JP3710994B2 - Flow rate sensor - Google Patents

Flow rate sensor Download PDF

Info

Publication number
JP3710994B2
JP3710994B2 JP2000176610A JP2000176610A JP3710994B2 JP 3710994 B2 JP3710994 B2 JP 3710994B2 JP 2000176610 A JP2000176610 A JP 2000176610A JP 2000176610 A JP2000176610 A JP 2000176610A JP 3710994 B2 JP3710994 B2 JP 3710994B2
Authority
JP
Japan
Prior art keywords
cold junction
flow rate
fluid
thermocouple
support base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000176610A
Other languages
Japanese (ja)
Other versions
JP2001318106A (en
Inventor
康広 岡本
秀文 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2000176610A priority Critical patent/JP3710994B2/en
Publication of JP2001318106A publication Critical patent/JP2001318106A/en
Application granted granted Critical
Publication of JP3710994B2 publication Critical patent/JP3710994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は流速センサに係わり、特に、少なくとも一部が流速を検出すべき流体が流れる流路を形成する支持基台に、流体を加熱するヒータと、2種類の導電性部材から構成されると共に、該導電性部材の接続点である温接点及び冷接点を有する熱電対とを設け、熱電対が両接点間の熱起電力を利用してそれぞれ検出した流体の温度によって流速を検出する流速センサに関する。
【0002】
【従来の技術】
上述した流速センサの一例として、一般に図4に示されたようなものが知られている。同図において、支持基台1aの中央部には異方性エッチングにより薄肉状に形成された薄肉状部1a−1が設けられている。そして、この薄肉状部1a−1の上に流路を設けると共に、薄肉状部1a−1の上面に矢印1b方向に流体が流れるようにする。
【0003】
また、同図において、薄膜のマイクロヒータ1cは、薄肉状部1a−1の上面又は下面に設けられ、このマイクロヒータ1cには、駆動電流を供給するための電源配線1dが接続される。この電源配線1dには、パルス電圧または電流を出力する図示しないマイクロヒータ駆動回路が接続されている。従って、マイクロヒータ1cは、マイクロヒータ駆動回路がパルスを出力するたびに、電源配線1dを介して通電され加熱する。薄肉状部1a−1の上面にはまた、このマイクロヒータ1cを挟んだ上流側及び下流側に上流側及び下流側サーモパイル1e、1fの温接点群Sogがそれぞれ設けられている。この上流側及び下流側サーモパイル1e、1fは、熱電対を直列に多数接続することにより、その感度の向上を図ったものである。
【0004】
上流側及び下流側サーモパイル1e、1fは、図5のサーモパイルの拡大図に示すように熱電対を構成する2種類の導電性部材、例えばアルミニウム(以下、Alとする)配線10と、P型シリコン(以下、P++−Siとする)配線20とが交互に直列接続して形成されている。そして、Al配線10の一端とP++−Si配線20との接点である温接点Soが熱伝導率の低い薄肉状部1a−1に、Al配線10の他端とP++−Si配線20との接点である冷接点Srが、薄肉状部1a−1以外の支持基台1aである肉厚状部1a−2にそれぞれ配置されている。肉厚状部1a−2は、その熱伝導率がAl配線10及びP++−Si配線20より高くなるように肉厚に形成されている。
【0005】
従って、上流側及び下流側サーモパイル1e、1fは、図4に示すように、複数の温接点Soからなる温接点群Sogが薄肉状部1a−1に、複数の冷接点Srからなる冷接点群Srgが肉厚状部1a−2にそれぞれ設けられることとなる。このため、マイクロヒータ1cが加熱を開始し、その上下流側の流体が周囲温度よりも上昇すると、その熱は熱伝導率の低い薄肉状部1a−1には伝導されずほとんどが温接点群Sogに伝導されるため、温接点群Sogはマイクロヒータ1cの上下流側の流体の温度とほぼ等しくなる。一方、冷接点群Srgは、冷接点群Srg上を通過する流体の温度が上昇しても、その熱はAl配線10及びP++−Si配線20より伝導率の高い肉厚状部1a−2に伝わり逃げるため、ほぼ周囲温度に保たれている。この結果、上流側及び下流側サーモパイル1e、1fの温接点群Sog−冷接点群Srgにはそれぞれ、マイクロヒータ1cの上下流側の流体の温度に応じた熱起電力が生じる。
【0006】
上述した構成の流速センサの動作について図6のタイムチャート及び図7の温度分布図を参照にして以下説明する。マイクロヒータ1cは、マイクロヒータ駆動回路が出力する矩形パルスの立ち上がりと同時に駆動電流が流れ、所定時間加熱を行う(図6(a))。この結果、流路に流体が流れていないときは、マイクロヒータ1c付近の気体に熱が伝わり、マイクロヒータ1c付近の上流側、下流側の温度分布は対称分布になる。つまり、両サーモパイル1e、1fの温接点群Sogは、等しい温度tに上昇する(図7)。従って、上流側及び下流側サーモパイル1e、1fは、等しいピーク電圧を有する熱起電力であるパルス電圧V1、V2を出力する(図6(b)、(c))。
【0007】
今、マイクロヒータ1cが通電している間、矢印1bの方向に流体が流れると、上流側は流体により冷却され、その流速に応じてΔTdだけ降温する(図7)。一方、下流側は気体の流れを媒体としてマイクロヒータ1cから熱伝導が促進され、その流速に応じてΔTuだけ昇温する(図7)。この結果、上流側サーモパイル1eは流体により降温されたピーク電圧を有するパルス電圧V1を、下流側サーモパイル1fは流体により昇温されたピーク電圧を有するパルス電圧V2をそれぞれ出力する(図6(d)、(e))。流速が増加すると、それに伴って、上述した降温分ΔTdと昇温分ΔTuも増加するので、パルス電圧V1、V2のピーク電圧の差は流速に応じた出力となる。
【0008】
また、マイクロヒータ1cを常時通電することにより連続的に駆動して、流速に応じた上下流側サーモパイル1e、1fの電圧差を出力する流速センサも知られている。
【0009】
【発明が解決しようとする課題】
ところで、以前より流速センサの感度を向上させたいという要望があった。このような要望に答えるため、上述したように従来の流速センサでは、より多数の熱電対を直列に接続して上流側及び下流側サーモパイル1e、1fを構成することにより、サーモパイル1e、1fの感度を向上させて、流速センサの感度向上を図っている。しかしながら、支持基台1aのスペースの関係上、直列接続する熱電対の数にも限界があり、すなわちその感度の向上にも限界がある。そこで、より一層の感度向上を図るために、パルス電圧V1及びV2やピーク差(V1−V2)を増幅回路により増幅させることも考えられるが、回路規模も消費電力も大きくなるという問題が生じる。
【0010】
そこで、本発明は、上記のような問題点に着目し、回路規模や消費電力を大きくすることなく、感度の向上を図った流速センサを提供することを課題とする。
【0011】
【課題を解決するための手段】
上記課題を解決するためになされた請求項1記載の発明は、少なくとも一部が流速を検出すべき流体が流れる流路を形成する支持基台に、前記流体を加熱するヒータと、2種類の導電性部材から構成されると共に、該導電性部材の接続点である温接点及び冷接点を有する熱電対とを搭載し、前記熱電対が前記両接点間の熱起電力を利用してそれぞれ検出した流体の温度によって流速を検出する流速センサにおいて、前記支持基台の前記ヒータ及び前記熱電対が搭載される搭載面に凸起部を設け、前記温接点及び前記冷接点のうち、前記冷接点のみを該凸起部上に搭載することを特徴とする流速センサに存する。
【0012】
請求項1記載の発明によれば、支持基台のヒータ及び熱電対が搭載される搭載面に凸起部を設け、温接点及び冷接点のうち、冷接点のみを凸起部上に搭載する。従って、ヒータが流速を検出すべき流体を加熱すると、ヒータが設けられている支持基台を介してヒータからの熱が冷接点に伝わるが、上記凸起部により支持基台を介してのヒータから冷接点への熱伝導は阻止されるため、ヒータから支持基台を介して伝導される熱を冷接点が吸収して、冷接点の温度が上昇することがない。このため、温接点−冷接点間の温度差が増大するので、その温度差に応じた熱電対の熱起電力を増幅することができる。すなわち、増幅回路により熱電対の熱起電力である出力電圧を増幅することなく、熱電対の出力電圧を増幅することができる。
【0013】
請求項2記載の発明は、前記凸起部は前記支持基台と同一部材で形成されていることを特徴とする請求項1記載の流速センサに存する。
【0014】
請求項2記載の発明によれば、凸起部は支持基台と同一部材で形成されている。従って、支持基台を凸起させるだけで別の材料を用いる必要がない。
【0015】
請求項3記載の発明は、前記熱電対の温接点及び冷接点のうち、前記冷接点のみの流路側を覆う部材を設けたことを特徴とする請求項1又は2記載の流速センサに存する。
【0016】
請求項3記載の発明によれば、熱電対の温接点及び冷接点のうち、冷接点のみの流路側を覆う部材を設けた。従って、ヒータが流速を検出すべき流体を加熱すると、流体を介してヒータからの熱が冷接点に伝わるが、上記冷接点のみの流路側を覆う部材により流体を介してのヒータから冷接点への熱伝導が阻止されるため、ヒータから流体を介して伝導される熱を冷接点が吸収して、冷接点の温度が上昇することがない。このため、温接点−冷接点間の温度差が増大するので、その温度差に応じた熱電対の熱起電力をより一層増幅することができる。
【0017】
請求項4記載の発明は、少なくとも一部が流速を検出すべき流体が流れる流路を形成する支持基台に、前記流体を加熱するヒータと、2種類の導電性部材から構成されると共に、該導電性部材の接続点である温接点及び冷接点を有する熱電対とを搭載し、前記熱電対が前記両接点間の熱起電力を利用してそれぞれ検出した流体の温度によって流速を検出する流速センサにおいて、前記熱電対の温接点及び冷接点のうち、前記冷接点のみの流路側を覆う部材を設けたことを特徴とする流速センサに存する。
【0018】
請求項4記載の発明によれば、熱電対の温接点及び冷接点のうち、冷接点のみの流路側を覆う部材を設けた。従って、ヒータが流速を検出すべき流体を加熱すると、流体を介してヒータからの熱が冷接点に伝わるが、上記冷接点のみの流路側を覆う部材により流路を介してのヒータから冷接点への熱伝導が阻止されるため、ヒータから流体を介して伝導される熱を冷接点が吸収して、冷接点の温度が上昇することがない。このため、温接点−冷接点間の温度差が増大するために、その温度差に応じた熱電対の熱起電力を増幅することができる。すなわち、増幅回路により熱電対の熱起電力である出力電圧を増幅することなく、熱電対の出力電圧を増幅することができる。
【0019】
【発明の実施の形態】
第1実施例
以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の流速センサの一実施の形態を示す断面図である。従来で説明したように、下流側サーモパイル1fは複数の熱電対を直列に接続して構成されているものであるが、断面図を簡単にするために、図1は、下流側サーモパイル1fが単一の熱電対により構成されたときの断面図を示す。同図において、図4で上述した従来と同等の部分には同一符号を付してその詳細な説明は省略する。
【0020】
図中、支持基台1aは、シリコン基板(以下、Si基板)30と、該Si基板30の両面に形成された4窒化3ケイ素/2酸化ケイ素層(以下、Si34/SiO2層)41及び42とからなる。そして、この支持基台1aに、流速を検出すべき流体を加熱するマイクロヒータ1cと、該マイクロヒータ1cを挟んで流体の上流側及び下流側にそれぞれ配置された上流側サーモパイル1e及び下流側サーモパイル1fとが設けられている。上流側及び下流側サーモパイル1e、1fは、上述した従来と同様に、2種類の導電性部材、すなわちアルミニウム配線(以下、Al配線)10と、P型シリコン配線(以下、P++−Si)配線20とから構成されている。これらの導電性部材は、温接点So及び冷接点Sr部分のみが接続され、それ以外の部分は互いにSi34/SiO2層41により絶縁されている。
【0021】
また、マイクロヒータ1cと両サーモパイル1e、1fの温接点Soとが設けられている中央部分の支持基台1aは、異方性エッチングにより、Si34/SiO2層42とSi基板30とが除去され、薄肉状に形成されている。この薄肉状に形成された部分が薄肉状部1a−1であり、該薄肉状部1a−1以外の支持基台1aが肉厚状部1a−2である。
【0022】
さらに、支持基台1a上面が流路となっており、矢印1b方向に流速を検出すべき流体が流れるようになっている。そして、この流路と両サーモパイル1e、1fの冷接点Srとの間には、第2の熱絶縁部材1g−2(=冷接点のみの流路側を覆う部材)が設けられており、この第2の熱絶縁部材1g−2により流路と両サーモパイル1e、1fとの冷接点Srとは熱的に絶縁されている。このように流路と冷接点Srとの間に第2の熱絶縁部材1g−2を設けると、図2に示すように流路と冷接点群Srgとの間に、第2の熱絶縁部材1g−2が設けられることとなる。
【0023】
上述したような構成の流速センサの熱の移動について以下説明する。まず、マイクロヒータ1cが駆動して加熱が行われると、マイクロヒータ1c付近の上下流側の流体の温度分布は図7で上述したように、周囲温度より高くなる。従って、マイクロヒータ1cを挟んで流体の上下流側に配置された上流側及び下流側サーモパイル1e、1fの温接点群Sogは、マイクロヒータ1cにより加熱された流体からの熱を吸収して、温接点群Sog上面を通過する流体の温度に応じた温度に上昇する。
【0024】
一方、上流側及び下流側サーモパイル1e、1fの冷接点群Srgも、マイクロヒータ1cを挟んだ流体の上下流側にそれぞれ配置されているが、冷接点群Srg上面を通過する流体からの熱は、冷接点群Srgが設けられている熱伝導率の高い肉厚状部1a−2を介して逃げるため、冷接点群Srgは周囲温度に保たれる。しかも、流路と冷接点群Srgとは、第2の熱絶縁部材1g−2により熱的に絶縁されているため、流体を介してのマイクロヒータ1cから冷接点群Srgへの熱伝導が阻止されている。従って、冷接点群Srgが、マイクロヒータ1cにより加熱された流体の影響を受けることはなく、温度が上昇することがない。すなわち第2の熱絶縁部材1g−2により、冷接点群Srgはより一層周囲温度に保たれるようになる。
【0025】
このため、温接点群Sog−冷接点群Srg間の温度差が増大し、その温度差に応じた上流側及び下流側サーモパイル1e、1fの熱起電力を増幅することができる。すなわち、増幅回路により上流側又は下流側サーモパイル1e、1fの熱起電力である出力電圧を増幅することなく、上流側及び下流側サーモパイル1e、1fの出力電圧を増幅することができるので、回路規模や消費電力を大きくすることなく、感度の向上を図ることができる。
【0026】
第2実施例
ところで、上述した第1実施例では、第2の熱絶縁部材1g−2により、冷接点群Srg上面を通過する流体を介して伝わってくるマイクロヒータ1cからの熱を絶縁して、冷接点群Srgの温度上昇を防止していたが、この流体を介して伝わってくる熱の他に、図1に示すマイクロヒータ1cが設けられているSi34/SiO2層41から伝わってくる熱によって冷接点群Srgの温度が上昇することも考えられる。
【0027】
そこで、図1では、マイクロヒータ1cが設けられているSi34/SiO2層と、Al配線10及びP++−Si配線20を電気的に絶縁するSi34/SiO2層41とを一体にして形成していたが、第2実施例では図3の流速センサの断面図に示すように、マイクロヒータ1cが設けられるSi34/SiO2層41と、Al配線10及びP++−Si配線20を電気的に絶縁するSiO2層43とを別々に形成して、さらに、マイクロヒータ1cが設けられている支持基台1aを構成するSi34/SiO2層41と、冷接点群Srgとの間に第1の熱絶縁部材1g−1(=凸起部)を設けてある。この第1の熱絶縁部材1g−1により、マイクロヒータ1cが設けられている支持基台1aを構成するSi34/SiO2層41と、冷接点群Srgとが熱的に絶縁される。
【0028】
上述した構成の第2実施例における流速センサの熱の移動について以下説明する。まず、マイクロヒータ1cが駆動して加熱が行われると、マイクロヒータ1cが設けられているSi34/SiO2層41を介してマイクロヒータ1cからの熱が矢印50の方向に伝導する。上記構成で説明したように、Si34/SiO2層41と冷接点群Srgとは第1の熱絶縁部材1g−1により熱的に絶縁され、Si34/SiO2層41を介してのマイクロヒータ1cから冷接点群Srgへの熱伝導が阻止されているため、Si34/SiO2層41を介して伝導されたマイクロヒータ1cからの熱は冷接点群Srgに伝導されず、Si34/SiO2層41から伝導される熱により冷接点群Srgの温度が周囲温度より上昇することはない。従って、より一層温接点群Sog−冷接点群Srgの温度差が増大するので、流速センサの感度を向上することができる。
【0029】
なお、第1の熱絶縁部材1g−1は、Si34/SiO2層41より熱伝導率の低い別材料により形成してもよいが、例えば、支持基台1aを構成するSi34/SiO2層41を凸起させることにより、Si34/SiO2層41と同一材料で形成してもよい。この場合は、マイクロヒータ1cから冷接点郡Srgへの熱の伝導経路がSi34/SiO2層41の凸起部を介す分長くなり、マイクロヒータ1cから支持基台1aを介して冷接点郡Srgに伝わる熱を、阻止することができる。
【0030】
このため、マイクロヒータ1cから冷接点郡Srgへの熱を伝わりにくくすることができる。すなわち、支持基台1aを構成するSi34/SiO2層41を凸起させるだけでも、支持基台1aと冷接点群Srgとを熱的に絶縁することができるので、支持基台を凸起させるだけで別途の材料用いることなく第1の熱絶縁部材1g−1を形成することができ、構成が簡単となりコストダウンを図ることができる。
【0031】
なお、上述した第1〜第2実施例では、上流側及び下流側サーモパイル1e、1f両方の冷接点群Srgに対して第2の熱絶縁部材1g−2又は第1の熱絶縁部材1g−1とを設けていたが、例えば、そんなに感度を向上させる必要がなければ、上流側及び下流側サーモパイル1e、1fの何れか一方の冷接点群Srgに対して設けるようにしてもよい。
【0032】
【発明の効果】
以上説明したように、請求項1及び4記載の発明によれば、増幅回路により熱電対の熱起電力である出力電圧を増幅することなく、熱電対の出力電圧を増幅することができるので、回路規模や消費電力を大きくすることなく、感度の向上を図った流速センサを得ることができる。
【0033】
請求項2記載の発明によれば、支持基台を凸起させるだけで別の材料を用いる必要がないので、構成が簡単となりコストダウンを図ることができる流速センサを得ることができる。
【0034】
請求項3記載の発明によれば、温接点−冷接点間の温度差が増大するので、その温度差に応じた熱電対の熱起電力をより一層増幅することができるので、感度のより一層の向上を図った流速センサを得ることができる。
【図面の簡単な説明】
【図1】本発明の流速センサの一実施の形態を示す断面図である。
【図2】図1の流速センサの平面図である。
【図3】本発明の流速センサの一実施の形態を示す断面図である。
【図4】従来の流速センサの一例を示す図である。
【図5】図4の流速センサを構成するサーモパイルの拡大天面図である。
【図6】図4の流速センサの動作を説明するためのタイムチャートである。
【図7】図4のマイクロヒータの上下流側の温度分布を示すグラフである。
【符号の説明】
1a 支持基台
1c マイクロヒータ(ヒータ)
1e 上流側サーモパイル(熱電対)
1f 下流側サーモパイル(熱電対)
10 Al配線(導電性部材)
20 P++−Si配線(導電性部材)
So 温接点
Sr 冷接点
1g−2 第2の熱絶縁部材(第2の熱伝導阻止手段)
1g−1 第1の熱絶縁部材(第1の熱伝導阻止手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow rate sensor, and in particular, a support base that forms a flow path through which a fluid whose flow rate is to be detected is formed, a heater that heats the fluid, and two types of conductive members. And a thermocouple having a hot junction and a cold junction that are connection points of the conductive member, and a thermocouple that detects the flow velocity according to the temperature of the fluid respectively detected using the thermoelectromotive force between the two contacts About.
[0002]
[Prior art]
As an example of the flow velocity sensor described above, one shown in FIG. 4 is generally known. In the figure, a thin-walled portion 1a-1 formed thinly by anisotropic etching is provided at the center of the support base 1a. And while providing a flow path on this thin part 1a-1, it is made for a fluid to flow to the upper surface of the thin part 1a-1 in the arrow 1b direction.
[0003]
Also, in the figure, a thin-film microheater 1c is provided on the upper or lower surface of the thin-walled portion 1a-1, and a power supply wiring 1d for supplying a drive current is connected to the microheater 1c. A microheater driving circuit (not shown) that outputs a pulse voltage or current is connected to the power supply wiring 1d. Therefore, every time the microheater driving circuit outputs a pulse, the microheater 1c is energized and heated through the power supply wiring 1d. On the upper surface of the thin-walled portion 1a-1, upstream and downstream thermopile 1e, 1f are connected to the upstream and downstream sides of the microheater 1c, respectively. The upstream and downstream thermopiles 1e and 1f are intended to improve sensitivity by connecting a large number of thermocouples in series.
[0004]
As shown in the enlarged view of the thermopile in FIG. 5, the upstream side and downstream side thermopile 1e, 1f are two kinds of conductive members constituting a thermocouple, for example, aluminum (hereinafter referred to as Al) wiring 10 and P-type silicon. Wirings 20 (hereinafter referred to as P ++- Si) are alternately connected in series. The hot contact So, which is a contact point between one end of the Al wiring 10 and the P ++ -Si wiring 20, is connected to the thin-walled portion 1 a-1 having a low thermal conductivity, and the other end of the Al wiring 10 and the P ++ -Si wiring. Cold junction Sr which is a contact with 20 is arranged in thick part 1a-2 which is support base 1a other than thin part 1a-1. The thick portion 1a-2 is formed thick so that its thermal conductivity is higher than that of the Al wiring 10 and the P ++- Si wiring 20.
[0005]
Therefore, as shown in FIG. 4, the upstream and downstream side thermopile 1 e, 1 f includes a cold junction group consisting of a plurality of cold junctions Sr and a hot junction group Sog consisting of a plurality of hot junctions So. Srg is provided in each of the thick portions 1a-2. For this reason, when the microheater 1c starts heating and the upstream and downstream fluid rises above the ambient temperature, the heat is not conducted to the thin-walled portion 1a-1 having a low thermal conductivity, and most of the hot junction groups. Since it is conducted to Sog, the hot junction group Sog becomes substantially equal to the temperature of the fluid on the upstream and downstream sides of the microheater 1c. On the other hand, in the cold junction group Srg, even if the temperature of the fluid passing over the cold junction group Srg rises, the heat is thicker than the Al wiring 10 and the P ++- Si wiring 20, and the thick portion 1a- Since it is transmitted to 2 and escapes, it is kept at almost the ambient temperature. As a result, the thermoelectromotive force according to the temperature of the fluid on the upstream and downstream sides of the microheater 1c is generated in the hot junction group Sog and the cold junction group Srg of the upstream and downstream thermopiles 1e and 1f, respectively.
[0006]
The operation of the flow velocity sensor configured as described above will be described below with reference to the time chart of FIG. 6 and the temperature distribution diagram of FIG. In the microheater 1c, a driving current flows simultaneously with the rise of the rectangular pulse output from the microheater driving circuit, and heating is performed for a predetermined time (FIG. 6A). As a result, when no fluid is flowing through the flow path, heat is transferred to the gas near the microheater 1c, and the upstream and downstream temperature distributions near the microheater 1c are symmetrical. That is, the hot junction groups Sog of both thermopile 1e and 1f rise to the same temperature t (FIG. 7). Therefore, the upstream and downstream thermopiles 1e and 1f output pulse voltages V1 and V2 that are thermoelectromotive forces having equal peak voltages (FIGS. 6B and 6C).
[0007]
Now, when the fluid flows in the direction of the arrow 1b while the microheater 1c is energized, the upstream side is cooled by the fluid, and the temperature is lowered by ΔTd according to the flow rate (FIG. 7). On the other hand, on the downstream side, heat conduction is promoted from the microheater 1c using a gas flow as a medium, and the temperature is increased by ΔTu according to the flow rate (FIG. 7). As a result, the upstream thermopile 1e outputs a pulse voltage V1 having a peak voltage lowered by the fluid, and the downstream thermopile 1f outputs a pulse voltage V2 having a peak voltage raised by the fluid (FIG. 6D). (E)). As the flow velocity increases, the temperature drop ΔTd and the temperature rise ΔTu described above also increase accordingly, so that the difference between the peak voltages of the pulse voltages V1 and V2 becomes an output corresponding to the flow velocity.
[0008]
There is also known a flow rate sensor that continuously drives the microheater 1c to energize it and outputs the voltage difference between the upstream and downstream thermopiles 1e and 1f according to the flow rate.
[0009]
[Problems to be solved by the invention]
By the way, there has been a demand for improving the sensitivity of the flow rate sensor. In order to meet such a demand, in the conventional flow rate sensor as described above, the sensitivity of the thermopile 1e, 1f is established by connecting a larger number of thermocouples in series to form the upstream and downstream thermopiles 1e, 1f. To improve the sensitivity of the flow velocity sensor. However, due to the space of the support base 1a, there is a limit to the number of thermocouples connected in series, that is, there is a limit to improving the sensitivity. Thus, in order to further improve the sensitivity, it is conceivable to amplify the pulse voltages V1 and V2 and the peak difference (V1−V2) with an amplifier circuit, but there arises a problem that the circuit scale and power consumption increase.
[0010]
Therefore, the present invention pays attention to the above problems, and an object of the present invention is to provide a flow rate sensor with improved sensitivity without increasing the circuit scale and power consumption.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that at least a part of a support base that forms a flow path through which a fluid whose flow rate is to be detected is formed, a heater for heating the fluid, It is composed of a conductive member and is equipped with a thermocouple having a hot junction and a cold junction that is a connection point of the conductive member, and the thermocouple detects each using a thermoelectromotive force between the two contacts. In the flow rate sensor that detects the flow rate according to the temperature of the fluid , a protruding portion is provided on a mounting surface on which the heater and the thermocouple of the support base are mounted, and the cold junction of the hot junction and the cold junction is provided. The flow velocity sensor is characterized in that only the protrusion is mounted on the protruding portion .
[0012]
According to the first aspect of the present invention, the protruding portion is provided on the mounting surface on which the heater and the thermocouple of the support base are mounted, and only the cold junction is mounted on the protruding portion among the hot junction and the cold junction. . Therefore, when the heater heats the fluid whose flow rate is to be detected, the heat from the heater is transmitted to the cold junction through the support base on which the heater is provided, but the heater through the support base by the protruding portion. Therefore, heat conduction from the heater to the cold junction is prevented, so that the cold junction absorbs heat conducted from the heater through the support base, and the temperature of the cold junction does not increase. For this reason, since the temperature difference between the hot junction and the cold junction increases, the thermoelectromotive force of the thermocouple corresponding to the temperature difference can be amplified. That is, the output voltage of the thermocouple can be amplified without amplifying the output voltage that is the thermoelectromotive force of the thermocouple by the amplifier circuit.
[0013]
The invention according to claim 2 resides in the flow velocity sensor according to claim 1, wherein the protruding portion is formed of the same member as the support base .
[0014]
According to the invention described in claim 2, the protruding portion is formed of the same member as the support base. Therefore, it is not necessary to use another material simply by protruding the support base.
[0015]
A third aspect of the present invention resides in the flow velocity sensor according to the first or second aspect , wherein a member that covers a flow path side of only the cold junction is provided among the hot junction and the cold junction of the thermocouple .
[0016]
According to invention of Claim 3 , the member which covers the flow path side only of a cold junction among the hot junction and the cold junction of a thermocouple was provided . Accordingly, when the heater heats the fluid whose flow rate is to be detected, the heat from the heater is transmitted to the cold junction through the fluid. However, the member covering the flow path side of only the cold junction causes the heater to the cold junction via the fluid. Therefore, the cold junction absorbs the heat conducted through the fluid from the heater and the temperature of the cold junction does not rise. For this reason, since the temperature difference between a hot junction and a cold junction increases, the thermoelectromotive force of the thermocouple according to the temperature difference can be further amplified.
[0017]
The invention according to claim 4 is composed of a heater for heating the fluid and two kinds of conductive members on a support base that forms a flow path through which a fluid whose flow rate is to be detected flows . A thermocouple having a hot junction and a cold junction as a connection point of the conductive member is mounted, and the thermocouple detects the flow velocity according to the temperature of the fluid detected using the thermoelectromotive force between the two contacts. In the flow rate sensor, a member that covers a flow path side of only the cold junction among the hot junction and the cold junction of the thermocouple is provided .
[0018]
According to invention of Claim 4 , the member which covers the flow path side only of a cold junction among the hot junction and the cold junction of a thermocouple was provided . Therefore, when the heater heats the fluid whose flow rate is to be detected, the heat from the heater is transmitted to the cold junction through the fluid, but the member that covers the flow path side of the cold junction alone causes the cold junction from the heater through the flow path. Therefore, the cold junction absorbs the heat conducted from the heater through the fluid, and the temperature of the cold junction does not increase. For this reason, since the temperature difference between the hot junction and the cold junction increases, the thermoelectromotive force of the thermocouple corresponding to the temperature difference can be amplified. That is, the output voltage of the thermocouple can be amplified without amplifying the output voltage that is the thermoelectromotive force of the thermocouple by the amplifier circuit.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
First Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view showing an embodiment of a flow rate sensor of the present invention. As described above, the downstream side thermopile 1f is configured by connecting a plurality of thermocouples in series. However, in order to simplify the cross-sectional view, FIG. Sectional drawing when comprised with one thermocouple is shown. In this figure, the same reference numerals are given to the same parts as those in the prior art described with reference to FIG.
[0020]
In the figure, a support base 1a includes a silicon substrate (hereinafter referred to as Si substrate) 30 and a silicon tetranitride / 3 silicon dioxide layer (hereinafter referred to as Si 3 N 4 / SiO 2 layer) formed on both surfaces of the Si substrate 30. ) 41 and 42. The support base 1a has a microheater 1c for heating a fluid whose flow rate is to be detected, and an upstream thermopile 1e and a downstream thermopile disposed on the upstream and downstream sides of the fluid with the microheater 1c interposed therebetween. 1f. The upstream and downstream thermopiles 1e and 1f are composed of two types of conductive members, that is, an aluminum wiring (hereinafter referred to as Al wiring) 10 and a P-type silicon wiring (hereinafter referred to as P ++- Si), as in the conventional case. The wiring 20 is comprised. In these conductive members, only the hot junction So and the cold junction Sr are connected, and the other portions are insulated from each other by the Si 3 N 4 / SiO 2 layer 41.
[0021]
Further, the support base 1a at the center portion where the microheater 1c and the hot contacts So of both the thermopile 1e and 1f are provided is formed by the anisotropic etching to the Si 3 N 4 / SiO 2 layer 42 and the Si substrate 30. Is removed to form a thin wall. The thin part is the thin part 1a-1, and the support base 1a other than the thin part 1a-1 is the thick part 1a-2.
[0022]
Furthermore, the upper surface of the support base 1a is a flow path, and a fluid whose flow rate should be detected flows in the direction of the arrow 1b. And between this flow path and the cold junction Sr of both thermopile 1e, 1f, the 2nd thermal insulation member 1g-2 (= member which covers the flow path side of only a cold junction ) is provided, This 1st The two heat insulating members 1g-2 are thermally insulated from the flow path and the cold junction Sr between the two thermopiles 1e and 1f. When the second thermal insulation member 1g-2 is provided between the flow path and the cold junction Sr as described above, the second thermal insulation member is provided between the flow path and the cold junction group Srg as shown in FIG. 1g-2 will be provided.
[0023]
The heat transfer of the flow rate sensor configured as described above will be described below. First, when the microheater 1c is driven and heated, the temperature distribution of the upstream and downstream fluids near the microheater 1c becomes higher than the ambient temperature as described above with reference to FIG. Accordingly, the upstream and downstream thermopile 1e, 1f arranged on the upstream and downstream sides of the fluid with the microheater 1c interposed therebetween absorbs heat from the fluid heated by the microheater 1c, thereby The temperature rises according to the temperature of the fluid passing through the upper surface of the contact group Sog.
[0024]
On the other hand, the cold junction groups Srg of the upstream and downstream thermopiles 1e and 1f are also arranged on the upstream and downstream sides of the fluid sandwiching the microheater 1c, but the heat from the fluid passing through the upper surface of the cold junction group Srg is The cold junction group Srg is kept at the ambient temperature because the cold junction group Srg escapes through the thick portion 1a-2 having a high thermal conductivity. Moreover, since the flow path and the cold junction group Srg are thermally insulated by the second thermal insulation member 1g-2, heat conduction from the microheater 1c to the cold junction group Srg through the fluid is prevented. Has been. Therefore, the cold junction group Srg is not affected by the fluid heated by the microheater 1c, and the temperature does not rise. That is, the cold junction group Srg is further maintained at the ambient temperature by the second thermal insulation member 1g-2.
[0025]
For this reason, the temperature difference between the hot junction group Sog and the cold junction group Srg increases, and the thermoelectromotive forces of the upstream and downstream thermopiles 1e and 1f according to the temperature difference can be amplified. In other words, the output scale of the upstream and downstream thermopile 1e, 1f can be amplified without amplifying the output voltage, which is the thermoelectromotive force of the upstream or downstream thermopile 1e, 1f, by the amplifier circuit. The sensitivity can be improved without increasing the power consumption.
[0026]
Second embodiment By the way, in the first embodiment described above, the heat from the microheater 1c transmitted by the second heat insulating member 1g-2 through the fluid passing through the upper surface of the cold junction group Srg. In this case, the temperature of the cold junction group Srg is prevented from rising. In addition to the heat transferred through the fluid, the Si 3 N 4 / SiO provided with the micro heater 1c shown in FIG. It is also conceivable that the temperature of the cold junction group Srg rises due to the heat transmitted from the second layer 41.
[0027]
Therefore, in FIG. 1, a Si 3 N 4 / SiO 2 layer micro heater 1c is provided, Si 3 N 4 / SiO 2 layer to electrically insulate the Al wiring 10 and the P ++ -Si wiring 20 41 In the second embodiment, as shown in the sectional view of the flow velocity sensor in FIG. 3, the Si 3 N 4 / SiO 2 layer 41 provided with the microheater 1c, the Al wiring 10 and A SiO 2 layer 43 that electrically insulates the P ++ -Si wiring 20 is formed separately, and further, a Si 3 N 4 / SiO 2 layer constituting the support base 1a on which the microheater 1c is provided. 41 and the cold junction group Srg are provided with a first thermal insulation member 1g-1 (= protrusion) . By this first heat insulating member 1g-1, the Si 3 N 4 / SiO 2 layer 41 constituting the support base 1a on which the micro heater 1c is provided and the cold junction group Srg are thermally insulated. .
[0028]
The heat transfer of the flow rate sensor in the second embodiment having the above-described configuration will be described below. First, when the microheater 1c is driven and heated, heat from the microheater 1c is conducted in the direction of the arrow 50 through the Si 3 N 4 / SiO 2 layer 41 provided with the microheater 1c. As described in the above configuration, the Si 3 N 4 / SiO 2 layer 41 and the cold junction group Srg are thermally insulated by the first thermal insulation member 1g-1, and the Si 3 N 4 / SiO 2 layer 41 is Heat conduction from the microheater 1c through the Si 3 N 4 / SiO 2 layer 41 to the cold junction group Srg is conducted to the cold junction group Srg. In other words, the temperature of the cold junction group Srg does not rise above the ambient temperature due to the heat conducted from the Si 3 N 4 / SiO 2 layer 41. Accordingly, since the temperature difference between the hot junction group Sog and the cold junction group Srg is further increased, the sensitivity of the flow velocity sensor can be improved.
[0029]
The first thermal insulating member 1g-1 may be formed of another material having a lower thermal conductivity than that of the Si 3 N 4 / SiO 2 layer 41. For example, the Si 3 N constituting the support base 1a may be used. 4 / by the SiO 2 layer 41 protruding cause may be formed by Si 3 N 4 / the same material and the SiO 2 layer 41. In this case, the heat conduction path from the microheater 1c to the cold junction group Srg becomes longer by the protruding portion of the Si 3 N 4 / SiO 2 layer 41, and from the microheater 1c through the support base 1a. Heat transmitted to the cold junction county Srg can be blocked.
[0030]
For this reason, it is possible to make it difficult to transfer heat from the micro heater 1c to the cold junction group Srg. In other words, the support base 1a and the cold junction group Srg can be thermally insulated simply by protruding the Si 3 N 4 / SiO 2 layer 41 constituting the support base 1a. The first heat insulating member 1g-1 can be formed without using a separate material simply by projecting, and the configuration is simplified and the cost can be reduced.
[0031]
In the first to second embodiments described above, the second thermal insulation member 1g-2 or the first thermal insulation member 1g-1 with respect to the cold junction groups Srg of both the upstream and downstream thermopiles 1e, 1f. However, for example, if it is not necessary to improve sensitivity so much, it may be provided for one of the cold junction groups Srg of the upstream side and downstream side thermopile 1e, 1f.
[0032]
【The invention's effect】
As described above, according to the first and fourth aspects of the invention, the output voltage of the thermocouple can be amplified without amplifying the output voltage that is the thermoelectromotive force of the thermocouple by the amplifier circuit. A flow rate sensor with improved sensitivity can be obtained without increasing the circuit scale and power consumption.
[0033]
According to the second aspect of the present invention, since it is not necessary to use another material simply by projecting the support base , it is possible to obtain a flow rate sensor that can be simplified in structure and reduced in cost .
[0034]
According to the invention described in claim 3, since the temperature difference between the hot junction and the cold junction increases, the thermoelectromotive force of the thermocouple corresponding to the temperature difference can be further amplified, so that the sensitivity is further increased. It is possible to obtain a flow rate sensor that is improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a flow rate sensor of the present invention.
FIG. 2 is a plan view of the flow velocity sensor of FIG.
FIG. 3 is a cross-sectional view showing an embodiment of a flow rate sensor of the present invention.
FIG. 4 is a diagram illustrating an example of a conventional flow velocity sensor.
FIG. 5 is an enlarged top view of a thermopile constituting the flow velocity sensor of FIG. 4;
6 is a time chart for explaining the operation of the flow rate sensor of FIG. 4;
7 is a graph showing temperature distribution on the upstream and downstream sides of the micro heater in FIG.
[Explanation of symbols]
1a Support base 1c Micro heater (heater)
1e Upstream thermopile (thermocouple)
1f Downstream thermopile (thermocouple)
10 Al wiring (conductive member)
20P ++- Si wiring (conductive member)
So Hot junction Sr Cold junction 1g-2 Second thermal insulation member (second thermal conduction blocking means)
1g-1 1st heat insulation member (1st heat conduction prevention means)

Claims (4)

少なくとも一部が流速を検出すべき流体が流れる流路を形成する支持基台に、前記流体を加熱するヒータと、2種類の導電性部材から構成されると共に、該導電性部材の接続点である温接点及び冷接点を有する熱電対とを搭載し、前記熱電対が前記両接点間の熱起電力を利用してそれぞれ検出した流体の温度によって流速を検出する流速センサにおいて、
前記支持基台の前記ヒータ及び前記熱電対が搭載される搭載面に凸起部を設け、前記温接点及び前記冷接点のうち、前記冷接点のみを該凸起部上に搭載することを特徴とする流速センサ。
At least a part of the support base that forms the flow path through which the fluid whose flow rate should be detected flows is composed of a heater for heating the fluid and two types of conductive members, and at the connection point of the conductive members. at a flow rate sensor in hot junction and mounting a thermocouple having a cold junction, the thermocouple detects the flow rate by the temperature of the fluid detected respectively by using the thermoelectromotive force between the two contact points,
A protruding portion is provided on a mounting surface on which the heater and the thermocouple of the support base are mounted, and of the hot junction and the cold junction, only the cold junction is mounted on the protruding portion. A flow rate sensor.
前記凸起部は前記支持基台と同一部材で形成されていることを特徴とする請求項1記載の流速センサ。The flow rate sensor according to claim 1, wherein the protruding portion is formed of the same member as the support base . 前記熱電対の温接点及び冷接点のうち、前記冷接点のみの流路側を覆う部材を設けたことを特徴とする請求項1又は2記載の流速センサ。The flow velocity sensor according to claim 1 or 2 , wherein a member that covers a flow path side of only the cold junction is provided among a hot junction and a cold junction of the thermocouple . 少なくとも一部が流速を検出すべき流体が流れる流路を形成する支持基台に、前記流体を加熱するヒータと、2種類の導電性部材から構成されると共に、該導電性部材の接続点である温接点及び冷接点を有する熱電対とを搭載し、前記熱電対が前記両接点間の熱起電力を利用してそれぞれ検出した流体の温度によって流速を検出する流速センサにおいて、
前記熱電対の温接点及び冷接点のうち、前記冷接点のみの流路側を覆う部材を設けたことを特徴とする流速センサ。
At least a part of the support base that forms the flow path through which the fluid whose flow rate should be detected flows is composed of a heater for heating the fluid and two types of conductive members, and at the connection point of the conductive members. at a flow rate sensor in hot junction and mounting a thermocouple having a cold junction, the thermocouple detects the flow rate by the temperature of the fluid detected respectively by using the thermoelectromotive force between the two contact points,
A flow rate sensor comprising a member that covers a flow path side of only the cold junction among the hot junction and the cold junction of the thermocouple.
JP2000176610A 2000-03-02 2000-06-13 Flow rate sensor Expired - Fee Related JP3710994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000176610A JP3710994B2 (en) 2000-03-02 2000-06-13 Flow rate sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-56835 2000-03-02
JP2000056835 2000-03-02
JP2000176610A JP3710994B2 (en) 2000-03-02 2000-06-13 Flow rate sensor

Publications (2)

Publication Number Publication Date
JP2001318106A JP2001318106A (en) 2001-11-16
JP3710994B2 true JP3710994B2 (en) 2005-10-26

Family

ID=26586585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000176610A Expired - Fee Related JP3710994B2 (en) 2000-03-02 2000-06-13 Flow rate sensor

Country Status (1)

Country Link
JP (1) JP3710994B2 (en)

Also Published As

Publication number Publication date
JP2001318106A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
JP5485701B2 (en) Thermoelectric element
US4744246A (en) Flow sensor on insulator
US20100078753A1 (en) Flow Sensor and Method of Fabrication
WO2002021609A1 (en) Thermoelectric cooling module with temperature sensor
JPH1155974A (en) Thermal power generation unit
JP3710994B2 (en) Flow rate sensor
JP7112373B2 (en) flow sensor chip
JPH0539966A (en) Heat pump device
JP2004503743A (en) Microstructured temperature sensor
JP5224089B2 (en) Thermal sensor
JPH0345778B2 (en)
JP2002162271A (en) Flow velocity sensor and flow velocity detector
JPH0599942A (en) Flow-velocity measuring apparatus using silicon
JPS61124861A (en) Humidity detection element
JP2002286519A (en) Thermal flow velocity sensor
JP2001249040A (en) Fluid detecting sensor and its manufacturing method
WO2021166401A1 (en) Thermal flow sensor chip
JP2016151472A (en) Contact combustion type gas sensor
JP2002168876A (en) Flow velocity sensor
JP2002054963A (en) Flow velocity sensor
JP2001153707A (en) Flow sensor
JP2002139510A (en) Flow velocity sensor
JP3710995B2 (en) Flow rate sensor
WO2001050102A1 (en) Thermopile sensor and temperature measuring method by infrared rays
GB2240627A (en) Microbridge flow sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees