JP3711007B2 - Ni-based alloy - Google Patents

Ni-based alloy Download PDF

Info

Publication number
JP3711007B2
JP3711007B2 JP2000292328A JP2000292328A JP3711007B2 JP 3711007 B2 JP3711007 B2 JP 3711007B2 JP 2000292328 A JP2000292328 A JP 2000292328A JP 2000292328 A JP2000292328 A JP 2000292328A JP 3711007 B2 JP3711007 B2 JP 3711007B2
Authority
JP
Japan
Prior art keywords
alloy
mass
price
present
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000292328A
Other languages
Japanese (ja)
Other versions
JP2001240928A (en
Inventor
洋充 内山
孝治 岩立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2000292328A priority Critical patent/JP3711007B2/en
Publication of JP2001240928A publication Critical patent/JP2001240928A/en
Application granted granted Critical
Publication of JP3711007B2 publication Critical patent/JP3711007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のエアバッグや消火用スプリンクラーの接点バネ等の高温バネ材料やゴルフクラブヘッドとして、また海洋向けの耐食材料や海生生物防汚材としての用途に用いて好適な、強度および耐熱性、さらには海生生物防汚性に優れたNi基合金に関し、特にその有用特性の劣化を招くことなしに、材料価格の有利な低減を図ったものである。
【0002】
【従来の技術】
自動車のエアバッグや消火用スプリンクラーの接点バネ等の高温バネ材料やゴルフクラブヘッドなどの使途に有用な時効硬化型合金として、いわゆるNi−Be二元系合金が良く知られている。
しかしながら、この合金は、所望特性を得る必要上、高価なNiをベースとする合金であり、しかも同様に高価な元素であるBeを 1.5〜2.5mass %程度含有させることが不可欠であるため、どうしても材料価格が高価になる欠点があつた。
【0003】
このため、特性的にはNi−Be二元系合金に匹敵し、しかもBe量を低減することによって材料価格を低減させる試みが、従来から種々なされている。
例えば、特開昭39−22492 号公報および特開昭48−34023 号公報には、Ni−Be二元合金中に、Ti, Ta, V, ZnおよびMg等を含有させた合金が、また特開平8−260082号公報には、Ni−Be−Ti三元合金中に、MgやMnを添加した合金が提案されている。
しかしながら、上記した合金はいずれも、添加元素の実質的な添力量が少ないため、機械的特性は改善されるにしても、材料価格の低減にはつながらないところに問題を残していた。
【0004】
一方、海洋向け耐食材料や海生生物防汚材として、Be−Cu合金が優れていることが知られているが、このBe−Cu合金は、高速流動海水下での耐食性については十分といえず、その改善が望まれていた。
【0005】
【発明が解決しようとする課題】
本発明は、上記の現状に鑑み開発されたもので、上記したNi−Be−Ti三元系合金と同程度の引張強さおよび応力緩和特性を維持しつつ、しかもNi−Be−Ti三元系合金に比べて材料価格が格段に安く、さらには高速流動海水下においても優れた耐食性と海生生物防汚性を有す Ni基合金を提案することを目的とする。
【0006】
さて、発明者らは、上記の目的を達成すべく、Ni−Be二元合金に対して、材料価格が比較的安い種々の元素の添加を試みた。
その結果、CuおよびTiの複合添加が極めて有効であることの知見を得た。
すなわち、Ni−Be二元合金に多量のCuを含有させ、その分Ni量を減少させることによって材料価格の大幅な低減が達成されること、他方、Cuの多量添加に伴う引張強さや応力緩和特性の低下については、少量のTiを添加することによって補償できることの知見を得た。
また、かかる合金系では、Feを微量に添加することにより、結晶粒が微細化して製造が容易になると共に、機械的特性が一層向上することも、併せて見出した。
さらに、かような合金系は、耐食性を兼ね備える海生生物防汚材としても極めて有用であることの知見を得た。
本発明は、上記の知見に立脚するものである。
【0007】
すなわち、本発明は、
Cu:15.0mass%を超え、35.0mass%以下、
Be:1.30〜1.80mass%および
Ti:0.10〜1.00mass%
を含有し、残部 Niの組成になるNi基合金(第1発明)である。
【0008】
また、本発明は、
Cu:15.0mass%を超え、35.0mass%以下、
Be:1.30〜1.80mass%、
Ti:0.10〜1.00mass%および
Fe:0.50mass%以下
を含有し、残部 Niの組成になるNi基合金(第2発明)である。
【0009】
上記した第1発明および第2発明において、合金成分であるCuおよびBeの原料として、ベリリウム−銅合金を用いることが、材料価格の低減を図る上で一層好ましい。
【0010】
Ni−Be二元系合金にTiを添加すると時効硬化能が高まることは、例えば特開平8−260082号公報等において公知であり、代表的な成分系としてNi−1.8Be −0.5 Ti等が知られている。
しかしながら、上記したような従来例は、Ni−Be二元系合金に第三元素を添加した場合に限られていて、本発明のように、Ni−Be二元合金にCuを多量に添加することによってNiの含有量を大幅に下げ、材料価格の低減を図った場合、他元素の添加がどのような影響を及ぼすかについては全く未知であった。
【0011】
本発明は、Ni−Be二元系合金に多量のCuを添加させ、Ni量を大幅に減少させることによって材料価格を格段に低減させる一方、Cuの多量添加に伴う引張強さ・応力緩和特性の低下については、少量のTiの添加によって補償するものであり、かくして引張強さや硬度等の機械的特性がNi−Be−Ti三元系合金と同等で、かつ応力緩和特性にも優れたNi基合金を低価格で得ることに成功したものである。
【0012】
また、本発明は、Ni基合金として優れた耐食性を備えるのはいうまでもなく、Cuを多量に含有させることによって海生生物防汚性の有利な向上も併せて実現したものである。
【0013】
【発明の実施の形態】
以下、本発明において合金成分の組成範囲を上記の範囲に限定した理由について説明する。
Cu:15.0mass%を超え、35.0mass%以下
Cuは、Ni−Be二元合金に対し比較的多量に添加しても強度や耐熱性等の特性をさほど劣化させず、一方海生生物防汚性はCuの添加によって大幅に向上し、しかもNiに比べると材料価格がはるかに安いので、Niの代替成分として含有させるが、含有量が35.0mass%を超えると引張強さが低下するだけでなく耐食性が劣化し、一方15.0mass%以下では添加による材料価格の引き下げ効果が小さくなると共に海生生物防汚性の劣化を招くので、Cu量は15.0mass%を超え、35.0mass%以下の範囲に限定した。より好ましくは16.0〜30.0mass%である。
【0014】
Be:1.30〜1.80mass%
Beは、機械的特性の向上に有効に寄与するだけでなく、応力緩和特性や耐食性の改善にも有用な元素であるが、含有量が1.30mass%に満たないとその添加効果に乏しく、一方1.80mass%を超えると材料価格の引き下げ効果が小さくなるので、Be量は1.30〜1.80mass%の範囲に限定した。
【0015】
Ti:0.10〜1.00mass%
Tiは、時効硬化能を高め、Cuの多量添加に伴う機械的特性の劣化を補償する有用元素であるが、含有量が0.10mass%未満では時効硬化能の助長効果に乏しく、一方1.00mass%を超えると引張強さや硬度の低下を招くので、Ti量は0.10〜1.00mass%の範囲に限定した。
【0016】
Fe:0.50mass%以下
Feは、結晶粒を微細化して加工性を向上させると同時に、機械的特性を向上させる有用元素であるが、含有量が 0.5mass%を超えるとその効果は飽和に達するので、Feは0.50mass%以下で含有させるものとした。
【0017】
ところで、本発明の合金系において、その材料価格はBeが一番高く、Niの価格を 1.0とすると約 100倍にもなる。
この点、Beの原料として、上記したような高価な純Beではなく、例えば4%Be−Cu合金を利用すると、その価格はNiの約31倍程度にすぎないから、純Beを用いた場合に比べて、Beの価格を約1/3 に低減することができる。
従って、材料価格の低減を図る上では、Beの原料として、安価なベリリウム−銅合金を用いることが一層有利である。
【0018】
次に、本発明合金の好適製造方法について説明する。
まず、溶解・鋳造によって鋳塊を造り、熱間鍛造や熱間圧延等の熱間加工によって、目的とする製品の粗形に成形する。ついで、最終製品に近い形状まで中間成形し、必要に応じて仕上げ加工(冷間圧延)を施したのち、 950〜1080℃, 3分〜3時間程度の溶体化処理を施し、ついで 450〜650 ℃, 1〜4時間程度の時効処理により、本合金の強さ・硬度を上昇させて、最終製品とする。
なお、海洋材料として利用する場合には、溶体化処理状態、さらには仕上げ加工状態での使用も可能である。
【0019】
【実施例】
実施例1
表1に示す組成になる合金を、真空アーク溶解装置で溶解し、鋳造したのち、溶体化処理と冷間圧延を繰り返して、0.25mm厚の板材とした。ついで、最終溶体化処理として、1050℃で1時間加熱後、水中冷却する処理を行い、さらに20%の冷間圧延を行ったのち、 450℃, 2時間の時効処理を施して製品とした。
かくして得られた製品板の硬度、引張強さ、 0.2%耐力および応力緩和特性について調べた結果を、表2に示す。
【0020】
ここで、応力緩和特性は、各試験片の 0.2%耐力の75%を最大曲げ応力として作用させ、 200℃で 100時間保持後に曲げ荷重を解除し、その時の永久変形量を測定し、応力残留率に換算して、求めた。また、この特性は、試料を圧延方向に打ち抜いたものについて評価した。
なお、No.1〜12は適合例、また No.13〜24は比較例(なお No.13の比較例1は従来のNi−Be−Ti三元合金)である。
【0021】
【表1】

Figure 0003711007
【0022】
【表2】
Figure 0003711007
【0023】
表2に示したとおり、本発明に従い得られた適合例はいずれも、Ni−Be−Ti三元合金と同程度の特性が得られている。
これに対し、比較例2のように、Ni−Be二元合金に単にCuを添加しただけの場合には、Beの析出硬化能が小さく、あまり析出硬化を期待し得ないので、機械的特性が低下する。
これに対し、本発明に従い、Tiを少量添加すると、Cuの添加により小さくなった析出硬化能が回復し、機械的特性がNi−Be−Ti三元合金と同等になる(適合例1〜6)。さらに、Feを微量添加すると、諸特性の一層の向上を図ることができる(実施例7〜12)。
【0024】
実施例2
この例では、材料価格について比較する。
この発明で使用する成分の各金属単価は表3に示すとおりである(なお、表3では、各金属単価について、Niの単価を 1.0として相対的に示してある)。
【0025】
【表3】
Figure 0003711007
【0026】
さて、従来の代表的な成分系であるNi−1.8Be −0.5 Ti合金について、表3の価格表に従って材料価格を求めると、その指数は2.74(Ni単価:1.0 を基準とする)となる。
これに対し、本発明の合金系における最高額および最低額は次のとおりであり、おおよそ原料価格を4〜24%低減することができる。
最高額 Ni−1.8Be −0.5 Ti−15Cu合金 指数:2.63
最低額 Ni−1.8Be −0.5 Ti−35Cu合金 指数:2.08
【0027】
また、Beの原料として4%Be−Cu合金を利用すると、最高額および最低額は次のとおりであり、
最高額 Ni−1.8Be −0.5 Ti−15Cu合金 指数:1.45
最低額 Ni−1.8Be −0.5 Ti−35Cu合金 指数:1.19
であり、この場合には原料価格を約47〜57%程度低減することができる。
【0028】
実施例3
表4に示す組成になる合金に、実施例1と同様にして溶体化処理、さらには時効処理を施して厚み:2.0 mm、幅:15mm、長さ:40mmの試験片を作製したのち、人工海水を用いた流動海水腐食試験に供し、流動海水下での耐食性について調査した。
試験条件は次のとおりである。
(1) 試験液:人工海水(ジャマリン)
(2) 流速:1.5, 2.8, 6.0 m/s
(3) 温度:約40℃
(4) 試験日数:100 日
なお、耐食性は、腐食試験前後における重量変化で評価した。
得られた結果を表5に示す。
【0029】
【表4】
Figure 0003711007
【0030】
【表5】
Figure 0003711007
【0031】
表5に示したとおり、本発明の成分系はいずれも、従来のBe−Cu合金(A−1)およびBe−Ni合金(BB−1)に比べ、流動海水下においても極めて優れた耐食性を示すことが分かる。
特に時効処理材では、Be−Ni合金に比較してCuを添加した方が腐食減量が少なく、より優れた耐食性が得られることが分かる。
【0032】
実施例4
同じく表4に示す組成になる、厚み:2.0 mm、幅:300 mm、長さ:300 mmの寸法の溶体化処理後の試験片を、自然海水中に浸漬し、1年間放置した後の海生生物付着状況について観察した。
その結果を表6に示す。
【0033】
【表6】
Figure 0003711007
【0034】
表6に示したとおり、本発明に従うNi−Be−Cu系合金は、従来のBe−Ni合金と比較して、海生生物防汚性が格段に向上していることが分かる。
【0035】
【発明の効果】
かくして、本発明によれば、従来のNi−Be−Ti三元系合金と比較して、基本特性の劣化を招くことなしに、材料価格を大幅に低減することができ、さらには海生生物防汚性を格段に向上させることができ、産業上極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable for use as a high-temperature spring material such as a contact spring of an automobile airbag or a fire-sprinkler and a golf club head, and for use as an anti-corrosion material or marine organism antifouling material for the ocean. With regard to Ni-based alloys having excellent heat resistance and marine organism antifouling properties, the material price is advantageously reduced without deteriorating useful properties.
[0002]
[Prior art]
A so-called Ni-Be binary alloy is well known as an age-hardening alloy useful for high temperature spring materials such as contact springs of automobile airbags and fire-sprinkler sprinklers and golf club heads.
However, this alloy is an expensive Ni-based alloy in order to obtain the desired characteristics, and it is indispensable to contain about 1.5 to 2.5 mass% of Be, which is also an expensive element. The material price was expensive.
[0003]
For this reason, various attempts have been made in the past to reduce the material cost by reducing the amount of Be, which is characteristically comparable to Ni-Be binary alloys.
For example, JP-A-39-22492 and JP-A-48-34023 disclose an alloy containing Ti, Ta, V, Zn, Mg and the like in a Ni-Be binary alloy. Kaihei 8-260082 proposes an alloy in which Mg or Mn is added to a Ni-Be-Ti ternary alloy.
However, all of the above-described alloys have a problem in that they do not lead to a reduction in material cost even though the mechanical characteristics are improved because the substantial amount of the additive element is small.
[0004]
On the other hand, it is known that Be-Cu alloy is excellent as a marine anti-corrosion material and marine organism antifouling material, but this Be-Cu alloy is sufficient for corrosion resistance under high-speed fluid seawater. Therefore, the improvement was desired.
[0005]
[Problems to be solved by the invention]
The present invention has been developed in view of the above-described present situation, while maintaining the same tensile strength and stress relaxation characteristics as the above-described Ni-Be-Ti ternary alloy, and yet being Ni-Be-Ti ternary. material price is much cheaper than the system alloy, further aims to propose a Ni-based alloy that have a good corrosion resistance and marine organisms antifouling even under fast fluidized seawater.
[0006]
In order to achieve the above object, the inventors have attempted to add various elements with relatively low material costs to the Ni—Be binary alloy.
As a result, it was found that the combined addition of Cu and Ti is extremely effective.
In other words, the Ni-Be binary alloy contains a large amount of Cu, and by reducing the amount of Ni correspondingly, a significant reduction in material cost can be achieved. On the other hand, the tensile strength and stress relaxation associated with the addition of a large amount of Cu It was found that the deterioration of the characteristics can be compensated by adding a small amount of Ti.
In addition, it has also been found that in such an alloy system, addition of a small amount of Fe makes the crystal grains finer and facilitates production, and further improves mechanical properties.
Furthermore, it has been found that such an alloy system is extremely useful as a marine organism antifouling material having corrosion resistance.
The present invention is based on the above findings.
[0007]
That is, the present invention
Cu: more than 15.0 mass%, less than 35.0 mass%,
Be: 1.30 to 1.80 mass% and
Ti: 0.10 ~ 1.00mass%
Containing the balance being Ni-based alloy comprising the composition of Ni (first invention).
[0008]
The present invention also provides:
Cu: more than 15.0 mass%, less than 35.0 mass%,
Be: 1.30 to 1.80 mass%,
Ti: 0.10-1.00mass% and
Fe: containing less 0.50%, the balance being Ni-based alloy comprising the composition of Ni (second invention).
[0009]
In the first and second inventions described above, it is more preferable to use a beryllium-copper alloy as a raw material for Cu and Be, which are alloy components, in order to reduce the material cost.
[0010]
It is known in, for example, Japanese Patent Application Laid-Open No. 8-260082 that Ni is added to Ni—Be binary alloy, and age hardening ability is increased. Ni-1.8Be-0.5 Ti is known as a typical component system. It has been.
However, the conventional example as described above is limited to the case where the third element is added to the Ni—Be binary alloy, and a large amount of Cu is added to the Ni—Be binary alloy as in the present invention. As a result, when the Ni content was greatly reduced and the material price was reduced, it was completely unknown what effect the addition of other elements had.
[0011]
The present invention significantly reduces the material price by adding a large amount of Cu to the Ni-Be binary alloy and significantly reducing the amount of Ni. On the other hand, the tensile strength and stress relaxation characteristics associated with the addition of a large amount of Cu Is reduced by the addition of a small amount of Ti, and thus mechanical properties such as tensile strength and hardness are equivalent to those of Ni-Be-Ti ternary alloys, and Ni has excellent stress relaxation properties. It has succeeded in obtaining a base alloy at a low price.
[0012]
Further, the present invention has an excellent improvement in marine organism antifouling properties by containing a large amount of Cu, not to mention having excellent corrosion resistance as a Ni-based alloy.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason why the composition range of the alloy components is limited to the above range in the present invention will be described.
Cu: Over 15.0 mass% and below 35.0 mass%
Even if Cu is added in a relatively large amount to Ni-Be binary alloy, the properties such as strength and heat resistance are not deteriorated so much, while marine organism antifouling property is greatly improved by addition of Cu. Compared to Ni, the material price is much cheaper, so it is included as an alternative component of Ni, but if the content exceeds 35.0 mass%, not only the tensile strength decreases but also the corrosion resistance deteriorates, while at 15.0 mass% or less Since the effect of lowering the material price due to the addition is reduced and the marine organism antifouling property is deteriorated, the Cu content is limited to the range of more than 15.0 mass% and less than 35.0 mass%. More preferably, it is 16.0-30.0 mass%.
[0014]
Be : 1.30 ~ 1.80mass%
Be is an element that not only contributes effectively to the improvement of mechanical properties, but is also useful for improving stress relaxation properties and corrosion resistance. However, if its content is less than 1.30 mass%, its additive effect is poor. If the amount exceeds 1.80 mass%, the effect of reducing the material price becomes small, so the amount of Be is limited to the range of 1.30 to 1.80 mass%.
[0015]
Ti: 0.10 ~ 1.00mass%
Ti is a useful element that enhances age- hardening ability and compensates for deterioration of mechanical properties due to the addition of a large amount of Cu. However, if the content is less than 0.10 mass%, the effect of promoting age- hardening ability is poor, whereas 1.00 mass% Since exceeding the strength causes a decrease in tensile strength and hardness, the Ti content is limited to a range of 0.10 to 1.00 mass%.
[0016]
Fe: 0.50 mass% or less
Fe is a useful element that refines the crystal grains to improve workability and at the same time improves the mechanical properties. However, if the content exceeds 0.5 mass%, the effect reaches saturation, so Fe is 0.50 mass. % To be contained.
[0017]
By the way, in the alloy system of the present invention, the material price is the highest, and the price of Ni is about 100 times when the price of Ni is 1.0.
In this regard, when using 4% Be-Cu alloy, for example, as the raw material for Be, instead of the expensive pure Be as described above, the price is only about 31 times that of Ni. Compared to, the price of Be can be reduced to about 1/3.
Therefore, in order to reduce the material cost, it is more advantageous to use an inexpensive beryllium-copper alloy as the Be raw material.
[0018]
Next, the suitable manufacturing method of this invention alloy is demonstrated.
First, an ingot is made by melting and casting, and then formed into a rough shape of a target product by hot working such as hot forging or hot rolling. Next, after intermediate forming to a shape close to the final product and finishing (cold rolling) as necessary, solution treatment is performed at 950 to 1080 ° C. for about 3 minutes to 3 hours, and then 450 to 650. The strength and hardness of this alloy are increased by an aging treatment at 1 ° C. for about 1 to 4 hours to obtain a final product.
When used as a marine material, it can be used in a solution treatment state, and further in a finishing state.
[0019]
【Example】
Example 1
An alloy having the composition shown in Table 1 was melted and cast with a vacuum arc melting apparatus, and then solution treatment and cold rolling were repeated to obtain a plate material having a thickness of 0.25 mm. Next, as a final solution treatment, after heating at 1050 ° C. for 1 hour, cooling in water was performed, and after 20% cold rolling, an aging treatment was performed at 450 ° C. for 2 hours to obtain a product.
Table 2 shows the results of examining the hardness, tensile strength, 0.2% proof stress and stress relaxation characteristics of the product plate thus obtained.
[0020]
Here, the stress relaxation characteristics are such that 75% of the 0.2% proof stress of each specimen acts as the maximum bending stress, the bending load is released after holding at 200 ° C for 100 hours, the amount of permanent deformation at that time is measured, and the residual stress It was calculated in terms of rate. Further, this characteristic was evaluated for a sample punched in the rolling direction.
Nos. 1 to 12 are conforming examples, and Nos. 13 to 24 are comparative examples (note that Comparative Example 1 of No. 13 is a conventional Ni-Be-Ti ternary alloy).
[0021]
[Table 1]
Figure 0003711007
[0022]
[Table 2]
Figure 0003711007
[0023]
As shown in Table 2, all of the conformity examples obtained according to the present invention have the same characteristics as the Ni—Be—Ti ternary alloy.
On the other hand, as in Comparative Example 2, when Cu is simply added to the Ni—Be binary alloy, the precipitation hardening ability of Be is small, and precipitation hardening cannot be expected so much. Decreases.
On the other hand, when a small amount of Ti is added according to the present invention, the precipitation hardening ability reduced by the addition of Cu is recovered, and the mechanical properties are equivalent to those of the Ni—Be—Ti ternary alloy (Compliant Examples 1 to 6). ). Furthermore, when Fe is added in a small amount, various characteristics can be further improved (Examples 7 to 12).
[0024]
Example 2
In this example, material prices are compared.
The unit metal prices of the components used in the present invention are as shown in Table 3 (in Table 3, the unit price of Ni is relatively shown with 1.0 for each metal unit price).
[0025]
[Table 3]
Figure 0003711007
[0026]
Now, regarding the Ni-1.8Be-0.5 Ti alloy, which is a conventional representative component system, when the material price is obtained according to the price list of Table 3, the index is 2.74 (Ni unit price: based on 1.0).
On the other hand, the maximum and minimum amounts in the alloy system of the present invention are as follows, and the raw material price can be reduced by about 4 to 24%.
Maximum Ni-1.8Be -0.5 Ti-15Cu alloy Index: 2.63
Minimum Ni-1.8Be -0.5 Ti-35Cu alloy Index: 2.08
[0027]
In addition, when 4% Be-Cu alloy is used as the raw material for Be, the maximum and minimum amounts are as follows:
Maximum amount Ni-1.8Be -0.5 Ti-15Cu alloy Index: 1.45
Minimum Ni-1.8Be -0.5 Ti-35Cu alloy Index: 1.19
In this case, the raw material price can be reduced by about 47 to 57%.
[0028]
Example 3
An alloy having the composition shown in Table 4 was subjected to a solution treatment and an aging treatment in the same manner as in Example 1 to produce a test piece having a thickness of 2.0 mm, a width of 15 mm, and a length of 40 mm. It was subjected to a fluid seawater corrosion test using seawater, and the corrosion resistance under fluid seawater was investigated.
The test conditions are as follows.
(1) Test solution: artificial seawater (jamarin)
(2) Flow velocity: 1.5, 2.8, 6.0 m / s
(3) Temperature: about 40 ℃
(4) Test days: 100 days Corrosion resistance was evaluated by weight change before and after the corrosion test.
The results obtained are shown in Table 5.
[0029]
[Table 4]
Figure 0003711007
[0030]
[Table 5]
Figure 0003711007
[0031]
As shown in Table 5, the component system of the present invention has extremely superior corrosion resistance even under flowing seawater as compared with the conventional Be-Cu alloy (A-1) and Be-Ni alloy (BB-1). You can see that
In particular, it can be seen that, in the aging treatment material, when Cu is added compared to the Be-Ni alloy, the corrosion weight loss is less and more excellent corrosion resistance is obtained.
[0032]
Example 4
Similarly, the test piece having a composition shown in Table 4 having a thickness of 2.0 mm, a width of 300 mm, and a length of 300 mm was immersed in natural seawater and allowed to stand for one year. The state of living organisms was observed.
The results are shown in Table 6.
[0033]
[Table 6]
Figure 0003711007
[0034]
As shown in Table 6, it can be seen that the Ni-Be-Cu-based alloy according to the present invention has significantly improved marine organism antifouling properties as compared with conventional Be-Ni alloys.
[0035]
【The invention's effect】
Thus, according to the present invention, compared to the conventional Ni-Be-Ti ternary alloy, the material price can be greatly reduced without causing deterioration of basic characteristics, and further, marine organisms can be reduced. The antifouling property can be remarkably improved and is extremely useful in the industry.

Claims (3)

Cu:15.0mass%を超え、35.0mass%以下、
Be:1.30〜1.80mass%および
Ti:0.10〜1.00mass%
を含有し、残部 Niの組成になるNi基合金。
Cu: more than 15.0 mass%, less than 35.0 mass%,
Be: 1.30 to 1.80 mass% and
Ti: 0.10 ~ 1.00mass%
Ni-based alloy containing Ni with the balance being Ni .
Cu:15.0mass%を超え、35.0mass%以下、
Be:1.30〜1.80mass%、
Ti:0.10〜1.00mass%および
Fe:0.50mass%以下
を含有し、残部 Niの組成になるNi基合金。
Cu: more than 15.0 mass%, less than 35.0 mass%,
Be: 1.30 to 1.80 mass%,
Ti: 0.10-1.00mass% and
Fe: Ni-based alloy containing 0.50 mass% or less with the balance being Ni .
請求項1または2において、合金成分であるCuおよびBeの原料として、ベリリウム−銅合金を用いたことを特徴とするNi基合金。  3. The Ni-based alloy according to claim 1, wherein a beryllium-copper alloy is used as a raw material for Cu and Be which are alloy components.
JP2000292328A 1999-12-24 2000-09-26 Ni-based alloy Expired - Lifetime JP3711007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000292328A JP3711007B2 (en) 1999-12-24 2000-09-26 Ni-based alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP36649999 1999-12-24
JP11-366499 1999-12-24
JP2000292328A JP3711007B2 (en) 1999-12-24 2000-09-26 Ni-based alloy

Publications (2)

Publication Number Publication Date
JP2001240928A JP2001240928A (en) 2001-09-04
JP3711007B2 true JP3711007B2 (en) 2005-10-26

Family

ID=26581802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000292328A Expired - Lifetime JP3711007B2 (en) 1999-12-24 2000-09-26 Ni-based alloy

Country Status (1)

Country Link
JP (1) JP3711007B2 (en)

Also Published As

Publication number Publication date
JP2001240928A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JP2617703B2 (en) Method for producing a copper-based alloy having improved combination ultimate tensile strength, electrical conductivity and stress relaxation resistance
JPH0625388B2 (en) High strength, high conductivity copper base alloy
JP2010007166A (en) alpha+beta TYPE TITANIUM ALLOY FOR CASTING, AND GOLF CLUB HEAD USING THE SAME
EP0189637B1 (en) Copper alloy and production of the same
JP2011508081A (en) Copper-nickel-silicon alloy
JPS60215734A (en) Al-base alloy and production of product therefrom
JP2005060773A (en) Special brass and method for increasing strength of the special brass
EP1009866A1 (en) Grain refined tin brass
US3364016A (en) Copper alloys for springs
JP2010150624A (en) alpha+beta TYPE TITANIUM ALLOY FOR CASTING, AND GOLF CLUB HEAD USING THE SAME
JPH02145737A (en) High strength and high conductivity copper-base alloy
JPH01177327A (en) Free cutting copper-based alloy showing silver-white
US6059905A (en) Process for treating a copper-beryllium alloy
JP3711007B2 (en) Ni-based alloy
JP7183285B2 (en) Materials processed from copper alloy
JP3274178B2 (en) Copper base alloy for heat exchanger and method for producing the same
JP3274175B2 (en) Copper base alloy for heat exchanger and method for producing the same
JPH07216487A (en) Aluminum alloy, excellent in wear resistance and heat resistance, and its production
JPS6033328A (en) Copper-based alloy for lead frame and manufacture thereof
KR102609594B1 (en) Copper-Nickel-Silicon-Manganese alloy comprising G-Phase and manufacturing method thereof
JP6927418B2 (en) Titanium alloy and its manufacturing method
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JPH07316699A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
JP2000273562A (en) High strength and high electrical conductivity copper alloy excellent in stress relaxation resistance
WO2020203041A1 (en) Heat-resistant magnesium alloy for casting

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3711007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8