを施した面の両側に対になって平行に延び電極が接触する電極接触部と、前記対になった電極接触部間に電流を流す電流供給手段と、磁束検知器により前記電流による磁界を検出して前記面でのシールドの欠陥部を検出する検出手段と、を備え、前記電流供給手段が、電流を発生する信号発生器と、この信号発生器からの電流を電極接触部に供給する導線と、前記面の両側に配置され電極接触部に沿ってそれぞれ延びるガイドと、前記面の電極接触部に押圧される電極を構成しかつ前記面との十分な電気的導通を得る形状および押圧機構を有し前記ガイドに沿って移動可能で前記電極接触部の所望位置に押圧される可動ノブと、を設け前記導線が前記可動ノブに接続されて構成されたことを特徴とする電磁波シールド欠陥検出装置にある。
【0008】
また、電磁波シールドを施した前記面が複数枚の導電体の板を溶接して張り合わせた面であり、欠陥部を検出する前記検出手段が、前記面の両側の前記可動ノブ間に延びこれらと共に移動する支持板と、この支持板上の前記面の溶接部に最も近い部分に配置された磁束検知器と、で構成されたことを特徴とする。
【0009】
また、前記可動ノブに接続される前記導線を前記支持板上に沿って配したことを特徴とする。
【0010】
また、前記導線の一部を撚線としたことを特徴とする。
【0011】
また、前記導線の一部にケーブルシールド用同軸管を対に配し、さらにこの同軸管の外殻にフェライト層を設けたことを特徴とする。
【0012】
また、電磁波シールドを施した前記面が建物の壁であることを特徴とする。
【0016】
【発明の実施の形態】
以下この発明を各実施の形態に従って説明する。
実施の形態1.
図1はこの発明の実施の形態1による電磁波シールド欠陥検出装置の構成を示すもので、(a)は平面図、(b)は透視して示した側面図、(c)は電極部分の拡大図である。図において、1は建物の壁、2は溶接部、3は溶部の欠陥部による間隙、4は電極、5は導線、6は放射磁界、7は磁束検知器、8は磁束検知器7の配線、9は磁束測定器、10は電流、11は信号発生器である。
【0017】
図1の(a)に示したように、この構造では中央部に溶接部2を有する導電体で構成された板状の壁1を建物等の電磁波シールド材の一構成部分としている。この電磁波シールド材において、溶接部2に欠陥による間隙3が存在すると、その部分から電磁波が漏洩し建物全体のシールド能力の劣化を招くことになる。
【0018】
この欠陥による間隙3の検出のために、図1の(a)に示すように溶接部2の両側の端部に、対になるように電極4を設け、その対になった電極4に導線5を介して信号発生器(Signal Generator)11からの高周波の電流10を流すことにより、溶接部2の欠陥部すなわち間隙3の部分に電磁波を発生させる。
【0019】
この間隙3からの電磁波のうち、放射磁界(磁束)6を磁束検知器7等にて検出することにより、溶接部2における欠陥による間隙3を検出する。図1の(b)には電極4の部分を側面から透視したもの、(c)には電極4と導線5との接続の一例を示した。
【0020】
実施の形態2.
図2はこの発明の実施の形態2による電磁波シールド欠陥検出装置の、信号発生器11と電極4とを接続する導線5a,5bの状態を示す。図に示すように、配線部である導線5を撚線とすることで、配線部による誘導性雑音の発生を低減させる構造としている。
【0021】
実施の形態3.
図3はこの発明の実施の形態3による電磁波シールド欠陥検出装置の、信号発生器11と電極4とを接続する導線5の状態を示す。図に示すように、配線部である導線5をケーブルシールド用同軸管12で覆い、その外殻にフェライト層13を設けて、誘導性雑音の発生を低減させる構造としている。
【0022】
実施の形態4.
図4〜6はこの発明の実施の形態4による電磁波シールド欠陥検出装置の構成を示すもので、図4は平面図、図5は図4のAの部分の壁の上下方向からみた透視側面図、図6はAの部分の平面方向の透視拡大図である。各図において、上記実施の形態と同一もしくは相当部分は同一符号で示す。14は可動ノブ16を電極4の列の方向に沿って移動させる可動ノブ用ガイド、15は電極4や可動ノブ16を支持する電極支持部、16は可動ノブ、17は可動ノブ16に設けられこれと共に移動する電極4と接触する可撓性の導体板である。なお、導線5には上記実施の形態2および3が施されているものが示されている。
【0023】
この実施の形態では、図4に示すように導線5を壁1の各電極4にそれぞれ接続させるために、溶接部2の両側にこれと平行に延びるスライド構造を設け、導線5に接続されかつ電極4と電気的に接触する可撓性の導体板17を設けた可動ノブ16を、ガイド14に沿ってスライドさるようにした。これにより各電極4と導線5の接続、切り換えが容易になる。
【0024】
また図7に示すように、例えば可動ノブ16に設けられる可撓性の導体板を電極4の方向に開いたハの字型の2枚の導体板17a,17bとして、複数の電極4と接触できるようにしてもよい。また導体板の数は2つに限らず3つ以上でもよい。
【0025】
実施の形態5.
図8〜10はこの発明の実施の形態5による電磁波シールド欠陥検出装置の構成を示すもので、図8の(a)は平面図で(b)は側面図、図9は図8の磁束検知器20を支持する支持板14aの部分の透視側面図、図10は図9の磁束検知器20を含むBの部分の拡大斜視図である。各図において、上記実施の形態と同一もしくは相当部分は同一符号で示す。20は図10に示すようにネジ構造22で金具21に壁1の面と垂直な方向に位置調整可能なように半固定された磁束検知器で、検出結果は配線19を介して取り出される。14aはこの磁束検知器20を金具21ごと支持する、両側の可動ノブ16間に渡って延びこれらの可動ノブ16と共に移動する支持板、そして18は磁束検知器20を設けた金具21を、この支持板14a上に壁1の面に平行な横方向に位置調整可能なように半固定する溝である。
【0026】
この実施の形態では、図8に示すように、壁1の溶接部2の欠陥による間隙3からの放射磁界7の検出のための構造として、壁1の両端の電極4における可動ノブ16の間に支持板14aを設け、支持板14aのうち壁1の溶接部2に最も近接した部位に磁束検知器20を設置した構造としている。この構造において両端の可動ノブ16を同時に移動させることにより壁1の溶接部2における間隙3からの磁束を検知させるものである。
【0027】
また図10に示すように、支持板14aの磁束検知器20を設置する部分に支持板14aの長手方向すなわち壁1と平行な方向に溝18を設け、溝18に磁束検知器20を設けた金具21を半固定し、磁束検知器20の壁1と平行な方向の位置を調整できる構造としている。さらに、磁束検知器20と金具21との間にネジ構造22を設け、壁1の面と垂直な方向に位置調整可能な構成としている。これにより磁束検知器20の移動も容易になり、さらに磁束検知器20の壁1に対しする垂直および平行方向へのそれぞれの位置調整も行える。
【0028】
実施の形態6.
図11〜13はこの発明の実施の形態6による電磁波シールド欠陥検出装置の構成を示すもので、図11の(a)は平面図で(b)は側面図、図12は図11の可動ノブ16を含むCの部分の拡大透視側面図、図13は図11の可動ノブ16aの部分の拡大平面図である。各図において、上記実施の形態と同一もしくは相当部分は同一符号で示す。図12に示すように16aは自身が電極を構成する可動ノブであり、壁1と良好な電気的導通をとるために自らを壁1に押圧するためのバネ25およびバネ支持部26からなる押圧機構および接触面積を増やすために壁1に形成されたV字溝24に合わせて形成された円錐または角錐形状の電極先端部23を設けている。
【0029】
図に示したように、可動ノブ16aは自らを電極とし壁1と接する電極先端部23を円(角)錐状としている。また、壁1の電極先端部23と接する部分はガイド14と同じ方向に延びるV字溝24を形成することにより、電極先端部23との接触面積を大きくして壁1と電極先端部23との導通を良好なものとしている。さらに可動ノブ16aと支持部15との間にバネ25と可動ノブ16aに固定されたバネ支持部26により、電極先端部23を壁1に押圧し両者間の電気的導通を確実なものとしている。また壁1に流す高周波電流を供給するための導線5を可動ノブ16aに接続して導通を確保できるようにしている。これにより、構造が簡素化できまたスライド構造の方向に沿って任意の間隔で検出が行える。
【0030】
実施の形態7.
図14はこの発明の実施の形態7による電磁波シールド欠陥検出装置の構成を示すもので、図14の(a)は平面図で(b)は側面図を示す。この実施の形態では壁1に流す高周波電流を供給するための導線5を、磁束検出器20を支持する支持板14aに沿って配置した。これにより、導線5がガイド14等に引っかかることがなくなり、導線の引き回しが容易になる。
【0031】
なおさらに、支持板14a上の導線5を実施の形態3のようにケーブルシールド用同軸管12で覆いその外殻にフェライト層13を設けてもよい。また導線5の他の部分を実施の形態2のように撚線としてもよい。
【0032】
以上、この発明の幾つかの実施の形態について説明したが、この発明は上記実施の形態だけに限定されるものではなく、例えばこれらの実施の形態の2つ以上の可能な組み合わせ等も含むことは言うまでもない。
【0033】
さらにこの発明は電磁波シールドを施した建物の壁の溶接部の欠陥の検出だけでなく、一般的に電磁波シールドを施した面の傷や亀裂等により電磁波が漏れる可能性がある欠陥部の被破壊検査にも適用可能であり、同様な効果が得られる。
【0034】
さらにこの発明は、電磁波シールドを施した建物の壁の溶接部の欠陥の検出だけでなく、圧接やリベット止め等の他の工法における電磁波の漏れの検出にも適用可能であり、同様な効果が得られる。
【0035】
【発明の効果】
以上のようにこの発明によれば、電磁波シールドを施した面のシールドの欠陥を検出するために、該面の両端に配置される電極と、これらの電極間に電流を流す手段と、この電流による面の欠陥部での磁界を検出する手段と、を備えたことを特徴とする電磁波シールド欠陥検出装置としたので、電磁波シールドを施した面のシールドの欠陥を容易に検出することができる。
【0036】
また、電磁波シールドを施した建物の壁のシールドの欠陥を検出することを特徴としたので、電磁波シールドを施した導電体で構成された建物壁等の電磁波シールドの欠陥を、建物施工途上においても比較的容易に検出することができる。これにより電磁波シールドの不全を施工中に検出し、その時点で対策を施すことにより工期の短縮とともに経費の節減が図れる。
【0037】
また、複数枚の導電体の板を溶接して張り合わせた電磁波シールドを施した建物の壁の溶接部の欠陥部を検出することを特徴としたので、溶接部における間隙等の電磁波シールドの欠陥部を容易に検出することができる。
【0038】
また、溶接部の両側に対になってこれと平行に配置された複数の電極と、前記対になった電極間に電流を流す電流供給手段と、磁束検知器により前記溶接部における磁界を検出して欠陥部を検出する検出手段と、を備えたことを特徴としたので、導電体で構成された建物壁等の溶接部における欠陥を、建物施工途上においても比較的容易に検出することができる。これにより電磁波シールドの不全を施工中に検出し、その時点で対策を施すことにより工期の短縮とともに経費の節減が図れる。
【0039】
また、前記電流供給手段が、電流を発生する信号発生器と、この信号発生器からの電流を各電極に接続する導線と、溶接部の両側に配置され電極に沿ってそれぞれ延びるガイドと、前記電極側に張り出しこれらと電気的接触をとる可撓性の導体板を設け前記ガイドに沿って移動可能な可動ノブと、を設け前記導線が前記可動ノブに接続されて構成されたことを特徴としたので、各電極と導線の接続、切り換えが容易になる。
【0040】
また、前記可動ノブが異なる電極に接触する複数枚の可撓性の導体板を有することを特徴としたので、複数対の電極に電流を与えて検出が行える。
【0041】
また、前記電流供給手段が、電流を発生する信号発生器と、この信号発生器からの電流を各電極に接続する導線と、溶接部の両側に配置され電極に沿ってそれぞれ延びるガイドと、自らが壁に押圧されて前記電極を構成しかつ壁との十分な電気的導通を得る形状および押圧機構を有し前記ガイドに沿って移動可能な可動ノブと、を設け上記導線が前記可動ノブに接続されて構成されたことを特徴としたので、構造が簡素化できまたガイドの方向に沿って任意の間隔で検出が行える。
【0042】
また、欠陥部を検出する前記検出手段が、溶接部の両側の前記可動ノブ間に延びこれらと共に移動する支持板と、この支持板上の溶接部に最も近い部分に配置された磁束検知器と、で構成されたことを特徴としたので、磁束検知器の移動も容易になる。
【0043】
また、電流を各電極に接続する前記導線を前記支持板上に沿って配したことを特徴としたので、導線がガイド等に引っかかることがなくなり、導線の引き回しが容易になる。
【0044】
また、前記導線の一部を撚線としたことを特徴としたので、誘導性雑音の発生を低減させることができる。
【0045】
また、前記導線の一部にケーブルシールド用同軸管を対に配し、さらにこの同軸管の外殻にフェライト層を設けたことを特徴としたので、誘導性雑音の発生を低減させることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による電磁波シールド欠陥検出装置の構成を示す図である。
【図2】 この発明の実施の形態2による電磁波シールド欠陥検出装置の特徴部分の構成を示す図である。
【図3】 この発明の実施の形態3による電磁波シールド欠陥検出装置の特徴部分の構成を示す図である。
【図4】 この発明の実施の形態4による電磁波シールド欠陥検出装置の構成を示す図である。
【図5】 図4のAの部分の壁の上下方向からみた透視側面図である。
【図6】 図4はAの部分の平面方向の透視拡大図である。
【図7】 この発明の実施の形態4による電磁波シールド欠陥検出装置の変形例を示す図である。
【図8】 この発明の実施の形態5による電磁波シールド欠陥検出装置の構成を示す図である。
【図9】 図8の磁束検知器を支持する支持板の部分の透視正面図である。
【図10】 図9の磁束検知器を含むBの部分の拡大斜視図である。
【図11】 この発明の実施の形態6による電磁波シールド欠陥検出装置の構成を示す図である。
【図12】 図11の可動ノブを含むCの部分の拡大透視側面図である。
【図13】 図13は図11の可動ノブの部分の拡大平面図である。
【図14】 この発明の実施の形態7による電磁波シールド欠陥検出装置の構成を示す図である。
【符号の説明】
1 建物の壁、2 溶接部、3 間隙、4 電極、5,5a,5b 導線、6放射磁界、7,20 磁束検知器、8,19 配線、9 磁束測定器、10 電流、11 信号発生器、12 ケーブルシールド用同軸管、13 フェライト層、14 可動ノブ用ガイド、14a 支持板、15 電極支持部、16,16a 可動ノブ、17,17a,17b 導体板、18 溝、21 金具、22 ネジ構造、23 電極先端部、24 V字溝、25 バネ、26 バネ支持部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a device for measuring and evaluating the effect of countermeasures against electromagnetic interference that reduce radiation interference of an electronic device performed at an installation location of the electronic device.
[0002]
[Prior art]
The conventional electromagnetic wave shielding evaluation method is, for example, an electromagnetic wave outside the building by actually driving an electronic device in the building after completion of the building with the electromagnetic wave shielding measure as disclosed in Japanese Patent Application Laid-Open No. 08-220164. The effect of shielding measures was evaluated by measurement with an antenna or the like.
[0003]
[Problems to be solved by the invention]
In such a conventional method, the evaluation is performed by actually driving the electronic device in the building, so the evaluation is substantially after the building is completed, and even if a shield failure is detected, the repair work is performed. However, there was a problem that there was a disadvantage in terms of construction period and cost.
[0004]
The present invention was made to solve the above-described problems, and detects failure of electromagnetic wave shielding on the walls of a building during construction, and at that time, measures are taken to shorten the construction period and reduce costs. An object of the present invention is to provide an electromagnetic wave shield defect detecting device.
[0005]
[Means for Solving the Problems]
In view of the above object, the present invention provides a plurality of electrodes arranged in parallel on both sides of a surface subjected to electromagnetic wave shielding, a current supply means for flowing a current between the paired electrodes, and a magnetic flux Detecting means for detecting a magnetic field due to the current by a detector to detect a defective portion of the shield on the surface, and the current supply means generates a current, and a signal generator from the signal generator A conductive wire for supplying current to each electrode, a guide disposed on both sides of the surface and extending along the electrode, and a flexible conductor plate extending to the electrode side and making electrical contact therewith are provided along the guide. The electromagnetic wave shield defect detecting apparatus is characterized in that the movable knob is provided, and the conductive wire is connected to the movable knob .
[0006]
Further, the movable knob has a plurality of flexible conductor plates that contact different electrodes.
[0007]
In addition, an electrode contact portion that extends in parallel with each other on both sides of the electromagnetic shielded surface, contacts an electrode, current supply means for passing a current between the pair of electrode contact portions, and a magnetic flux detector Detecting means for detecting a magnetic field due to current and detecting a defective portion of the shield on the surface, wherein the current supply means generates a current, and the current from the signal generator is contacted with the electrode. A conductive wire to be supplied to the surface, a guide disposed on both sides of the surface and extending along the electrode contact portion, and an electrode pressed by the electrode contact portion of the surface, and sufficient electrical continuity with the surface. A movable knob that has a shape to obtain and a pressing mechanism, is movable along the guide and is pressed to a desired position of the electrode contact portion, and the conductive wire is connected to the movable knob. EMI shielding In the detection device.
[0008]
Further, the surface subjected to electromagnetic wave shielding is a surface obtained by welding and bonding a plurality of conductive plates, and the detection means for detecting a defective portion extends between the movable knobs on both sides of the surface, together with these. It is characterized by comprising a moving support plate and a magnetic flux detector arranged at a portion closest to the welded portion of the surface on the support plate.
[0009]
Moreover, the said conducting wire connected to the said movable knob was distribute | arranged along the said support plate, It is characterized by the above-mentioned.
[0010]
Further, a part of the conducting wire is a stranded wire.
[0011]
Further, the present invention is characterized in that a cable shield coaxial pipe is disposed in a pair on a part of the conducting wire, and a ferrite layer is provided on the outer shell of the coaxial pipe.
[0012]
Further, the surface subjected to electromagnetic wave shielding is a wall of a building.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below according to each embodiment.
Embodiment 1 FIG.
1A and 1B show the configuration of an electromagnetic wave shield defect detection apparatus according to Embodiment 1 of the present invention. FIG. 1A is a plan view, FIG. 1B is a side view seen through, and FIG. 1C is an enlarged view of an electrode portion. FIG. In the figure, 1 is a wall of a building, 2 is a welded part, 3 is a gap due to a defective part of a melted part, 4 is an electrode, 5 is a conducting wire, 6 is a radiating magnetic field, 7 is a magnetic flux detector, 8 is a magnetic flux detector 7 Wiring, 9 is a magnetic flux measuring device, 10 is a current, and 11 is a signal generator.
[0017]
As shown in FIG. 1A, in this structure, a plate-like wall 1 made of a conductor having a welded portion 2 at the center is used as a constituent part of an electromagnetic shielding material such as a building. In this electromagnetic wave shielding material, if there is a gap 3 due to a defect in the welded portion 2, electromagnetic waves leak from that portion, leading to deterioration of the shielding ability of the entire building.
[0018]
In order to detect the gap 3 due to this defect, electrodes 4 are provided in pairs at both ends of the welded portion 2 as shown in FIG. By passing a high-frequency current 10 from a signal generator 11 through 5, an electromagnetic wave is generated in a defective portion of the welded portion 2, that is, in the gap 3.
[0019]
Of the electromagnetic waves from the gap 3, a radiated magnetic field (magnetic flux) 6 is detected by a magnetic flux detector 7 or the like, thereby detecting the gap 3 due to a defect in the welded portion 2. FIG. 1B shows the electrode 4 seen through from the side, and FIG. 1C shows an example of the connection between the electrode 4 and the conductor 5.
[0020]
Embodiment 2. FIG.
FIG. 2 shows the state of the conducting wires 5a and 5b connecting the signal generator 11 and the electrode 4 of the electromagnetic wave shield defect detecting apparatus according to the second embodiment of the present invention. As shown in the figure, the conductive wire 5 that is the wiring portion is a stranded wire, thereby reducing the generation of inductive noise due to the wiring portion.
[0021]
Embodiment 3 FIG.
FIG. 3 shows the state of the conducting wire 5 that connects the signal generator 11 and the electrode 4 of the electromagnetic wave shield defect detecting apparatus according to Embodiment 3 of the present invention. As shown in the figure, the conductor 5 which is a wiring portion is covered with a cable shielding coaxial tube 12, and a ferrite layer 13 is provided on the outer shell to reduce the generation of inductive noise.
[0022]
Embodiment 4 FIG.
4 to 6 show the configuration of an electromagnetic wave shield defect detection device according to Embodiment 4 of the present invention. FIG. 4 is a plan view, and FIG. 5 is a transparent side view of the wall of the portion A in FIG. FIG. 6 is a perspective enlarged view of a portion A in a planar direction. In each figure, the same or equivalent parts as those in the above embodiment are indicated by the same reference numerals. 14 is a movable knob guide for moving the movable knob 16 along the direction of the row of electrodes 4, 15 is an electrode support for supporting the electrode 4 and the movable knob 16, 16 is a movable knob, and 17 is provided on the movable knob 16. It is a flexible conductor plate which contacts the electrode 4 which moves with this. In addition, what the said Embodiment 2 and 3 are given to the conducting wire 5 is shown.
[0023]
In this embodiment, as shown in FIG. 4, in order to connect the conducting wire 5 to each electrode 4 of the wall 1, a slide structure extending in parallel with both sides of the welded portion 2 is provided, connected to the conducting wire 5 and The movable knob 16 provided with the flexible conductor plate 17 that is in electrical contact with the electrode 4 is slid along the guide 14. This facilitates the connection and switching between the electrodes 4 and the conductive wires 5.
[0024]
Further, as shown in FIG. 7, for example, flexible conductor plates provided on the movable knob 16 are in contact with a plurality of electrodes 4 as two C-shaped conductor plates 17a and 17b opened in the direction of the electrodes 4. You may be able to do it. Further, the number of conductor plates is not limited to two but may be three or more.
[0025]
Embodiment 5 FIG.
8 to 10 show the configuration of an electromagnetic wave shield defect detection apparatus according to Embodiment 5 of the present invention. FIG. 8 (a) is a plan view, FIG. 8 (b) is a side view, and FIG. FIG. 10 is an enlarged perspective view of a portion B including the magnetic flux detector 20 of FIG. 9. In each figure, the same or equivalent parts as those in the above embodiment are indicated by the same reference numerals. As shown in FIG. 10, a magnetic flux detector 20 is semi-fixed to a metal fitting 21 so as to be position-adjustable in a direction perpendicular to the surface of the wall 1 with a screw structure 22, and a detection result is taken out via a wiring 19. 14a supports the magnetic flux detector 20 together with the metal fitting 21, extends between the movable knobs 16 on both sides and moves together with the movable knobs 16, and 18 designates the metal fitting 21 provided with the magnetic flux detector 20. It is a groove that is semi-fixed on the support plate 14a so that the position can be adjusted in the lateral direction parallel to the surface of the wall 1.
[0026]
In this embodiment, as shown in FIG. 8, as a structure for detecting the radiated magnetic field 7 from the gap 3 due to a defect in the welded portion 2 of the wall 1, between the movable knobs 16 in the electrodes 4 at both ends of the wall 1. The support plate 14a is provided, and the magnetic flux detector 20 is installed in a portion of the support plate 14a closest to the welded portion 2 of the wall 1. In this structure, the magnetic flux from the gap 3 in the welded portion 2 of the wall 1 is detected by simultaneously moving the movable knobs 16 at both ends.
[0027]
As shown in FIG. 10, a groove 18 is provided in the longitudinal direction of the support plate 14 a, that is, in a direction parallel to the wall 1, and the magnetic flux detector 20 is provided in the groove 18. The metal fitting 21 is semi-fixed so that the position in the direction parallel to the wall 1 of the magnetic flux detector 20 can be adjusted. Further, a screw structure 22 is provided between the magnetic flux detector 20 and the metal fitting 21 so that the position can be adjusted in a direction perpendicular to the surface of the wall 1. Thereby, the movement of the magnetic flux detector 20 can be facilitated, and the position of the magnetic flux detector 20 in the vertical and parallel directions relative to the wall 1 can also be adjusted.
[0028]
Embodiment 6 FIG.
FIGS. 11 to 13 show the configuration of an electromagnetic wave shield defect detection apparatus according to Embodiment 6 of the present invention. FIG. 11 (a) is a plan view, FIG. 11 (b) is a side view, and FIG. FIG. 13 is an enlarged plan view of the portion of the movable knob 16a in FIG. In each figure, the same or equivalent parts as those in the above embodiment are indicated by the same reference numerals. As shown in FIG. 12, 16 a is a movable knob that constitutes an electrode itself, and is composed of a spring 25 and a spring support portion 26 for pressing itself against the wall 1 in order to achieve good electrical continuity with the wall 1. In order to increase the mechanism and the contact area, a conical or pyramidal electrode tip 23 formed in accordance with a V-shaped groove 24 formed in the wall 1 is provided.
[0029]
As shown in the figure, the movable knob 16a has an electrode tip 23 which is an electrode itself and is in contact with the wall 1, and has a circular (conical) pyramid shape. Further, by forming a V-shaped groove 24 extending in the same direction as the guide 14 at a portion in contact with the electrode tip 23 of the wall 1, the contact area with the electrode tip 23 is increased, and the wall 1 and the electrode tip 23 are The continuity is good. Further, a spring 25 and a spring support portion 26 fixed to the movable knob 16a between the movable knob 16a and the support portion 15 press the electrode tip 23 against the wall 1 to ensure electrical conduction between the two. . Further, a conducting wire 5 for supplying a high-frequency current flowing through the wall 1 is connected to the movable knob 16a so as to ensure conduction. Thereby, the structure can be simplified, and detection can be performed at arbitrary intervals along the direction of the slide structure.
[0030]
Embodiment 7 FIG.
FIG. 14 shows the configuration of an electromagnetic wave shield defect detection apparatus according to Embodiment 7 of the present invention. FIG. 14 (a) is a plan view and FIG. 14 (b) is a side view. In this embodiment, the conducting wire 5 for supplying a high-frequency current flowing through the wall 1 is disposed along the support plate 14 a that supports the magnetic flux detector 20. Thereby, the conducting wire 5 is not caught by the guide 14 or the like, and the conducting wire is easily routed.
[0031]
Furthermore, the conductor 5 on the support plate 14a may be covered with the cable shielding coaxial tube 12 as in the third embodiment, and the ferrite layer 13 may be provided on the outer shell. Further, other portions of the conductive wire 5 may be stranded wires as in the second embodiment.
[0032]
As mentioned above, although several embodiment of this invention was described, this invention is not limited only to the said embodiment, For example, two or more possible combinations etc. of these embodiment are included. Needless to say.
[0033]
Furthermore, the present invention not only detects defects in the welded part of the wall of the building subjected to electromagnetic wave shielding, but generally destroys the defective part where electromagnetic waves may leak due to scratches or cracks on the surface subjected to electromagnetic wave shielding. It can be applied to inspection, and the same effect can be obtained.
[0034]
Furthermore, the present invention can be applied not only to detection of defects in the welded portion of the building wall subjected to electromagnetic wave shielding, but also to detection of electromagnetic wave leakage in other construction methods such as pressure welding and riveting. can get.
[0035]
【The invention's effect】
As described above, according to the present invention, in order to detect a shield defect on a surface subjected to electromagnetic wave shielding, electrodes disposed at both ends of the surface, means for passing a current between these electrodes, and the current Thus, the electromagnetic wave shield defect detecting device is provided with means for detecting a magnetic field at a defective portion of the surface due to the above, so that the defect of the shield on the surface subjected to the electromagnetic wave shield can be easily detected.
[0036]
In addition, since it is characterized by detecting defects in the shielding of the walls of buildings that have been subjected to electromagnetic wave shielding, defects in electromagnetic shielding such as building walls composed of conductors that have been subjected to electromagnetic wave shielding can be detected during building construction. It can be detected relatively easily. As a result, failure of the electromagnetic wave shield is detected during construction, and measures are taken at that time, thereby shortening the construction period and reducing costs.
[0037]
In addition, since it is characterized by detecting a defective portion of a welded portion of a building wall where an electromagnetic wave shield is formed by welding a plurality of conductive plates, the defective portion of the electromagnetic wave shield such as a gap in the welded portion Can be easily detected.
[0038]
In addition, a plurality of electrodes arranged in parallel on both sides of the welded portion, current supply means for passing current between the paired electrodes, and a magnetic flux detector detect a magnetic field in the welded portion. And detecting means for detecting a defective portion, so that defects in a welded portion such as a building wall made of a conductor can be detected relatively easily during the construction of the building. it can. As a result, failure of the electromagnetic wave shield is detected during construction, and measures are taken at that time, thereby shortening the construction period and reducing costs.
[0039]
Further, the current supply means includes a signal generator for generating a current, a conductive wire for connecting the current from the signal generator to each electrode, guides arranged on both sides of the weld and extending along the electrode, A movable knob that extends toward the electrode and takes electrical contact with these is provided, and a movable knob that is movable along the guide is provided, and the conductive wire is connected to the movable knob. As a result, the connection and switching between the electrodes and the conductive wires are facilitated.
[0040]
In addition, since the movable knob has a plurality of flexible conductive plates that come into contact with different electrodes, detection can be performed by applying current to a plurality of pairs of electrodes.
[0041]
Further, the current supply means includes a signal generator for generating a current, a conductive wire for connecting the current from the signal generator to each electrode, guides disposed on both sides of the weld and extending along the electrode, And a movable knob having a shape and a pressing mechanism that is configured to be pressed against a wall to obtain sufficient electrical continuity with the wall and movable along the guide, and the conductive wire is attached to the movable knob. Since it is characterized by being connected, the structure can be simplified, and detection can be performed at arbitrary intervals along the direction of the guide.
[0042]
Further, the detection means for detecting a defective portion includes a support plate that extends between the movable knobs on both sides of the welded portion and moves with them, and a magnetic flux detector disposed at a portion closest to the welded portion on the support plate, The magnetic flux detector can be easily moved.
[0043]
In addition, since the conducting wire for connecting current to each electrode is arranged along the support plate, the conducting wire is not caught by a guide or the like, and the conducting wire can be easily routed.
[0044]
In addition, since a part of the conducting wire is a stranded wire, generation of inductive noise can be reduced.
[0045]
Further, since the coaxial pipe for cable shield is arranged in a part of the conducting wire, and the ferrite layer is provided on the outer shell of the coaxial pipe, the generation of inductive noise can be reduced. .
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an electromagnetic wave shield defect detection apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a diagram showing a configuration of a characteristic portion of an electromagnetic wave shield defect detecting device according to Embodiment 2 of the present invention.
FIG. 3 is a diagram showing a configuration of a characteristic portion of an electromagnetic wave shield defect detecting device according to Embodiment 3 of the present invention.
FIG. 4 is a diagram showing a configuration of an electromagnetic wave shield defect detection device according to Embodiment 4 of the present invention.
FIG. 5 is a see-through side view of the wall of the portion A in FIG.
FIG. 4 is a perspective enlarged view of a portion A in a planar direction.
FIG. 7 is a view showing a modification of the electromagnetic wave shield defect detecting apparatus according to Embodiment 4 of the present invention.
FIG. 8 is a diagram showing a configuration of an electromagnetic wave shield defect detecting device according to a fifth embodiment of the present invention.
9 is a transparent front view of a portion of a support plate that supports the magnetic flux detector of FIG. 8. FIG.
10 is an enlarged perspective view of a portion B including the magnetic flux detector of FIG. 9. FIG.
FIG. 11 is a diagram showing a configuration of an electromagnetic wave shield defect detection device according to Embodiment 6 of the present invention.
12 is an enlarged perspective side view of a portion C including the movable knob of FIG. 11. FIG.
FIG. 13 is an enlarged plan view of a portion of the movable knob shown in FIG.
FIG. 14 is a diagram showing a configuration of an electromagnetic wave shield defect detecting apparatus according to Embodiment 7 of the present invention.
[Explanation of symbols]
1 Building Wall, 2 Weld, 3 Gap, 4 Electrodes, 5, 5a, 5b Conductor, 6 Radiation Magnetic Field, 7, 20 Magnetic Flux Detector, 8, 19 Wiring, 9 Magnetic Flux Measuring Instrument, 10 Current, 11 Signal Generator , 12 Cable shield coaxial tube, 13 Ferrite layer, 14 Movable knob guide, 14a Support plate, 15 Electrode support, 16, 16a Movable knob, 17, 17a, 17b Conductor plate, 18 Groove, 21 Hardware, 22 Screw structure , 23 Electrode tip, 24 V-shaped groove, 25 spring, 26 spring support.

Claims (8)

電磁波シールドを施した面の両側に対になって平行に配置された複数の電極と、A plurality of electrodes arranged in parallel in pairs on both sides of the electromagnetic shielded surface;
前記対になった電極間に電流を流す電流供給手段と、  Current supply means for passing current between the pair of electrodes;
磁束検知器により前記電流による磁界を検出して前記面でのシールドの欠陥部を検出する検出手段と、  Detection means for detecting a magnetic field due to the current by a magnetic flux detector to detect a defective portion of the shield on the surface;
を備え、  With
前記電流供給手段が、電流を発生する信号発生器と、この信号発生器からの電流を各電極に供給する導線と、前記面の両側に配置され電極に沿ってそれぞれ延びるガイドと、前記電極側に張り出しこれらと電気的接触をとる可撓性の導体板を設け前記ガイドに沿って移動可能な可動ノブと、を設け前記導線が前記可動ノブに接続されて構成されたことを特徴とする電磁波シールド欠陥検出装置。  The current supply means includes a signal generator for generating a current, a lead for supplying current from the signal generator to each electrode, guides disposed on both sides of the surface and extending along the electrode, and the electrode side An electromagnetic wave characterized in that a flexible conductor plate that projects in electrical contact with these is provided, a movable knob that is movable along the guide, and the conductive wire is connected to the movable knob. Shield defect detection device.
前記可動ノブが異なる電極に接触する複数枚の可撓性の導体板を有することを特徴とする請求項1に記載の電磁波シールド欠陥検出装置。The electromagnetic shielding defect detection device according to claim 1, wherein the movable knob has a plurality of flexible conductor plates that contact different electrodes. 電磁波シールドを施した面の両側に対になって平行に延び電極が接触する電極接触部と、An electrode contact portion that extends in parallel on both sides of the electromagnetic shielded surface and contacts the electrode;
前記対になった電極接触部間に電流を流す電流供給手段と、  Current supply means for passing a current between the paired electrode contact portions;
磁束検知器により前記電流による磁界を検出して前記面でのシールドの欠陥部を検出する検出手段と、  Detection means for detecting a magnetic field due to the current by a magnetic flux detector to detect a defective portion of the shield on the surface;
を備え、  With
前記電流供給手段が、電流を発生する信号発生器と、この信号発生器からの電流を電極接触部に供給する導線と、前記面の両側に配置され電極接触部に沿ってそれぞれ延びるガイドと、前記面の電極接触部に押圧される電極を構成しかつ前記面との十分な電気的導通を得る形状および押圧機構を有し前記ガイドに沿って移動可能で前記電極接触部の所望位置に押圧される可動ノブと、を設け前記導線が前記可動ノブに接続されて構成されたことを特徴とする電磁波シールド欠陥検出装置。  A signal generator for generating a current; a conductor for supplying current from the signal generator to the electrode contact portion; and guides disposed on both sides of the surface and extending along the electrode contact portion; The electrode is pressed against the electrode contact portion of the surface and has a shape and a pressing mechanism for obtaining sufficient electrical continuity with the surface, and is movable along the guide and pressed to a desired position of the electrode contact portion An electromagnetic wave shield defect detecting device comprising: a movable knob, wherein the conductive wire is connected to the movable knob.
電磁波シールドを施した前記面が複数枚の導電体の板を溶接して張り合わせた面であり、欠陥部を検出する前記検出手段が、前記面の両側の前記可動ノブ間に延びこれらと共に移動する支持板と、この支持板上の前記面の溶接部に最も近い部分に配置された磁束検知器と、で構成されたことを特徴とする請求項1ないし3のいずれか1項に記載の電磁波シールド欠陥検出装置。The surface subjected to electromagnetic wave shielding is a surface obtained by welding a plurality of conductive plates, and the detecting means for detecting a defective portion extends between the movable knobs on both sides of the surface and moves together therewith. The electromagnetic wave according to any one of claims 1 to 3, comprising: a support plate; and a magnetic flux detector disposed in a portion closest to the welded portion of the surface on the support plate. Shield defect detection device. 前記可動ノブに接続される前記導線を前記支持板上に沿って配したことを特徴とする請求項4に記載の電磁波シールド欠陥検出装置。The electromagnetic wave shield defect detection device according to claim 4, wherein the conductive wire connected to the movable knob is arranged along the support plate. 前記導線の一部を撚線としたことを特徴とする請求項1ないし5のいずれか1項に記載の電磁波シールド欠陥検出装置。6. The electromagnetic wave shield defect detection device according to claim 1, wherein a part of the conducting wire is a stranded wire. 前記導線の一部にケーブルシールド用同軸管を対に配し、さらにこの同軸管の外殻にフェライト層を設けたことを特徴とする請求項1ないし6のいずれか1項に記載の電磁波シールド欠陥検出装置。The electromagnetic wave shield according to any one of claims 1 to 6, wherein a coaxial tube for cable shield is arranged in a part of the conducting wire, and a ferrite layer is further provided on an outer shell of the coaxial tube. Defect detection device. 電磁波シールドを施した前記面が建物の壁であることを特徴とする請求項1ないし7のいずれか1項に記載の電磁波シールド欠陥検出装置。8. The electromagnetic wave shielding defect detection device according to claim 1, wherein the surface subjected to electromagnetic wave shielding is a wall of a building.
JP2001009374A 2001-01-17 2001-01-17 Electromagnetic wave shield defect detection device Expired - Fee Related JP3711328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001009374A JP3711328B2 (en) 2001-01-17 2001-01-17 Electromagnetic wave shield defect detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001009374A JP3711328B2 (en) 2001-01-17 2001-01-17 Electromagnetic wave shield defect detection device

Publications (2)

Publication Number Publication Date
JP2002214201A JP2002214201A (en) 2002-07-31
JP3711328B2 true JP3711328B2 (en) 2005-11-02

Family

ID=18876870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001009374A Expired - Fee Related JP3711328B2 (en) 2001-01-17 2001-01-17 Electromagnetic wave shield defect detection device

Country Status (1)

Country Link
JP (1) JP3711328B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6069162B2 (en) 2013-10-11 2017-02-01 株式会社Ihi Fiber meandering detection method and fiber meandering detection device for conductive composite material

Also Published As

Publication number Publication date
JP2002214201A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
US6201398B1 (en) Non-contact board inspection probe
JP2940815B2 (en) Method and apparatus for inspecting conductive circuit board
TWI740993B (en) Inspection jig, substrate inspection apparatus having the same, and method for manufacturing inspection jig
US6459272B1 (en) Apparatus and method for inspecting wiring on board
TWI564568B (en) Use a coaxial pin with a cantilever probe card
JP2511621B2 (en) Wafer inspection device
JPWO2008026291A1 (en) Partial discharge determination method and partial discharge determination device
JP3711328B2 (en) Electromagnetic wave shield defect detection device
JP2539453B2 (en) Semiconductor element inspection equipment
JP4448732B2 (en) Circuit board inspection equipment
JPH0625798B2 (en) Electrical function tester for wiring area
JP4998682B2 (en) Electromagnetic leakage evaluation method and apparatus
JP2001194405A (en) Probe for inspecting substrate and inspection/method for substrate
JP2011257340A (en) Circuit board inspecting device
JP4312094B2 (en) Composite probe device for electromagnetic field evaluation
CN113607812A (en) Phased array ultrasonic detection test block structure and detection method for brazing type copper-aluminum transition wire clamp
JP4124337B2 (en) Printed circuit board inspection equipment
JP2008292372A (en) Circuit inspection device equipped with inspection support system, and inspection support method therefor
JP2006071350A (en) Method and apparatus for diagnosing deterioration of insulated covered wire
US6218638B1 (en) Method for inspecting the quality in resistance welding
KR102352319B1 (en) Quality Inspection Devices, Methods, Systems and Integral Probe Assemblies
JP2978718B2 (en) Normal connection of power cable
JP5624452B2 (en) Circuit board inspection equipment
JP2002311048A (en) Guide for probe card, probe card mounting the same, and method for testing electronic circuit device
CN107655981A (en) A kind of electromagnetic acoustic phase array transducer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees