JP3710831B2 - 過電流保護装置 - Google Patents

過電流保護装置 Download PDF

Info

Publication number
JP3710831B2
JP3710831B2 JP18903393A JP18903393A JP3710831B2 JP 3710831 B2 JP3710831 B2 JP 3710831B2 JP 18903393 A JP18903393 A JP 18903393A JP 18903393 A JP18903393 A JP 18903393A JP 3710831 B2 JP3710831 B2 JP 3710831B2
Authority
JP
Japan
Prior art keywords
register
bit
input
current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18903393A
Other languages
English (en)
Other versions
JPH06296322A (ja
Inventor
レオ ラグリー ジェームス
ウィリアム ワーゴウ ハリー
トメオ アンソニー
チャールス エンゲル ジョセフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Corp
Original Assignee
Eaton Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton Corp filed Critical Eaton Corp
Publication of JPH06296322A publication Critical patent/JPH06296322A/ja
Application granted granted Critical
Publication of JP3710831B2 publication Critical patent/JP3710831B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/093Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current with timing means
    • H02H3/0935Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current with timing means the timing being determined by numerical means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06JHYBRID COMPUTING ARRANGEMENTS
    • G06J1/00Hybrid computing arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
    • H02H7/262Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations involving transmissions of switching or blocking orders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/30Staggered disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/04Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks
    • H02H1/046Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks upon detecting saturation of current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/006Calibration or setting of parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、過電流による損傷から導体を保護するための、メタルクラッド開閉器や成形ケース型遮断器などのような遮断器の過電流引きはずし装置に係わり、特に、遮断器を流れる電流を絶えずモニターし、過電流引きはずし装置を駆動する変流器が飽和状態にあるときでも選択可能な引きはずし特性に応じて引きはずしを起動することができ、時間/電流特性、特に過電流保護曲線の長遅延及び短遅延部分をオーバーラップさせることなく比較的広い範囲に亘って調定できるようにすると共に時間/電流特性自体を(例えばFLAT,It,I2t,I4tのような)複数のプログラムされた関数から選択することにより配電系の全体的な整合性を高め、配電系に現われる過電流を選択的に遮断して不必要な回路遮断を無くすることによって配電系の全体的な信頼性を高めるように構成された選択可能な引きはずし特性を有するマイクロプロセッサ型過電流引きはずし装置に係わる。
【0002】
【従来の技術】
配電系統に含まれる導体を過電流による損傷から保護するための種々の過電流保護装置がすでに公知となっている。このような過電流保護装置の多くはその時間/電流特性または保護曲線によって特徴づけられる。保護曲線は過電流による導体温度の上昇を制限することによって損傷を防止するのに利用される。例えば、電流の2乗とこの電流が導体に作用する時間の積(I2t)によって過電流状態における導体温度の上昇を概算することができる。即ち、一定の温度上昇、例えば55℃を定格とする電動機の場合、この種の過電流保護装置を利用することにより電動機に含まれる導体の温度上昇を定格温度上昇以下に制限する。
【0003】
電動機との併用に適した特性の過電流保護装置を容易に選択できるようにするため、電動機のメーカーから(例えば図2に示すような)電動機動作曲線が提供されるのが普通である。この電動機動作曲線は特定の電動機の定格温度上昇時における正規の時間/電流特性をグラフで表わしたものである。従って、電動機を損傷から保護すると同時に始動時に起こる不要な電動機引きはずしを防止するため、電動機動作曲線をこの電動機への給電に用いられている遮断器の過電流保護装置の時間/電流特性と“協調させる”必要がある。
【0004】
遮断器の不要な引きはずしを防止するため、遮断器の給電回路に設けられている過電流保護装置と配電系統に使用されている種々の過電流保護装置によって保護される負荷とを協調させることも公知である。即ち、配電系統に組み込まれている全ての過電流保護装置の時間/電流特性を協調させることによって“選択的”引きはずしを可能にする。選択的引きはずしとは配電系統のうち過電流遮断に必要な部分だけを引きはずすことである。選択的引きはずしは配電系統に幾つかの利点をもたらす。
【0005】
第1に、選択的引きはずしは配電系統の信頼度を高める。例えば、電動機制御センター、ユニット変電所などは種々の電気的負荷に給電するため複数の遮断器などを含む。選択的引きはずしを利用することにより、電気的負荷の1つまたはその近傍に故障が発生した場合、その負荷だけが配電系統から隔離され、電動機制御センターなどから給電されるその他の電気的負荷はその影響を受けない。従って、配電系統の信頼度は著しく高められる。
【0006】
第2に、選択的引きはずしにより過電流発生源の位置検出及び修理に必要な保守経費が軽減される。具体的には、選択的な引きはずしを利用して過電流発生源の直ぐ上流の遮断器またはその他の保護装置を引きはずす。従って、過電流発生源の位置を比較的迅速に検出して必要な保守時間を短縮すると共に引きはずされた電気的負荷の停止時間を短縮することができる。さらにまた、この選択的引きはずしは交換を必要とするヒューズのような遮断装置の不要な引きはずしを防止して保守経費を軽減し、配電系統の停止時間を短縮することができる。
【0007】
選択的引きはずしはまた配電系統に組み込まれた遮断器のサイクル寿命を最適化する。具体的には、配電系統に含まれる種々の成形ケース型遮断器やメタルクラッド開閉装置は交換または修理が必要となるまで所定回数だけ作用可能とされている。この所定回数をサイクル寿命と呼ぶ。配電系統内の各種遮断器の不要な動作を回避することによって各種遮断器のサイクル寿命が延びる。
【0008】
理想的には、配電系統に含まれている全ての過電流保護装置を協調させることによって保護効果を高めると共に選択的引きはずしを可能にする。しかしながら、実際には幾つかの理由から必ずしも完全な協調を得ることはできない。その理由の1つは過電流保護装置の固有の時間/電流特性に関連がある。例えば、配電系統に組み込む過電流保護装置としてヒューズを使用することは公知である。この種のヒューズの時間/電流特性は他の種々の過電流保護装置の時間/電流特性とは著しく異なる。従って、予想される過電流の全範囲に亘ってヒューズを他の過電流保護装置と正しく協調させるのは困難である。即ち、ヒューズを使用する場合、理想的な協調保護効果は得られない。
【0009】
公知の過電流保護装置にはその調整範囲に問題がある。具体的には、一部の公知装置には、配電系統の選択性を低下させるオーバーラップを防止するため例えば保護曲線の長遅延または長時限部分及び短遅延または短時限部分を調整しようとしてもその幅が比較的狭いことが知られている。調整幅が制限されるため、協調効果も比較的制限される。
【0010】
公知の過電流保護装置には例えば短絡のような比較的大きい過電流に対する応答性に関しても問題がある。具体的には、遮断器を流れる電流を感知するのに変流器(CT)を使用することが知られており、このCTの2次巻線が過電流保護装置に接続される。例えば短絡のような比較的大きい過電流状態でCTは飽和状態となることが多く、その結果、2次巻線にひずみ電流波形が現われる。従って、このように変流器が飽和した状態になると、この飽和変流器によって駆動される過電流保護装置は短絡状態において現われる前記ひずみ波形に応答して適時に損傷を防止することができない。
【0011】
【発明が解決しようとする課題】
本発明の目的は、公知技術に付随する問題を解決しヒューズを含む他の過電流保護装置との協調を容易にする過電流引きはずし装置を提供することにある。
【0012】
本発明の他の目的は、配電系統に組み込まれている他の過電流引きはずし装置との協調性を高めるため調整幅を比較的広くし、オーバーラップしないように保護曲線の長遅延及び短遅延部分を比較的広い範囲で調整できるように構成して配電系統の選択性を高めた過電流引きはずし装置を提供することにある。
【0013】
本発明は上記目的を、遮断器を流れる電流を感知する手段と、前記感知手段に応答して遮断器を流れる電流の大きさ及び時間の選択可能な所定関数に従って引きはずし信号を出力する手段とから成る遮断器用過電流引きはずし装置であって、前記選択可能な所定関数が長遅延部分、短遅延部分及び瞬時部分を含むことを特徴とする過電流引きはずし装置によって達成する。
【0014】
本発明は、配電系統に組み込む過電流引きはずし装置であって、遮断器を流れる電流の大きさを感知する感知手段と、感知手段に応答して、遮断器電流の大きさ及び流れる時間の選択可能な所定関数により決定される特性に従って引きはずし信号を出力する引きはずし信号出力手段とから成り、引きはずし信号出力手段は、配電系統に組み込まれる他の過電流引きはずし装置との協調性を高めるように、引きはずしが起こるまでの時間が長い長遅延部分の特性を、電流と時間の積(It)及び電流のn乗と時間の積(Int)を含むプログラムされた複数の関数のうちの任意のものから選択して形成するようになっており、引きはずし信号出力手段はさらに、遮断器電流が長遅延ピックアップ値を超えると起動され長遅延引きはずし時間値を有する長遅延タイマーと、遮断器電流が引きはずしが起こるまでの時間が短い短遅延ピックアップ値を超えると起動され短遅延引きはずし時間値を有する短遅延タイマーと、遮断器電流の大きさが短遅延ピックアップ値より小さい時は長遅延タイマーと短遅延タイマーとをモニターすることにより短遅延引きはずし時間値に到達する前に長遅延部分の特性に従って遮断器が引きはずされないようにする手段とを有することを特徴とする過電流引きはずし装置を提供する。
【0015】
以下、添付の図面に沿って本発明を実施例につき詳細に説明する。
【0016】
【実施例】
本発明は米国特許第4,351,013号及び第4,827,369号の明細書に開示されている、例えば成形ケース型遮断器やメタルクラッド開閉装置のような遮断器用過電流引きはずし装置に係わる。このような過電流引きはずし装置はマイクロプロセッサーを核として、膜スイッチ、発光ダイオード(LED)、ディスプレイのような種々の入/出力デバイスを含むが、これらのデバイスは種々の設定値の選択を可能にしたり、関連の遮断器の引きはずしを起動するなどの種々の機能を提供するユーザー・インターフェースを形成する。このような公知の過電流引きはずし装置でも配電系統にかなり優れた協調性を確立できるが、本発明の過電流引きはずし装置は配電系統に組み込まれている種々の過電流保護装置との協調性をさらに高めることにより、比較的優れた選択性を与え、その結果として配電系統の全体的な信頼性を向上させることができる。
【0017】
即ち、本発明の一実施例では保護曲線の長遅延部分の関数を複数の関数、例えばFLAT,It,I2t及びI4tから選択できる。このように関数を選択できるようにすると、本発明の原理を利用した過電流保護装置を配電系統に組み込まれている他の過電流保護装置と容易に協調させることができる。本発明の他の実施例では、過電流引きはずし装置は比較的広い長遅延及び短遅延調整範囲を含む。長遅延及び短遅延部分のオーバーラップを防ぐため、本発明の引きはずし装置は選択性を損なうオーバーラップゾーンの発生を防止する。本発明のさらに他の実施例では、変流器が飽和状態にあるとき従来の装置が避けられなかった瞬時引きはずしに付随する問題を解決する。
【0018】
本発明の種々の実施例を、4.16kV放射状配電系統を例示する図1の単線接続図に沿って以下に説明する。この配電系統では、破線のボックスA20で示す4.16kV中圧メタルクラッド開閉器が電源を形成している。4.16kV開閉器A20は4.16kVバスA22と、配電系統中の種々の4.16kV電気的負荷に給電する複数の給電遮断器A26を含む。図示のように、4.16kV開閉器は破線のボックスA30で示すユニット変電所に給電する給電遮断器A26及びこれと直列に接続したヒューズA28を含む。ユニット変電所A30は480VバスA34を形成するための積分4.16kV−480V変流器A32を含む。変流器A32の2次巻線は480V変流器の遮断器A36を介して480VバスA34と接続する。480VバスA34は例えば480V電動機制御センター(MCC)のような種々の非周期的電気的負荷に給電する複数の給電遮断器A38を含む。配電系の信頼性を高めるため、480Vユニット変電所A30は1次電源(例えば、4.16kVバスA22または変流器A32)を利用できなくなった場合に480VバスA34への給電を可能にするための連けい遮断器A40を含む。図示のように、破線のボックスA44で示す480VMCCへの給電には480V給電遮断器A42が使用される。このMCC、A44は480VバスA45、複数の遮断器、スターター、接触器などを含み、これらによって種々の周期的電気的負荷への給電が行われる。例えば、積分過負荷リレーA48を含む480V接触器A46が電動機A50に給電する。公知のようにこの過負荷リレーA48は線導体と直列に接続して例えば電源電圧のゆらぎや機械的故障、例えば、電動機軸受の故障などに起因する過負荷状態において電動機A50への給電を断つバイメタル素子を含む。
【0019】
図示のラジアル配電系統に組み込まれている遮断器(例えば、A26,A28,A36,A40及びA42)のそれぞれが過電流保護装置を含む。例えば、4.16kV給電遮断器A26は負荷側の電流をモニターする1つまたは2つ以上の変流器A52を含む。この変流器A52を利用することにより、瞬時過電流保護装置A54、例えば、Westinghouse社製のCOリレーを駆動する。既に述べたように、ユニット変電所変流器A32の1次巻線はヒューズA28によっても保護される。ユニット変電所A30の遮断器A36,A40及びA42は例えば米国特許第4,827,369号明細書に概説されているようなソリッドステート引きはずし装置を具備している。
【0020】
このような用途においては、選択的に過電流を隔離すると同時に、配電系統に含まれる過電流の影響を受けていない電気的負荷をそのまま作用させるように、配電系統に含まれるすべての過電流保護装置を協調させる必要がある。例えば、電動機A50の軸受に故障が発生して電動機A50のローターが膠着状態となり、定格電流の約4乃至6倍の電流が電動機A50に流れるとする。この状態において、過電流保護装置は480VMCCバスA45上の他の負荷を含む全配電系統中の他の任意の電気的負荷に影響を及ぼすことなく電動機A50を遮断しなければならない。過電流発生源を選択的に隔離し、電動機A50だけを引きはずせば、480VMCCバスA45上のその他の電気的負荷にはほとんど影響が及ばないから、配電系統の信頼度が高くなる。選択的に隔離できなければ電動機A50の故障に伴なってMCCの給電遮断器A42が引きはずされ、その結果、MCCA44全体が作用しなくなる。
【0021】
始動時における電動機A50の引きはずしを回避することも必要である。従って、電動機の保護に利用される過電流保護装置(例えば、過負荷リレーA48)を正規始動状態における電動機の正規の時間/電流特性と協調させることによって始動時における電動機の不要な引きはずしを防止する。
【0022】
このような協調は通常、グラフに基づいて行なわれる。即ち、過電流保護装置の時間/電流特性と、電動機などのような各種装置の動作特性を対数目盛で作図する。具体的には、配電系統に組み込まれているすべての過電流保護装置が協調するように設定値及び時間/電流特性を選択することによって選択性を与え、不要な引きはずしを回避して配電系統の信頼性を高める。
【0023】
このようなグラフの一例を図2に示す。即ち、図2は図1に示した配電系統に組み込まれている種々の過電流保護装置の時間/電流特性を対数目盛で表わしたグラフである。縦軸は時間(秒)、横軸は電流(アンペア)をそれぞれ示す。
【0024】
図2において、曲線A56は正常動作状態における電動機A50の時間/電流特性を示す。初めて電動機A50に給電するとき、電動機A50はいわゆるローター拘束状態にある。この状態では、グラフから明らかなように、ローターが定格速度に達するまで電動機A50には全負荷電流の約4乃至6倍の電流が流れる。図2に示すように、このローター拘束状態は約10秒間持続する。電動機が定格速度に達すると、電動機A50に引き込まれる電流は曲線A56の部分A58で示すような定格全負荷電流まで降下する。
【0025】
正規始動状態では電動機A50が引きはずされることがあってはならない。そこで、電動機A50に給電する過電流保護装置(例えば、過負荷リレーA48)のために選択された時間/電流特性を曲線A60によって示す。図示のように、この時間/電流特性A60は電動機A50が引きはずしなしに始動できるように選択されている。しかし、機械的な故障が生じたり電源電圧に揺らぎがあって電動機A50が限度以上の時間(例えば、10秒以上)に亘ってローター拘束電流を引き込むと、過負荷リレーA48が電動機A50を引きはずして隔離を行う。従って、MCCバスA45上の他の電気的負荷はその影響を受けない。
【0026】
既に述べたように、電動機A50の保護に使用される過負荷リレーA48の時間/電流特性を配電系統に組み込まれている他の上記過電流保護装置と協調させる必要がある。従って、480V遮断器A36,A40、A42、4.16kV給電遮断器A26及びヒューズA28(図1)と連携する過電流保護装置の時間/電流特性を図示のように過負荷リレーA48の時間/電流特性A60と協調するように選択する。即ち、図2において曲線A62は480V給電遮断器A42と連携する過電流保護装置の時間/電流特性を示す。図示のように、特性及び設定値は480VMCCバスA45及びこれに給電する導体A63を保護するように選択されている。480V給電遮断器A42は480VMCCバスA45及びバスA45に給電する導体A47を保護するのに利用され、バスA45よりも下流の遮断器に故障がない限り、バスA45よりも下流に発生する故障に対して遮断されることはない。例えば、電動機A50に対する給電遮断器に故障があれば、この故障は過負荷リレーA48によってクリアされ、MCC給電遮断器A42と連携する過負荷保護装置にとって“トランスパレント”になる。
【0027】
配電系統に含まれる種々の過電流保護装置を協調させることのほかに、480VMCCバスA45上の定格全負荷電流にも考慮を払わねばならない。そこで、定格負荷状態にある時MCCの給電遮断器A42が引きはずされないように480V給電遮断器A40と連携する過電流保護装置の時間/電流特性の連続的な電流部分を選択する。MCCの給電遮断器A42と連携する過電流保護装置の時間/電流特性を表わす曲線A62の連続的電流部分A64を480VMCCバスA45の定格全負荷電流の約110%となるように選択する。同様に480Vユニット変電所バスA34の定格全負荷電流も変流器遮断器A36及び連けい遮断器A40と連携する過電流保護装置の時間/電流特性設定値を選択する際に考慮しなければならない。
【0028】
変流器遮断器A36と連携する過電流保護装置に関する設定値の選択にあたりユニット変電所変流器A32の全負荷電流及び流入電流も考慮しなければならない。図2では変流器流入電流を点A68で、全負荷電流を線分A69でそれぞれ示した。図示のように、設定値の選択にあたり、変流器遮断器A36及び連けい遮断器A40と連携する過電流保護装置が正常動作状態におけるユニット変電所の不要な引きはずしを防止すると共に、給電遮断器A42またはこれと連携する過電流保護装置に故障がない限り給電遮断器A42よりも下流に故障が発生してもこれに呼応して引きはずしが行なわれるのを回避するように配慮する。そこで、変流器遮断器A36及び連けい遮断器A42の時間/電流特性を図2に参照番号A70で示した。図示のように、これらの遮断器と連携する過電流保護装置の時間/電流特性は、下流の遮断器保護装置に対する選択性を考慮に入れて設定される。
【0029】
4.16kV給電遮断器A26と連携する過電流保護装置A54の過電流特性を設定する際には、タップA71と接続する負荷を含むユニット変電所A30の定格全負荷電流を考慮するだけでなく、ヒューズA28の時間/電流特性と協調させねばならない。図2から明らかなように、ヒューズA28は給電遮断器A26の保護を助けると共にユニット変電所変流器A32の1次巻線を保護する。また、ヒューズA28よりも前に給電遮断器A26を引きはずさなければならない。曲線A72は給電遮断器A26と連携する過電流保護装置A54の時間/電流特性を示す。曲線A74はヒューズA28の時間/電流特性を示す。
【0030】
図2の下部に示すように、ヒューズ曲線A74と給電遮断器曲線A72の時間/電流特性は僅かながら互いにオーバーラップしている。従って、比較的大きい故障については給電遮断器A26とヒューズA28との間の選択性がある程度損なわれる。曲線の上方域では給電遮断器A26の時間/電流曲線の長遅延部分に対してヒューズ曲線A74の特性が著しく異なっている。従って、種々の公知過電流引きはずし装置の時間/電流特性を例えばヒューズなどのような遮断器と協調させることは比較的困難である。
【0031】
本発明の出願人に譲渡され、参考のためその内容を本願明細書に引用した米国特許第4,827,369号に開示されているような可調ソリッドステート引きはずし装置の時間/電流特性を図3に例示する。このような時間/電流特性は通常、対数目盛で示され、横軸A76に電流(アンペア)が、縦軸A78に時間(秒)がそれぞれ示される。
【0032】
曲線A80の下端部分はいわゆる瞬時部分であり、この瞬時部分は例えば短絡状態のように電流量が比較的大きい状態に使用される。このような短絡状態においては瞬時部分A80が遮断器を例えば1サイクルまたは1サイクル以下で引きはずす。瞬時部分A80が作用する際の電流の大きさは調節可能である。即ち、矢印A77で示すように瞬時部分を横軸A76に対して調節することができる。
【0033】
括弧で示す曲線の中央部分A82は曲線の短遅延部分である。短遅延部分A82については反時限特性も固定時限特性も既知である。即ち、図3には固定時限特性A84を実線で、反時限特性A86を破線でそれぞれ示してある。
【0034】
短遅延部分A82は調整可能である。即ち、短遅延部分A82が作用する際の最小電流大きさは短遅延ピックアップ(SDPU)A88と呼ばれる。SDPUは矢印A90で示すように横軸A76に対して調整可能である。短遅延部分が作用する時点も矢印A92で示すように縦軸A78に対して調整可能である。
【0035】
SDPU及び時限設定値は調整可能であるが、短遅延部分A82の特性(例えば、関数)は従来固定的であるとされて来た。このような特性は一般に逆関数である。このような逆関数特性を設定した場合、引きはずし時間は電流の大きさとほぼ反比例するから、比較的大きい電流は比較的短い時間後に引きはずされ、比較的小さい電流は比較的長い時間後に引きはずされる。
【0036】
曲線部分A94は長遅延部分であり、この部分A94も逆関数であって、一般にI 2 ・t特性を辿る。短遅延部分A82と同様に、設定値を変えることによって時間/電流特性のこの部分が作用する時点と電流の大きさを調整することができる。具体的には、長遅延部分A94が作用する際の最小電流は長遅延ピックアップ(LDPU)A96と呼ばれる。このLDPUは矢印A98で示すように横軸A76に対して調整可能である。長遅延部分A94が作用する時点を変えることによって長遅延特性を矢印A100で示すように縦軸A78に対して上下動させることができる。
【0037】
LDPUA96と時限設定値は矢印A98及びA100で示すように変化させることができるが、例えば、I 2 ・t関数のような特性は従来調整不能とされていたから、上述したようにヒューズA28のような逆関数特性との協調を困難にする要因となっていた。
【0038】
本発明の重要な特徴はソリッドステート引きはずし装置の時間/電流曲線の長遅延部分を変更可能なことにある。具体的には、既に述べたように、例えば米国特許第4,827,369号に詳しく開示されているようなソリッドステート引きはずし装置を含む公知の過電流保護装置は固定的なほぼI2t関数を辿る長遅延特性を有する。このような特性が作用する際の電流の大きさ及びこのような特性が作用する時点は上述のように調整できるが、特性そのもの(例えば、I2t関数)は固定的であり、調整不能である。
【0039】
本発明のソリッドステート引きはずし装置は配電系統に含まれる他の過電流保護装置との協調性、従って選択性を高めるためソリッドステート引きはずし装置の長遅延部分A94の特性の調整を可能にする。具体的には図2に示すように、ヒューズ曲線A74の曲線特性は極めて反時限的である。従って、上記種々の過電流保護装置の特性に対してヒューズ曲線A74の特性が異なるため、既に述べたように過電流保護装置をヒューズA28と協調させるのは困難である。そこで、本発明では特性の長遅延部分A94が調整可能なソリッドステート引きはずし装置を設ける。即ち、米国特許第4,827,369号明細書に記載されているように時間/電流特性の長遅延部分A94が作用する時点及びその時の電流を変更できるだけでなく、この曲線部分の実際の特性をも変更できる。例えば、後述するように、長遅延特性A94を調整することにより、オペレーターは複数の特性、例えば、固定時間(FLAT)特性、It、I2t及びI4tから選択することができる。ただし、本発明の原理は特定の特性や利用可能な特性の数とは無関係である。
【0040】
本発明の調整可能な特性を図4、5及び6にグラフで示し、FLAT特性の例をブラケットA103で示した。いずれの図も対数目盛による長遅延部分の時間/電流特性グラフであり、横軸に電流(アンペア)、縦軸に時間(秒)を示している。図4は電流と時間の積Itを表わす特性を有する長遅延部分A102を示す。既に述べたように、図4にはFLAT特性A103をも示してある。図5は電流の2乗と時間の積I 2 tを表わす特性を有する長遅延部分A104を示し、図6は電流の4乗と時間の積I 4 tを表わす長遅延特性A106を示す。
【0041】
長遅延部分A92、A94及びA96の特性はいずれも時間と一定累乗の電流の積で表わされ、上記の例では累乗数は1,2及び4である。対数目盛で表わした場合、図4−6から明らかなように電流の累乗数が変われば直線的関数特性の勾配が変化するだけである。
【0042】
過電流防止装置の長遅延特性の勾配を調整することにより、図1に示すヒューズA28を含む各種装置に対する選択性を高め、過電流保護効果を高めることができる。図2において、ヒューズ特性A74の上部は極めて反時限的であり、従って、比較的急な勾配を示している。I2t特性に基づく固定特性を有する公知の過電流保護装置の場合、ヒューズA28のように反時限特性を有する装置と最適条件で協調させることは比較的困難である。本発明のソリッドステート引きはずし装置は引きはずし特性を調整可能にすることでこの問題を解決する。例えば図2に示すような実施例では、4.16kV遮断器とヒューズA26を正しく協調させるようにI 4 t特性を選択することができる。
【0043】
既に述べたように、成形ケース式遮断器やメタルクラッド開閉器などと併用されるソリッドステート引きはずし装置は固定特性を有し、時間及び電流大きさを調整できる引きはずし曲線を含む。米国特許第4,827,369号に詳しく記載されているように、このような過電流引きはずし特性は瞬時部分A80、短遅延部分A82及び長遅延部分A94を含む(図3)。時間/電流曲線の短遅延部分A82と長遅延部分A94のオーバーラップを防止するため、引きはずし装置の全調整範囲に亘って短遅延部分A82と長遅延部分A94がオーバーラップしないように両部分の調整範囲を選択する。しかし、これだけでは配電系統に含まれている他の過電流保護装置との協調はむしろ制限される。
【0044】
本発明の別の特徴は、引きはずし装置の長遅延及び短遅延部分の調整範囲を公知のソリッドステート引きはずし装置よりも広く設定することにより、配電系統内に高い協調性が得られるようにしたことである。ところが、このように比較的広い調整範囲を設定すると共に上述したように長遅延特性を選択可能とすると、長短遅延特性がオーバーラップしやすくなる。図7は比較的広い調整範囲を有する時間/電流曲線または過電流保護装置の長遅延部分A94と短遅延部分A82を調整した結果オーバーラップが生じた状況を示す。
【0045】
図7において、大きさがI1の電流A108が流れると、引きはずし装置の短遅延部分A82により所定の時間T1の経過後に遮断装置が引きはずされる。ところが、比較的小さい電流I2、即ちA109で長遅延ピックアップが作用してもっと早い時間T2で遮断器が引きはずされるから、時間/電流曲線の短遅延部分A82と長遅延部分A94がオーバーラップし、配電系統における選択性が損なわれる。
【0046】
通常は短遅延部分A82のあとに長遅延部分A94が作用することにより、遮断器が引きはずされることなく比較的長時間に亘って比較的小さい電流が配電系統中を流れるようにする。これは配電系統に起こるバスの負荷や電圧ゆらぎなどのような過渡的な過電流状態に起因する遮断器の引きはずしを防止するためである。従って、長遅延部分A94は比較的長時間に亘って比較的小さい電流が流れるように設定される。
【0047】
曲線の短遅延部分A82は長遅延部分A94よりも前に作用するように設定されており、比較的大きい電流に対しては長遅延部分A94よりも早く作用する。
【0048】
従って、長短両遅延部分A94,A82を協調させる必要がある。既に述べたように、本発明の1つの特徴は時間/電流曲線の短遅延部分A82と長遅延部分A94の調整範囲を比較的広く設定することにあり、そのために本発明のソリッドステート引きはずし装置は詳しくは後述するように短遅延タイマー及び長遅延タイマーをモニターすることによって時間/電流曲線の長遅延部分A94が短遅延部分A82よりも先に遮断器を引きはずすのを防止する手段を含む。
【0049】
短遅延部分A82より先に長遅延部分A94が遮断器を引きはずすのを防ぐことでオーバーラップは無くなる。図8では短遅延部分を参照番号A112で、長遅延部分を参照番号A114でそれぞれ示した。長遅延部分よりも先に短遅延部分が遮断器を引きはずすのを防止することによって図7に示す特性を図8に示す特性に変更してオーバーラップを無くすると同時に、時間/電流曲線の短遅延部分A112及び長遅延部分A114の調整範囲を広げる。
【0050】
先に指摘したように、時間/電流曲線の瞬時部分A80は例えば短絡電流のような比較的大きい電流から配電系統を保護するのに利用される。この場合、配電系統の損傷を防ぐためには上流の遮断器をほとんど瞬時に引きはずさねばならない。即ち、耐久能力を超える前に遮断器を引きはずす必要がある。耐久能力とは遮断器が過剰な短絡電流にも拘らず損傷せずに耐え得る機械的な力である。
【0051】
遮断器を流れる線電流は図1に示した変流器A52のような単数または複数の変流器によって感知される。比較的大きい過電流状態、例えば短絡状態においてこの変流器A52は飽和状態となる。飽和状態において変流器の2次側に現われる出力波形は図9に示すように複数の比較的急峻な、且つ狭いスパイク部分A116を含む。この比較的急峻な、且つ狭いスパイク部分A116が問題を起こしやすく、場合によってはソリッドステート引きはずし装置の動作タイミングが遅れて配電系統の損傷を防止できないという結果を招くことさえある。
【0052】
マイクロプロセッサーを利用する公知のソリッドステート引きはずし装置は波形の各サイクル中、特定回数に亘って線電流をサンプリングするが、サンプリングのインターバルが飽和状態にある変流器の波形の狭く、急峻なスパイク部分A116の時間よりも長い場合に問題が起こる。その結果、瞬間的な異常レベルの検出が遅れて配電系統の損傷を防止できないことになる。
【0053】
波形の種々の部分をカバーできるように改良したサンプリング法を採用している公知装置もあるが、変流が飽和状態となった時、このようなサンプリング法は比較的複雑であり、飽和変流器の瞬時ピーク電流をしかるべきタイミングで検出して配電系統の損傷を防止することができなくなる。
【0054】
マイクロプロセッサーを用いる配電系統ではインターフェースの問題があるため、変流器の2次電流をモニターするアナログ回路が使用された例はない。即ち、マイクロプロセッサーを用いる配電系統の瞬時引きはずしレベルの範囲は公称5アンペア電流の1乃至28倍が普通である。瞬時引きはずしレベルは通常末端ユーザーによってプログラムされるから、アナログ検出回路とのインターフェースは不可能ではなくても困難である。
【0055】
本発明の特徴の1つは瞬時相電流の最高負ピークレベルを検出し、これを瞬時引きはずしレベル設定値に比例する正電流と加算するのにアナログ回路を使用することにある。マイクロプロセッサーによって設定される正電流はパルス幅が所期の瞬時設定値に比例するパルス幅変調出力である。次いで加算された電流をコンパレーターにおいて比較することにより、瞬時相電流が瞬時設定値よりも大きいか否かを判定する。もしイエスなら、コンパレーターがマイクロプロセッサーへの割り込み信号を出力し、これに呼応してマイクロプロセッサーが電流波形をサンプリングして最終値を測定し、遮断器への引きはずし指令を起動する。
【0056】
アナログ回路は、変流器A52から得られる最高負電流を選択するように接続された複数のORダイオードから成る。3相系統の場合、アナログ回路は最高ピーク負電流を選択するようにOR構成に接続された3個のダイオードを含む。次いでこの負値をマイクロプロセッサーが発生させる正電流を加算する。
【0057】
変流器2次電流をモニターするのにアナログ回路を利用することにより、比較的急峻なスパイク部分A116が正しく感知され、基準設定値と比較されて、もし設定値以上なら遮断器への引きはずし指令が起動される。従って、変流器2次電流波形の比較的急峻な、且つ狭いスパイク部分A116を見失う恐れのあるサンプリング法の難点が克服される。
【0058】
上記ソリッドステート引きはずし装置が組み込まれる回路を図10−23に示す。この回路は図39−120に示す後述のWestinghouse社製SURE CHIP PLUSマイクロコントローラーを含む。このマイクロコントローラーはマイクロプロセッサー、オンボードA/Dコンバーター、オンボード・コンパレーター及び複数の入/出力装置を含む。マイクロプロセッサーのためのソフトウエア制御を図24−38に示す。
【0059】
図10−23において円で囲んだ英数字は他図への接続を示す。例えば、“P11”を囲む円は“P110”を囲む円を有する他図との接続を意味する。また、バスまたはポートの多重ビットに例えばPC[7...0]というような参照番号を付してあるが、これはポートCのビット0乃至7であることを意味する。同様に、個々のビットに例えばPC[7,5,1]のような参照番号を付してあるが、これはポートCのビット7,5及び1であることを意味する。
【0060】
電源は公知であり、図10−23に示す各構成部分への電源入力は本発明の範囲外である。従って、各構成部分への電源入力は図示するにとどめてその説明は省く。同様に、図10−23に示す各構成部分の接地入力も図示するにとどめる

【0061】
図20−23にWestinghouse社製SURE CHIP PLUSマイクロコンピューターを図示し、参照番号D20を付してある。既に述べたように、マイクロコントローラーD20については図32−120に沿って後述する。
【0062】
マイクロコントローラーD20は4つの並列8ビット入/出力ポート;PA,PB,PC及びPDを含む。ポートPD[7...0]は8ビット多重アドレス/データ・バスD22を形成するためのポートであり、ポートPB[6...0]は高アドレス・バスD24を形成するためのポートであり、ポートPCは引きはずし、アラーム機能及びアドレス復号のためのポートである。ビットPC[1,0]は瞬時引きはずし及び過電流引きはずし指令にそれぞれ利用される。ビットPC[7...4]はアドレスラインIOA0,IOA1,IOA2及びIOA3を定義する入/出力アドレス復号に利用される。
【0063】
ポートDは入/出力バスD26を形成する。詳しくは後述するように、入/出力バスD26はユーザー・インターフェース用に利用されるだけでなく、後述する監視インターフェース用にも利用される。
【0064】
ソリッドステート引きはずし装置はプログラム指令のための一定量の読み取り専用メモリー(ROM)D30、及びデータのための一定量のランダムアクセスメモリー(RAM)D32をも含む。プログラム指令用には公称32K ROMを、データ用には公称8K RAMを選択する。ただし、本発明の原理はROMD30及びRAM D32の上記サイズに制限されるものではない。
【0065】
32K ROM D30は14本のドレスラインを必要とする。従って、低アドレス・バスD34及び高アドレス・バスD24(合計14本のアドレスラインを形成する)がROM D30のアドレス入力A0乃至A14に接続している。
【0066】
高アドレス・バスD24は上述したマイクロコントローラーD20のポートDによって提供され、低アドレスバスD34は多重アドレス/データ・バスD22から誘導される。具体的には、多重アドレス/データ・バスAD[7...0]D22は8ビット・アドレスラッチD36のデータ入力DI[7...0]に接続し、アドレスラッチD36のデータ出力ビットDO[7...0]が低アドレスバスD34を形成する。
【0067】
アドレスラッチD36はマイクロコントローラーD20において利用されるアドレスラッチ割込み可能信号ALEの制御下にある。マイクロコントローラーD20によって多重アドレス/データ・バスD22にアドレスが送出されると、このアドレスはアドレスラッチ割込み可能信号ALEの制御下にアドレスラッチD36によってラッチされ、アドレスラッチ割り込み可能信号はアドレスラッチD36のラッチ割り込み可能(LE)入力に印加される。
【0068】
アドレスラッチD36は抵抗器D38を介してチップセレクト入力(反転OC)を接地することによって連続的に選択される。同様に、ROM D30は抵抗器D40を介してセレクト入力、反転CEを接地することによって連続的に選択される。
【0069】
アドレスラッチD36の出力ピンDO[7...0]は低アドレスバスA[7...0]D34を形成する。低アドレスバスA[7...0]D34は高アドレスバスA[14...8]D24と共にROM D30のアドレス入力A[7...0]に接続し、前記高アドレスバスA[14...8]D24はROMアドレス入力A[14...8]に接続して、先に述べたようにプログラム指令を含む32キロバイトROM D30をアドレスする。プログラム指令については後述する。
【0070】
マイクロコントローラーD20及び、特に、マイクロコントローラーD20内のマイクロプロセッサーがプログラム指令をアクセスできるようにするため、ROM D30の出力ピン0[7...0]を多重アドレス/データ・バスD22に接続する。ROM D30の動作はマイクロコントローラーD20の出力において得られるプログラムセレクト割込み可能信号(反転PSEN)の制御下にある。
【0071】
8キロバイトRAM D32が必要とするアドレスラインは12本だけである。従って、RAM D32の入力端子A[7...0]に低アドレスバスA[7...0]D34を接続する。高アドレスバスD24の一部(例えば、A[12...7])はRAM D32のアドレス入力A[12...7]に接続する。8キロバイトRAMの出力0[7...0]を多重アドレス/データ・バスD22に接続することにより、マイクロコントローラーD20がRAM D30をアクセスできるようにする。
【0072】
電流値、特に相電流や地電流のようなアナログ値はマイクロコントローラーD20によってデジタル化され、RAM D32に記憶させる。RAM D32の読取り及び書込み機能はマイクロコントローラーD20の制御下にある。即ち、マイクロコントローラーがRAM D32の読取り可能入力(反転OE)と接続する読取り出力(反転R)を低状態にするとRAM D32が読取られる。マイクロコントローラーD20はRAM D32の書込み可能入力と接続する書込み出力(反転E)を低状態にすることによってRAM D32に書き込むことができる。
【0073】
マイクロコントローラーD20において得られる入反転出力アドレスビットIOA[3...0]は複数のユーザー及び監視制御インターフェースのアドレスを容易にする。即ち、入反転出力アドレスビットIOA[3...0]は2つの3×8アドレスデコーダーD44及びD46に印加される。具体的には、入/出力アドレスビットIOA[2...0]はそれぞれの3×8アドレスデコーダーD44,D46のA,B,C入力に印加され、アドレスビットIOA[3]は抵抗器D48を介してアドレスデコーダーD44,D46のチップセレクト入力CS1,反転CS2に印加される。マイクロコントローラーから得られる反転PSEN信号はアドレスデコーダーD44,D46のチップセレクト入力、反転CS3に印加される。アドレスデコーダーD44のチップセレクト入力、反転CS2は接地され、アドレスデコーダーD46のチップセレクト入力CS1は抵抗器D50を介して5ボルト電源と接続する。
【0074】
従って、アドレスデコーダーD44及びD46は入/出力アドレスビットIOA[3...0]を復号して12個のアドレスデコード信号を得るのに利用される。(これらのセレクト信号のうち4個は使用されない。)これらのアドレスデコード信号、反転CE0乃至反転CE11は後述するように個々のユーザー及び監視制御インターフェースに割当てられる。具体的には、図10−11に示すように、アドレスデコード信号、反転CE0,反転CE1,反転CE2及び反転CE3は4つの8ビットレジスターD52,D54,D56及びD58のクロック入力(CLK)に印加され、入/出力バスD26はデータ入力ピンDI[7...0]と接続する。入/出力バスD26におけるデータはチップ割込み可能アドレスデコード信号、反転CE0,反転CE1,反転CE2及び反転CE3の制御下にレジスターD52,D54,D56及びD58に記録される。レジスターD52,D54,D56及びD58はマイクロコントローラーのリセット信号によってリセットされる。レジスターD52,D54,D56及びD58の出力ピンDO[7...0]は限流抵抗器D62を介して発光ダイオード(LED)D60を駆動するのに利用される。
【0075】
抵抗器D52,D58はLED D60を制御するだけでなく、インターロック機能をも果たす。即ち、レジスターD52及びD58のピンDO7において得られる信号GND−ZONE−OUT及びPHASE−ZONE−OUTは配電系統中の上流側遮断器とのインターロックによって選択的引きはずしを行なうのに利用される。具体的にはGND−ZONE−OUT及びPHASE−ZONE−OUT信号は地過電流オプションが選択されたか相過電流オプションが選択されたかを指示するのに利用される。要するに、これらの信号はもし上流側遮断器が長遅延で引きはずされるのを防ぐために下流側引きはずし装置においてこれらのオプションが選択された場合、時間−電流曲線の長遅延部分において上流側遮断器が引きはずされるのを防止するのに利用される。もしオプションが選択されなければ、上流側遮断器は下流側引きはずし装置のために選択されない長遅延保護を行なうことになる。
【0076】
これらの信号は入/出力バスD26を介してレジスターD52及びD58に入力され、レジスターD52及びD58のDO7出力から取り出される。取り出された信号は2つのオプトカプラー回路D69及びD71(図11)に入力される。オプトカプラー回路D69及びD71の出力は上流側遮断器とのインターロックのためユーザー・インターフェース端子ブロックD68の端子8及び10に入力される。
【0077】
同様に、下流側遮断器からの信号PHASE−ZONE−IN及びGND−ZONE−INはユーザー・インターフェース端子ブロックD68の端子9及び11に入力される。これらの信号は信号コンディショニング/スイッチング回路D69に入力され、さらにオプトカプラー回路D73及びD75にそれぞれ入力される。オプトカプラーD73及びD75の出力は入力データバスD26に入力されて下流側遮断器が長遅延引きはずし機能を協調させるため相過電流及び地過電流の双方からの保護を行なうように構成されていることを配電系統に通報する。オプトカプラーD73及びD75の出力はアドレスデコード信号、反転CE6によって選択可能な8ビットレジスターD106(図10)に入力され、入/出力バスD26に入力される。
【0078】
レジスターD58はPONI回路に対するインターフェースとしても利用される。PONI回路はWestinghouse社製のINCOM通信ネットワークと併用される直列ポートインターフェースである。PONIインターフェースは本願の出願人に譲渡され、参考のためその内容が本願明細書中に引用されている米国特許第5,007,013号に記載されている。INCOM通信ネットワークはこれも本願の出願人に譲渡され、参考のためその内容が本願明細書中に引用されている米国特許第4,653,073号に記載されている。
【0079】
レジスターD58のDO5及びDO6ピンにおいて得られるPONIインターフェースへの入力PONI−CLK及びPONI−R/WはPONIインターフェース端子ブロックD76(図12−13)に入力される。PONIインターフェースからの出力信号PONI−INT及びPONI−DATAはPONIインターフェース端子ブロックD76に接続され、レジスターD106を介して入/出力バスD26に入力される。
【0080】
上記INCOMネットワークは遮断器が上記´073号特許に記載されているような遠隔通信装置と通信することを可能にする通信ネットワークである。詳しくは後述するSURE CHIP PLUSマイクロコントローラーD20は遮断器がINCOMネットワークと通信することを可能にする。これにより関数(例えば、勾配)や設定値を遠隔場所から変更することができる。
【0081】
INCOMネットワークとのインターフェースは端子ブロックD77による(図17)。即ち、INCOMの送受信号TX及びRXを端子ブロックD77の端子1及び2に接続することにより、´073特許に詳しく記載されているように遮断器をINCOM通信ネットワークと接続する。
【0082】
RX及びTX信号はいずれも破線ボックスD79内に示す信号コンディショニング回路によってコンディショニングされる。RX及びTX信号も共通ラインも図16に示すようにSURE CHIP PLUSマイクロコントローラーD20と接続する。
【0083】
ソリッドステート引きはずし装置に対して特定位置に5ビット7セグメント表示手段(図14−15)をも設ける。7セグメント表示手段は瞬時相電流や瞬時地電流などのような種々のパラメーターを表示する。この表示手段は5個の7セグメント数字D80を含む。7セグメント表示素子のそれぞれは複数の抵抗器D84を介して7セグメント表示ドライバーD82によって駆動される。入/出力バスD26は表示ドライバーD82の入力端子A,B,C,Dと接続する。チップ及び復号アドレスチップ可能信号、反転CE7,反転CE8及び反転CE9は表示ドライバーD82の使用可能入力、反転CEに入力される。
【0084】
引きはずし装置は上記表示手段のほかに校正モードにおいて利用される英数字表示手段D86をも含む。英数字表示手段D86は復号アドレス入力、反転CE10及び反転CE11によって選択される。即ち、復号アドレス入力、反転CE10及び反転CE11を利用することによって表示手段D86を選択する。入/出力バスD26はレジスターD107と接続する。
【0085】
ユーザーインターフェースは図19に示すように表示手段に表示される設定値を観察して引きはずし装置をテストしながら設定値を選択するための複数の膜スイッチをも含む。これらの膜スイッチD88はマイクロコントローラーD20とのインターフェースとして作用する複数の抵抗器D92を介してレジスターD90(図10)と接続する。膜スイッチD88は5ボルト電源と分圧器を形成する抵抗器D92と共に、抵抗器D90に入力する電圧レベル、従って、論理レベルを変化させるように作用する。レジスターD90の出力はIOバスD26に入力する。レジスターD90はアドレスデコードセレクト信号CE5によって選択される。
【0086】
変流器比や、ディスクリミネーター・オプションまたは自動リセット・オプションのような選択オプションをプログラムするためのユーザーインターフェースレジスターD94(図10)をも設ける。このようなデータは連結スイッチD96(図12−13)を介してユーザーによってプログラムされる。連結スイッチD96は配電系統とインターフェース接続する複数の、例えば、10個の単極単投スイッチを含む。スイッチD96は複数のプルアップ抵抗器D98を介してレジスターD94と接続する。レジスターD94の出力はIOバスD26と接続する。レジスターD94はアドレスデコードチップ可能信号反転CE4によって選択される。
【0087】
また、引きはずし装置は遮断器引きはずしコイル及び需要家の遠隔表示器とインターフェース接続する複数のリレー接点出力をも有する。即ち、レジスターD54において得られるCLOSES信号、及びマイクロコントローラーD2において得られる瞬時引きはずし信号、過電流引きはずし信号及びアラーム信号はパワートランジスターD110に入力し、このパワートランジスターD110は複数のリレーD112と接続する。各リレーD112は単極双投接点D114を含む。リレー接点出力D114は需要家が使用できるように需要家インターフェース端子ブロックD115と接続する。
【0088】
配電系統はCT出力電流を適当なレベルまで低下させるための複数の補助変流器を含む。引きはずし装置が使用される特定の遮断器に設けた1次変流器は端子ブロックD116(図16)と接続し、この端子ブロックD116は補助変流器D118と接続する。補助変流器の2次側は端子ブロックD120と接続する。端子ブロックD120はCTモジュール・インターフェース端子ブロックD122(図17)と接続する。
【0089】
CTの出力は複数の整流器D124によって整流される。整流された出力はモニター回路D126(図20−23)に入力する。即ち、整流された相電流出力IA,IB及びICがダイオードOR回路D126に入力する。ダイオードOR回路D126は3個のダイオードを含み、これらのダイオードの陽極は共通に接続され、陰極は整流された相電流IA,IB及びICと接続している。
【0090】
このように構成すれば、変流器が飽和状態である時でも最大負相電流を容易に且つ連続的に選択することができる。需要家によって選択される後述の瞬時/過電流設定値と関連するマイクロコントローラーD20からの正電流と前記負相電流が加算される。この加算結果がマイクロコントローラーD20内のコンパレーターに入力され、相電流が設定値以上ならマイクロコントローラーD20内のマイクロプロセッサーが遮断される。
【0091】
地電流も同様に配電系統によってモニターされる。地電流IGは抵抗器D127の両端間に電圧降下を発生させる。この電圧が分圧回路によって形成される電圧より低ければダイードが導通して瞬時地電流を指定し、この瞬時地電流がマイクロコントローラーD20に供給される。
【0092】
本発明の引きはずし装置は膜スイッチD88(図19)と連結スイッチD96(図13−14)から構成されている。連結スイッチD96は過電流引きはずし装置と連携する遮断器に対して選択した特定の変流器比を配電系統に指示するためのユーザーインターフェースである。CT比の選択には5個のスイッチ接点が利用される。これによって最大限32通りのCT比を配電系統にプログラムすることができる。
【0093】
同様に、地電流変流比をプログラムするのに2個のスイッチ接点が利用される。この2個のスイッチ接点によって最大限4通りの比を選択することができる。
【0094】
連結スイッチ接点D96は種々のオプションにも利用される。例えば、一方の連結スイッチ接点D96は自動リセットオプションをプログラムするのに使用でき、他方の連結スイッチD96はINCOMを介して行う設定値のダウンローディングを可能にしたり阻止したりするのに利用することができる。
【0095】
膜スイッチD88は引きはずし装置とのユーザーインターフェースとして機能する。即ち、膜スイッチACTIVATE PROGRAM MODEを押下することによって引きはずし装置に設定値をプログラムする。長遅延部分の勾配を含む種々の相及び地過電流及び瞬時引きはずし関数の設定値は膜スイッチSELECTを押下することによって選択することができる。SELECT設定値スイッチを押下することにより、長遅延ピックアップ、短遅延ピックアップ、瞬時遅延及びスロープに関連する種々のLED D60(図10)が順次点灯される。特性の所要設定に近い引きはずし装置のLED D60が点灯したら、オペレーターはLOWER RAISE膜スイッチによって英数字表示手段D86上に所期の設定値が現われるまで多数のプログラムされた設定値を検索することができる。所要の設定値に達したら膜スイッチSAVE SETPOINTSを押下し、選択された設定値を記憶させる。エラーの場合、オペレーターは膜スイッチRESETを押すだけでプログラミングモードから出ることができる。配電系統には記憶された設定値の全ての検索する能力も備えている。設定値を検索するには膜スイッチVIEW SETPOINTSを押す。
【0096】
配電系統はテスト能力をも有する。引きはずし装置をテストするためには膜スイッチACTIVATE TEST MODEを押す。このスイッチを押すと、英数字表示部D86に語“TEST”が現われる。次いでオペレーターはSELECT SETPOINTSスイッチを押すことによって所期のテストを選択することができる。テストを選択したら、オペレーターはRAISE LOWERスイッチを押すことによってテストを実行するための電流レベルを増減することができる。次いで膜スイッチTESTを押すと引きはずし装置がLED D60によって指示される引きはずしを開始する。
【0097】
配電系統には計測機能もあり、相電流IA、IB、ICが地電流IGと共に表示される。これらの表示の間に割り込むためにはオペレーターがSELECTスイッチを押す。表示部D80に電流が表示される。
【0098】
本発明の引きはずしのためのプログラム制御ルーチンを図24〜38に示す。既に述べたように、プログラム指令は32K ROM D30に記憶されている。ROM D30はプログラム指令のほかに、相及び地過電流に関する種々の時間/電流特性の探索表をも含むことができる。
【0099】
先に述べたように、これらの相電流IA、IB、ICも地電流IGはカスタム・マイクロコントローラー D20のアナログ入力MUX0、MUX1、MUX2及びMUX3に入力する。後述するように、これらのアナログ入力はオンボードA/Dコンバーターに入力する。ここでデジタル化された値はRAM D32に記憶される。
【0100】
プログラム制御ルーチンは図24〜30に示す主プログラムと、図31及び32に示す相電流長遅延サブルーチンと、図33及び34に示す地電流長遅延サブルーチンと、図35に示す短遅延サブルーチンと、図36に示す瞬時サブルーチンと、図37及び38に示すターボ瞬時サブルーチンから成る。
【0101】
一般に、配電系統は65Kサンプルの連続サイクルで動作する。即ち、1/3サイクルまたは4.7ミリ秒ごとに相電流(IA、IB、IC)及び地電流(IG)がサンプリングされる。瞬時保護には2個のサンプルが使用され、短遅延保護に8個のサンプルが使用され、長遅延保護に16個のサンプルが使用される。過電流保護だけでなく、計測のために256個のサンプルが使用され、ピーク需要電流を求めるため5分間隔で65Kサンプルが使用される。
【0102】
先ずステップP20においてサンプルタイマーPTIMERをローディングすることにより、約1/3サイクルまたは4.7ミリ秒ごとに相及び地電流IA、IB、IC及びIGをサンプリングする。サンプルタイマーPTIMERをローディングしたら、次にステップP22において最初のサンプルを採取し、ステップP24においてサンプルタイマーPTIMERが増分される。サンプルタイマーが増分された後、ルーチンはステップP26においてタイムフラッグがセットされたかどうかをチェックする。もしイエスなら、英数字表示部D86は故障発生からの経過時間を表示する。もしノーなら、ルーチンはステップP28を迂回する。次いで、引きはずし時間オフセットカウンターがステップP30において増分される。引きはずし時間オフセットカウンターはマスターコントローラーからFAST STATUS指令を受信するごとに増分される。FAST STATUS指令についてはマイクロコントローラーとの関連で後述する。引きはずし時間オフセットカウンターを増分することにより、引きはずし事象のタイムスタンプが得られる。引きはずし時間オフセットカウンターが増分された後、ステップP32において、2個のサンプルが採取されたかどうかが判定される。もしノーなら、第1サンプルループのステップP34〜P42においてデッドマン装置や持久型RAMの修理、膜スイッチのチェック、LED D60の点灯などのような種々の整備作業が行われ、次いでステップP20に戻って追加サンプルの採取が行われる。このあと、ステップP22〜P32が繰り返される。2個のサンプルが採取されたらステップP44において、サンプルが一定の数、例えば、4でスケーリングされる。この2個のサンプルは瞬時引きはずしに利用するため、また、短遅延及び長遅延機能のため累積レジスターが利用できるようにステップP46においてSUM2レジスターに加えられる。次にステップ48において、これらのサンプル電流がオークショニングされる。オークショニングとは入力相電流のうちの最高相電流を選択することである。これらの入力相電流は後述する図30及び31のステップP50における瞬時サブルーチンによってチェックされる。
【0103】
次にステップP52において、瞬時サブルーチンのステップP50の結果引きはずしフラッグがセットされたか否かがチェックされる。もそ引きはずしフラッグがセットされておれば、瞬時引きはずしを示唆することになる。従って、ルーチンはステップP56に進む。もしフラッグがセットされていなければ、ステップP54においてSUM2レジスターが払われる。即ち、この合計値は既に上記累積レジスターに記憶されているからである。ステップP50の結果として引きはずしフラッグがセットされた場合、引きはずし時の電流を指示する表示のためSUM2レジスターの内容はそのまま保持され、次いでステップP56に進む。
【0104】
ステップP56において、8個のサンプルが採取されたか否かがチェックされる。もしノーなら、ステップP20に戻り、追加のサンプルが採取され、記憶される。もしイエスなら、ステップP58において引きはずしフラッグがセットされているかどうかが再びチェックされる。もしノーなら、ステップP60において8個のサンプルがレジスターに記憶され、長遅延保護サブルーチンと併用するため保持される。ステップP62において、8個のサンプル電流のうち最高の電流がオークショニングされる。ステップP64においてSUM2レジスターが払われ、オークショニングされた8個のサンプルが後述する短遅延サブルーチン・ステップP66によってチェックされる。次にステップP68において、引きはずしフラッグがセットされたかどうか判定される。
【0105】
ステップP66の結果短遅延引きはずしがあった場合、8個のサンプルの和を記憶しているレジスターを利用することにより引きはずし時の電流値を指示し、ルーチンはステップP72に進む。もし短遅延引きはずしがなかった場合、ステップP70において前記サンプル和が払われる。次いでステップP72において、16個のサンプルが採取されたか否かがチェックされる。もしノーなら、ステップP74、P76及びP78に進んでいくつかの整備作業が行われ、これと並行して16個のサンプルの採取が進行する。16個のサンプルが採取されたら、ステップP80において引きはずしフラッグがセットされているか否かがチェックされる。もしノーなら、16個のサンプルが合計され、ステップP82での使用にそなえて保持される。次いでステップP84において16個のサンプルがオークショニングされ、ステップP86においてSUM2レジスターが払われる。オークショニングされたサンプルは長遅延保護サブルーチン・ステップP88でチェックされ、ステップP94において引きはずしフラッグがセットされているか否かがチェックされる。もしイエスなら、引きはずしが起こった時の値が表示され、ルーチンはステップP94に進む。もしノーなら、16個のサンプルを記録しているレジスターがステップP92において払われる。即ち、これらのサンプルは既に64サンプルレジスターに記録されているからである。サンプル採取が続行し、64個のサンプルの採取がチェックされる。64個のサンプルが採取されたら、ステップP96においてLED D60が1/4秒に亘って点灯する。ステップP98において、引きはずしフラッグがセットされたか否かが再びチェックされる。もしイエスなら、ブロックP99が種々の機能に使用されたサンプル数を指示する。もしノーならステップP100において、計測のための一時バッファに64個のサンプルがロードされる。64個のサンプルが256サンプルレジスターにおいて累算され、ステップP102において64サンプルレジスターが払われる。次いでステップP104において256個のサンプルが採取されたかどうかがチェックされる。もしノーなら、4.7ミリセコンドごとにサンプルの採取が続けられる。256個のサンプルが採取されたら、ステップP106においてタイムアウトカウンターが増分される。
【0106】
タイムアウトカウンターはプログラムモードが開始されると起動されるタイマーであり、ユーザーがプログラムモードを開始させ、設定値に遅れてプログラムするのを防止するのに利用される。
【0107】
次いでステップP108において引きはずしフラッグがセットされているか否かがチェックされる。もしノーなら、ステップP108において、256個のサンプルがレジスターで累算され、65Kサンプルを加算するのに利用されるレジスターにも記録される。次いで256サンプルレジスターが払われる。次にステップP112に於いて1秒フラッグが補足される。この1秒フラッグは配電系統が機能していることを指示するためLED D60を点滅させるのに利用される。ステップP108において引きはずしフラッグがセットされていないと判定されると、P114〜P118において種々の整備作業が行われる。例えば、ステップP114において制御レジスターをテストすることによりこれらのレジスターが正常に作用しているか否かがチェックされる。後述するように、ステップP116においてSURE CHIP PLUSマイクロコントローラー中の増幅器が零点補正される。ステップP118において、連結スイッチD90によってプログラムされたCT比が読み取られる。さらにまた、ステップP122において、配電系統が50Hzで運用されているか60Hzで運用されているかを指示するためZカウントがサンプリングされる。
【0108】
Zカウントは配電系統の周波数を測定するための図20−23に示す回路に関連するカウントである。この回路は例えば相電流IAと接続する分圧回路D129を含む。この回路は相電流IAのゼロ交差間の時間をモニターするのに利用される。分圧回路D129の出力ZCOUNTがマイクロコントローラーD20に印加される。信号ZCOUNTはゼロ交差を表わすパルスを発生させ、マイクロコントローラーD20はこのパルスを計時することによって配電系統の周波数を求める。
【0109】
配電系統は例えば5分間に亘るピーク需要電流(例えば、65Kサンプル)を記憶することもできる。即ち、ステップP124において、これらのサンプルが累算されてピーク需要バッファにローディングされ、表示電流と比較される。次いで、ステップP126において、65Kサンプルが採取されたかどうかがチェックされる。もしイエスなら、ピーク需要バッファのローディング後、ステップP128において65Kの合計が消去される。次いで、ステップP130及びP132において例えばEPROM修理のような整備作業が行われる。65Kサンプルの採取が完了したら、以上に述べたルーチンが繰り返えされる。
【0110】
相過電流保護と併用される長遅延保護サブルーチンP88を図31及び32に示す。相過電流及び地過電流の長遅延サブルーチンは実質的に同じであるから、ここでは相過電流だけを説明する。
【0111】
先ずステップP134において、遮断器を流れる電流が長遅延ピックアップ(LDPU)設定値以上か否かが判定される。もしノーなら、ステップP136において、長遅延タイマー及び引きはずしタリーが払われる。LED D60及びPHASE−ZONE−OUT信号も消去される。次いでステップP138においてLED D60によってHIGH LOADが指示される。HIGH LOAD機能については米国特許第4,827,369号に詳しく記述されている。次にステップP140において、図33及び34に示す地過電流長遅延保護サブルーチンがテストされる。
【0112】
遮断器を流れる電流がLDPU以上なら、ステップP142においてHIGHLOADインジケーターが払われる。次いでステップP144において、引きはずしフラッグがセットされているか否かが判定される。具体的には、電流がLDPU以上になると長遅延タイマーが起動され、タイマーが時間切れになると引きはずしフラッグがセットされる。引きはずしフラッグがセットされているなら、ステップP146において引きはずし指令が起動され、セットされていなければステップP148においてLED D60及びPHASE−ZONE−OUTインターロックがセットされる。さらにPHASE−ZONE−OUTが読取られる。
【0113】
次いでステップP150において、PHASE−ZONE−OUTインターロックがセットされているか否かが判定される。セットされていなければ、後述するように配電系統中の他の過電流保護装置によって長遅延保護が行われることを意味する。この場合、ステップP152に進み、配電系統が第2のループにあるか否かが判定される。もしイエスなら、遮断器の長遅延引きはずしが起動されて故障を排除することになる。もしノーなら、ステップP156に進み、第2パスフラッグをセットし、次にステップP158において地電流長遅延保護がテストされる。
【0114】
ステップP150においてインターロックがセットされていると判定されて、長遅延保護が配電系統中の他の過電流保護装置によって行われないことが示唆された場合、これに代わって長遅延保護機能を行う構成要件が配電系統になければならない。この場合、ステップP160乃至168において、選択された長遅延部分のスロープをチェックするが、この初期設定はI2・tである。
【0115】
勾配が明らかになったら、ステップP170に進み、配電系統が50Hzで運用されているか60Hzで運用されているかが判定される。既に延べたように、相電流のゼロ交差はマイクロコントローラーD20によって感知され、読取られZCOUNTとして識別される。ステップP170において勾配が明らかになったら、ステップP172において、この勾配に対応する引きはずしレベルセッティングが得られる。次いでステップP174において、前記引きはずしセッティングがステップP84において得られた最大相電流と比較される。次にステップP176において、長遅延引きはずしタリータイマーが時間切れになったか否かが判定される。もしノーなら、ステップP178において地電流に関する長遅延保護サブルーチンがテストされる。
【0116】
短遅延及び長遅延保護曲線がオーバーラップするのを防ぐため、ステップP180において短遅延ピックアップ値を超過しているか否かがチェックされ、もし超過しているならルーチンはステップP184に進み、このステップP184において短遅延引きはずし時間値がローディングされ、ステップP186においてこの時間値を超過しているか否かがチェックされる。もし短遅延ピックアップ時間値を超過しているなら、ステップP188において引きはずしフラッグがセットされ、ステップP190において引きはずしフラッグが起動される。もし短遅延時間値を超過していないなら、ステップP192において地電流に対する長遅延保護がテストされる。
【0117】
短遅延保護に関するサブルーチンを図35に示す。先ず、ステップP196において短遅延相電流保護が作用可能な状態にあるか否かが判定され、もしノーなら、ステップP198に進み、このステップP198において地電流に関する短遅延機能がテストされる。もしイエスならステップP200において長/短遅延タリータイマーが増分される。このタイマーは長短遅延機能のオーバーラップを防ぐのに利用される。ステップP200において長/短遅延タリータイマーが増分されたら、ステップP202において、遮断器を流れる電流がLDPUよりも大きいか否かが判定される。もしノーならステップP204において長/短遅延タリータイマーが払われる。もしイエスなら、ステップP206に進み、電流がSDPUよりも大きいか否かが判定される。もしノーなら、ステップP208において長/短遅延タリータイマーが払われると共にLED D60が消灯され、次いでステップP210に進んで地電流短遅延保護機能がテストされる。もし電流がSDPUよりも大きければ、ステップP212においてSDPUが既にピックアップされたか否かが判定され、もしノーなら、ステップP214においてLED D60がセットされ、ピックアップフラッグもセットされる。もしイエスならステップP216において相電流短遅延タリータイマーが増分される。相電流短遅延タリータイマーが増分されたら、ステップP218において短遅延タイマーが時間切れになっているか否かが判定される。もしノーなら、ルーチンは再び瞬時地電流プログラムに戻る。もしイエスならステップP220において引きはずしフラッグがセットされ、ステップP222において引きはずし作用が起動される。
【0118】
瞬時保護を図36及び37に示す。図36は遮断器の状態(例えば、開または閉)が引きはずし装置にリポートバックされる場合に使用されるディスクリミネーター保護ルーチンである。
【0119】
先ずステップP224において、瞬時相電流保護作用が可能な状態にあるか否かが判定される。もしノーならステップP226に進み、地電流瞬時保護機能がテストされる。もしイエスならステップP226に進み、ピックアップセッティングがロードされる。次にステップP228において、ピックアップセッティングが最大相電流と比較される。次いでステップP230において、遮断器を流れる電流がピックアップセッティングよりも大きいか否かが判定される。もしイエスならステップP232において引きはずしフラッグがセットされ、ステップP234において引きはずしが起動される。もしノーなら、ステップP236においてディスクリミネーターオプションが可能な状態であるか否かが判定される。もしノーなら、ステップP226に進み、瞬時地電流保護機能がテストされる。もしイエスならステップP238に進み、遮断器の状態が判定される。遮断器に電流が流れているなら、ステップP241において遮断器が閉じていた時間が測定される。これは遮断器が閉じてからディスクリミネータールーチンに入った回数を求めることによって測定される。ディスクリミネータールーチンに入るごとにディスクリミネーターカウンターDCOUNTが増分される。例えばもしDCOUNTが20以上、即ち、遮断器が約10サイクルに亘って閉路された場合にはステップP226に進み、地電流瞬時保護機能がテストされる。もしディスクリミネーターカウンターDCOUNTが20以下ならステップP242においてカウンターが増分され、遮断器を流れる電流が瞬時設定値と比較される。もし遮断器を流れる電流がステップP244において設定値よりも大きければ、ステップP246においてディスクリミネーターフラッグがセットされ、ステップP234において引きはずしが起動される。もし設定値よりも大きくなければステップP226に進む。
【0120】
ターボ瞬時保護を図37及び38に示す。既に述べたように、このルーチンは上記アナログ回路D129(図20−23)と協働することによって、過電流引きはずし装置をパイロットする変流器が飽和状態にあるときに瞬時引きはずしを行うためのルーチンである。即ち、先ずステップP250において相電流がサンプリングされ、ステップP252においてターボ相電流保護が可能な状態にあるか否かが判定される。もしノーなら、ステップP254において変流器が飽和状態にあるか否かが判定される。もしイエスならステップP256において飽和CTフラッグがセットされ、配電系統は主プログラムに戻る。もしターボ相電流保護が可能な状態にあるとステップP252で判定された場合にはステップP258に進み、再び最大相電流がサンプリングされる。次いでステップP260において、最新サンプルが先行サンプルよりも大きかったか否かが判定され、もしイエスならステップP258に戻って別のサンプルが採取され、もしノーなら、最後の3個のサンプルが比較されて真正サンプルであったかノイズであったかが判定される。真正サンプルであったと判定されると、ステップP262においてこれらのサンプルが引きはずしレベル値と比較され、P264においてこれらのサンプルが引きはずしセッティングよりも大きいか否かが判定される。もしサンプルが引きはずしセッティングよりも大きくなければ、配電系統は主プログラムに戻り、もし引きはずしセッティングよりも大きければステップP266において瞬時ターボ引きはずしフラッグがセットされ、ステップP268において引きはずしが起動される。
【0121】
図38はターボモード瞬時プログラムの準備手順を示す。この準備手順は設定値プログラミング後のパワーアップと同時に使用可能となる。先ずステップP270においてターボ相電流保護が作用可能な状態であるか否かが判定される。もしノーなら、ステップP272においてパルス幅変調器出力が一定値、例えば公称ピックアップレベルの最小ピックアップレベルである5アンペアの28倍にセットされる。もしターボ相電流保護機能が可能な状態にあるなら、配電系統がプログラム引きはずしレベルを確認することによって引きはずしレベルが20/2ニット以上にセットされたか否かを判定する。もしノーなら、ステップP274にすすみ、パルス幅変調器出力がピックアップ値の28倍にセットされる。もしイエスならステップP276においてパルス幅変調器出力が引きはずしレベルにセットされる。
【0122】
下記の定義は本願明細書の全文を通して適用される。
【0123】
ビット指定:レジスター内のビットは角括弧内にビット番号を記入することによって指定する。例えば、レジスターABCのビット5はABC[5]という形で指定する。レジスターABCのビット5乃至0はABC[5...0]という形で指定する。レジスターABCのビット4及び5はABC[5,4]という形で指定する。
【0124】
16進法。接頭符号として$を付して表わされる16個の基数。例えば、$0100=10進法の256。
【0125】
High−true:この信号は接尾辞“h”を伴い、その電気レベルが+VDD電源またはそれに近ければ肯定的(真、または論理1)であると定義され、電気レベルが0ボルト直流(Vdc)またはそれに近ければ否定的(偽、または論理0)であると定義される。
【0126】
Low−true:この信号は接尾辞“b”を伴い、その電気レベルがゼロVdcまたはそれに近ければ肯定的(真、または論理1)であると定義され、電気レベルが+VDD電源またはそれに近ければ否定的(偽、または論理0)であると定義される。
【0127】
入力:入力信号はIC10によって受信される。
【0128】
出力:出力信号はIC10によって駆動される。
【0129】
図中、本発明のICは総括的に参照番号10で示した。IC10の回路は回路遮断器、モーター・コントローラーなど各種電気機器と併用できるようにあらかじめ標準化されている。図示及び説明の便宜上、図39では回路遮断器12中に利用される場合のIC10を示した。図示の回路遮断器12は相“A”、“B”及び“C”を有する3相回路遮断器である。当業者なら容易に理解できるように、IC10はモーターコントローラー、接触器などのような回路遮断器以外の電気機器とも併用できる。
【0130】
回路遮断器12は本発明の範囲に含まれない。図示のように、回路遮断器12は3つの変流器14,16,18を含み、これらの変流器14,16,18は回路遮断器12のモニター及び制御を可能にするため回路遮断器12の負荷側20に配設されている。回路遮断器12の線側22は(図示しないが)3相電源と接続し、負荷側20は(図示しないが)例えば電動機のような3相負荷と接続している。
【0131】
本発明の重要な特徴は、後述するようにIC10は電流駆動されることと関連がある。即ち、変流器14,16,18からの電流がコンディショニング回路19(図39及び83B)を介してIC10に供給される。コンディショニング回路19はIC10に約20μAの電流を供給するために利用される。
【0132】
本発明の他の特徴はオンボード通信コントローラー29に係わる。このコントローラーはIC10が例えば撚り2線式伝送線33のような通信ネットワーク・リンクを介して図39に示すパネルメーター31のようなデバイスと通信することを可能にする。(図示しないが)独自のマスター・コントローラーを含む他の通信ネットワーク・リンク35を介して遠隔パネルメーター31を他のネットワークに接続するためには、遠隔パネルメーター31中に別のIC10、または米国特許第4,644,566号に開示されているようなINCOMチップを組み込めばよい。マスター・コントローラーを有するネットワークに接続される同様の通信コントローラーについては、本願の出願人に譲渡され、本願明細書の一部を形成するものとして引用した米国特許第4,644,566号に概説されている。
【0133】
IC10の一実施例におけるデジタル部分のブロックダイヤグラムを図40に示した。詳しくは後述するように、各用途に特有のソフトウエア・プログラミング及びマスク・オプションに応じて種々の構成を選択できる。回路遮断器;モーターコントローラー、接触器など多様な電気機器を制御・監視できる汎用性をIC10に与えるには、種々の周辺装置を設ければよい。これらの周辺装置としては逓倍命令を有するマイクロプロセッサー30、例えばMotorola社のタイプMC68HO5がある。マイクロプロセッサー30は内部アドレス/データ/制御母線34及び外部母線コントローラー31を介して他の各種周辺装置及びIC10上の外部ピンと通信する。クロック発生器36はマイクロプロセッサー30へタイミング信号を与える。読み取り専用メモリー(ROM)38、消去可能読み取り専用メモリー(EEPROM)40及びランダムアクセスメモリー(RAM)42を含むことのできるオンボードメモリー・サブシステムを設ける。EEPROMに内部充電ポンプ44を設けることによってEEPROM40のプログラミング消去に外部高電圧源を設ける必要がなくなる。
【0134】
図示のメモリー・サイズは図示及び説明の便宜上選択したに過ぎず、例えば、256バイトのEEPROM40及び208バイトのRAM42であってもよい。ROM38は4,096バイトのマスク・プログラマブル・ユーザー命令メモリー及び240バイトのセルフテスト・メモリーで構成することができる。
【0135】
IC10は別々のデジタル及びアナログ電源システムを有し、これらの電源システムはデジタル・ノイズがアナログ回路に影響しないように隔離されている。デジタル電源は外部電圧調整器(図83C)より成るIC10のVDDピンに給電し、アナログ電源はAVDDピンに給電する。多くの場合、外部トランジスター、ダイオード及び抵抗器だけで充分である。
【0136】
AVDDピンと連携する分路調整器へのゲート・ドライブを監視する内部電圧レベル検知器を含む電力監視回路47を設ける。電力監視回路47はアナログ電源電圧AVDDが所定限界値以下に降下し始めると、RESN入力ピンと接続してリセット信号を発するSHUNT出力ピンの作用を停止させる。さらに、マイクロプロセッサー30の動作を監視し、擬似的動作を検知するとリセットを作用させるデッドマン回路46を設ける。
【0137】
アナログ回路用としてアナログ電源サブシステム48を設ける。このサブシステム48は+1.25Vdcバンドギャップ調整器及び+2.5Vdc基準電圧発生のための緩衝増幅器を含む。アナログ電源サブシステム48への給電には外部電流を使用する。この外部電源は外部ピンAVDDへ給電する。基準電圧を正確に+2.5Vdcにトリミングできるように調整ピンVADJを設ける。このトリミングは例えば図120に示すようにVREFピンとアナログ接地ピンAVSSの間に直列に接続した2つの抵抗器からなる分圧回路によって行なうことができる。前記直列抵抗器間のインターフェースはVADJピンに接続する。分路調整器はVREFピンにおける基準電圧に基づいてAVDDピンにおいて公称+5.0Vdcの電源として作用する。緩衝増幅器にはオープンドレイン出力を設け、これだけが電源となるようにする。この構成は複数のデバイスを並列させることを可能にする。調整器は他のICにも隷属させることができる。そのためにはVADJピンをスレーブICのVREFに接続する一方、スレーブICのVREFピンをマスターICのVREFに接続すればよい。
【0138】
Aコンパレーター49、B+コンパレーター50及びカッドコンパレーター58を含むコンパレーター・サブシステムを設ける。Aコンパレーター49は通信コントローラー29と併用される。B+コンパレーター50は図83Bに関連して後述するように外部電源発生用である。コンパレーター50の反転入力はVREFピン(公称+2.5Vdc)と連携する。入力信号はコンパレーター50の非反転入力ピンBSENSEに印加される。B+コンパレーター50の出力は外部ピンBDRIVEと接続する。カッドコンパレーター58は一定電圧、例えば+1.25Vdcを基準とする4つのコンパレーターを含む。
【0139】
タイマー60やパルス幅変調出力61など種々の特殊機能をも設けることができる。タイマー60はタイムベースまたは波形発生周期測定など周期的機能に利用でき、パルス幅変調出力61は4により分割されたマイクロプロセッサーの相2クロックによって周期を制御できる周期性信号である。
【0140】
回路遮断器、モーターコントローラーなど多様な用途に適応できるようにIC10にその他各種の周辺装置も設けることができる。例えば、この種の周辺装置としては、4つの汎用8ビット2方向性ポート、即ち、Port A(52)、Port B(53)、Port C(56)及びPort D(57)が考えられる。また、直列母線を介して通信する周辺装置を有効に接続するためには直列周辺インターフェース54(SPI)を設ければよい。SPI54はマルチプロセッサー・システム内でのプロセッサー間通信にも利用できる。SPI54は種々のプロトコルを採用して通信する装置の接続を可能にする複数の動作モードを実現する。
【0141】
本発明の重要な特徴は、図40に機能ブロック62,64として示したアナログ・サブシステムに係わる。このサブシステムを図41にブロックダイヤグラムで示した。アナログ・サブシステムは例えば、アナログ電圧/電流信号を受信してこれを分解能12ビットの8ビット・デジタル信号に変換する8つのアナログ入力チャンネルを含む。入力チャンネルのうち4つ(62)電圧入力または電流入力として作用するようにソフトウエアによって選択できる。もう一つの入力チャンネル64は電圧入力としてのみ作用させることができる。入力チャンネル62,64の電流及び電圧入力作用はソフトウエアによって選択されるマルチプレクサー(MUX)66,68によって制御される。
【0142】
電圧入力チャンネルは0−2.5Vdcの正電圧を入力されることができ、これらの正電圧はオートゼロ化可能な可調電圧利得増幅器80に印加される。これらの信号はソフトウエアによる選択に応じてオートレンジング(自動範囲決定)・モードまたは固定利得モードで処理される。もしオートレンジング・モードが選択された場合、信号が少なくとも現尺の1/2となり、しかもオーバーフロー状態でなくなるまで利得を自動的に調整できるように内部オートレンジング・レジスタに記憶されている値によって任意の電圧入力チャンネル62または64の範囲を調整する。範囲調整された信号はA/D78により直接に8ビット・デジタル値に変換され、内部レジスタに記憶される。もし固定レンジング・モードが選択された場合、電圧モード入力62または64を所定の利得設定値、例えば1,2,4,8または16で作動することができる。所定の利得設定値はMUX86を介して電圧増幅器80の反転端子と接続する抵抗回路84を含む利得回路によって与えられる。MUX86はソフトウエアによって制御される。電圧増幅器80の出力は他のMUX88を介してA/D回路78と接続する。1以外の電圧利得が選択されると、MUX88は図41に示す位置を取る。ただし、利得1が選択されると、電圧増幅器80はレンジング回路から遮断され、入力電圧チャンネル62または64がA/D78に直接印加される。
【0143】
電流モード入力62は例えば現尺を表わす−1.6mAの負電流(例えば、MXOピンからの電流)を入力される。選択されなかった電流入力チャンネルは開閉スイッチとして作用するMUX68を介してデジタル接地ピン(VSS)に接続し、選択された入力電流チャンネルはアナログ接地ピン(AVSS)と連携するオートゼロ化可能な電流増幅器90の反転入力に接続する。ソースフォロア出力は可調電流ミラー92を介して、選択されたチャンネルに電流を供給することによって反転入力を見掛け上のアース電圧に維持するように構成されている。電流ミラー92はオートレンジング回路によってセットすることができ、ソフトウエアによって例えば比1/1,1/2,1/4,1/8または1/16にオーバライトすることができる。オーバライトされたミラー出力はMXOピンに供給されるから、MXOピンからの電流は選択された電流入力チャンネルピンからの電流総量のプログラマブルな部分ということになる。2通りの演算モードが可能である。
【0144】
非積分モード。アナログ接地ピン(AVSS)とMXOピンとの間に(図示しない)外部抵抗器を挿入することによって比率電流を電圧に変換し、この電圧を上述の態様でデジタル値に変換すればよい。この演算モードでは、ソフトウエアによってオーバライトされない場合、増幅器利得のデフォルト値を1に設定することがある。
【0145】
積分モード。アナログ接地ピン(AVSS)とMXOピンとの間に(図示しない)外部コンデンサーを挿入することによって比率電流を積分する。プログラムの制御下にこのコンデンサーを放電させるための短絡スイッチ96を設ける。積分された電圧は次にA/D78のように上述したように変換される。
【0146】
電圧及び電流増幅器80,90はCMOS増幅器に固有のオフセットを補償するオフセット電圧補償回路98を有する。このようなオフセットは例えば±20ミリボルト程度のレベルに達し、変換デジタル値の最下位ビットの精度に影響する可能性がある。回路98を設けることにより、オフセットを常に0.0乃至0.5mVの負電圧に維持し、もし入力電圧差がゼロなら増幅器80,90が正の出力を取るように強制することができる。このオフセット修正はハードウエアによって自動的に行なうか、またはソフトウエアによって制御することができる。
【0147】
入力チャンネル62,64にサンプル/ホールド能力を与える。具体的には、8つのアナログ入力チャンネル62、64を4対のチャンネル102,104,106,107にグループ分けし、各チャンネル対102,104,106,107をサンプル/ホールド能力のある1つのチャンネルとして使用する。各対の一方のチャンネル入力とアナログ接地ピンAVSSとの間に(図示しない)コンデンサーを挿入し、他方のチャンネルを電圧入力に接続する。サンプル・コマンドはソフトウエアがサンプル/ホールドMUX108,110,112,114を介して各対の両チャンネルを互いに接続して入力電圧を隣接チャンネルのコンデンサーに記憶させることを可能にする。両チャンネル共に電圧モードに構成されているチャンネル対だけがこの態様で動作する。4つのチャンネル102,104,106,108すべてを同時にサンプリングできる。
【0148】
本発明は他にも重要な特徴を有する。例えば、IC10はアナログ信号またはデジタル信号に応答してデジタル信号を出力する。さらに他の重要な特徴として、IC10が周囲温度を感知して対応の信号を出力することを可能にする回路を該IC10に組み込む。
【0149】
動作モード
IC10は5通りの動作モードを有する。先ず2つの普通動作モードとしてシングルチップ・モード及び拡張モードがある。この2つはEXPNピンをVSSピンまたはVDDピンに接続することによって選択することができる。3つの特殊動作モードとしてエミュレーション、テスト及びセルフチェック・モードがある。この3つのモードはリセット・ラインが否定された状態で対応のピンをVDDの2倍の電圧レベルに接続することによってのみ選択でき、通常積操作ではイネーブルさせることができない。IC10の動作モードはリセットから脱した状態でのEXPN,IRQN及びTCAPピンの入力レベルによって決定される。これらのピンはRESNピンが電気的低状態から電気的高状態に移行するとサンプリングされる。種々の動作モードに対応するピンの入力レベルを表1に示す。
【0150】
動作モードはピンALE,PSEN,REN,WEN及びPH2ピンの機能を決定する。それぞれの動作モードにおけるIC10の挙動を以下に説明する。
【0151】
【表1】
Figure 0003710831
1.シングルチップ・モード
RESNピンが電気的低レベルから電気的高レベルに変わり、EXPNピンがVDDレベルであればシングルチップ・モードが選択される。このモードでは、PortA及びBが通常の2方向性I/Oポートとして作用し、マイクロプロセッサーは内部マイクロプログラムROMからのコードを実行する。可変機能デバイス・ピンの動作について表2に示した。
【0152】
【表2】
Figure 0003710831
2.拡張モード
RESNピンが電気的低レベルから電気的高レベルに変わり、EXPNピンがVSSレベルであれば拡張モードが選択される。このモードではPortAが多重化されたデータ/アドレス母線となり、PortBが上位アドレス母線となる。このモードではプログラム・コードが外部メモリ・デバイスに存在しなければならない。内部コードROMは利用できず、$4000以上のメモリ場所はすべて外部デバイスで調達しなければならない。可変機能デバイス・ピンの動作は表2に示した通りである。
【0153】
3.エミュレーション・モード
RESNピンが電気的低レベルから電気的高レベルに変わると、EXPNピンをVDDの2倍に相当する電圧レベルに設定することによって選択される特殊動作モードがこのエミュレーション・モードである。このモードはいくつかのピン定義が変わることを除けば拡張モードと同様である。可変機能デバイス・ピンの動作は表2に示した通りである。
【0154】
4.テスト・モード
テスト・モードはIC10の生産テストに利用されるモードであり、RESNピンの入力が上昇した時点でIRQNをVDDレベルの2倍に設定し、TCAPをVDDレベルに設定することによって選択される。
【0155】
5.セルフチェック・モード
セルフチェック・モードはバーンイン試験に利用される。RESNピン入力が上昇した時点でIRQNをVDDレベルの2倍に、TCAPをVSSレベルにそれぞれ設定することによって選択される。可変機能デバイス・ピンの動作は表2に示した通りである。
【0156】
構成方法
IC10は多様な電気機器に汎用されるよう意図されたものであるから、特定の用途に合わせてIC10を設計するにはそれだけの構成情報が必要である。この構成情報はマスク・オプション、ソフトウエア、定数または実行時間構成によって決定される。
【0157】
マスク・オプションについては、IC10の製造時にROM38の内容を規定すればよい。シングル・マスクに適宜変更を加えることによってマスク・オプションの範囲はさらに広がる。例えばデッドマン・サブシステム46、IRQNトリガリング、発振器オプション、コンパレーター・ヒステリシス・オプション、SPIオプションなどである。個々のコンパレーターごとに所定のヒステリシス、例えば20ミリボルト(mV)または0ヒステリシスを選択することができる。
【0158】
マスク・プログラマブル・オプションもIRQNピンとの連携で発生する割り込みのタイプ選択を可能にする。2つのトリガー方法のいずれか1つを選択すればよい。即ち、1)負エッジ感知トリガリングだけ、または2)負エッジ感知及び低レベル感知トリガリングの併用。もしオプション2)が選択されると、IRQNピンへの入力が割り込みを発生させる。IC10は内部発振器を制御するために水晶/セラミック共振器入力またはRC回路を組み込むことができるように構成すればよい。具体的には内部発振器を制御するために水晶/セラミック共振器入力またはRC回路を組み込むことができるようにマスク・オプションによってIC10を構成すればよい。内部クロックは1MHz乃至8MHzの周波数範囲でATカット並列共振水晶共振器と協働する内部発振器のクロックを二分することによって与えられる。規定の範囲に収まらない水晶を使用したい場合には外部発振器を採用することが好ましい。始動及び安定の問題を極力小さくするため水晶などをできるだけ入力ピンに近く配置しなければならない。水晶共振器に関する好ましいパラメーターは表1に示した通りである。
【0159】
コストに制約のある用途には水晶共振器の代りにセラミック共振器を使用すればよい。セラミック共振器を使用する場合には図42(a)に示す回路が好ましい。これと等価の回路を図42(b)に示した。表3は各種共振器に関する好ましいパラメーターを示す。
【0160】
【表3】
Figure 0003710831
マスク・プログラマブル発振器オプションを選択することにより図42(c)に示すように外部発振器ピンOSC1,OSC2間に単一の外部抵抗器Rを使用することができる。このオプションでは、5MHz乃至70KHzの周波数が適当である。マスク発振器オプションを選択した場合には外部クロック入力を使用しなければならない。図42(d)に示すように、この外部クロックはOSC1ピンと接続するがOSC2とは接続していない。SPIについては2通りのマスク・オプションを利用でき、このマスク・オプションによって2通りの直列周辺インターフェース・データピン(MOSI,MISO)構成のいずれか一方が選択される。
【0161】
□双向データ・ピン: この構成では、マスター動作を選ぶかスレーブ動作を選ぶかに応じてEPIデータ・ピンが方向を変える。MOSIピンはマスター・モードでは出力、スレーブ・モードでは入力となる。MISOピンはマスター・モードでは入力、スレーブ・モードでは出力となる。
【0162】
□単向データ・ピン: この構成はSPIのモードに関係なくSPIデータピンが動作することを強制する。この構成を選択した場合、MOSIは常に出力であり、MISOは常に入力である。
【0163】
マスク・オプションのほかに、ソフトウエア定数もIC10の構成に利用される。即ち、内部構成レジスターはプログラムROM38またはEEPROM40に記憶されている用途に応じたソフトウエア定数からマイクロプロセッサー・ソフトウエアによってロードされる。1対の内部構成レジスター(CFR,ACFR)を利用することによってIC10におけるこれらのオプションを制限する。CFR及びACFRレジスタはプログラム初期設定に基づいてロードされ、詳しくは後述するように、通常プログラム動作中には変更されるようには意図されていない。
【0164】
最後に、実行時間構成によってもIC10の構成を特徴づけることができる。このオプションを選択する場合、構成データはマイクロプロセッサーのI/Oサブシステムを介して外部デバイスから読み取られる。この読み取りは並列また逐次方式で入/出力ポートA,B,CまたはDを利用することによって行なわれる。
【0165】
構成レジスター
IC10アーキテクチュアに利用できる種々のソフトウエア構成オプションを特定するのに構成レジスターCFR及びACFRを使用する。レジスターCFR、ACFRは入/出力ピンをそれぞれ適切な機能に構成すると共にその他の主要構成パラメーターを設定するためソフトウエアの初期設定段階においてプログラムされる。IC10の不適正な動作を回避するためには通常運転中にCFR及びACFRレジスターを変更してはならない。
【0166】
CFRレジスターは書き込み専用レジスターである。ACFRレジスターは読み書きレジスターである。CFR及びACFRレジスターのビット・フォーマットを図44に示した。CFR及びACFR構成レジスターはいずれもパワーアップまたはリセットと同時にゼロに初期設定される。これは給電がなされてからマイクロプロセッサー30が用途に応じて変更するまでのIC10の状態を表わす。
【0167】
CFRレジスター
CFRレジスターは書き込み専用レジスターであり、コンパレーター出力オプションを構成するのに利用される。ビット4及び5は無効である。CFRレジスター中のその他のビットを定義すると下記の通りである。
【0168】
CFR[7]: 通信サブシステム・マスター・イネーブル(許可)。これは通信コントローラー・サブシステム29のマスター・モードへの切り換えを可能にする許可ビットである。この構成ビットが0ならば通信コントローラー・サブシステム29はマスター・モードの動作に入ることができない。1ならばマスター・モード動作が可能となるこのビットはリセットと同時に0にセットされる。
【0169】
CFR[6]: SPIOFF。これはSPIサブシステムに対する禁止ビットである。セットされると、SPIサブシステムはディスエーブル(禁止)状態となる。このビットはリセットと同時に0にセットされる。
【0170】
CFR[3...0]:コンパレーター・モード制御。これら4個の構成ビットはコンパレーター出力をポートCの最下位4ビットで“OR処理”することを可能にする。これら4個の構成ビットに0が現われると連携のポート・ピンのOR演算が可能となる。このモードでは、もしそれぞれのコンパレーター入力が限界電圧(+1.25V)以上なら、リセット状態における各出力ピンのレベルは低となる。リセットによってマイクロプロセッサーのPORTC出力レジスターが払われ、出力ピンはコンパレーター入力にのみ左右される。マイクロプロセッサーがポート出力レジスターに“1”を書き込むと、出力ピンはコンパレーター入力の状態に関係なく高レベルを強制される。
【0171】
これら4個の構成ビットに1が現れると“OR”演算が禁止される。このモードでは、リセット後、ポート・ピンは高インピーダンスの状態となる。構成ビットにはCFR[0]制御スキャンPCO/CMPO及びCFR[3]制御PC3/CMP3が逐次割り当てられる。
【0172】
ACFRレジスター
ACFRレジスターは7ビット読み書きレジスターであり、アナログ・サブシステムを構成するのに利用される。このレジスターはリセットまたはパワーアップと同時に0にセットされる。ビット4は無効である。ACFRレジスターのビット定義は下記の通りである。
【0173】
ACFR[7]: クロック発生源。このビットはA/D78、通信コントローラー・サブシステム29及びEEPROMチャージポンプ44のためのクロック発生源を選択する。上記A/D78などはIC10の内部発信クロックまたは外部水晶発振器からのクロックを利用するように構成することができる。水晶発振器を選択する場合(ACFR[7]=1)、発振器周波数は2−8MHzの範囲でなければならない。周波数が上記以外の値なら内部クロック発信源オプション(ACFR[7]=0)を使用しなければならない。通信コントローラー・サブシステムを使用する場合には、外部水晶発振器オプション(ACFR[7]=1)を使用しなければならない。このビットはリセットはリセットにより0(内部クロック発信源)にセットされる。内部クロックを選択してから発振器が安定するまでに10ミリセコンド(ms)の遅延が必要である。安定時間中にA/D78及びEEPROM40の動作が行なわれねばならない。
【0174】
ACFR[6]: 分配比。このビットはA/D78及び通信コントローラー・サブシステム29のためのクロック分周比を選択する。外部水晶発振器及びACFR[6]セッティングの選択には次の2点を配慮しなければならない;第1に、A/D78へのクロック入力は1−2MHzの範囲でなければならない;第2に、通信コントローラー・サブシステム29へのクロック入力はもし通信コントローラー・キャリア及びビット伝送速度が規格に合っているなら1.8432MHzでなければならない。
【0175】
このビットは分周比1/2または1/4を選択することによって2−8MHzの水晶発振器の使用を可能にする。もし通信コントローラー・サブシステム29がアクティブなら、7.3728または3.6864MHzの水晶発振器を使用しなければならない。外部水晶発振器および状態ACFR[7]を選択することでA/D変換時間、オートレンジ時間およびオートゼロ時間が決定される。表4は構成ビットを定義すると共に変換時間への影響を示す。
【0176】
【表4】
Figure 0003710831
ACFR[6]: A/Dパワーダウン。このビットはA/Dサブシステム78のパワーダウン動作を制御する。セットされるとA/Dサブシステム78をパワーアップする。リセットされると、A/Dサブシステム78はパワーダウンする。このビットはパワーオンと同時のリセットによって0にセットされる。パワーアップ後コンバーターが安定するまでに少なくとも100μsの遅延が必要である。
【0177】
ACFR[3...0]: MUX3...MUX0モード選択。これらの構成ビットはアナログ入力チャンネル62,64の入力モードを制御する。入力チャンネル62(MUX0...MUX3)は電流入力モードまたは電流入力モードにセットすることができる。これらの構成ビット中に0が現れると電圧モードが選択され、1が現れると電流モードが選択される。これらのビットには表5に示すようにACFR[0]制御MUXOおよびACFR[3]制御MUX3が順次割り当てられる。
【0178】
【表5】
Figure 0003710831
マイクロプロセッサー30
マイクロプロセッサー30はすべてのデータ、プログラムおよびI/Oインターフェースを単一アドレス・マップに配置するMotorola MC68HCO5 アーキテクチュア、Von Neumann 型装置をモデルとしたものであり、専用命令の数が少なく、したがって、比較的小型であり、命令セットを記憶しやすい。
【0179】
マイクロプロセッサー30の詳細は参考のため本願明細書にも引用している1983年Motorola Inc. から刊行されたM6805 HMOS/M146805 CMOS FAMILY USERS MANUAL に記憶されている。マイクロプロセッサー30のアーキテクチュアは5つのレジスター:即ち、アキュムレーター(A)、インデックス・レジスター(X)、プログラム・カウンター(PC)、スタックポインター(SP)および条件コード・レジスター(CC)に基づいている。
【0180】
アミュムレーターは演算およびデータ操作のためプログラムによって使用される汎用8ビット・レジスターである。読み取り/変更/書き込み命令はすべてこのレジスターに基づいて動作する。アキュムレーターはデータ操作および演算のためのレジスター/メモリー命令に使用される。インデックス・レジスターはインデックス・モードのアドレス指定において、あるいは補助アキュムレーターとして使用される。これは直接またはメモリーからロード可能な8ビット・レジスターであり、その内容がメモリーに記憶されるか、またはメモリーと比較される。インデックス命令において、インデックス・レジスターは命令によって与えられた値に加算されて有効アドレスとなる8ビット値を供給する。インデックス・レジスターは限られた範囲の演算およびデータ操作にも利用される。
【0181】
プログラム・カウンターは16ビット・レジスターであり、次に取り出して実行すべき命令のメモリー・アドレスを記憶している。通常、プログラム・カウンターは次の命令を指すが、割り込み命令などによって変更されることがある。割り込み中に該当の割り込みベクトルがプログラム・カウンターにロードされる。飛び越しおよび分岐命令は次に実行すべき命令が必ずしもメモリー中の次の命令に相当しないようにプログラム・カウンターを変更することができる。
【0182】
スタック・アレイまたはスタックは重要な情報を一時的に記憶するのに利用されるメモリー領域であり、本質的には後入れ先出し(LIFO)方式で使用される一連のRAMの記憶場所である。スタックポインターは常にスタック中の次の空きスペースを指す。割り込みおよびサブルーチンは重要情報の一時記憶にこのスタックを利用する。スタックポインターはサブルーチン・コールにおいてリターン・アドレス(2バイト・プログラム・カウンタ−)を自動的に記憶すると共に、割り込み中にすべてのレジスター(5バイト:A,X,PCおよびCC)を自動的に記憶するのに利用される。スタックは場所$00FFに始まり、64の場所にまたがっている。
【0183】
条件コード・レジスターは実行されたばかりの命令の結果およびプロセッサーの状態を指示する5ビットのレジスターである。これらのビットはプログラム命令およびそれぞれの状態の結果として取られた特定の行動によって個々にテストされる。条件コード・ビットの定義は次の通りである:ハーフキャリー(H)、割り込みマスク(I)、負(N)、O(Z)および繰り上げ/借り(C)。
【0184】
メモリー・マッピング
マイクロプロセッサー30は65,536バイトのメモリーをアドレス指定することができ、メモリー・スペースは$0000乃至$FFFFである。図119はIC10のメモリー割り当てを示すダイヤグラムである。
【0185】
1.ROM38
IC10メモリー・マップはマスク・プログラマブルROM38の3つの部分を含み、拡張モードで外部ROMの場所$8000乃至$FFFFの32,768バイトを収容する。このメモリー38はデバイス製造時にプログラムされる。ROM38の3つの部分は表6に示すように配置される。
【0186】
【表6】
Figure 0003710831
2.RAM42
IC10は場所$0030から$00FFに及ぶ208バイトのRAMを有し、外部RAMの場所$4000から$7FFFまで16,384バイトを収容できる。この内部RAMの上部$0030から$00FFまでの領域はスタックに当てられる。スタックは場所$00FFから$00COまで最大限64場所に亘る。プログラムは使用されないスタック場所を全般的な記憶に利用できる。ただし、これらの場所に記憶されているデータがスタック操作によって重ね書きされないように注意する必要がある。
【0187】
3.EPROM40
IC10はアドレス$0100乃至$01FFに配置された256バイトのEPROM40を有する。
【0188】
4.割り込みおよびリセット・ベクトル
メモリー・マップの上部16バイトは割り込みベクトルに当てられる。それぞれに対するアドレス割り当ては下記の通りである:
$FFFE−FFFF:リセット・ベクトル
このベクトルはプロセッサー・リセットに際して使用される。8つの割り込みのうち最も高い優先順位を与えられる。
【0189】
$FFFC−FFFD:ソフトウエア割り込み
このベクトルはSWI命令の実行中に使用される。8つの割り込みのうち2番目に高い優先順位を与えられる。
【0190】
$FFFA−FFFB:外部非同期割り込み
この割り込みには8つの割り込みのうち3番目に高い優先順位が与えられる。外部割り込み(IRQNピン)はこのベクトルを使用する。
【0191】
$FFF8−FFF9:タイマー割り込み
この割り込みには8つの割り込みのうち4番目に高い優先順位が与えられる。タイマー60によって使用される。
【0192】
$FFF6−FFF7:コンパレーター・サブシステム割り込み
この割り込みには8つの割り込みのうち5番目に高い優先順位が与えられる。コンパレーター・サブシステム58によって使用される。
【0193】
$FFF4−FFF5:A/Dサブシステム割り込み
この割り込みには8つの割り込みのうち6番目に高い優先順位が与えられる。A/D78によって使用される。
【0194】
$FFF2−FFF3:直列周辺装置割り込み
この割り込みには8つの割り込みのうち7番目に高い優先順位が与えられる。SPIサブシステム54によって使用される。
【0195】
$FFF0−FFF1:INCOM通信コントローラー割り込み
この割り込みには8つの割り込みのうち最も低い優先順位が与えられる。通信コントローラー29によって使用される。
【0196】
5.データの転送および制御
データ転送/制御機能は表7で定義するようなメモリー・アドレス・スペースにおいてマイクロプロセッサー30によってアクセスされる全バイトに亘るレジスター・インターフェースを利用することによって行なわれる。
【0197】
EEPROMの制御
マイクロプロセッサー30はメモリー・アドレス・スペースに配置されている単一の読み書きレジスターNVCRによってEEPROM40の動作を制御する。図45はこのレジスターのフォーマットを示す。リセットによってこのレジスターが払われて0となる。これによってEEPROM40が正規読み取り動作用に構成される。NVCRレジスターのビット割り当てを以下に説明する。
【0198】
【表7】
Figure 0003710831
NVCR[7..5]:未使用。これらのビットはデバイス・テスト用に当てられる。
【0199】
NVCR[4]:バイト消去選択(BYTE)。このビットはバイト消去動作を選択する。セットされると行ビットを無視する。即ちBYTEが1にセットされると消去動作が特定のバイトに対して実行され、0にセットされると消去動作が行またはバルクに及ぶ。
【0200】
NVCR[3]:行消去選択(ROW)。このビットは行またはバルク消去動作を選択する。BYTEがセットされると、このビットは無視される。ROWが1にセットされると、消去動作は特定の行に対して実行され、0にセットされると、バルク消去が選択される。
【0201】
NVCR[2]:EEPROM消去(ERASE)。このビットは次のように消去動作を制御する:ERASEが1にセットされると、消去モードが選択される。ERASEが0にセットされると、正規の読み取りまたはプログラム・モードが選択される。
【0202】
NVCR[1]:EEPROMラッチ制御(EELAT)。このビットは次のようにEEPROMアドレスおよびデータのラッチ動作を制御する。EELATが1にセットされると、アドレスおよびデータをプログラミングまたは消去動作のためEEPROM40内にラッチすることができる。EELATが0にセットされると、データをEEPROM40から読み取ることができる。EELATおよびEEPGMビットの双方を同じ書き込みサイクルにおいてセットしようとしてもどちらもセットされない。
【0203】
NVCR[0]:EEPROMプログラム電圧イネーブル(EEPGM)。このビットは次のようにEEPROM40の動作モードを決定するEEPGMが1にセットされると、充電ポンプ44が作動し、その結果EEPROM列に高電圧が印加される。EEPGMが0にセットされると、充電ポンプが停止する。EELATおよびEEPGMの双方を同じ書き込みサイクル中にセットしようとしても双方ともにセットされない。EEPGMビットがセットされている状態でEEPROMアドレスへの書き込みが行なわれても、この書き込みは無視され、進行中のプログラミング動作は妨げられない。この2つの安全対策によりEEPROM40の内容が意図に反して変化するのを防止することができる。
【0204】
EEPROMの動作
EEPROM40の仕様はAppendixAに示してある。内部充電ポンプ44により、消去およびプログラミングのため高電圧を供給する必要がない。プログラミング時間を短縮するため、バルク、行およびバイト消去作業を充電ポンプ44でまかなう。
【0205】
EEPROMバイトの消去状態は$FFである。プログラミングは1から0に変化する。メモリー場所中のいずれかのビットを0から1に変えたければ、再プログラムに先立って別の動作でバイトを消去しなければならない。新しいバイトがすでに0にプログラムされたビット位置に1を含まなければ、EEPROMバイトを消去せずにプログラムしてもよい。
【0206】
EEPROM40のプログラミングおよび消去は内部高電圧充電ポンプ44に依存して行なわれる。充電ポンプ44のためのクロック発信源はA/Dサブシステムと共通であり、上述したようにACFR[7,6]によって選択される。2MHz以下のクロック周波数ならば充電ポンプ44の効率を低下させ、プログラムまたは消去に要する時間を増大させる。選択されたクロックが2MHzならば好ましいプログラムおよび消去時間は10msであり、クロックが1MHz乃至2MHzなら20msまで延びることになる。クロック発信源を充電ポンプ44用に切り換えてから発信源が安定するまで少なくとも10ms待たねばならない。
【0207】
EEPROM40の動作はNVCRレジスターによって制御される。後述するように、EEPROM40によって種々の動作が行なわれる。EEPROMのプログラムおよび消去と並行して、もしEEPROM40からのデータ読み取りを必要としないならその他のプロセッサー動作を継続することができる。プログラムおよび消去動作中は内部読み取り/データ母線34からEEPROM40が遮断されるからである。
【0208】
EEPROM40からデータを読み取るには、EELATビットが0でなければならない。このビットが払われると、NVCRレジスター中の残りのビットは意味または効果を失い、EEPROM40はあたかも普通のROMであるかの如く読み取られる。
【0209】
EEPROM40のプログラミング中にはROWおよびBYTEビットは使用されない。プログラミングに先立って別の消去動作によりバイト中の0ビットを消去しなければならない。プログラミング・サイクルを開始するには下記のような一連の動作が必要である:
1.EELATビットをEEPGM=0にセットする。
【0210】
2.EEPROMメモリー場所にデータを記憶させる。
【0211】
3.EEPGMビットを高電圧供給にセットする。
【0212】
4.10ms待機する。
【0213】
5.EEPGMおよびEELATビットをいずれもリセットすることにより正規動作に戻す(NVCRを払う)。
【0214】
EEPROMメモリーのバルク消去を開始するには下記のような一連の動作が必要である:
1.ERASEおよびEELATビットをEEPGM=0にセットする。
【0215】
2.EEPROMアドレスにデータを書き込む。
【0216】
3.EEPGMを高電圧供給にセットする。
【0217】
4.10ms待機する。
【0218】
5.ERASE、EELATおよびEEPGMビットをリセットすることにより、正規動作に戻す(NVCRを払う)。
【0219】
DDPROM40中の1行は先頭アドレスが$xxNO、末尾アドレスが$xxNFの16バイトから成る群である。xはアドレスビットを顧慮しなくてもよいことを示す。Nは行の番号である。この消去動作はEEPROMの広い範囲を消去する場合にはバイト消去動作に比較して時間が節約される。EEPROM40における行消去の開始に必要な動作は下記の通りである:
1.ROW、ERASEおよびEELATビットをEEPGM=0にセットする。
【0220】
2.所要の行のEEPROMアドレスにデータを書き込む。
【0221】
3.EEPGMビットを高電圧供給にセットする。
【0222】
4.10ms待機する。
【0223】
5.ROW、ERASE、EELATおよびEEPGMビットをリセットすることにより、正規動作に戻す(NVCRを払う)。
【0224】
デッドマン・サブシステム46
デッドマン回路46はマイクロプロセッサー30を正しく動作するようにモニターする。この機能はアドレス$0FFOに配置された単一レジスター(DMC)を介してマイクロプロセッサー30と相互作用するマスクがイネーブルされたオプションである。デッドマン回路は母線定格4MHz(262,144発振器サイクル)で32.8ミリセコンドのタイムアウト時間を画定する17ビット・リップル・カウンターとして構成すればよい。カウンターがオーバーフローすると、プロセッサーがリセットし、デバイスは再初期設定される。
【0225】
デッドマン・タイマーはDMC[0]に0を書き込むことによってリセットされる。これによってカウンターがリセットされ、再びタイムアウト時間が始まる。DMCレジスターの位置は正規ビット操作命令ではタイマーをリセットできないように選択した。この場所をアクセスできるのは拡張された、またはインデックス付きの16ビット・オフセット・アドレス指定モードだけである。
【0226】
デッドマン・インターフェース・レジスター
デッドマン・サブシステムはメモリーのアドレススペースに配置された1ビット・レジスター(DMC)によって制御される。図122はレジスターのフォーマットを示す。
【0227】
DMC[0]:デッドマン・リセット。この書き込み専用ビットはデッドマン・タイマーをリセットするのに利用される。これに0を書き込むと、デッドマン・カウンターがリセットされ、デッドマン・タイムアウト時間が再スタートする。
【0228】
アナログ・サブシステム・インターフェース・レジスター
マイクロプロセッサー30のインターフェースは7つのレジスター(ADZ,AMZ,AMUX,ACSF,AVSF,ADC,およびADCR)から成り、メモリー・アドレス・スペースに配置される。これらのレジスターのフォーマットを図47に示す。
【0229】
ADZ:A/Dオートゼロ値。この6ビット読み書きレジスターは電圧入力増幅器80のオフセット修正値を含んでいる。ADZレジスターにはオートゼロ・シーケンス完了時に修正値がロードされる。値0は増幅器80に組み込まれる正のオフセットである。ADZ値が増大するとオフセットが減少する。最下位ビットは約0.5mVのオフセットを表わす。修正値はこのレジスターに書き込むことによって変更できる。ADZレジスターへの書き込みは診断や検証のためであって正規動作においては行なわれない。オートゼロ・シーケンスは正規のデバイス動作に適切なオフセット値を算出する。オートゼロ完了時の増幅器80のオフセットは0乃至−0.5mVでなければならない。
【0230】
ACSF:電流倍率。この読み書きレジスターは電流入力オートレンジング(範囲決定)動作の制御に利用される。このレジスターに書き込まれる値が電流サブシステム・オートレンジ動作モードを決定する。0が書き込まれると、電流サブシステムはオートレンジ・モードとなる。非0値ならばオートレンジ動作を禁止し、電流ミラー92を固定スケール値にセットする。表8はACSF書き込み動作に想定される値を示す。表に示す値以外の値は予想し得ない動作を惹起する。
【0231】
このレジスターは真の読み書きレジスターではない。このレジスターから読み取られる値は必ずしもこれに書き込まれた値ではない。ACSFに0を書き込めばオートレンジングがイネーブルされるが、0がACSFレジスターから読み取られることはない。読み取られる値は次の5つだけである:$10,$08,$04,$02および$01。
【0232】
このレジスターから読み取られる値は8ビットA/D出力を正しくスケーリングするのに必要な倍率の1つである。5通りの値が考えられる:×1,×2,×4,×8および×16。表8に倍率を示す。
【0233】
【表8】
Figure 0003710831
AVSF:電圧倍率。この読み書きレジスターは電圧入力オートレンジ動作の制御するのに利用される。このレジスターに書き込まれる値は電圧増幅器80のオートレンジ動作モードを決定する。0が書き込まれると、電圧増幅器80はオートレンジ・モードに設定される。非0値はオートレンジ動作を禁じ、電圧増幅器80を固定利得動作モードに設定する。表9はAVSF書き込み動作に適切な値を示す。表に示す値以外の値は予期できない動作を惹起する。
【0234】
このレジスターは真の読み書きレジスターではない。即ち、このレジスターから読み取られる値は必ずしもこれに書き込まれた値ではない。AVSFに0を書き込めばオートレンジ動作がイネーブルされるが、AVSFから0は読み取られない。読み取られる値は次の5つだけである:$10,$08,$04,$02および$01。
【0235】
【表9】
Figure 0003710831
このレジスターから読み取られる値はA/D出力を正しくスケールするに必要な倍率の1つである。5通りの値が考えられる:×1,×2,×4,×8および×16。これらの値を表9に示した。変換が進行中にこのレジスターに対する読み取りまたは書き込みをしてはならない。
【0236】
AMUX:入力マルチプレクサー制御。この8ビット読み書きレジスターは電圧および電流入力チャンネル62,64に接続するMUX66,68を選択するのに利用される。レジスターは2つの4ビット・フィールドに区分され、一方は電圧入力チャンネルの制御に、他方は電流入力チャンネルの制御にそれぞれ使用される。A/D変換の開始にも利用され、このレジスターに書き込むことでA/D変換が開始される。
【0237】
AMUX[3...0]:A/Dチャンネル選択。これら4個のビットは電圧入力チャンネル62、64の動作を制御する。これらのビットは表10に示すようにデコードされる。“予約ずみ”として示した値はテストおよび検証に使用され、正規動作中に選択してはならない。電流チャンネル62が選択されると(AMUX[3...0]=1000)、電圧増幅器80のオートレンジングが禁止され、利得が×1にセットされる。あらかじめAVSFレジスターに非0値が書き込まれておれば、×1利得ではなく、選択されたゲインが使用される。
【0238】
【表10】
Figure 0003710831
AMUX[7...4]:電流MUX選択。これら4個のビットは電流入力チャンネル62の動作を制御する。各ビットは他の3個のビットとは独立にチャンネルを制御する。ビットには入力ピンMUXOに割り当てられるAMUX[4]および入力ピンMUX3に割り当てられるAMUX[7]が順次割り当てられる。連携のチャンネルがAFRレジスターによって電圧モード用に構成されているなら、これらのビットはなんらの効果を持たない。AMUX[7...4]中に0が現われると、該当の入力ピンがデジタル・アース(VSS)と接続し、1が現われると、ピンが電流ミラー92の出力と接続する。複数電流入力を選択することによって電流を合計することができる。このフィールドの4個のビットがすべて0なら、どの入力チャンネルも電流ミラー92の出力と接続しない。電流増幅器90の反転入力は電流ミラー92の出力と接続したままであるから、電流増幅器90の出力は低レベルにあり、電流ミラー92からは電流が流れない。
【0239】
ADC:A/Dコンバーター出力 この読み取り専用レジスターは8ビット出力値を戻すのに使用される。最下位ビットはADC[0]中にある。この値にはACSFおよびAVSF中の電圧および電流倍率を乗算しなければならない。動作モードによってはどちらの倍率も不要である。
【0240】
電圧入力: すべての電圧入力について、ADCレジスターにAVSFを乗算しなければならない。ACSFレジスターの内容を電圧目盛の設定に使用してはならない。
【0241】
電流入力: 電流サブシステム出力(MSO)のスケーリングにはADCレジスターにACSFレジスター中の値を、次いでAVSFレジスター中の値をそれぞれ乗算しなければならない。電圧増幅器80がオートレンジングにセットされると、AVSFソフトウエア倍率は常に×16である。即ち、電圧ハードウエア利得がMXOの選択によって強制的に×1となるからである。
【0242】
入力電圧がAVSS乃至VREFの範囲内でなければ、A/Dコンバーターは$00(AGND以下の電圧)または$FF(VREF以上の電圧)を戻す。それ以上の指示は与えられない。
【0243】
ADCR:A/Dサブシステム制御 このバイトワイド・レジスターはA/D78の動作を制御するのに利用される。このレジスターは読み取り/変更/書き込み命令がビットを正しく操作することを可能にする読み書きレジスターとして構成する。指令ビットはすべて0、制御ビットはその現在値である。
【0244】
ADCR[0]:未使用。このビットは使用されない。ADCR[0]ビットは常に0である。
【0245】
ADCR[1]:サンプル入力。この制御ビットはチャンネル対102,104,106,108を一括接続してサンプル/ホールド機能を形成する4つのMUX108,110,112,114を閉じるのに利用される。これらのチャンネルはADCR[1]=1なら閉じ、ADCR[1]=0なら開く。ADCR[1]はデバイスのリセットに伴なって0にセットされる。サンプル/ホールドスイッチ108,110,112,114のそれぞれは連携する両チャンネルが電圧モードに構成されている場合に限って閉じる。
【0246】
ADCR[2]:オートゼロ・シーケンス開始。この指令ビットに1が書き込まれると、電圧および電流増幅器80,90がオートゼロ・シーケンスを開始する。シーケンスが完了すると、ADCR[6]ビットが1にセットされる。オートゼロ・シーケンスの完了時に、もし許可されれば割り込みが起こる。ADCR[2]ビットは常に0である。
【0247】
ADCR[3]:積分器リセット。この制御ビットが1に書き込まれると、MXU96がMXOピンを電流ミラー92から遮断し、MXOをアナログ・アースに短絡させる。このビットがセットされている限り、MUX96は短絡したままである。MUX96を開くにはADCR[3]に0を書き込まねばならない。このビットはMUX96の現状態を示す。
【0248】
ADCR[4]:割り込みイネーブル。この制御ビットはA/Dサブシステム78からの割り込みをイネーブル(許可)する。ADCR[4]ビットが1にセットされると、割り込みが許可される。ADCR[4]ビットは割り込み許可の現状態を示す。
【0249】
ADCR[5]割り込みおよびその動作完了の確認。1が書き込まれると、この指令ビットは動作完了フラッグをリセットする。ADCR[6...7]をリセットし、プロセッサーからの割り込みリクエストを除去する。他の変換を開始する前にADCR[5]に1を書き込まねばならない。このビットはいつも0である。
【0250】
ADCR[6]:オートゼロ・シーケンス完了。この読み取り専用状態ビットはオートゼロ・シーケンスの完了を指示する。オートゼロ・サイクル完了後、1にセットされる。レジスターADZおよびAMZはオートゼロ・シーケンスによって算出された新しいオフセット修正値で更新される。このビットはADCR[5]ビットに1を書き込むことによってリセットされる。ADCR[6]ビットは書き込み不能である。
【0251】
ADCR[7]:変換完了。この読み取り専用状態ビットはA/D変換サイクルの完了を指示する。A/D変換完了後、1にセットされ、ADC,ACSF,およびAVSFレジスター中に利用できるデータがあることを指示する。ADCR[5]ビットに1を書き込むことでリセットされる。このビットは書き込み不能である。
【0252】
A/Dサブシステムの動作
A/Dサブシステムはパワーアップ・ルーチン中に初期設定しなければならない。次に述べるような初期設定動作が必要である。
【0253】
MUX4...MUX1入力の適切な動作モードを選択するにはACFRレジスターに適当な値を書き込まねばならない。入力チャンネルを電流モードに設定する場合には、入力ピンに低インピーダンスが発生するから注意が必要である。
【0254】
クロックの発信源および分割比は使用する水晶発振器の周波数に応じてACFR[7,6]ビットで選択する。RC発振器マスク・オプションを選択するなら、クロック発信源を内部発振器(ACFR[7]=0)にセットする。A/D動作割り込みを可能にするためにはACFR[5]ビットに1を書き込む。
【0255】
制御レジスター(ADCR)には適当な値を書き込まねばならない。ビット1,3,4は初期動作状態となるようにセットする。ビットADCR[2]=1にセットすることによりオートゼロ・シーケンスを開始させる。これによって電圧および電流増幅器80,90のオフセット電圧が打ち消され、ADZおよびAMZレジスターが適正値にセットされる。
【0256】
2つの倍率レジスター(ACSFおよびAVSF)を初期設定する。オートレンジングの必要があれば、両レジスターに0を書き込むか、または所要の倍率を選択する。
【0257】
電圧入力による動作
電圧入力の変換を開始するには、下位4ビットに所期の入力チャンネルを、上位4ビットに現電流スイッチ選択をそれぞれ含んでいる値をAMUXレジスターに書き込む。これによって任意の電圧入力への変換がスタートする。変換が完了すると、(もし許可状態なら)割り込みが始まり、ADCR[7]ビットがセットされる。割り込みおよびその動作完了確認フラッグを払うにはADCR[5]に1を書き込む。これによってADCR[7]ビットがリセットされる。変換値をADCレジスターから読み取り、これにAVSFレジスター中の値を乗算することによって12ビット値を形成する。なお、電圧利得が×1なら倍率は×16となる。また、変換ごとに、それに先立ってAVSFレジスターに書き込むということはない。変換動作が終わるごとにADCR[5]ビットに1を書き込むことによってADCR[7]ビットを払わねばならない。
【0258】
電流入力による動作
電流入力変換を開始するには、下位4ビットに$8を、上位4ビットに現電流スイッチ選択をそれぞれ含んでいる値をAMUXレジスターに書き込む。これによってMXO入力の変換がスタートする。変換が完了すると、(もし許可状態なら)割り込み動作が始まり、ADCR[7]がセットされる。割り込みおよびその完了フラッグを払うにはADCR[5]に1を書き込む。これによってADCR[7]がリセットされる。ADCレジスターから変換値を読み取り、これにAVSFおよびACSFを乗算することによって16ビット値を形成する。AVSFに0を書き込むことで電圧オートレンジグが可能な状態になっている場合、12ビット値を必要とするのならAVSFを乗算する必要はない。なお、電圧利得が×1なら倍率は×16となる。AVSFに×1以上の利得を書き込まない限り、×16倍率は無視してもよい。
【0259】
変換ごとに、それに先立ってAVSFまたはACSFに書き込む必要はない。変換が完了したら、ADCR[5]に1を書き込むことによってADCR[7]を払わねばならない。
【0260】
A/Dサブシステムはベクトル・アドレス$1FF4−1FF5において同期割り込みを発生させる。割り込みの重複を避けるため、1ビットをリセットする前に割り込みを確認しなければならない。
【0261】
カッドコンパレーター・サブシステムの動作
1.カッドコンパレーター・サブシステム
4つの反転コンパレーターから成り、各コンパレーターの非反転入力の基準電圧は+1.25ボルトである。コンパレーターの詳細を以下に説明する。なお、このサブシステムの仕様はAppendixBに記載した通りである。コンパレーターの出力状態はレジスター(CMPST)から読み取ることができ、ポートCの最下位4出力ピンに直接接続することもできる。1つのコンパレーター200は上昇出力信号にも下降出力信号にも応答して割り込むが、残り3つのコンパレーターは上昇出力信号にだけ応答して割り込む。
【0262】
カッドコンパレーター・サブシステム58は図44に示す構成レジスターの4ビットによって制御される。
【0263】
CFR[3...0]コンパレーター・モード制御。この4個の構成ビットはコンパレーター出力をポートCの最下位4ビットとOR演算することを可能にする。このモードでは、もし各コンパレーター入力が限界電圧(+1.25V)以上ならデバイスがリセットされている間各出力ピンは低レベルである。リセットによってポートC出力レジスターが払われ、出力ピンはコンパレーター入力だけに左右される。マイクロプロセッサー30がこのポート出力レジスター・ビットに1を書き込むと、対応の出力ピンはコンパレーター入力の状態に関係なく高レベルとなるように強制される。
【0264】
これらの構成ビット中に1が現れるとOR演算は不能となる。このモードでは、ポート・ピンは正規のポート・ピンとして作用する。構成ビットにはCFR[0]制御PCO/CMPO及びCFR[3]制御PC3/CMP3が順次割り当てられる。割り当てについては表11を参照されたい。
【0265】
【表11】
Figure 0003710831
コンパレーター・サブシステム58はメモリー・アドレス・スペースに配置された2個で1組の制御及び状態レジスター(CMPI及びCMPT)を介してマイクロプロセッサー30と通信する。各コンパレーター出力の状態はCMPSTレジスターを介して読み取ることができる。コンパレーター出力の所定のエッジに対応して割り込みが発生するように外部割り込み手段を設ける。これらのコンパレーターのヒステリシスは約20mVである。図48はこれらのレジスターのフォーマットを示す。
【0266】
CMPIレジスター
CMPI[7...4]:割り込み確認。これら4個の指令ビットはカッドコンパレーター・サブシステム58からの割り込みリクエストをリセットするのに使用され、常態では0である。指令ビットに1を書き込むと、対応の割り込みリクエストが払われる。この4個のビットは読み書きレジスターではない。割り込みの重複を避けるため、1ビットを払う前に割り込みリクエストをリセットしなければならない。ビットの割り当てを表12に示す。
【0267】
【表12】
Figure 0003710831
CMPI[3...0]:割り込み許可。これら4個の制御ビットはコンパレーターの割り込みを許可するのに使用される。1ならばコンパレーター割り込みが可能となり、0ならば不能となる。割り込み許可前の過渡状態は無視されるから、真の意味での割り込み許可である。割り込みが継続状態でこの許可ビットを払えば、割り込みリクエストが取り消される。これらの4個のビットは真の読み書きレジスターとして構成される。ビット割り当てを表13に示す。
【0268】
【表13】
Figure 0003710831
CMPST[7...4]:割り込みリクエスト。これら4個の読み取り専用状態ビットはどのコンパレーターの割り込みがアクチブであるかを指示する。該ビットを読み取ることによってマイクロプロセッサー割り込みの原因を知ることができる。1は各コンパレーター出力ごとに割り込みリクエストを指示する。ビットの割り当てを表14に示す。
【0269】
【表14】
Figure 0003710831
CMPST[3...0]:コンパレーター出力。これら4個の読み取り専用ビットは4つのコンパレーターの出力状態を示す。1はコンパレーター出力が高レベル、入力が限界レベル以下であることを示す。ビット割り当てを表15に示す。
【0270】
【表15】
Figure 0003710831
コンパレーター・サブシステムはベクトル・アドレス$FFF6−$FFF7において同期割り込みを発生させる。
【0271】
2.B+コンパレーター50
B+コンパレーター50は詳しくは後述するが、給電を目的とするものである(図121B参照)。このコンパレーターの負入力はVREFピン(公称+2.5V)と接続する。正ピンはBSENSESである。コンパレーター出力はBDRIVEに配置される。コンパレーターの仕様はAppendixBに記載してある。
【0272】
3.Aコンパレーター49
Aコンパレーター49は通信コントローラー29の受信回路と併用される。反転(ANEG)入力も非反転(APOS)入力も入力ピンとして利用できる。出力はAOUTである。このコンパレーターは原則的にはVREFに近似の入力電圧で動作する。このコンパレーターの仕様はAppendixCに記載してある。
【0273】
4.PWMサブシステム61
パルス幅変調出力61は回路を介して出力ピンPWMから得られる。この出力はPWMレジスターに記憶されている8ビット値によって高低比を制御される同期的信号である。8ビット・パルス幅変調器への入力は4で分割したプロセッサーの相2であり、したがって、3.6864MHzの水晶発振器を使用する場合、PWM周期は0.2778msとなる。PWM周波数は水晶発振器周波数/1024である。PWMサブシステムは構成制御レジスター(Configuration Control Register) によって制御されない。
【0274】
インターフェース・レジスター
PWMサブシステム61はメモリーのアドレススペースに配置された単一8ビット・レジスター(PWM)によって制御される。図124は該レジスターのフォーマットである。
【0275】
PWM:パルス幅変調比
PWMピンにおける高低信号レベル比はPWMレジスター中の値によって決定される。PWMの8ビットが256を分母とする分数の分子(N)として取り出される。この分数は時間のどの部分に亘ってPWMピンが高レベルとなるかを決定する。N=0なら、PWMピンは低レベルのままであり、N=$80なら、デューティーサイクルは50%となる。リセット後、PWMレジスターも内部カウンター・レジスターも0にセットされ、PWM出力は低レベルとなる。PWMレジスターに非ゼロ値が書き込まれると、PWM出力は書き込み完了後2つのPH2サイクルに亘って高レベルに移行する。出力は特定幅に亘って高レベルのままであり、次いで残りのPWMサイクルに亘って低レベルに移行する。出力パルスはPWMレジスターに新しい値が書き込まれるまでPWMサイクル以内で連続的に反復する。現PWMサイクル終了後、新しいパルス幅が有効値となる。PWMレジスターはPWMレジスターに書き込まれた新しい値がPWMカウント・シーケンスのスタートにおいてのみ効力を示すようにダブル・バッファーされる。これによって擬似出力パルス幅の発生が回避される。
【0276】
PWMレジスターに書き込まれた値が0ならば、現PWMサイクルが完了した後も出力は低レベルのままとなる。PWMレジスターに0が書き込まれると次に非0値が書き込まれるまでPWMは作用を禁止される。非0値が書き込まれた後のPWMのスタートアップは常にPWMレジスターへの書き込み完了から2つのPH2クロック・サイクル後である。これにより、PWMサイクルは必ず所定時点にスタートすることになる。
【0277】
50.プログラマブル・タイマー60
IC10は2つの出力比較レジスターを有する単一の16ビット・プログラマブル・タイマー60を含む。このタイマーはマイクロプロセッサー30のPH2クロックに基づいて動作する固定1/4プレスケーラーの出力によって駆動され、入力波形測定など多目的に利用されると同時に出力波形を形成する。パルス幅は数msから大きい値の秒まで可変である。タイマー60は周期的割り込みを発生させたり、任意の内部クロック・サイクル数の経過を指示することもできる。タイマーのブロックダイヤグラムを図125に示した。また、タイミング・ダイヤグラムを図50(a)−50(d)に示した。
【0278】
タイマーは16ビット構成であるから、個々の機能は2つのレジスターによって表わされる。これらのレジスターは前記機能の高及び低バイトを含んでいる。一般に、特定のタイマー機能の低バイトをアクセスすれば、その機能の全制御が可能となり、高バイトをアクセスすると、低バイトもアクセスされるまでその特定タイマー機能が禁止される。割り込みが起らないようにするには、特定タイマー機能の高及び低バイト・レジスターの双方を操作しながら、条件コード・レジスター中の1ビットをセットしなければならない。これにより、高バイトがアクセスされてから低バイトがアクセスされるまでの間に割り込みが起こるのを防止できる。
【0279】
プログラマブル・タイマーの重要素子はマイクロコントローラー内部PH2クロックを4で除算するプレスケーラーの次に来る16ビット非安定カウンターである。水晶発振器が4MHzなら、プレスケーラーはタイマーに2.00μsの分解能を与える。内部PH2クロックの低い部分ではカウンターが増大方向にクロックされる。ソフトウェアはいつでもカウンターをその値に影響を及ぼさずに読むことができる。
【0280】
ダブル・バイト非安定カウンターは2つの場所のいずれかから、即ち、カウンター・レジスター(TCRH,TCRL)または交代カウンター・レジスター(TARH,TARL)から読み取ることができる。カウンター・レジスターの最下位バイトを読み取るだけの読み取りシーケンスでは読み取り時におけるカウンター値が得られる。カウンターの双方の場所を読み取る際にまず最上位バイトをアドレスすると、最下位バイトがバッファへ転送される。このバッファ値は例えユーザーが数回に亘って最上位バイトを読み取っても最初の最上位バイト読み取り後、固定されたままである。カウンター・レジスター(TCRL)または交代カウンター・レジスター(TARL)の最下位バイトを読み取る時にバッファを呼び出して総カウンター値の読み取りシーケンスを完了する。カウンター・レジスターまたは交代カウンター・レジスターを読み取る際に、もし最上位バイトを読み取ったら、シーケンスを完結するために最下位バイトも読み取らねばならない。
【0281】
非安定カウンターはプログラムによってロードしたり、ストップすることはできない。パワーオン・リセットまたはデバイス・リセット中にカウンターが$FFFCにセットされ、発振器の始動遅延時間経過後に作動を開始する。カウンターは16ビットであり、固定4分割プレスケーラーに先行されるから、カウンター中の値は262,144MPU PH2クロック・サイクルごとに繰り返す。カウンターが$FFFFから$0000にロールオバーすると、タイマー・オーバーフロー・フラッグ・ビット(TOF)がセットされる。割り込み許可ビット(TOIE)をセットすることによって、カウンターのロールオバーと同時に割り込みを許可することもできる。
【0282】
プログラマブル・タイマーは以下に述べる12個のアドレス可能8ビット・レジスターを使用することによって機能させる。なお、高、低という表現はバイトの重みを表わす。これらのレジスターのフォーマットを図51に示した。
【0283】
タイマーは2つの16ビット出力比較レジスターを有し、各16ビット・レジスターは2つの8ビット・レジスターから成る。1次出力比較レジスターはTOCH及びTOCLから成り、TOCHは最上位バイトである。2次出力比較レジスターはTSCH及びTSCLから成る。これらの出力比較レジスターは出力波形の制御や時間経過の指示などいくつかの目的に利用できる。すべてのビットが読み書き可能であり、タイマー・ハードウェアによって変更されないという点がこれらのレジスターの特徴である。リセットがこれらのレジスターの内容に影響することはなく、比較機能を利用しないなら、これらのレジスターの4バイトをメモリー場所として利用できる。
【0284】
各出力比較レジスターの内容はPH2クロックの4番目の立上がりエッジごとに非安定カウンターの内容と比較される。もし一致すれば、対応の出力比較フラッグ(POCFまたはSOCF)ビットがセットされ、対応の出力レベル(PLVLまたはSLVL)ビットが該当の出力レベル・ラッチ中へクロックされる。出力比較レジスター及び出力レベル・ビット中の値は、出力波形を制御したり新しい経過タイムアウトを設定するため、比較結果が出るごとに変更しなければならない。対応の割り込み許可ビット、即ち、OCIEがセットされると、出力比較終了に続いて割り込みが可能になる。
【0285】
最上位バイト(TOCHまたはTSCH)を含んでいる出力比較レジスターへのプロセッサー書き込みサイクル後、最下位バイトが書き込まれるまで対応の出力比較機能が禁止される。最上位バイトを書き込む場合、ユーザーは両方のバイトを書き込まねばならない。最下位バイトだけ書き込んでも比較機能は禁止されない。内部プレスケーラーの作用下に4内部PH2クロック・サイクルごとに非安定カウンターが更新される。出力比較レジスターの更新に要する最短時間は内部ハードウェアではなくソフトウェア・プログラムに左右される。
【0286】
プロセッサーが出力比較レジスターのどちらかのバイトに書き込んでも他方のバイトに影響が及ぶことはないし出力比較ピンTCMPで出力レベル・ビットが得られる前に有効な出力比較が行なわれねばならない。
【0287】
出力比較フラグ(POCF,SOCF)も出力比較レジスターもリセットに影響されないから、ソフトウェアで出力比較機能を初期設定する際に注意を払わねばならない。下記の手続きが望ましい:
1.低バイトが書き込まれるまで以後の比較を禁止するため、出力比較レジスターの高バイトに書き込む。
【0288】
2.タイマー状態レジスターを読み、すでにセットされているなら出力比較フラグを払う。
【0289】
3.出力比較レジスターの低バイトに書き込むことにより、出力比較機能を可能にし、出力比較フラグを払う。
【0290】
このプロシージアの目的は出力比較フラッグが、読み取り時点から出力比較レジスターへの書き込みが行なわれるまでセットされないようにすることである。ソフトウェアの例を以下に示す。
【0291】
B7 16 STA OCMPHI
INHIBIT OUTPUT COMPARE
B6 13 LDA TSTAT ARM
OCF BIT IF SET
BF 17 STX OCMPLD
READY FOR NEXT COMPARE
16ビット入力捕捉レジスターを構成する2つの8ビット・レジスター(TICH,TICL)は読み取り専用であり、入力捕捉エッジ検出器によって一定の変換が感知された後、非安定カウンターの値をラッチするのに利用される。カウンター・トランスファをトリガーするレベル変換は入力エッジ・ビット(IEDG)によって決定される。リセットは入力捕捉レジスターの内容に影響しない。
【0292】
入力捕捉によって得られる結果は外部変換に先行するPH2プロセッサー・クロックの立上がりエッジにおける非安定カウンターの値よりも大きい(図126に示すタイミングダイヤグラム参照)。このタイムラグは内部同期化に必要である。分解能はタイマーが4つのPH2クロック・サイクルごとに増分することを可能にするプレスケーラーによって影響される。
【0293】
非安定カウンターの内容は入力捕捉フラッグ(ICF)がセットされているか払われているかに関係なく然るべき信号変換に呼応して入力捕捉レジスターへ転送される。入力捕捉レジスターは常に最近入力捕捉に対応する非安定カウンター値を含んでいる。
【0294】
入力捕捉レジスターの最上位バイト(TICH)の読み取り後、レジスターの最下位バイトが読み取られるまではカウンター・トランスファが禁止される。この特性により、達成可能な最小パルス周期は必然的に捕捉ソフトウェア・ルーチン及びメイン・プログラムとの相互作用に費やされる時間によって決定される。例えば、命令BRSET,BRA,LDA,STA,INCX,CMPX,BEQなどを使用するポーリング・ルーチンなら完結に34内部PH2サイクルを必要とするであろう。非安定カウンターはプレスケーラーの作用下に4プロセッサー・クロック・サイクルごとに増分する。
【0295】
入力捕捉レジスターの最下位バイト(TICL)の読み取りは非安定カウンターのトランスファを禁止しない。最小パルス周期はソフトウェアが最下位バイトを読み取り、必要な動作を行なうのに十分な周期である。それぞれが内部プロセッサー・クロックの両エッジで起こるから、入力捕捉レジスターの読み取りと非安定カウンター・トランスファとの間に衝突はない。
【0296】
タイマー制御レジスター
タイマー制御レジスター(TCR)は5個の制御ビットを含む読み書きレジスターである。5個のうち3個のビットはタイマー状態レジスター中の3つのフラッグ・ビットのそれぞれと関連する割り込みを制御する。残り2個のビットは1)捕捉エッジ検出器によってどちらのエッジが有効であるか;2)成功裡に完了した出力比較に応答して出力レベル・ラッチ中へクロックすべき次の値を制御する。リセットによって影響される時間部分はタイマー制御レジスターと非安定カウンターだけである。出力比較ピン(SCMP)は外部リセットの期間中低レベルを強制され、有効な比較動作の結果変更されるまでは低レベルのままである。タイマー制御レジスターのビット割り当てを図51に示した。
【0297】
TCR[0]:1次出力レベル(PLVL)。1次出力レベル・ビット(PLVL)の値は出力比較が成功裡に完了するのに伴なって連携の出力レベル・ラッチ中へクロックされ、出力比較ピンPCMPに現われる。PLVL及び1次出力レベル・ラッチはリセットによって払われる。PLVL中に0が含まれるとPCMPに低出力レベルが現われる。
【0298】
TCR[1]:入力エッジ極性(IEDG)。入力エッジ(IEDG)の値はPD7/TCAPピンにおけるどちらのレベル変換が入力捕捉レジスターへの非安定カウンター移行をトリガーするかを決定する。リセットはIEDGビットに影響しない。0は立下がりエッジを選択する。
【0299】
TCR[2]:2次出力レベル(SLVL)。2次出力レベル・ビット(SLVL)の値は出力比較が成功裡に完了するのに伴なって連携の出力レベル・ラッチ中へクロックされ、2次出力比較ピンSCMPに現われる。SLVL中に0が含まれるとSCMPは低出力レベルとなる。
【0300】
TCR[4]:2次出力比較割り込み許可(SCIE)。2次出力比較割り込み許可(SCIE)ビットがセットされると、SOCF状態フラッグがセットされさえすればタイマー割り込みが可能となる。SCIEビットが払われると、割り込みが禁止される。このビットはリセットによって払われる。
【0301】
TCR[5]:タイマー・オーバフロー割り込み許可(TOIE)。タイマー・オーバフロー割り込み許可(TOIE)ビットがセットされると、TOF状態フラッグが(タイマー状態レジスター中に)セットされさえすればタイマー割り込みは可能となる。TOIEビットは払われると、割り込みが禁止される。TOIEビットはリセットによって払われる。
【0302】
TCR[6]:1次出力比較割り込み許可(OCIE)。1次出力比較割り込み許可(OCIE)ビットがセットされると、POCF状態フラッグがセットされさえすればタイマー割り込みが可能となる。OCIEビットが払われると、割り込みが禁止される。このビットはリセットによって払われる。
【0303】
TCR[7]:入力捕捉割り込み許可(ICIE)。入力捕捉割り込み許可(ICIE)ビットがセットされると、ICF状態フラッグが(タイマー状態レジスター中で)セットされさえすればタイマー割り込みが可能となる。ICIEビットが払われると割り込みが禁止される。ICIEビットはリセットによって払われる。
【0304】
タイマー状態レジスター
タイマー状態レジスター(TSR)は読み取り専用状態情報を含む4ビット・レジスターである。これら4個のビットは下記の内容を示す:
□TCAPピンにおいて適正な変換が行なわれ、その結果、非安定カウンターの内容が入力捕捉レジスターへ転送された。
【0305】
□非安定カウンターと出力比較レジスターの1つとの間に一致が見られた。
【0306】
□非安定カウンターが$FFFFを含んでいる(タイマー・オーバフロー)

【0307】
タイマー状態レジスターを図51に示した。図50のタイミングダイヤグラムはタイマー状態レジスター・ビットとのタイミング関係を示す。
【0308】
TSR[4]:2次出力比較フラッグ(SOCF)。1次出力比較レジスターの内容が非安定カウンターの内容と一致すれば2次出力比較フラッグ(SOCF)がセットされる。SOCFは(SOCFをセットして)タイマー状態レジスターを呼び出し、次いで2次出力比較レジスターの低バイトを書き込むことによって払われる。リセットは2次出力比較フラッグに影響を及ぼさない。
【0309】
TSR[5]:タイマー・オーバフロー・フラッグ(TOF)。タイマー・オーバフロー・フラッグ(TOF)ビットは$FFFFから$0000への非安定カウンターの変換によってセットされる。このフラッグは(TOFをセットして)タイマー状態レジスターを呼び出し、次いで非安定カウンターの最位バイトを呼び出すことで払われる。リセットはTOFビットに影響を及ぼさない。
【0310】
TSR[6]:1次出力比較フラッグ(POCF)。1次出力比較レジスターの内容が非安定カウンターの内容と一致すると、1次出力比較フラッグ(POCF)がセットされる。(POCFをセットとして)タイマー状態レジスターを呼び出し、次いで1次出力比較レジスターの低バイトを書き込むことによってPOCFが払われる。リセットは1次出力比較フラッグに影響を及ぼさない。
【0311】
TSR[7]:入力捕捉フラッグ(ICF)。入力捕捉エッジ検出器が所定のエッジを感知すると入力捕捉フラッグ(ICF)がセットされる。このフラッグはプロセッサーが(ICFをセットして)タイマー状態レジスターを呼び出し、次いで入力捕捉レジスターの低バイトを呼び出すことで払われる。リセットは入力比較フラッグに影響を及ぼさない。
【0312】
タイマー状態レジスターを呼び出すことでこの呼び出し中にたまたまセットされる状態ビットを払うのに必要な第1条件が満たされ、残るステップは状態ビットと連携するレジスターを呼び出すことだけである。多くの場合、これが入力捕捉及び出力比較機能を妨げることはない。
【0313】
問題が起こるとすれば、経過時間を測定するためタイマー・オーバフロー機能を利用し、アットランダムな時点で非安定カウンターを読む場合である。ソフトウェアに適切な工夫を凝らさないと、次のような場合にタイマー・オーバフロー・フラッグが意図に反して払われる恐れがある。即ち、1)TOFがセットされたままタイマー状態レジスターの読み取りまたは書き込みが行なわれる;2)フラッグと無関係の目的で非安定カウンターの最下位バイトが読み取られる。カウンター交代レジスターは非安定カウンターと同じ値を含んでいるから、タイマー状態レジスター中のタイマー・オーバフロー・フラッグに影響を及ぼすことなく任意の時点においてこの交代レジスターを読むことができる。
【0314】
WAIT命令中、プログラマブル・タイマーは正常に動作し続け、割り込みを発生させることによって待機状態からCPUをトリガーすることができる。この時点ではIC10においてSTOP命令が無効化されている。
【0315】
5.直列周辺インターフェース(SPI)54
直列周辺インターフェース(SPI)サブシステム54は直列母線を介して通信する周辺装置を有効に接続するように構成されている。マルチプロセッサー・システム内でのプロセッサー間通信用にも利用できる。SPIは種々のプロトコルを使用して通信する装置の接続を可能にするいくつかの多目的動作モードに適応できる。SPIは本質的には8ビット・シフトレジスターであり、入出データにそれぞれ対応する別々のピン、クロックのためのピン、及びデバイス選択機能のための第4のピンを有する。SPIの機能は次の通りである:全二重三線同期転送;マスターまたはスレーブ動作;4通りのプログラマブル・マスター・ビット伝送速度;プログラマブル・クロック極性及び位相;伝送割り込みフラッグの終わり;書き込み衝突フラッグ保護;及びマスター/マスター・モード故障保護。
【0316】
SPIはメモリー・アドレス:$OC、$OB及び$OAにそれぞれ配置された3つのレジスターSPD,SPSR及びSPCRによって制御される。
【0317】
SPIは2種類の方式、即ち、シングルマスター及びマルチマスター方式で利用することができる。図52はこの2つの方式の基本回路を示す。図示のように、MOSI,MISO及びSCKピンはいずれも4つのデバイスのそれぞれにおける等価のピンに接続されている。マスター・デバイスがSCKクロックを発信し、すべてのスレーブがこれを受信する。スレーブ・デバイスの選択は各スレーブ・デバイスにおける3つの個々のスレーブ選択ピンに接続された3つのポートピンによって行なわれる。マスターがそのSSNピンをプルダウンするとスレーブ・デバイスが選択される。マスターがMOSI(出力)からデータを伝送すると、選択されたスレーブがこれをMOSI(入力)でこれを受信する。複数のスレーブが選択される場合、MISOにおいて母線のコンテンションが起こるのを回避するため注意を要する。1つのスレーブ・デバイスだけがMISOピンを駆動できる。MOSIにおいてマスターからデータがシフトアウトされるのに伴なって、MISOにおいてデータがシフトインされる。スレーブ・デバイスが受信専用なら、MISOへの接続は不要である。
【0318】
もっと複雑なマルチマスター・システムを図53に示した。このシステムでは複数の潜在的なマスター・デバイスからスレーブ選択伝送路が形成される。選択伝送路を一度に制御できるのは1つのマスター・デバイスだけである。マスター制御の交換を行なうにはI/Oポートを介してハンドシェーク法を利用するか、或いは直列周辺インターフェース・システムを介してコード化メッセージを交換しなければならない。このシステムにおいて使用される主な制御ビットはSPCR中のMSTRビット及びSPSR中のMODFビットである。
【0319】
4つのピンが直列周辺インターフェース・サブシステム54に接続しており、選択されたSPIデータ・ピン・マスク・オプションに応じてこれらのピンのうちの2つ(MOSI及びMISO)が動作する。
【0320】
MOSI:マスター・アウト・スレーブ・イン。このピンの動作は選択されるSPIデータ・ピン・マスク・オプションによって決定される。もし双向オプションが選択されれば、MOSIピンは双向性であり、マスター・モード・デバイスにおけるデータ出力、スレーブ・モード・デバイスにおけるデータ入力として構成される。もし単向オプションが選択されると、MOSIピンは常に出力である。データはこの伝送路を介してマスターからスレーブへまず最上位ビットから転送される。図54のタイミングダイヤグラムはデータとクロック(SCK)との関係を示す。図示のように、制御ビットCPOL及びCPHAを使用して4通りのタイミング関係を選ぶことができる。マスター・デバイスはスレーブ・デバイスがデータをラッチできるように常にクロック・エッジよりも1/2サイクル前にMOSIピンからデータを出力することができる。なお、データ転送が正しく行なわれるためには、マスター・デバイスもスレーブ・デバイスも同じタイミング・モードにプログラムしなければならない。
【0321】
マスター・デバイスがMOSI伝送路を介してスレーブ・デバイスへデータを伝送すると、スレーブ・デバイスはもし双向オプションが選択された場合なら、MISOピンを使用して、もし単向オプションが選択された場合ならMOSIピンを使用してマスター・デバイスへデータを送ることによって応答する。この全二重伝送はデータの送信についても受信についても同じクロック・エッジと同期させられる。内部データ・ストローブは常にデータのシフトイン及びシフトアウトに使用されるエッジとは逆のクロック位相を使用する。伝送されるバイトは受信されるバイトに置き換えられるから、トランスミッター・エンプティー状態ビット及びレシーバー・フル状態ビットを別々に設ける必要はなく、単一の状態ビット(SPIF)でI/O動作完了を表わすことができる。
【0322】
MOSIピンの構成はSPCR中のMSTRビット及び選択されるSPIデータ・ピン・マスク・オプションに応じて異なる。選択されたマスク・オプションが単向性なら、MOSIピンは常に出力である。もし選択されたマスク・オプションが双向性なら、MOSIピンはMSTRビットが1の場合に出力、0の場合に入力となる。
【0323】
MISO:マスター・イン・スレーブ・アウト。このピンの動作はSPIデータ・ピン・マスク・オプションによって決定される。もし双向マスク・オプションが選択されれば、MIXOピンは双向性であり、マスター・デバイスにおいてはデータ入力、スレーブ・デバイスにおいてはデータ出力として構成される。もし単向マスク・オプションが選択されれば、MISOピンは常に入力である。このようにしてデータがスレーブからマスターへ最上位ビットから先に逐次転送される。スレーブとして構成された場合、MISO及びMOSIピンはSSNピンにおける低レベルによって選択されない限り高インピーダンス状態となる。図54から明らかなように、制御ビットCPOL及びCPHAを使用することにより4通りのタイミング関係が得られる。マスター・デバイスはスレーブに十分なデータ・セットアップ時間があたえられるように、常にSCKにおける選択されたクロック・エッジよりも1/2サイクル前にMOSI伝送路を介してデータを伝送する。
【0324】
マスター・デバイスがマスターのMOSIピンを介してスレーブ・デバイスにデータを送信すると、スレーブ・デバイスはマスターのMISOピンを介してマスターにデータを送ることによって応答する。この全二重送信はマスター・デバイスから供給されるSCKのクロック・エッジにデータ・イン及びデータ・アウトの双方を同期させる。SPSR中の単一の状態ビット(SPIF)を利用することにより、I/O動作が完了したことを示す。
【0325】
マスター・デバイスでは、SPCR中のMSTR制御ビットをプログラムによってにセットすることにより、MISOピンでデータを受信するように構成する。スレーブ・デバイスではSSNピンにおける低レベルによってMISOピン(または単向マスク・オプションが選択された場合ならばMOSIピン)が割り込みを許可される。スレーブ・デバイスにおいてSSNが高レベルなら、MISO及びMOSIピンは高インピーダンス状態と SCK:直列クロック。直列クロックはデバイスのMOSI及びMISOピンを介してのデータI/Oを同期させるのに使用される。マスター・デバイス及びスレーブ・デバイスは8クロック・パルスに亘って情報データ・バイトを交換できる。SCKはマスター・デバイスによって形成されるから、SCKピンはすべてのスレーブ・デバイスにおいて入力となり、スレーブ・データ転送を同期させる。クロックのタイプ及びクロックとデータとの関係は後述するSPCR中のCPOL及びCPHAビットによって制御される。タイミングについては図54を参照されたい。
【0326】
マスター・デバイスは内部プロセッサー・クロックによって駆動される回路を介してSCKを発生させる。マスター・デバイスのSPCR中の2個のビット(SPRO及びSPR1)がクロック速度を選択する。マスター・デバイスはSCKを使用することによりMISO伝送路から入来するスレーブ・デバイス・データをラッチし、MOSIピンからスレーブ・デバイスへデータをシフトアウトする。マスター・デバイスもスレーブ・デバイスもSPCR中のCPOL及びCPHAによって制御されるのと同じタイミング・モードで作動させねばならない。スレーブ・デバイスにおいては、SPRO及びSPR1はSPIの動作に影響を及ぼさない。
【0327】
SSN:スレーブ選択。この低−真入力ピンはスレーブ・デバイスのデータ転送を可能にするのに使用される。データがスレーブ・デバイスによって確実に受け入れられるようにするため、SSNピンがSCKの発生前に低レベルとなり、最終(第8)SCKサイクルが終わるまで低レベルのままでなければならない。図54はCPHA及びCPOLの種々の組み合わせに関連してSCKとデータとの関係を示すスレーブ・デバイスにおいてSSNがまずプルダウンされると、下記の事象が起こる:
1.該当の出力ピンが第1データ・ビットで駆動される。もしSPIデータ・ピン・オプションが双向性なら、該当ピンはMISOピンであり、単向性ならMOSIピンである。
【0328】
2.CPHA=0なら、スレーブ・デバイスのデータ・レジスターへの書き込みが阻止される。
【0329】
SPSR中のWCOL状態フラッグの記述はI/Oデータ・レジスターに対するSSN入力及びCPHAの作用に関する情報を含む。スレーブ・デバイスにおいてSSNが高レベルであれば、該当の出力ピンが強制的に高インピーダンス状態となる。SCK及び該当入力ピンはもしスレーブ・デバイスのSSNピンが高レベルなら、このスレーブ・デバイスによって無視される。
【0330】
デバイスがマスター・モードであれば、このデバイスはSSN入力を低レベルにあるかどうかを絶えずモニターする。SSN入力が低レベル側へ駆動されると、マスター・デバイスはスレーブ・デバイスとなる。これにより、特定のシステムのSSN伝送路を制御するマスターは1つだけということになる。SSNピンが低レベルであると検出されると、SPCR中のMSTRビットが払われる。またSPCR中の制御ビットSPEも払われ、その結果、SPIの割り込みが禁止される。SPSR中のMODFフラッグ・ビットもセットされ、他のデバイス・マスターになろうとしていることをプログラムに対して指示する。ソフトウェア・エラーがあれば、2つのデバイスが同時にマスターになろうとする事態になるが、このエラー検出を利用して“バックアップ・マスター”を設定し、故障システムを再始動するようにシステムを構成することができる。
【0331】
インターフェース・レジスター
SPIは3つのレジスター:SPD,SPSR及びSPCRによって制御される。これらのレジスターはSPIのために制御、状態及びデータ記憶機能を果たす。図131はレジスターのフォーマットを示す。
【0332】
SPD:直列データ・レジスター。この8ビット読み書きレジスターは同期直列母線によるデータ送受信に使用される。このレジスターへの書き込みだけで他のバイトの送受信が開始され、このことはマスター・デバイスにおいてのみ起こる事象である。スレーブ・デバイスがそのSPDレジスターに書き込んでも送信は始まらない。データ・バイトの送信が完了すると・マスター・デバイスのSPSRにもスレーブ・デバイスのSPSRにもSPIF状態ビットがセットされる。SPIFをセットしてSPSRを呼び出してからSPDを書き込むか読み取るかすると、SPIFが払われる。
【0333】
SPIFビットがセットされるクロック・サイクルにおいて、シフト・レジスター中の受信データ・バイトのコピーがバッファへ移動する。プログラムがSPRを読み取ると、バッファが読み取られる。マスター・デバイスがいくつかのデータ・バイトを送信し、しかもスレーブ・デバイスが最初のSPIFを払うため内部的に応答していないオーバラン状態においては、スレーブ・デバイスの受信バッファ中に第1バイトだけが存在し、他のバイトはすべて失われる。プログラムはいつでもバッファを読み取ることができる。シフトレジスターから読み取りバッファへの第2データ転送が開始されるまでに第1SPIFを払わねばならず、さもないとオーバラン状態が持続する。
【0334】
SPDへの書き込みはバッファされず、データは送信のためシフトレジスター内へ直接移される。送信中はSPD呼び出しが制限される。SPD利用の制限を理解するにはWCOLおよびSPIF状態ビットに関する説明を検討する必要がある。
【0335】
SPSR:SPI状態レジスター。この3ビット読み取り専用レジスターはSPIの動作状態を指示するのに使用される。もしSPCR中のSPIE制御ビットによって割り込みが許可されるなら、これらの状態フラッグの2つ(SPIFおよびMODF)が割り込みを開始させる。
【0336】
SPSR[7]−SPIF:転送フラッグ。この状態フラッグはデバイスと外部デバイスとの間のデータ転送が完了したことを指示する。転送が完了するとSPIFがセットされ、もしSPIE=1なら、SPI割り込みが起こる。SPIFがセットSARETEIRUクロック・サイクルにおいて、シフトレジスター中の受信データ・バイトのコピーが受信バッファ・レジスターへ移動する。SPDが読み取られるとき、実際に読み取られるのは受信バッファ・レジスターである。マスター・デバイスがいくつかのデータ・バイトを送信し、しかもスレーブ・デバイスが第1SPIFに応答していないオーバラン状態では、受信バッファ・レジスター中には送信された第1バイトしか存在せず、他のバイトはすべて失われる。
【0337】
データ転送はマスター・デバイスがそのSPDに書き込むことによって開始される。SPIEをセットしながらSPSRを呼び出すソフトウェアの呼び出し動作、およびこれに続くSPDの書き込みまたは読み取りによってSPIFが払われる。これはマスター・デバイスにおいて起こる事象である。スレーブ・デバイスにおいては第2伝送時の呼び出しシーケンスによってSPIFが払われるが、オーバラン状態を防ぐためには第2SPIFの前に払わねばならない。SPIFビットはリセットによって払われる。
【0338】
SPSR[6]−WCOL:書き込み衝突。データ転送の進行中にSPIデータ・レジスター(SPD)への書き込みが試みられると、この動作フラッグがセットされる。転送はそのまま継続され、書き込み動作は成功しない。受信データ・バイトは呼び出しが常にプロセッサー動作と同期して行なわれる受信バッファ・レジスター中にあるから、読み取りの衝突は起こらない。もし書き込みにつき衝突が起こればWCOLがセットされるが、転送が完了するまでSPI割り込みは起こらない。WCOLビットはあくまでも状態フラッグである。
【0339】
WCOLをセットしながらSPSRを呼び出すソフトウェアの呼び出し動作、およびこれに続く1)SPIFビットのセットに先立つSPDの読み取り、または2)SPIFビットのセット後のSPDの読み取りまたは書き込みによってSCOLが払われる。SPIFビットのセットに先立ってSPDを書き込むことで別のWCOL状態フラッグが発生する。すでにセットされているSPIFおよびWCOLビットを、SPDの書き込みなど一連のクリア動作で払う試みがなされている間に第2転送がスタートすれば、SPIFビットだけが払われる。
【0340】
マスター動作モードにおいてもスレーブ動作モードにおいても、外部データ転送の進行中にSPDへの書き込み衝突が起こる可能性があるが、適切にプログラムすれば、マスター・デバイスはこの衝突を回避するのに十分な情報を得ることができる。マスター・デバイスにおける衝突は内部クロック(SCK)の転送中に行なわれるSPDの書き込みとして定義される。マスター・デバイスではSSNピンにおける信号は常に高レベルでなければならない。
【0341】
スレーブ・デバイスにおける衝突には下記の2つのモードがある。
【0342】
□CPHA制御ビットが0のとき、スレーブ・デバイスに1つの問題が発生する。CPHAが0ならば、第1クロックの変換でデータがラッチされる。スレーブ・デバイスはこの変換の発生を知るすべがないから、SSNピンがプルダウンされた後にSPDを書き込もうとすれば、スレーブ・デバイスの衝突が起こる。CPHAビットが0ならば、スレーブ・デバイスのSSNピンはデータをそのSPD中に凍結し、データの変更を許さない。マスター・デバイスは転送するバイトとバイトとの間でスレーブ・デバイスのSSNピンのレベルを高くしなければならない。
【0343】
□CPHAの状態が1のときに発生するのが第2衝突モードである。CPHAがセットされると、スレーブ・デバイスは第1データ転送のラッチに先立ってクロック(SCK)エッジを受信しようとする。この第1クロック・エッジはデータをスレーブ・デバイスのSPD中に凍結し、レジスターの最上位ビットをスレーブ・デバイスのMISOピンへ駆動する。SSNピンが低レベル状態になるとスレーブ・デバイスが割り込み可能となるが、第1SCKクロック・エッジまではMISOピンの割り込みは許可されない。転送が進行中にSPDが呼び出されるとWCOLビットだけがセットされる。第2の衝突モードに限って、マスター・デバイスは複数のデータ・バイトが転送されている間、問題なくスレーブ・デバイスのSSNピンを低レベルに保持することができる。
【0344】
WCOLの特殊なケースがスレーブ・デバイスにおいて起こる。即ち、スレーブ・デバイスのプロセッサーがそのSPDに書き込みを行なうのと同時にマスター・デバイスが転送シーケンスをスタートする(CPHA=1ならエッジまたはSCK;またはCPHA=0ならアクチブなSSN変換)場合に起こる。このケースでは、スレーブ・プロセッサーによって書き込まれたデータ・バイトが失われ、SPDのそれまでの内容がマスター・デバイスのSPDへ転送される。マスター・デバイスはスレーブ・デバイスへ転送された最終バイトを再び受信するから、ソフトウェア・プロトコルを然るべく設計すれば、致命的な衝突を検出することができる。
【0345】
スレーブ・デバイスはマスター・デバイスと非同期的に動作するから、WOCLビットを衝突発生のインジケーターとして利用することができる。ソフトウェア通信プロトコルはこの非同期動作から発生する恐れがある衝突に対応できるように設計しなければならない。WCOLビットはリセットによって払われる。
【0346】
SPSR[4]−MODF:モード故障。このフラッグの機能はマスター動作モードに関するフラッグである。もしデバイスがスレーブ・デバイスなら、MODFビットは0から1へトグルできなくなるが、デバイスがスレーブ・モードになるのを防げない。MODFビットは常態では0であり、マスター・デバイスのSSNピンがプルダウンされた時にだけセットされる。MODFビットをセットすることで内部SPIサブシステムに下記のような影響が現われる:
1.MODFがセットされ、SPIE=1ならSPIの割り込みが起こる。
【0347】
2.SPEビットが強制的に0となる。その結果、SCK,MOSIおよびMISOピンにおけるすべての出力駆動がブロックされる。
【0348】
3.MSTRが強制的に0となり、デバイスがスレーブ・モードに設定される

【0349】
MODFをセットしながら、SPSRを呼び出すソフトウェアの呼び出し動作およびこれに続くSPCRへの書き込みによってMODFが払われる。このクリア・シーケンス中に、またはMODFビットがクリアされた後、制御ビットSPEおよびMSTRを元の設定状態に戻すことができる。ハードウェアは適正に行われるクリア・シーケンス中でない限り、MODFが1である状態でプログラムがSPIおよびMSTRビットをセットすることを許さない。MODFフラッグ・ビットはシステム制御上マルチ・マスター衝突が存在した可能性を示唆し、システム動作からリセットまたはシステムのデフォルト状態への正しい退去を可能にする。MODFビットはリセットによって払われる。
【0350】
SPCR:SPI制御レジスター。この7ビット・レジスターはSPIサブシステムの動作を制御するのに使用され、読み取り/変更/書き込み命令がビットを正しく操作できるようにする読み取り/書き込みレジスターとして構成されている。
【0351】
SPCR[7]−SPIE:割り込み許可。このビットが1なら、プロセッサーの割り込みが可能になる。割り込みはSPIFまたはMODFがセットされると同時に開始される。SPIEが0なら、これらの状態ビットのセットは禁止されないが、割り込みは起こらない。SPIEビットはリセットによって払われ、0となる。
【0352】
SPCR[6]−SPE:SPI割り込み許可。このビットが1にセットされると、SPIサブシステムが割り込み可能になる。出力としてのSPIピンが作用可能となる。SPEが0なら、SPIピン駆動はすべて禁止される。このビットはリセットによって払われ、0となる。
【0353】
SPCR[4]−MSTR:マスター割り込み許可。マスター割り込み許可ビット(MSTR)はSPIがマスター・モードかスレーブ・モードかを決定する。MSTRビットが0なら、デバイスはスレーブ・モードとなる。マスター・モードを選択すると(MSTR=1)、SCKピンの機能が入力から出力に切り替わり、MISOおよびMOSIピンの機能が反転する。したがって、I/Oピンを再構成するための外部論理を必要とせずにマルチ・マスター・システムを構成することができる。MSTRビットはリセットによって払われ、パワーアップと同時にSPIがスレーブ・モード4となる。
【0354】
SPCR[3]−CPOL:クロック極性。クロック極性ビットはデータが転送中でない時のクロックの常態または定常レベルを制御する。CPOLビットはマスター、スレーブ両動作モードに影響を与える。CPOLはマスター・デバイスとスレーブ・デバイスとの間に所期のクロック/データ関係が得られるようにクロック位相制御ビット(CPHA)と併用しなければならない。CPOLが0なら、マスター・デバイスのSCKピンが常態で低レベルとなる。CPOLが1なら、データ転送中でない限りSCKから高レベルが出力される。CPOLビットはリセットに影響されない。
【0355】
SPCR[2]−CPHA:クロック位相。このビットはMISOおよびMOSIピンにおけるデータとSCKピンにおいて形成または受信されるクロックとの間の関係を制御する。この制御ビットはマスター、スレーブ両動作モードに影響を及ぼす。所期のクロック/データ関係を成立させるためクロック極性制御ビット(CPOL)と併用しなければならない。CPHAビットはデータをシフトレジスターに捕捉するのに使用されるクロック・エッジを選択する。CPHAが0なら、データはSCKの立ち下がりエッジで捕捉される。CPHAが1なら、データは立ち下がりエッジで捕捉される。波形の詳細については図130を参照されたい。CPHAはリセットに影響されない。
【0356】
SPCR[L−0]−SPRL,SPRO:ビット送信速度。この2個の制御ビットはデバイスがスレーブ・モードならSCKとして使用される通信ビット伝送速度を4通りのビット伝送速度から選択する。クロックはマスター・デバイスによって外部的に発生させられるから、スレーブ・モードでは作用しない。スレーブ・モードはプロセッサーのP2(母線)クロックに等しい最大速度でデータをシフトインおよびシフトアウトすることができる。表16はこの2個の制御ビットSPR1およびSPR0のコード化を示す。この2個のビットはリセットに影響されない。
【0357】
【表16】
Figure 0003710831
6.ポートD
非拡張モードにおいては、PortDは8ビット双向性入/出力ポートである。8個のPortDピンを入力または出力として個々にプログラムすることができる。拡張メモリー・モードにおいては、PortD57は下位8アドレス・ラインで多重化された外部8ビット・データ母線を含む。
【0358】
非拡張モード
拡張制御ピン(EXPN)が高レベルなら、PortD57は完全プログラマブルI/Oポートとして動作する。
【0359】
インターフェース・レジスター
PortDサブシステム57はメモリー・アドレス・スペースに配置された1対のレジスター(PDD,PDC)を介してマイクロコントローラーと通信する。各ポート・ビットの方向はPDCによって決定され、ポートピンの状態はPDDによって制御される。図56を参照されたい。
【0360】
PDC[7...0]:ポートの方向
この8個の読み書きレジスター・ビットは対応ポートピンの方向制御に使用される。ポート方向ビットが0なら、ポートピンは入力である。リセットによってポート方向ビットが払われて0となり、ポートピンを入力として定義する。
【0361】
PDD[7...0]:ポートデータ
この8個の読み書きレジスター・ビットはポートピンの状態を、もしこのポートピンが入力なら読み取り、もし出力なら制御するのに使用される。0はポートピンにおける低レベル状態に対応する。ビットには順次PDD[0]制御ピンPDOが割り当てられる。リセットはデータ・レジスターに影響を及ぼさない。図57は並列ポートI/O回路を示す。これらのビットはいかなる条件下にあっても真の読み書きレジスター・ビットではない。方向がアウト(PDC[n]=!)なら、PDD[n]ビットは真の読み書きレジスターとして動作する。方向がイン(PDD[n]=0)なら、読み取りソースはポートピンであってポートデータ・レジスター・ビットではない。
【0362】
ポートの動作
8個のポート・ビットのそれぞれは他とは独立に動作する。単一のポート・ビットの動作を以下に説明する。
【0363】
各ポートピンは該当のポート方向レジスター・ビットによって入力または出力として決定されるようにプログラムすることができる。ピンはこれと連携するポート方向レジスター・ビットが0にセットされると入力として構成される。パワーオンまたはリセットによってポート方向レジスター・ビットはすべて払われ、8個のポートピンは入力として構成されることになる。ポート方向レジスター・ビットがセットされると、ポートピンが出力となり、ポートデータ・レジスター・ビットの状態をポートピンへ駆動する。ポートデータ・レジスター中の1はポートピンを高レベルにする。ポートデータ・レジスターが書き込まれると、8個のデータ・ビットがポートデータ・レジスターにラッチされる。
【0364】
ポート・データ・レジスターが読み取られると、ポート方向レジスターによってデータ・ソースが下記のように決定される:
□ポートピンが出力として構成されているなら、読み取り動作データ・ソースはポート・データ・レジスターであってポートピンではない。
【0365】
□ポートピンが入力として構成されているなら、読み取り動作データ・ソースはポートピン自体である。これは読み取り/変更/書き込み動作が外部回路によってロード可能な出力ピンの状態を変更するのを阻止する。
【0366】
ポートピンの方向を出力に変える際には、方向切り換えに先立ってデータ・レジスターに所期の出力状態をロードしなければならない。読み取り/変更/書き込み動作は入力として構成されているデータ・レジスター・ビットの状態を変えることができる。
【0367】
拡張モード
拡張制御ピン(EXPN)が低レベルなら、PortD57はデータ母線および下位8アドレス・ビットの双方を多重化するのに使用される。PortDピンはOS1信号の立ち下がりエッジにおいて定義を変える。PH2ならPortDピンは出力であり、アドレス情報を含む。PH2でなければ双向性であり、データを含む。
【0368】
アドレス・ラッチ許可信号ALEの立ち下がりエッジにおいてアドレスがラッチされ、このアドレス・ラッチはクロック信号が高レベルである間は透過性である透過性ラッチによって行われる。
【0369】
PH2が低レベルである間はポートピンが出力データで駆動される。出力データは低真書き込みストローブ信号WENの立上がりエッジにおいてラッチされる。もしメモリー・サイクルが読み取り動作なら、PH2が低レベルである間、ポートピンの状態はトライステートである。読み取られたデータをPortDピンへ送出するのに外部メモリー・デバイスは低真読み取りストローブ信号REN及びPSENのいずれか1つを使用する。REN読み取りストローブはメモリー領域(典型的にはRAM)のメモリー・アドレス範囲$4000乃至$7FFFに使用される。PSEN読み取りストローブはメモリー領域(典型的にはPROM)のメモリー・アドレス範囲$8000乃至$FFFFに使用される。読み取り動作が内部メモリー領域から行われる場合、PortDは内部データ母線の内容によって駆動される。
【0370】
7.PortB
非拡張モードにおいて、PortB53は8ビット双向性入/出力ポートである。8個のPortBピンを入力または出力として個々にプログラムすることができる。拡張メモリー・モードにおいて、PortBは上位8アドレス・ラインを含む。
【0371】
非拡張モード
IC10が非拡張(シングル・チップ)モードなら、このポートの動作はPortD57の動作と同じである。このモードでは、8個のPortBピンを入力または出力として個々にプログラムすることができる。
【0372】
インターフェイス・レジスター
PortBサブシステム53はメモリーのアドレススペースに配置された1対のレジスター(PBD、PBC)を介してマイクロコントローラーと通信する。各ポート・ビットの方向はPBCによって決定され、各ポートピンの状態はPBDによって制御される。図58を参照されたい。
【0373】
PBC[7・・・0]:ポートの方向。この8個の読み書きレジスター・ビットは対応するポートピンの方向制御に使用される。ポートピンはもしポートの方向ビットが0なら入力である。リセットによってポートの方向ビットが払われて0となり、ポートピンを入力として定義する。
【0374】
PBD[7・・・0]:ポート・データ。この8個の読み書きレジスター・ビットはもし入力ならポートピンの状態を読み取り、出力として構成されているならポートピンの状態を制御するのに使用される。0はポートピンにおける低レベルに対応する。ビットにはPBD[0]制御ピンPBOが順次割り当てられる。リセットはデータ・レジスターに影響しない。
【0375】
拡張モード
IC10が拡張モード(EXPN低)なら、PortB53は上位アドレス・ラインを含む出力ポートである。アドレスはPH2の立ち上がりエッジにおいて変化する。
【0376】
8.PortC
PortC56は8ビット双向性入/出力ポートである。8個のPortCピンを入力または出力として個々にプログラムすることができる。4個のピンには構成レジスターCFRにより特殊出力機能を割り当てることができる。
【0377】
構成レジスター
4個のDFRビットが図44に示すように下位4個のPortCピンの機能を制御する。
【0378】
CFR[3・・・0]:コンパレーター・モード制御。この4個の書き込み専用構成レジスター・ビットはコンパレーター出力をPortCデータ・レジスターの最下位4個のビットPCD[3・・・0]とOR演算することを可能にする。この構成ビット中の0はOR演算を可能にし、各ポート制御レジスター・ビット(PCC[3・・・0]を1にセットする。デバイスのリセットに伴って4個のポートピンが出力モードとなり、ポート・データ・レジスターが払われ、4個のデータ・レジスター出力が各コンパレーター出力とOR演算される。従って、コンパレーター入力が限界レベル+1.25V以上なら最下位4個のポートピンは低レベルとなる。コンパレーターの反転入力はコンパレーター入力ピンと接続しているから、各コンパレーター入力ピンとPortCピンの間に相反関係が成立する。PortCデータ・レジスター・ビットPCD[3・・・0]に1が書き込まれると、ポートピンはコンパレーター入力レベルに関係なく高レベルとなる。対応のコンパレーター・モード制御(CFR[3・・・0]ビットがリセットされると、下位Port Cピンを入力モード(PCD[3・・・0]=0)にすることはできない。
【0379】
これらの構成ビット中に1が現われると、OR演算が不能になる。このモードでは、下位4個のポートピンが正規の双向性I/Oピンとして動作し、ポート・データー・レジスター(PCD)及びポート制御レジスター(PCC)だけに影響される。構成ビットにはCFR[0]制御PCO/CMPO及びCFR[3]制御PC3/CMP3を順次割り当てられる。
【0380】
インターフェース・レジスター
PortCサブシステムはメモリー・アドレス・スペースに配置された1対のレジスター(PCC、PCD)を介してマイクロコントローラーと通信する。各ポート・ビットの方向はPCCによって決定され、ポートピンの状態はPCDによって制御される。図59を参照されたい。
【0381】
PCC[7・・・0]:PortCの方向。この8個の読み書きレジスター・ビットは対応ポートピンの方向制御に使用される。ポート方向ビットが0なら、ポートピンは入力である。リセットに伴ってPCC[7・・・4]が0にセットされ、PCC[3・・・0]が1にセットされる。これが下位4個のポートピンを出力として、上位4個のポートピンを入力としてそれぞれ定義する。ビット割り当てはピンPCOに対するPCC[0]からピンPC7に対するPCC[7]まで順次行われる。
【0382】
PCC[7・・・4]。ポート制御レジスターの上位ニブルは双向性ポート制御ビット正規のセットとして動作する。下記条件が適用される。
【0383】
□リセットによりPCC[7・・・4]が払われる。
【0384】
□PCC[7・・・4]に0を書き込むと、対応のポートピンが入力となり、その状態はPCDレジスター中の対応ビットによって読み取ることができる。
【0385】
□PCC[7・・・4]に1を書き込むと対応のポートピンが出力となり、その状態はPCDレジスター中の対応ビットに最も新しく書き込まれた状態によって駆動される。
【0386】
□PCC[7・・・4]の読み取りはこれらのビットの現状態を反映し、読み取り/変更/書き込み命令を使用してビット操作することを可能にする。
【0387】
PCC[3・・・0]。ポート制御レジスターの下位ニブルは構成制御レジスター・ビットCFR[3・・・0]の状態に応じて上位とは異なる動作をする。下記条件が適用される:
□CFR下位4ビット(CFR[3・・・0])の1つに0があれはPCC中の対応ビットがセットされる。
【0388】
□デバイスのリセットに伴ってCFR[3・・・0]が払われるから、ポート制御レジスターの下位ニブル(PCC[3・・・0]がリセット後にセットされる。
【0389】
□(対応のCFRビットをセットして)PCCの下位4ビットの1つに0を書き込むと、対応のポートピンが入力となり、その状態はデータ・レジスターPCDから読み取ることができる。
【0390】
□(対応のCFRビットをセットして)PCCの下位4ビットの1つに1を書き込むと、対応のポートピンが出力となり、その状態は該当のPCDビットに最も新しく書き込まれた状態によって駆動される。
【0391】
□PCCの下位4ビットの1つに1を書き込んでもCFR中の対応ビットが払われておれば無視される。
【0392】
□PCC下位4ビットの読み取りはPCCに記憶されているこれらのビットの現状態を反映するから、読み取り/変更/書き込み命令を利用してビット操作を行うことができる。
【0393】
PCD[7・・・0]:PortCデータ。この8個の読み書きレジスター・ビットはもし入力として構成されているポートピンならその状態を読み取り、出力として構成されているポートピンならその状態を制御するのに使用される。0はポートピンの低レベルに対応する。ビットにはPCD[0]制御ピンPCOが順次割り当てられる。デバイスのリセットに伴ってデータ・レジスターの下位4ビットPCD[3・・・0]が払われる。上位4ビットはリセットの影響を受ける。
【0394】
PCD[7・・・4]。PCDの上位ニブルは正規の双向性ポート・データ・レジスターとして作用する。下記条件が適用される。
【0395】
□リセットはPCDレジスター上位4ビットに影響しない。
【0396】
□対応のPCCビットが払われておれば(入力モード)、PCD上位4ビットの読み取りは対応するポートピンの状態を反映する。
【0397】
□対応のPCCビットがセットされておれば(出力モード)、PCD上位4ビットの読み取りはPCD中の対応ビットの最も新しい状態を反映する。
【0398】
9.PortA
PortA52は8ビット双向性入/出力ポートである。8個のPortAピンは入力または出力として個々にプログラムできる。このポートの動作は非拡張モードにおけるPortDの動作と同じである。
【0399】
インターフェース・レジスター
PortAサブシステム52はメモリー・アドレス・スペースに配置された1対のレジスター(PAC、PAD)を介してマイクロプロセッサー30と通信する。各ポート・ビットの方向はPACによって決定され、ポートピンの状態はPADによって制御される。図98を参照されたい。
【0400】
PAC[7・・・0]:ポートの方向。この8個の読み書きレジスター・ビットは対応ポートピンの方向制御に使用される。ポートピンはもし方向ビットが0なら入力である。リセットに伴ってポート方向ビットが払われて0となり、ポートピンを入力として定義する。
【0401】
PAD[7・・・0]:ポート・データ。この8個の読み書きレジスター・ビットはもしポートピンが入力ならその状態を読み取り、出力ならその状態を制御するのに使用される。0はポートピンの低レベルに対応する。ビットにはPAD[0]制御ピンPAOが順次割り当てられる。デバイスのリセットはデータ・レジスターに影響しない。
【0402】
10.通信コントローラー29
通信コントローラー29(以下にICCと呼称する)はマイクロプロセッサー30が、本願明細書の一部を形成するものとして引用した米国特許第4,644,566号に詳述されているようなINCOMネットワークへのアクセスを可能にする。即ち、変調/復調機能、メッセージの直列化/並列化を提供し、所要のネットワーク・プロトコルを実現する。マイクロプロセッサー30はメモリーのアドレススペースに配置された8つのインターフェース・レジスターを介して通信コントローラー29と通信する。4つのレジスターはコントローラーとマイクロプロセッサーの間でINCOMメッセージを伝送するのに使用され、他の4つのレジスターは通信のアドレス、連度、変調方法をセットすると共にINCOM通信コントローラー(ICC)29の送/受信動作を制御するのに使用される。
【0403】
ICCはマスターコントローラーとしてもスレーブコントローラーとして動作でき、マスター動作は構成レジスターに許可フラッグがセットされない限り禁止される。
【0404】
ICCはネットワークの応答時間を短縮する高速状態リクエスト・メッセージを可能にする。ICC用の送受信レジスターは互いに独立である。従って、高速状態リクエスト・メッセージなどのようなメッセージを送信レジスター中で周期的に更新することができる。高速状態リクエストを受信すると、ICCはプロセッサーの介入なしに応答を送信することができる。
【0405】
INCOMネットワーク・プロトコルの詳細を以下に説明する。
【0406】
構成レジスター
ICC29は図44に示すようにCFR及びACFRによって構成される。
【0407】
CFR[7]:ICCマスター動作モード許可。この許可ビットはICC29をマスター・モードに切り換えることを可能にする。この構成ビットが0ならばICCはマスター動作モードに入れない。1ならば可能になる。このビットはリセットと同時に0にセットされ、ICCがマスター・モードにいることを禁止する。
【0408】
ACFR[6]:分割比。このビットはA/D及びICCサブシステムのためにクロック分割比を選択する。7,3728MH2水晶発振器を使用する場合、ACFR[6]を1にセットしなければならない。
【0409】
インターフェース・レジスター
ICC29に対するマイクロプロセッサー30のインターフェースはメモリー・アドレス・スペースに配置された8つのレジスター(ICAH、ICAL、ICM3、ICM2、ICM1、ICM0、ICSR及びICCR)から成る。これらのレジスターのフォーマットを図61に示した。
【0410】
ICAH、ICAL:アドレス・レジスター。この2個のバイトワイド読み書きレジスターは通信ビット伝送速度、変調方法及び12ビットINCOMアドレスをセットするのに使用される。図61はこれら両レジスターのビット割り当てを示す。どちらのレジスターもリセット及びパワーアップに伴って0にセットされる。この両レジスターは正規のICC動作中に変更してはならない。
【0411】
ICAH[7、6]:ビット伝送速度。この2個のビットはICCへの通信ビット伝送速度を決定する。表17はこのフィールドの復号を示す。これらのビットはパワーアップまたはリセットに伴って0にセットされる。
【0412】
【表17】
Figure 0003710831
ICAH[5・・・4]:変調方法。この2個のビットにINCOMコントローラーによって採用される変調方法を決定する。表18はこのフィールドの意味を示す。これらのビットはパワーアップまたはリセットに伴って0にセットされる。
【0413】
【表18】
Figure 0003710831
ICAH[3・・・0]:INCOMアドレス・ビット11・・・8。この4個のビットはINCOMアドレスの上位4ビットを決定する。リセットまたはパワーアップに伴って0にセットされる。
【0414】
ICAL[7・・・0]:INCOMアドレス・ビット7・・・0。このバイトワイド・レジスターはINCOMアドレスの下位8ビットを決定する。リセットまたはパワーアップに伴って0にセットされる。
【0415】
ICM3・・・ICM0:メッセージ・レジスター。この4個のバイトワイド読み/書きレジスターはICC29とマイクロプロセッサー30との間でINCOMメッセージを伝送するのに使用される。これらは読取り動作が受信バッファ・レジスターを呼び出し、書き込み動作が送信バッファ・レジスターに書き込むから真の読み書きレジスターではない。メッセージ・レジスター場所から、前にこのレジスター場所へ書き込まれたのと同じ値が読み取られるとは限らない。従って、これらのレジスターを操作するのに読み取り/変更/書き込み命令を使用してはならない。INCOMメッセージ・ビットのマッピングを図62に示す。これらのレジスターが書き込まれると送信バッファ・レジスターがロードされる。リセットによって送信バッファ・レジスターが払われてすべて0となる。
【0416】
ICM3[7・・・0]。この8ビット・レジスターはメッセージ・ビット26乃至19を含む。
【0417】
ICM2[7・・・0]。この8ビット・レジスターはメッセージ。ビット18乃至11を含む。
【0418】
ICM1[7・・・0]。この8ビット・レジスターはメッセージ。ビット10乃至3を含む。
【0419】
ICM0[7]。これはINCOMメッセージの制御ビット2である。読み取り動作が受信バッファ・レジスターを呼び出し、書き込み動作が送信バッファ・レジスターに書き込むから、このレジスター・ビットは真の読み書きレジスターではない。このビットから先に書き込まれたのと同じ値が読み取られるとは限らない。
【0420】
ICM0[6・・・2]。この5個のビットはテスト用であり、正規動作中はプログラムによって無視される任意のビットパターンを含んでいる。この5個のビットへの書き込みはIC10がテスト・モードでない限り、INCOMサブシステムの動作に影響しない。
【0421】
ICM0[1・・・0]。この2個のビットは返信メッセージのB26(ICM0[1])で送信される2個の状態ビットを含む。これらのビットは真の読み書きレジスターとして構成される。先に書き込まれたのと同じ内容が読み取られる。これらのビットはリセットによって払われる。
【0422】
ICSR:状態レジスター。このバイトワイド読み取り専用レジスターはINCOM通信コントローラーと通信するのにマイクロコンピューターが必要とするICC状態フラッグを含む。図61は状態レジスターにおけるビット割り当てを示す。
【0423】
ICSR[7]:使用中。このビットはICCがINCOMネットワークを介してメッセージを送受信中であるときに常に1である。
【0424】
ICSR[6]:インターフェース割り込み可能。このビットはICCインターフェースが割り込み可能状態の時には1である。マスター・モードであればインターフェースに常に送信できるから、ICCは必ずこのビットをセットされる。
【0425】
ICSR[5]:送信アクチブ。ICCがメッセージを送信中であればこのビットは1である。送信はソフトウエアによって、または応答が高速状態リクエストを要求するメッセージを受信することで開始される。ICSR[5]=1であれば、送信リクエスト(ICCR[0]=1)が発せられることはない。このような条件下では、送信リクエストは無視される。
【0426】
ICSR[4]:高速状態送信ずみ。高速状態メッセージ送信が完了すると、このビットは1となる。リセットにより、且つICCR[3]=1を書き込むことによって払われる。
【0427】
ICSR[3]:送信動作完了。メッセージで送信が完了すると、このビットは1となる。リセットにより、且つICCR[2]=1を書き込むことにより払われる。
【0428】
ICSR[2]:受信動作完了。受信メッセージが受信メッセージ・バッファ中にロードされると、このビットが1となる。リセット及びICSR[1]=1の書き込みによって払われる。ICSR[2]=0となるまでICCは新しいメッセージの受信を開始しない。
【0429】
ICSR[1]:BCHエラー。BCHエラーを含むメッセージの受信が完了すると、このビットが1となる。リセット及びICCR[1]=1の書き込みによって払われる。
【0430】
ICSR[0]:オーバラン。アタラシイメッセージがメッセージ・レジスターにロードされようとしている時にメッセージ・レジスターが解放されていなければ(ICSR[2]=1)、このビットがセットされる。この状態ビットはリセット及びICCR[1]=1の書き込みによって払われる。
【0431】
ICCR:制御レジスター。このバイトワイド読み書きレジスターはICC29の動作を制御するのに使用される。読み取り/変更/書き込み命令が該レジスターに正しく作用できるように読み書きレジスターとして構成されている。図61は制御レジスターにおけるビット割り当てを示す。このレジスターは2つのタイプのレジスター・ビット、即ち、指令及び制御ビットで作用する。指令ビットは1を書き込まれると機能を開始する。常態では指令ビットは0である。制御ビットはソフトウエアによってセットされ、払われる。制御ビットはその現在値を示し、リセットによって払われて0となる。
【0432】
ICCR[7]:割り込み許可。この制御ビットはICCの割り込み動作を許可する。セットされると、送受信動作が割り込む。
【0433】
ICCR[6]:高速状態送信許可。この制御ビットに高速状態リクエスト・メッセージに対する自動応答を可能にする。セットされると、送信バッファ・レジスターに記憶されているメッセージが高速状態リクエストの受信に続いて送信される。高速状態リクエスト・メッセージは制御ビット・セット(B2=1)、命令フィールド3、指令フィールド0及びサブコマンド・フィールド0または1を含む。アドレスはICCアドレスと一致しなければならず、メッセージBCHは正しくなければならない。スレープとして構成されたデバイスだけが高速状態リクエストに応答する。送信バッファに記憶されている高速状態メッセージを更新したければ、バッファ・レジスター中に変化が生ずる前にICCR[6]をリセットしなければならない。
【0434】
ICCR[5]:マスター・モード。セットされると、このビットはINCOM通信コントローラーをマスター動作モードに切り換える。マスター・モードでは、ICCはいつでも送信でき、アドレスに関係なくすべてのメッセージを受信する。応答及び高速状態動作は不能となる。ICCR[5]はCFR[7]=1でなければセットできない。CFR[7]=0の状態でICCR[5]に1を書き込もうとしても不可能である。リセットまたはパワーアップに伴ってこのビットは0(スレープ・モード)にセットされる。
【0435】
ICCR[4]。この制御ビットは使用されない。
【0436】
ICCR[3]:送信された高速常態の確認。この指令ビットはICSR[4]をリセットするのに使用される。ICCR[3]に1が書き込まれるとICSR[4]がリセットされる。常態においてICCR[3]は0である。
【0437】
ICCR[2]:送信完了の確認。この指令ビットはICSR[3]をリセットするのに使用される。ICCR[2]に1が書き込まれるとICSR[3]がリセットされる。ICCR[2]は常に0である。
【0438】
ICCR[1]:受信メッセージの確認。この指令ビットはICSR[2]をリセットするのに使用される。ICCR[1]に1が書き込まれるとICSR[2]がリセットされる。ICCR[1]は常に0である。
【0439】
ICCR[0]:送信開始。1を書き込まれると、この指令ビットは送信バッファ・レジスターICM3・・・ICM0中に記憶されているメッセージの送信を開始する。メッセージ送信のためには送信機が使用中(ICSR[5]=0)であってはならず、インターフェースが割り込み可能(ICSR[6]=1)でなければならない。
【0440】
INCOMネットワーク
INCOMネットワークによる通信はすべて33ビット・メッセージの形を取る。メッセージは2個のスタートビットで始まり、1個のストップ・ビットで終わる非同期メッセージである。搬送波変調モード及びベースバンド変調モードを任意に選択できる。
【0441】
搬送波変調
搬送波変調方法を選択した場合、2通りのコンパチブル変調方式、即ち、周波数シフトキーイング方式(FSK)及び振幅シフトキーイング方式(ASK)が可能である。
【0442】
□ASK:振幅シフトキーイング方式による変調方法では115.2kH2搬送波を使用する。搬送波が存在すればメッセージ・ビットは1、存在しなければ0である。
【0443】
□FSK:周波数シフトキーイング方式による変調方法では2つの搬送波周波数を使用する。メッセージ・ビットは搬送波周波数が115.2kH2なら1、92.16kHzなら0である。
【0444】
INCOMコントローラーだけが送信にFSKを使用し、受信機のデジタル復調器だけが115.2kH2搬送波と相関するから、この2つの変調方法はコンパチブルである。正しい復調が行われるために92.16kH2搬送波の存在は不要である。ビット伝送速度が比較的高い場合、第2搬送波周波数を使用することにより、エコーの著しい環境においてリミッター・キャプチャーが得られる。FSKモードで動作するINCOMコントローラーはエコーが正しく消されている限りASKモードで送信されるメッセージを正しく受信する。メッセージの間隔は0(搬送波なし)でなければならない。以下の説明ではASK/FSKとベースバンド変調とが混同されないようにするため、通信回線の状態を表わすのに1及び0を使用する。
【0445】
通信ビット伝送速度
INCOMネットワークは選択された送信モードに応じて種々のビット伝送速度で動作するように構成すればよい。表19はINCOMネットワークの通信ビット伝送速度を示す。所与のINCOMネットワークには1つの送信モード及び1つのビット伝送速度だけを選択できる。
【0446】
【表19】
Figure 0003710831
上述のように、ASK及びFSK変調方法はコンパチブルである。ASKシステムはビット伝送速度が比較的高いFSKには適用できないネットワーク条件を必要とすることがある。
【0447】
メッセージ・フォーマット
INCOMメッセージはすべて長さが33ビットであり、下記のような特徴を有する。
【0448】
□最初の2ビットはスタートビットであり、1,1でなければならない。
【0449】
□第3ビットは基本メッセージ・タイプを決定する制御ビットである。
【0450】
□29番目のビットで始まる5ビットBCHエラー・チェック・コードが送信される。
【0451】
□メッセージの最終ビットはストップビットであり、これは0でなければならない。
【0452】
ビット伝送速度と変調方法は選択されるシステム・オプションに応じて可変であるが、33ビット非同期メッセージ・フォーマットであることは共通である。以下の説明では先頭の送信ビットをB0、末尾ビット(ストップビット)をB32とする。INCOMメッセージ・フォーマットは図100に示した。
【0453】
スタート・ビット:B0,B1
各ネットワーク・メッセージは2個のスタートビットで始まる。このスタートビットはメッセージをフレーミングに使用されるものであって、1,1でなければならない。メッセージ間のギャップは0,0..で埋められる。ストップビットに直ぐ続いて新しいメッセージがスタートできる。
【0454】
制御ビット:B2
この制御ビットはメッセージ・ビットB3乃至B26の意味を定義する。もしB2が1なら、メッセージは制御メッセージであり、ICCによって翻訳される。もしB2が0なら、メッセージはデータ・メッセージであり、ICCによって翻訳されない。送信権(母線支配権トークン)は制御メッセージ(B2=1)によってのみ交換できる。
【0455】
メッセージ・ビットB3−B26
このメッセージ・フィールドの意味は制御ビットB2によって決定される。
【0456】
□制御ビットが1ならば、ビットB3乃至B26がICCによって翻訳されるべき命令、指令、サブコマンド及びアドレス・フィールドを含むことを意味する。
【0457】
□制御ビットが0ならば、ビットB3乃至B26が高レベルのメッセージ・プロトコルの一部である任意データを含むことを意味する。このようなメッセージはICCによって翻訳されない。
【0458】
BCHエラー・チェック・コード:B27−B31
メッセージ・ビットB27乃至B31はBCH31,26コードを使用して計算される5ビット・エラーチェックを含む。ICCは33ビット・メッセージのビットB2乃至B26に基づいてBCHの残り部分を計算する。メッセージ本分(B2・・・B30)は常にルートとしてBCHジェネレーター多項式:X5+X2+1を有する。このエラーチェック・コードはハミング距離が3であり、あらゆるランダム・ダブル・ビット・エラー及び長さ5ビットまでのあらゆるバースト・エラーを検出する。正しいBCHを含むメッセージを例示すれば下記の通り:
Figure 0003710831
ストップ・ビット:B32
各メッセージはストップビットで終り、ストップビットは常に0である。
【0459】
制御メッセージ
セットされた(1)制御ビット(B2)を含むメッセージは制御メッセージである。
【0460】
命令フィールド:36−B3
命令フィールドはメッセージ・ビットB6乃至B3から成る。このフィールドはいくつかの基本的制御機能を有するだけでなく、ハードウエア・レベルに送信権プロトコルを形成する。このフィールドは表20に示すように翻訳される。
【0461】
ネットワーク・アドレス:B22−B11
メッセージ。ビットB11乃至B22は制御メッセージ中にネットワーク・アドレスを含む。B11はアドレスの最下位バイトである。制御メッセージにおけるアドレス比較は命令フィールドの内容に応じて異なる。大抵の制御メッセージ命令はアドレス情報の12ビットを全部使用してメッセージの受け手を確定する。12個以下のビットを使用する場合もある。
【0462】
領域アドレス命令
命令復号
【表20】
Figure 0003710831
領域アドレス命令
命令$4−領域省略、$C−保留、及び45−領域回復はアドレス比較においてアドレス・フィールドのB22乃至B15だけを使用する。この3つの命令はアドレス情報の下位4ビットが無視される領域アドレッシングを使用する。これらの命令はネットワークにおける最大限16個の事なる非マイスター・デバイスによって受信できる。
【0463】
ユニバーサル・アドレス命令
命令$D−保留、$6−スクラム、及び$E−保留はアドレッシングを使用しない。これらの命令はネットワークのすべてのデバイスによって受信される。
【0464】
指令フィールド:B7−B10
この4ビット・フィールドは制御メッセージ中の指令を画定する。他のいかなる制御メッセージ・タイプにも使用されない。このフィールドによって画定される指令の定義は高レベルのソフトウエア・プロトコルによって決定され、2つの状態指令を除けば製品タイプに応じて異なる。高速状態ICCハードウエアはサブコマンド0または1を含む指令0によって与えられる状態指令を翻訳し、実行する。この2つの状態指令制御メッセージは以下に述べるようにあらゆる製品について普遍的に定義される。
【0465】
シングル・メッセージ状態
命令$3、指令0及びサブコマンド1を含む制御メッセージは拡張状態リクエストであると定義される。アドレスされたデバイスは後述のように応答するものと期待される。
【0466】
サブコマンド・フィールド:B26−B23
この4ビット・フィールドは制御メッセージ中のサブコマンドを画定する。その他のいかなる制御メッセージ・タイプにも使用されない。このフィールドによって画定されるサブコマンドの定義は状態指令中のサブコマンド0及び1を除けば製品のタイプに応じて異なる。
【0467】
通信ネットワーク調停
INCOMネットワークは多数のデバイスが送信できるマルチドロップ通信母線である。母線調停はハードウエア・プロトコル、ソフトウエア・プロトコルの双方によって行われる。ネットワークは母線送信権の制御がメッセージのタイプ及び内容によって決められるトークン・パッシング方式によって調停される。調停プロトコルはシステム構成によって決定される単一のネットワーク・コントローラ(ネットワーク・マスター)の形態を取る。複数のデバイスがネットワーク・マスター機能を行うことができるが、所与の時点において機能できるのは1つのデバイスだけである。
【0468】
ネットワーク・マスターは母線送信権を分配するためのいくつかの手段を有する。
【0469】
□応答をリクエストする制御メッセージをスレーブ・デバイスに送信する。もしメッセージが応答をリクエストしなければ、母線送信権はネットワーク・マスターの手許にある。もしメッセージが応答をリクエストすると、スレーブはリクエスト・メッセージを受信してから1ビット時間以内に単一応答制御メッセージの送信を開始する。この場合、母線送信権は1メッセージの時間だけスレーブに与えられる。応答をリクエストする制御メッセージを受信するか、インターフェースが該当の制御メッセージによって割り込み許可されない限りメッセージを送信できない。
【0470】
□インターフェースの割り込みを許可する制御メッセージをスレーブ・コントローラーに送信する。この場合、母線送信権は割り込み許可されたスレーブ・デバイスに渡される。スレーブはソフトウエア・プロトコルが要求する数のメッセージを送信できる。このスレーブ・デバイスのインターフェースは割り込み禁止制御メッセージを受信するか、他のアドレスに向けた制御メッセージ(B2セット)を検出するまでは割り込み可能である。ソフトウエア通信プロトコルは母線送信権をネットワーク・マスター・コントローラーまたは他のスレーブ・デバイスに戻す時点を決定する。ハードウエア・レベル調停プロトコルはアドレスの違う2つ以上のスレーブ・デバイスのインターフェースが同時に割り込み許可されるのを防止する。
【0471】
状態トランザクション
INCOM標準プロトコルに合致するスレーブ・デバイスはすべて有効な状態リクエストに応答しなければならない。3つの状態リクエスト・トランザクション・シーケンスが定められている。すべての製品は少なくとも第1タイプのトランザクションに適応できることを要求され、3つのトランザクションすべてに適応することも可能である。
【0472】
応答
すべてのスレーブ・デバイスは応答を要求する制御メッセージを受信すると応答を作成する。ただし、制御メッセージが対応のアドレス及び正しいBCHを含んでいる場合に限る。応答状態メッセージはビット2をセットされており、ビットB25及びB26で表わされる2ビット状態を含む。ビットB3からビットB24までは未定義であるが、多くの場合、状態リクエスト・メッセージのエコーである。B1乃至B26でいかなるビットパターンが送信されるかに基づいてBCHが計算されることはいうまでもない。2つの状態ビットの典型的な定義を表21に示す。
【0473】
【表21】
Figure 0003710831
下記のINCOM制御メッセージが応答を形成する。
【0474】
0 aaa 0 8 1 ロード省略、応答
0 aaa 0 9 1 ロード回復、応答
0 aaa 0 A 1 割り込み禁止、応答
0 aaa 0 F 1 状態応答リクエスト
応答メッセージ完了の時点で送信権は状態をリクエストしたデバイスに戻される。
【0475】
シングル状態メッセージ
シングル・メッセージ状態リクエストに対していくつかのスレーブ・デバイスが応答できる。一般に、マイクロプロセッサーをベースにするスレーブはこのリクエストに応答できる。シングル状態リクエスト・メッセージは“0 aaa 0 3 1”である。このメッセージはインターフェース割り込み許可命令、指令0、サブコマンド0から成る。スレーブは2通りの応答モードを選択できる:
□スレーブは上記2つの状態ビットを含む応答メッセージを返信できる。
【0476】
□スレーブは後述のような製品状態メッセージを返信できる。
【0477】
単一応答メッセージ完了の時点で送信権は状態をリクエスト下デバイスに戻される。
【0478】
製品状態メッセージ
製品状態メッセージのフォーマットは下記の通り:
□B2:0
□B8−3:6ビット・メーカー・コード
□B12−9:4ビット通信ソフトウエア・バージョン
□B18−13:6ビット製品ID
□B21−19:3ビット製品特殊状態
□B26−22:5ビット標準状態コード
メーカー・コード
この6ビット・フィールドは製品のメーカーを固定する。
【0479】
コード例を挙げると下記の通り。
【0480】
B8−3 メーカー
00 保留
01 Westinghouse Electrical Components (Asheville)
04 Westinghouse Breaker Components (Beaver)
通信ソフトウエア・バージョン
この4ビット・フィールドはスレーブ製品が使用している通信ソフトウエア・コード・バージョン番号を示すのに使用できる。
【0481】
製品 ID
この6ビット・フィールドはメーカー・コード内で特定製品を示すのに使用できる。
【0482】
製品特殊状態
この3ビット・フィールドは製品に特有な状態を示すため製品ごとに使用できる。
【0483】
標準状態コード
この5ビット・フィールドは表21に示したような標準状態コードとして使用できる。各製品はこれらの定義に合致する4通りの動作状態を明らかにしなければならない。
【0484】
拡張状態
拡張状態リクエストに対していくつかのスレーブ・デバイスが応答できる。一般に、マイクロプロセッサーをベースとするスレーブがこのリクエストに応答することができる。拡張状態リクエスト・メッセージは“1 aaa 0 3 1”である。このメッセージは割り込み許可命令、指令0及びサブコマンド1を含む。スレーブは2つのメッセージで応答する:
□第1のメッセージは上述した製品状態メッセージである。
【0485】
□第2のメッセージは確認メッセージであり、そのフォーマットは“0 aaa 1 3 1”。12個のアドレス・ビットがスレーブのアドレスである。
【0486】
第2の応答メッセージが完了すると、状態をリクエストしたデバイスに送信権が戻される。
【0487】
動 作
INCOM通信コントローラー29には2つの動作モードがある:マスター動作モード及びスレーブ動作モード。一般に、所与の用途に応じて、ICC29はこれらのモードのいずれか1つで動作するように構成されるが、単一の通信ネットワークに複数のマスターが存在することを可能にするシステムと併用することも可能である。ICCに対する典型的なプログラミング・インターフェースを以下に説明する。
【0488】
初期設定
IC10初期設定ソフトウエアの一部として、いくつかのパラメーターをICC29にセットしなければならない。
【0489】
□構成:CFR[7](ICCマスター・モード許可)及びACFR[6](分割比)にそれぞれ該当の値をロードしなければならない。マスター動作モードを可能にするにはCFR[7]をセットしなければならない。セットしなければ、ICCはマスター・モードに入れない。ACFR[6]は水晶発振器周波数に応じてセットしなければならない。
【0490】
□通信パラメーター:適切なビット伝送速度及び変調方法となるようにICAH[7・・・4]をセットしなければならない。IC10の正規動作中はこれらの値を変えてはならない。
【0491】
□INCOMアドレス:IC10をINCOMスレーブとして構成するには、ICAH[3・・・0]及びICA[7・・・0」にスレーブのネットワーク・アドレスをロードしなければならない。INCOMマスターはアドレスを必要としない。
【0492】
□モード:IC10がINCOMネットワークにおけるマスターなら、ICCはアドレスに関係なくネットワークを介してすべてのメッセージを受信する。ICCR[5]をセットすることによりICCはメッセージを送信できる。このことは割り込み許可状態ビットのセット(ICSR[6])によって指示される。
【0493】
□割り込み:ICCサブシステムの割り込みを可能にするにはICCR[7]をセットしなければならない。ICSR[3]及びICSR[2]を使用して割り込みリクエストを指示する。リクエストは割り込みを許可されていないシステムにポーリングされる。
【0494】
これらのパラメーターをセットすれば、ICCは通信ネットワークにおいて正しく機能することができる。
【0495】
受信動作
IC10の動作はICC29の動作モードに応じて異なる。受信機はマスター・モードかどうかに応じてその動作が異なる。
【0496】
マスター・モード
IC10がマスター・モードなら、制御メッセージ・アドレスに関係なくすべてのINCOMネットワーク・メッセージを受信する。マスター・モードではそのインターフェースは常に割り込み可能状態にある(ICSR[6]=1)。従って、すべてのネットワーク・メッセージが受信される。
【0497】
スレーブ・モード
IC10がスレーブとして構成されている場合、アドレスと一致する制御メッセージだけを受信する。メッセージが処理されるときにICCインターフェースが割り込み可能状態にある場合にだけ、データ・メッセージが受信される。スレーブ・デバイスのインターフェースはこのスレーブのアドレスを含む特定の制御メッセージ・タイプによって割り込みを許可される。また、別のスレーブ・デバイスが割り込みを許可されると前記インターフェースは割り込みを禁止される。正しいアドレスの制御メッセージはすべて受信される。
【0498】
メッセージの処理
ICCによってメッセージが受信されると、下記事象が起こる:
1.2個のスタートビットが検出されると、直列のビット流れがフレーミングされ、バッファ、レジスターへ移される。
【0499】
2.メッセージが制御メッセージなら、BCH及びアドレスがチェックされ、命令が実行される。
【0500】
3.ICSR[6]がセットされるか、またはメッセージがこのINCOMアドレスに対する命令メッセージなら、メッセージはICM3乃至ICM0としてアドレスされた受信バッファ・レジスターにロードされる。この事象はICSR[2]がリセットされた場合にのみ起こる。ICSR[2]がセットされると、メッセージが処分され、ICSR[0](受信機オーバラン)がセットされる。メッセージの受信中、ICSR[7]は1である。メッセージが処理されると、ICSR[2]がセットされて、受信バッファに新しいメッセージがロードされたことを指示する。先行メッセージがソフトウエアによって確認される前に受信バッファ・レジスターにロードしなければならない追加メッセージが処理されると、受信機オーバランが発生する。
【0501】
割り込みが許可されると、ICSR[2]のセットによって割り込みが開始される。ソフトウエアがICC状態レジスターを読み、受信メッセージ・レジスターから新しいメッセージを検索する。メッセージが読み取られ、オーバラン(ICSR[0])、BCHエラー(ICSR[1])、及び受信動作完了(ICSR[2])について状態がチェックされたら、ソフトウエアはICCR[1]をセットすることで受信メッセージの確認を行う。その結果、ICSR[2・・・0]がリセットされ、受信バッファが次のメッセージに備えて解放される。ICSR[2]を払うと、割り込みリクエストがリセットされる。
【0502】
送信動作
ICCインターフェースが割り込み許可されると(ICSR[6]=1)、IC10ソフトウエアはINCOMネットワークを介してメッセージの送信だけを許される。メッセージ送信のため、ソフトウエアは下記の動作を行う:
1.ICCR[6]をリセットして高速状態動作を不能にする。高速状態動作にも送信バッファ・レジスターが使用されるから、この処置が必要になる。
【0503】
2.送信すべきメッセージをメッセージ・レジスターICM3乃至ICM1にロードする。ICM0[7]に送信すべきメッセージの制御ビットをロードする。この動作には読み取り/変更/書き込み命令を使用しない。このロード動作中、ICM0[1・・・0]は常時正しい応答状態情報を含んでいなければならない。
【0504】
3.ICSR[5]を読んで送信機が使用中でないことを確認した上で、ICCR[0]をセットすることによって送信を開始させる。ICCR[0]のセットで送信機が始動する。送信機アクチブ・ビット(ICSR[5])が送信が進行中であることを指示したら送信バッファ・レジスターを変化させてもよい。
【0505】
4.ソフトウエアはICSR[3]で送信完了フラッグをポーリングするか、送信完了時のICC割り込みを待機する。
【0506】
応答状態動作
ICCはINCOMネットワーク応答リクエストに応答して応答状態メッセージを作成する。応答状態メッセージはメッセージ・ビットB26及びB25にICMO[1.0]を含む。製品状態が変化するとソフトウエアはこれら2つのメッセージ・レジスター・ビットに該当の値をリロードする。
【0507】
高速状態動作
ソフトウエアによって正しくプログラムされているなら、該当のINCOM制御メッセージを受信するとIC10は自動的に高速状態応答メッセージを送信する。高速状態を送信するため、ソフトウエアは下記動作を行う:
1.ICCR[6]をリセットして高速状態の送信を不能にする。
【0508】
2.メッセージ・レジスター(ICM3・・・ICMO)中の高速状態メッセージを更新する。
【0509】
3.ICCR[6]をセットして高速状態の送信を可能にする。
【0510】
高速状態リクエストがICCによって処理されると、ICCR[6]をセットすることによって送信バッファ・レジスター中のメッセージが送信される。バッファ・レジスターに新しいメッセージがロードするときには、新しいメッセージの“データちぎれ”を防止するため、ロード動作中ICCR[6]ビットがリセットされていなければならない。
【0511】
割り込みベクトル
マイクロコントローラーにおけるINCOMの割り込み優先順位は最下位である。割り込みにはベクトル・アドレス$FFF0−FFF1が割り当てられる。割り込みの再処理を回避するため、プロセッサーにおけるIビットのリセットに先立ってICCR[1,2または3]をセットして割り込みを確認しなければならない。
【0512】
アナログ・サブシステムの構成
IC10のアナログ・サブシステムを図63−119に示した。具体的には、図101−40はデジタル制御ロジックを図79−91はアナログ回路を、図92−119はICC29デジタル・ロジックをそれぞれ示す。
【0513】
デジタル制御ロジック
1.カッドコンパレーター・サブシステム・ロジック
カッドコンパレーター・サブシステム・ロジック58は4つのコンパレーター200,202,204及び206を含む(図64及び81)。各コンパレーターは所定の電圧、例えば非反転入力(図81)と接続する+1.25Vdcを基準とする。入力信号は図64に示す外部ピンCP0,CP1,CP2及びCP3に印加される。
【0514】
コンパレーター・サブシステム58はメモリー・アドレス・スペースに配置された2つのレジスターCMPI及びCMPSTを介してマイクロプロセッサーと通信する。コンパレーター出力Q0,Q1,Q2及びQ3の所定のエッジにおいて割り込みが起こるように内部割り込みファミリティーを設ける。コンパレーター出力Q0,Q1,Q2及びQ3はデータ母線DATA[3...0]において読み取られる。具体的には、各コンパレーター出力は各1対の高利得直列インバーター208、210(図64);212,214;216,218;及び220,222と接続し、インバーター210,214,218,222の出力はトライステート・デバイス224,226,228230に印加される。これらのトライステート・デバイスの出力はCMPST[3...0]としてデータ母線DATA[3...0]と接続する。これらのコンパレーター出力はCMPST[3...0]状態ビットから成る。これら状態ビットの読み取りはマイクロプロセッサ30がCMPSTレジスターをアドレスするとアクチブ状態となって後述するように読み取りを開始させる読み取り信号RDCMPSThによって制御される。
【0515】
CMPIレジスターは割り込み制御に使用される。具体的には、割り込みを許可するにはCMPI[7...4]が、コンパレーター・サブシステム58からの割り込みリクエストをリセットするにはCMPI[7...4]がそれぞれ使用される。割り込みの再処理を防止するため、Iビットを払う前に割り込みリクエストをリセットしなければならない。
【0516】
コンパレーター出力Q0,Q1,Q2及びQ3の所定のエッジにおいて割り込みリクエスト信号INTREQが発生する。具体的には、INTREQ信号はコンパレーター200の立ち上がり及び立ち下がり出力状態、及びコンパレーター202,204,206の立ち上がり出力状態において発生する。このINTREQ信号はカッドNORゲート232の出力において得られる。NORゲート232の入力にコンパレーター割り込みリクエスト信号REQ0h,REQ1h,REQ2h,REQ3hが印加される。これらの割り込みリクエスト信号はコンパレーター200に対応するORゲート234、及びコンパレーター202,204,206にそれぞれ対応するフリップフロップ236,238,240において得られる。具体的には、コンパレーター200に対応の割り込みリクエスト信号REQ0hは二重入力ORゲート234の出力において形成される。ORゲート234への入力はフリップフロップ242,244から来る。コンパレーター200の出力Q0は高利得インバーター208,210を介してフリップフロップ244のクロック入力CKに供給される。インバーター208の出力において得られるこの信号の補数がフリップフロップ242のクロック入力CKに供給される。フリップフロップ242,244のQ出力がORゲート234に供給されて、コンパレーター200の立ち上がり及び立ち下がり出力状態においてREQ0h信号を形成する。コンパレーター202,204,206のQ1,Q2,Q3出力はフリップフロップ236,238,240のクロック入力CKに供給されてREQ1h,REQ2h,REQ3h信号を形成する。REQ0h,REQ1h,REQ2h及びREQ3h信号はデータ母線DATA[7...4]を介してマイクロプロセッサー30により状態ビットCMPST[7...4]として読み取られる。具体的には、REQ0h,REQ1h,REQ2h,REQ3h信号がトライステート・デバイス246,248,250,252に供給される。これらのトライステート・デバイス246,248,250,252の出力はデータ母線DATA[7...4]と接続する。トライステート246,248,250,252はRDCMPSTh信号の制御下にある。
【0517】
割り込みリクエストをリセットするのに4個の指令ビットCMPI[7...4]が使用される。この指令ビットCMPI[7...4]を使用することによって、REQ0h,REQ1h,REQ2h,REQ3h信号を形成するフリップフロップ236,238,240,242,244をリセットする。これらの指令ビットCMPI[7...4]はデータ母線DATA[7...4]を介して書き込まれ、WRCMPIh信号と共に二重入力NANDゲート254,256,258,260に印加される。NANDゲートはマイクロプロセッサー30がCMPIレジスターをアドレスして書き込みを開始する時にだけ割り込み許可される。NANDゲート254,256,258,260の出力はトライ入力ANDゲート262,264,266,268に供給される。これらのANDゲートの出力はフリップフロップ236,238,240,242,244のリセット入力反転Rに供給される。ANDゲート262,264,266,268への他の2つの入力はインバーター270の出力において得られるマイクロプロセッサー30からのリセット信号RESETb及びフリップフロップ272,274,276,278のQ出力において得られる割り込み許可信号ENA0h,ENA1h,ENA2h,ENA3hである。ENA0h,ENA1h,ENA2h,ENA3h信号は割り込みリクエストをいったん確認したのち払うことを可能にする。RESETb信号はマイクロプロセッサー30がこれらのフリップフロップをリセットすることを可能にする。割り込み再処理を防止するため、インバーター271の出力において得られるWRCMPIb信号が割り込み許可フリップフロップ272,274,276,278の反転D入力に供給される。これらのフリップフロップは書き込み信号WRCMPIhがイナクチブになった後、リセットされる。
【0518】
指令ビットCMPI[7...4]はデータ母線DATA[7...4]を介して常時0として読み取られる。具体的にはこれらの指令ビットはトライステート・デバイス278,280,282,284の出力において読み取られる。トライステート・デバイスへの入力はデジタル・アースと接続する。トライステート・デバイス278,280,282,284はマイクロプロセッサー30がCMPIレジスターをアドレスして読み取りを開始したことを指示するRDCMPIh信号の制御下にある。
【0519】
コンパレーター割り込み許可信号ENA0h,ENA1h,ENA2h,ENA3hを読み取るのに4個の状態ビットCMPI[3...0]が使用される。これらの信号ENA0h,ENA1h,ENA2h,ENA3hはフリップフロップ272,274,276,278のQ出力において得られ、これらの出力はトライステート・デバイス286,288,290,292と接続する。トライステート・デバイスの出力はデータ母線DATA[3...0]と接続する。トライステート・デバイス286,288,290,292はマイクロプロセッサー30がCMPIレジスターをアドレスして読み取りを開始したことを指示するRDCMPIhの制御下にある。
【0520】
RDCMPSTh,RDCMPIh及びWRCMPIh信号はコンパレーター・デコード・システム294によって形成される。コンパレーター・デコード・システム294はレジスターCMPST及びCMPIの書き込み及び読み取りができるように内部アドレス母線ADDR[4...0]に供給されるアドレスを復号する。具体的には、表7に示したように、CMPSTレジスターはアドレス場所$0008に配置されているから、アドレス$0008が内部アドレス母線[4...0]で送信されると、ANDゲート296(図65)が割り込み許可される。具体的には、ANDゲート296は8入力ANDゲートであり、A4h,A2h,A1h及びA0hから成るアドレス入力ADDR[4,2,1,0]がインバーター298,300,302,304を介して供給され、ADDR[3]、即ちA3hがANDゲート296の1つの入力に直接供給され、さらに、マイクロプロセッサー30から信号SELh,DiSABLEb及びPH2hがANDゲート296に供給される。
【0521】
16進アドレス$0008は2進ビット00010に相当する。A4h,A3h,A2h,A1h及びA0hのアドレス入力にアドレス01000が供給されると、ANDゲート296の出力は論理1となり、CMPSTレジスターがマイクロプロセッサー30によってアドレスされていることを指示する。具体的には、RDCMPSTh信号は二重入力ANDゲート306(図64)の出力において得られる。ANDゲート306への入力はフリップフロップ308,310のQ出力である。ANDゲート296の出力において得られるCMPSTh信号がフリップフロップ310のD入力に供給される。このフリップフロップに対するタイミングはマイクロプロセッサーの位相2クロック信号PH2hによって行なわれる。即ち、PH2h信号が1対の直列インバーター312、314を介してフリップフロップ310のクロック入力CKに印加される。インバーター312の出力において得られる反転位相2クロック信号がフリップフロップ310の反転CK入力に印加される。マイクロプロセッサー内部制御母線CPUCTL[3...0]から得られるREADh信号がフリップフロップ308のD入力に印加される。READh信号はマイクロプロセッサー30が読み取り動作リクエスト中であることを指示する。フリップフロップ310と同様に、フリップフロップ308のクロック入力CK及び反転CKにタイミング信号が印加される。したがって、マイクロプロセッサー30が$0008をアドレスすれば、ANDゲート306の出力に信号RDCMPSTが発生し、マイクロプロセッサー30がCMPSTレジスターを読み取り中であることを指示する。
【0522】
RDCMPIh信号は二重入力ANDゲート316の出力において得られる。フリップフロップ308の出力がANDゲート316の一方の入力に供給されて、マイクロプロセッサー30が読み取りを開始したことを指示する。ANDゲート316への他方の入力はフリップフロップ318のQ出力である。CMPIhデコード信号がフリップフロップ318のD入力に印加される。フリップフロップ318のタイミング制御はフリップフロップ308,310の場合と同じである。ANDゲート320(図60)の出力においてCMPIh信号が得られる。ANDゲート320及びインバーター298,300,302,304を含む回路はマイクロプロセッサー30が$0009をアドレスするとCMPIh信号を出力する。
【0523】
二重入力ANDゲート322(図64)の出力においてWRCMPIh信号が得られる。ANDゲート322への一方の入力はフリップフロップ318の出力であり、CMPIレジスターがアドレスされたことを指示する。ANDゲート322への他方の入力はNORゲート324の出力である。NORゲート324はマイクロプロセッサー書き込み信号の形成に使用される。即ち、フリップフロップ308の出力がNORゲート324の一方の入力に供給される。NORゲート324からの出力信号は書き込み動作中低レベルである。他方の入力はインバーター278の出力において得られる位相2クロックの出力である。
【0524】
構成レジスターCFRからの4個の構成ビットCFR[3...0]がコンパレーターのモード制御に使用される。これらの構成ビットCFR[3...0]はコンパレーター200,202,204,206の出力をポートCとOR演算することを可能にする。0はOR演算を許可し、1は禁止する。具体的には、CFRレジスターは書き込み専用レジスターであり、フリップフロップ326,328,330,332を含む。これらのフリップフロップのD入力はデータ母線DATA[3...0]と接続する。これらのフリップフロップのQ出力はOR演算を可能にする内部母線CFR[3...0]と接続する。NANDゲート334への一方の入力はNORゲート324の出力であり、書き込み動作を指示する。他方の入力はフリップフロップ336の出力である。マイクロプロセッサー30がCFRレジスターをアドレスしたことを指示するCFRh信号がフリップフロップ336のD入力に印加される。
【0525】
CFRh信号はデコード信号であり、ANDゲート338(図65)の出力において得られる。ANDゲート338及びインバーター298はアドレス母線ADDR[4...0]を復号することによってANDゲート338の割り込みを許可し、マイクロプロセッサー30が$001EをアドレスするとCFRh信号を形成する。
【0526】
マイクロプロセッサー30はコンパレーター・サブシステム58をリセットすることができる。即ち、コンピューター制御母線CPUCTL[3...0]からインバーター270を介してリセット信号RESETbがANDゲート262,264,266,268に印加されてフリップフロップ236,238,240,242,244をリセットする。RESETb信号はフリップフロップ272,274,276,278,308,310,318,326,328,330,332,336にも印加されて、マイクロプロセッサー30がコンパレーター・サブシステム58をリセットすることを可能にする。
【0527】
2.プロセッサー母線インターフェース・ロジック
マイクロプロセサー30は表7に湿すようにメモリー・アドレス・スペースに配置された例えば7つのレジスターADCR,AMUX,ACFR,ADZ,AMZ,AVSF,ACFRを介してアナログ制御システムと通信する。レジスターのフォーマットを図9に示した。これらのレジスターは図67に示すレジスター選択フリップフロップ350,352,354,356,358,360,362によって選択され、いずれも読み書きレジスターであり、図68に示すレジスター・デコード・サブシステム364によって復号される。レジスターの復号方法は多様であり、例えば、7つのプログラマブル・ロジック・アレイ(PLA)366,368,370,372,374,376,378を設けてもよい。各PLAは直接または図106に示すようなインバーター366,368,370,372,374を介して供給されるアドレス入力ADDR[4...0]、及び3つの制御信号SELh,DISABLE及びPH2hを含む。SELh信号はマイクロプロセッサーのANABSh信号に相当する。ANABSh信号は領域ごとの復号を可能にするマイクロプロセッサーのマスター・チップ・アドレス・デコーダーからのレジスター選択信号である。DISABLEb信号はマイクロプロセッサーのIOOFF信号に相当し、テスト・モード中にすべてのI/Oデバイスの割り込みを禁止するのに使用される。IOOFF信号はバッファ375の出力において得られる。PH2信号はマイクロプロセッサーの位相2クロックである。
【0528】
PLA366,368,370,372,374,376,378の出力はレジスター選択信号ADZh,AMZh,AVSFh,ACSFh,ADCRh,AMUXh,ACFRhであり、特定のレジスターがマイクロプロセッサー30によってアドレスされたことを指示する。たとえば、アドレス母線ADDR[4...0]にアドレス$0020が現われると、レジスターADCRが選択される。同様に、他のレジスターのアドレスがアドレス母線ADDR[4...0]に現われると、該当のレジスターが選択される。
【0529】
PLA366,368,370,372,374,376,378からの出力信号はレジスター選択フリップフロップ350,352,354,356,358,360,362のD入力に印加される。レジスター選択フリップフロップのタイミング制御は1対のインバーター380,382を介してこれらのフリップフロップのクロック入力CKに供給される位相2クロック信号PH2hと、インバーター380の出力から前記フリップフロップ反転CK入力に供給される反転位相2クロック信号によって行なわれる。マイクロプロセッサー制御母線CPUCTL[3...0]からのリセット信号RESEThがインバーター384を介して前記フリップフロップのリセット入力反転Rに印加されてこれらのフリップフロップをリセットと同時に0にセットする。レジスター選択フリップフロップ350,352,354,356,358,360,362の出力はレジスター選択信号ADCRh,AMUXh,ACFRh,ADZh,AMZh,AVSFh,ACSFhである。
【0530】
ACFRレジスター
ACFRレジスターはA/Dサブシステム78によって利用される読み書きレジスターである。このレジスターはフリップフロップ386,388,390,392,394,396,398(図67)を含む。
【0531】
ACFRレジスターはマイクロプロセッサー30によって読み書きされる。具体的には、フリップフロップ386,388,390,392,394,396,398のD入力がデータ母線DATA[7...0]に接続してマイクロプロセッサー30がこのレジスターに書き込むことを可能にする。これらのフリップフロップの出力Qもトライステート・デバイス408,410,412,414,416,418,420,422を介してデータ母線DATA[7...0]と接続してこのレジスターの読み取りを可能にする。
【0532】
読み取り動作中、トライステート・デバイス408,410,412,414,416,418,420,422は読み取り制御NANDゲート424及び読み書き制御フリップフロップ426の制御下にあってこれらのフリップフロップのQ出力がデータ母線DATA[7...0]に接続し、マイクロプロセッサー30によって読み取られることを可能にする。ACFR[4]ビットと対応のトライステート・デバイス422の入力はアースに接続されているから、このビットは常時0である。
【0533】
NANDゲート424から読み取り信号が出力される。NANDゲート424は2入力NANDゲートであり、読み書き制御フリップフロップ426及びACFR選択フリップフロップ354の制御下にある。内部制御母線CPUCTL[3...0]からの読み取り信号は読み書き制御フリップフロップ426のD入力に印加される。このフリップフロップのタイミング制御はクロック入力CKに供給される位相2クロック信号PH2hと、インバーター380の出力からフリップフロップ426の反転CK入力に供給される反転位相2クロック信号によって行なわれる。フリップフロップ426のQ出力は読み取りクロック信号RDCLKhであり、NANDゲート424に印加される。したがって、マイクロプロセッサー30がACFRレジスター(たとえば$0023)をアドレスし、読み取り信号READhをコンピューター制御母線CPUCTL[3...0]に送出すると、フリップフロップ386,388,390,392,394,396,398及びACFR[4]ビットが読み取られる。
【0534】
書き込み動作中、トライステート・デバイス408,410,412,414,416,418,420は高インピーダンス状態にあるのが普通である。書き込み制御信号はこれらのフリップフロップのD入力に印加される。書き込み制御信号は書き込み制御NORゲート428及びNANDゲート430の制御下にある。NORゲート428は2入力NORゲートであり、一方の入力は位相2クロックPH2hからもう一方の入力は読み書き制御フリップフロップ426から来る。NORゲート428の出力は書き込み信号WRCLKhである。書き込み信号WRCLKhは二重入力NANDゲート430の一方の入力に印加される。NANDゲート430への他方の入力はACFRレジスター選択信号ACFRhである。NANDゲート430の出力は次にACFRフリップフロップ386,388,390,392,394,396,398の反転D入力に供給される。データ母線DATA[7...5]及びDATA[3...0]がこれらのフリップフロップのD入力に供給されてマイクロプロセッサー30による書き込みを可能にする。ビットACFR[4]はデジタル・アースと接続する。
【0535】
ACFRレジスターはマイクロプロセッサー30によってリセット可能である。即ち、制御母線CPUCTL[3...0]からのリセット信号RESEThがインバーター432を介してフリップフロップ386,388,390,392,394,396,398のリセット入力Rに印加される。
【0536】
以上に述べた通り、ACFRレジスターはA/Dサブシステム78を構成するのに使用される構成レジスターである。即ち、フリップフロップ386,388,390,392,394,396,398のQ出力はインバーター434,346,438,440,442,444,446と接続する。インバーター434,436,438,440の出力は内部母線ACFR[3...0]と接続する。インバーター444,446の出力は内部母線ACFR[7,6]と接続する。インバーター442の出力は内部母線ACFR[5]に供給され、信号ADPUhとしても使用される。
【0537】
読み書き制御フリップフロップ426の出力において得られるRDCLKh信号は後述するオートゼロ/オートレンジ状態マシンに使用するための状態マシン・クロック信号SMCLKhの形成に利用される。SMCLKh信号はバッファ447の出力において得られる。バッファへの入力はMUX448である。MUX448は外部クロック発信源からの入力信号CLKSRChをテスト回路の制御下にその選択入力SLに印加することを可能にする。正規動作中、SMCLK信号がフリップフロップ450から出力される。フリップフロップ450のタイミング制御はインバーター380の出力において得られる反転位相2クロック信号によって行なわれる。このフリップフロップ450はマイクロプロセッサー30によってリセットできる。NANDゲート452からの出力はフリップフロップ450のD入力に供給される。NANDゲート452は二重入力NANDゲートである。NANDゲート452への一方の入力はRDCLKh信号であり、NANDゲート452への他方の入力はORゲート454の出力である。ORゲート454への入力はAVSFまたはACSFレジスターがマイクロプロセッサー30によってアドレスされ、したがって、オートゼロ/オートレンジ動作が開始されるとSMCLK信号が発生可能であることを指示するACSFh及びAVSFh信号である。
【0538】
ADCRレジスター
ADCRレジスターはA/Dサブシステム78の動作制御に使用される。このレジスターはバイトワイド読み書きレジスターであり、フリップフロップ458,460,462,464及び466(図107)を含む。3個のビットADCR[5],ADCR[2]及びADCR[0]が接地し、常に0である。即ち、ビットADCR[0]は接地すると共にトライステート・デバイス468の入力と接続し、トライステート・デバイス468の出力はデータ母線DATA[0]と接続する。同様に、ビットADCR[5]も接地すると共にトライステート・デバイス472と接続し、トライステート・デバイス472の出力はデータ母線DATA[5]と接続する。
【0539】
残りのビットもマイクロプロセッサー30によって読み取ることができる。即ち、フリップフロップ458,460,462,464,466の反転Q出力はトライステート・デバイス474,476,478,48,482と接続し、これらのトライステート・デバイスの出力はデータ母線DATA[1,3,4,6,7]に供給される。
【0540】
すべてのビットADCR[7...0]についてトライステート・デバイス468,470,472,474,476,478,480,482は読み取り制御NANDゲート484の制御下にある。常態ではこれらのトライステート・デバイスは高インピーダンス状態にある。ただし、読み取り動作中、NANDゲート484はこれらのトライステート・デバイスがADCR[7...0]ビットをデータ母線DATA[7...0]に接続することを可能にする。NANDゲート484は2入力NANDゲートである。ADCRh信号が一方の入力に印加される。この信号はADCRレジスターのデコード信号である。具体的には、ADCRレジスターはメモリー・アドレス$0020に配置されているから、マイクロプロセッサー30によってこのアドレスが書き込まれると、ADCRh信号がアクチブとなる。NANDゲート484への他方の入力は上記RDCLKh信号である。したがって、マイクロプロセッサー30がADCRレジスターをアドレスして読み取りを開始すると、NANDゲート484が割り込み可能となる。
【0541】
ビットADCR[1],ADCR[3]及びADCR[4]はマイクロプロセッサー30によって書き込むことのできる制御ビットである。具体的には、フリップフロップ458,460,462のD入力はデータ母線DATA[1,3,4]と接続し、反転D入力は二重入力NANDゲート486の出力と接続する。ADCRh信号はNANDゲート486の一方の入力に印加されてADCRレジスターがマイクロプロセッサー30によってアドレスされたことを指示する。他方の入力にはWRCLKh信号が印加される。したがって、マイクロプロセッサー30がADCRレジスターをアドレスして書き込み動作を開始するとNANDゲート486が割り込み許可される。
【0542】
ビットADCR[7]及びADCR[6]はフリップフロップ464,466によって形成される読み取り専用状態ビットであり、オートゼロ・シーケンス及びA/D変換が完了したことを指示する。フリップフロップ464,466は1対のインバーター488,490を介して位相2クロック信号PH2hによってクロックされる。A/Dサブシンステム78の状態及びオートゼロ動作を表わす状態信号EOCh,EOAZhは後述する制御回路を介してフリップフロップ464,466のD入力に印加される。具体的には、オートゼロ・プロセスの完了を指示するオートゼロ信号EOAZhの末尾がインバーター494を介してフリップフロップ492の反転S入力に印加され、フリップフロップ492のQ出力が遅延フリップフロップ496のD入力に供給される。フリップフロップ496のQ出力はバッファ増幅器498を介してフリップフロップ464のD入力に供給され、フリップフロップ464の反転Q出力はトライスレート・デバイス480及びバッファ増幅器500を介してデータ母線DATA[6]に供給されてオートゼロ・フラッグを完了させる。
【0543】
インバーター504及び後述する制御回路を介してフリップフロップ466にEOCh信号が印加される。EOCh信号はA/D変換プロセスの完了を指示する。インバーター504の出力はフリップフロップ502の反転S入力に供給され、フリップフロップ502のQ出力はフリップフロップ506のD入力に供給される。遅延フリップフロップ506のQ出力はバッファ増幅器508を介してフリップフロップ466のD入力に供給され、バッファ508の出力はフリップフロップ466のD入力に供給される。フリップフロップ466の反転Q出力はトライステート・デバイス482及びバッファ増幅器510を介してデータ母線DATA[7]に供給されてA/D変換完了フラッグを発生させる。
【0544】
フリップフロップ496,506のタイミング制御はインバーター488の出力において得られる位相2クロック信号によって行なわれる。フリップフロップ496,506もフリップフロップ464,466もインバーター516の出力において得られるRESETb信号を介してマイクロプロセッサー30によってリセットすることができる。
【0545】
ACFR[5]はオートゼロ完了及びA/D変換完了フラッグをリセットすると共にビットACFR[6]及びACFR[7]をリセットしてマイクロプロセッサー30からA/D割り込みリクエストSYI1b信号を除去する指令ビットである。指令ビットACFR[5]はデータ母線DATA[5]において得られ、二重入力NANDゲート512の一方の入力に供給される。NANDゲート512への他方の入力はADCRレジスターへの書き込み動作を可能にするNANDゲート486の非反転出力である。NANDゲート512の出力は二重入力ANDゲート514の一方の入力に供給される。ANDゲート514への他方の入力はインバーター516の出力において得られるマイクロプロセッサー・リセット信号RESETbである。ANDゲート514の出力がフリップフロップ492,502のリセット入力反転Rに供給されて完了フラッグをリセットし、A/D割り込みSY1Bを除去する。
【0546】
A/D割り込み信号SY11bはオート・ゼロ・シーケンス及びA/D変換完了時にA/D割り込みADCR[4]が許可されると3入力NANDゲート516の出力において形成される。NANDゲート516への一方の入力は2入力ORゲート518の出力である。ORゲート518への入力はフリップフロップ464,466のQ出力と接続するバッファ517,519の出力において得られる状態ビットADCR[6]及びADCR[7]であり、これらのビットADCR[7,6]はオートゼロ動作及びA/D変換の完了をそれぞれ指示する。NANDゲート516への他の入力は割り込み許可を指示するADCR[4]ビットである。第3の入力は通常はテスト中にだけ使用されるテスト回路から供給される。
【0547】
ADCR[2]はマイクロプロセッサー30によって書き込むことができ、A/Dシーケンスを開始するのに使用される指令ビットである。このビットはデータ母線DATA[2]において得られ、二重入力NANDゲート520に供給される。NANDゲート520への他方の入力はADCRレジスター書き込み制御NANDゲート486から供給される。フリップフロップ522のQ出力はフリップフロップ524のD入力に供給される。フリップフロップ524の出力はバッファ525を介して遅延フリップフロップ526のD入力に供給される。遅延フリップフロップ526のQ出力はスタート・オートゼロ信号STAZhの形成に使用される。具体的には、フリップフロップ526のQ出力はバッファ530を介して二重入力ANDゲート528の一方の入力に供給される。ANDゲート528への他方の入力はテスト回路から供給される。ANDゲート528の出力がSTAZh信号である。
【0548】
STAZh信号はオートゼロ状態マシンが使用中(AZBSYh)であれば払われる。具体的には、AZBSYh信号はインバーター531を介して2入力ANDゲート530の一方の入力に供給される。マイクロプロセッサー30からのRESETb信号が他方の入力に印加される。ANDゲート530の出力がフリップフロップ522の反転R入力に供給されてこのフリップフロップをリセットする。フリップフロップ524,526のタイミング制御はインバーター527の出力において得られるSMCLKh信号によって行なわれる。フリップフロップ524,526はリセット入力反転Rに印加されるRESETb信号を介してマイクロプロセッサー30によってリセットされる。
【0549】
ADCR[1]ビットは4つのサンプリング/保持スイッチ108,110,112,114を制御するのに使用される。即ち、フリップフロップ458のD出力がANDゲート532の一方の入力に供給され、ANDゲート532への他方の入力はテスト回路から供給される。ANDゲート532の出力はサンプリング/保持スイッチ108,110,112,114を制御する信号SAMPhである。
【0550】
フリップフロップ462のQ出力において得られるADCR[3]ビットは積分器リセットを制御するのに使用される。具体的には、フリップフロップ462の出力は2入力ANDゲート534の一方の入力に供給され、ANDゲート534の他方の入力はテスト回路から供給される。ANDゲート534の出力が積分器リセット信号INTREShである。この信号はバッファ757(図73)に印加されてDISCHh信号を発生させ、スイッチ96(図88)にも印加される。この信号が高レベルならば、スイッチ96(図41)がMXOピンを電流ミラー92から遮断してアナログ・アースAVSSへ短絡させる。このビットがセットされたままである限り、スイッチ96は短絡状態のままである。ADCR[3]に0を書き込むことによって短絡スイッチ96を開路させることができる。この信号はスイッチ96の現状態をも表わす。
【0551】
入力マルチプレクサー制御
電圧及び電流入力MUX62,64を制御するのに8ビット読み書きレジスターAMUX[7...0]が使用される。このレジスターは2つのフィールドに分割されており、一方のフィールドは電圧入力を制御して信号VMUX[3...0]を発生させ、他方のフィールドは電流入力を制御して信号CMUX[3...0]を発生させる。
【0552】
VMUX[3...0]信号はフリップフロップ536,538,540,542(図69)によって形成される。これらのフリップフロップのD入力はデータ母線DATA[3...0]と接続して、マイクロプロセッサー30による書き込みを可能にする。これらのフリップフロップの出力はトライステート・デバイス544,546,548,550を介してデータ母線DATA[3...0]と接続してマイクロプロセッサー30がこれらのフリップフロップの内容を読み取ることができるようにする。トライステート・デバイス544,546,548,550は状態で高インピーダンス状態にあり、NANDゲート552の制御下にある。NANDゲート522は2入力NANDゲートであり、一方の入力には読み取りクロック信号RDCLKhが印加されて、上述したように、マイクロプロセッサー30による読み取り動作を指示し、他方の入力にはAMUX信号が印加されて、このレジスターがマイクロプロセッサー30によってアドレスされたことを指示する。即ち、AMUXレジスターはメモリー場所$0021に配置されていて、マイクロプロセッサー30がこの場所をアドレスするとAMUXh信号が高いアクチブ状態となる。したがって、フリップフロップ536,538,540,542のQ出力をデータ母線DATA[3...0]に接続することにより、マイクロプロセッサー30は前記フリップフロップの内容を読み取ることができる。
【0553】
フリップフロップ536,538,540,542への書き込み動作はNANDゲート554によって制御される。このNANDゲート554はこれらのフリップフロップの反転D入力に印加される書き込み信号WRMUXbを出力する。NANDゲート554は3入力NANDゲートであり、第1入力に書き込みクロックWRCLKh信号が、第2入力にAMUXh信号が、第3入力にARBSYh信号がそれぞれ印加される。ARBSYh信号はオートレンジング・システムが使用中であることを指示する信号であり、詳しくは後述する。
【0554】
フリップフロップ536,538,540,542はそれぞれのリセット入力反転Rに印加されるRESETb信号によってリセットされる。RESETb信号はマイクロプロセッサー30がこれらのフリップフロップをリセットすることを可能にする。
【0555】
CMUX[3...0]信号はフリップフロップ556,558,560,562によって形成される。これらのフリップフロップのD入力はデータ母線DATA[7...4]と接続してマイクロプロセッサー30による書き込みを可能にする。これらのフリップフロップのQ出力は読み取り動作のためのトライステート・デバイス564,566,568,570を介してデータ母線DATA[7...4]と接続する。上記トライステート・デバイスは常態では高インピーダンス状態にあり、マイクロプロセッサー30が読み取り動作を開始してアドレス$0021をアドレス母線ADDR[4...0]に送出するとこれらのフリップフロップが読み取られるようにするNANDゲート552の制御下にある。フリップフロップ556,558,560,562への書き込み動作はフリップフロップ536,538,540,542の場合と同様にNANDゲート554によって制御される。
【0556】
フリップフロップ536,538,540,542,556,558,560,562の出力は図41及び80に示すように電流及び電圧MUXes66,68を制御するMUX制御信号MUXCTL[26...0]を形成するのに使用される。即ち、電圧チャンネルMUX66,68は制御信号VMUX[3...0]信号によって制御され、電圧チャンネルMUX66はCMUX[3...0]信号によって制御される。これらの信号は電圧チャンネル及び電流チャンネルMUXのそれぞれの個別制御を可能にするMUX制御信号MUXCTLを形成するため、一連のインバーター、ORゲート及びANDゲート(図67)によって復号される。具体的には、二重入力ANDゲート572,574,576,578の一方の入力にCMUX[3...0]信号が印加され、他方の入力にインバーター580を介して信号CAZhが印加される。信号CAZhは電流増幅器90がオートゼロ化中であることを指示する。信号CAZhはA/Dサブシステム78に使用される信号CSHRThの形成にも利用される。信号CSHRThはインバーター580と直列に接続するインバーター581の出力において得られる。
【0557】
NANDゲート572の出力は一連の直列に接続されたインバーター582,584,586,588,590,592,594と接続し、NANDゲート574の出力は一連の直列に接続されたインバーター596,598,600,602,604,606,608と接続し、NANDゲート578の出力は一連の直列に接続されたインバーター624,626,628,630,632,634,636と接続する。インバーター594,608,622,636の出力は二重入力ORゲート638,640,642,644の一方の入力と接続し、インバーター582,596,610,624の出力が他方の入力と接続する。NANDゲート572,574,576,578の出力は二重入力ORゲート646,648,650,652の一方の入力に印加され、インバーター592,606,620,632の出力が他方の入力に印加される。ORゲート638,640,642,644,646,648,650,652の出力は二重入力ANDゲート654,656,658,660,662,664,666,668の一方の入力に印加され、内部母線ACFR[3...0]からのACFR[3...0]ビットが他方の入力に印加されて入力MUX66(図41が電流モードか電圧モードかを制御する。ACFR[3...0]ビット中に1があれば電流モードを選択する。具体的には、ACFR[3]ビットがANDゲート654,656の入力に印加され、ACFR[2]ビットがANDゲート658,660の入力に印加され、ACFR[1]ビットがANDゲート608,610の入力に印加され、ACFR[0]がANDゲート666,668の入力に印加される。ANDゲート654,656,658,660,662,664,666,668の出力は電流チャンネルMUXes66の個別制御を可能にするデコード信号MUXCTL[20...13]である。
【0558】
サンプル/ホールドスイッチ108,110,112,114もインバーター670,672,674,676,678,680及び3入力ANDゲート682,684を含むデコード回路(図72)によって個別に制御できる。具体的には、インバーター670,672,674,676は内部ACFR母線[3...0]と接続し、インバーター670,672の出力はNANDゲート532(図31)において得られ、指令ビットACFR[1]がセットされたことを指示するSAMPh信号と共にANDゲート682に印加される。インバーター674,676の出力はSAMPh信号と共にANDゲート684に印加される。SAMPh信号はインバーター678,680とも接続し、ANDゲート684の出力はサンプル/ホールドスイッチ108,110,112,114の個別制御を可能にする信号MUXCTL[24...21]である。具体的には、ANDゲート746は2入力ANDゲートであり、一方の入力にはWRMUXb信号が印加され、他方の入力にはインバーター748を介して信号VAZhが印加される。後述するように、信号VAZhはアクチブであり、電圧増幅器80がゼロ化されつつあることを指示する。ANDゲート724,726,728,730,732,734,736,738,740の出力は信号MUXCTL[9...0]である。
【0559】
詳しくは後述するが、電流チャンネルが選択されるとオートレンジ動作が抑止される。ANDゲート720の出力はインバーター750を介して信号MXOSELhを形成するのに利用される。具体的には、電流チャンネルが選択されたことを指示する信号MXOhはANDゲート752の出力において形成され、MUXCTL[9]信号に相当する。ANDゲート752は2入力ANDゲートであり、一方の入力はテスト回路と接続し、他方の入力はORゲート754と接続している。このORゲート754は2入力ORゲートであり、一方の入力はテスト回路と、他方の入力は電流チャンネルが選択されたことを指示するANDゲート742とそれぞれ接続している。
【0560】
バッファ増幅器756の出力においてVNULLh信号が形成される。このVNULLh信号はゼロ・スイッチ86(図69及び87)を制御して電圧増幅器80をオートゼロ化させる。バッファ増幅器756への入力は2入力ANDゲート758の出力である。ANDゲート758への一方の入力は増幅器80がオートゼロ化されつつあることを指示するVAZh信号であり、他方の入力はインバーター748,760を介して印加される同じ信号VAZhである。
【0561】
2入力ORゲート761の出力においてAGNDh信号が形成される。ORゲート761への一方の入力はANDゲート744からの出力であり、他方の入力はVNULLh信号である。AGNDh信号を利用して電圧チャンネルを接地する(図3)。AGNDh信号はMUXCTL[10]として得られる。
【0562】
MUXCTL[26,25,12,11]はテスト回路と併用される。
【0563】
オートゼロ・レジスターADZ,AMZ
ADZ及びAMZレジスターは電流及び電圧増幅器80,90のためのオートゼロ・ロジック98と併用される。オートゼロ・ロジックは製造に際してCMOS技術を採用したために生じた増幅器80,90のオフセットを修正する。
【0564】
ADZレジスター
ADZレジスター(図74)は電圧増幅器80のオフセット修正値を含む6ビット読み書きレジスターである。すでに述べたように、このレジスターへの書き込み動作は診断及び検証だけがその目的である。このレジスターには、オートゼロ・シーケンス完了時に増幅器80のオフセット修正値がロードされる。
【0565】
具体的には、フリップフロップ762,764,766,768,770,772を含むこのレジスターにデータ母線DATA[7...0]が印加される。MUXes774,776,778,780,782,784はこれらのフリップフロップの入力をデータ母線DATA[7...0]またはゼロ母線ZERO[5...0]と接続することを可能にする。ZERO「5...0」母線はゼロ化中の増幅器のオフセット修正値を含み、ADZレジスターへのオフセット修正値書き込みを可能にする。データ母線DATA[5...0]はMUXes774,776,778,780,782,784のA入力に印加される。ZERSEL信号は前記MUXesの選択入力SELに印加され、ADZレジスターがデータ母線からロードされるかゼロ母線からロードされるかを制御する。MUXES774,776,778,780,782の出力はフリップフロップ762,764,766,768,770,772のD入力に印加される。オートゼロ状態マシンによって形成されるZERSELh信号(図76)は状態マシンが状態S3にあることを指示する。状態S3において、オフセット修正値が後述するVZCLKh信号によってADZレジスター中にラッチされる。VZCLKh信号はオートゼロ状態マシンによって形成され、バッファ803の出力において得られる。この信号VZCLKhはフリップフロップ762,764,766,768,770,772の反転G入力に印加される。
【0566】
フリップフロップ762,764,766,768,770,772のQ出力は電圧増幅器80と関連の内部母線VZERO[5...0]に印加される。前記フリップフロップのQ出力はトライステート・デバイス786,788,790,792,794,796を介してデータ母線[5...0]とも接続してマイクロプロセッサー30による前記フリップフロップの読み取りを可能にする。ビットADZ[7,6]は接地入力を有するトライステート・デバイス798,800を介してデータ母線DATA[7,6]と接続しているから常時0である。
【0567】
トライステート・デバイス786,788,790,792,794,796,798,800はフリップフロップ762,764,766,768,770,772の出力とデータ母線DATA[7...0]との接続を防げない状態にある限り、読み取り動作中を除いて高インピーダンス状態にある。前記トライステート・デバイスはNANDゲート802の制御下にある。NANDゲート802の出力はADZレジスター読み取りを表わすVZRDb信号である。NANDゲート802への入力は信号RDCLKh及びADZhである。読み取り信号RDCLKhは読み取りクロック信号である。ADZh信号はマイクロプロセッサー30がアドレス$0024をアドレス母線ADDR[4...0]に送出したことを表わす。ADZレジスターはVZCLKh信号によってロードされる。
【0568】
ADZレジスターはマイクロプロセッサー30によってもリセットすることができる。具体的には、フリップフロップ762,764,766,768,770,772のリセット入力にRESb信号が印加される。
【0569】
AMZレジスター
AMZレジスターは6ビット読み書きレジスターであり、電流ミラー増幅器92に関連するオフセット修正値を含んでいる。このレジスターにはオートゼロ・シーケンス完了時に修正値がロードされる。このレジスターへの書き込み動作は診断及び検証のみを目的とする。
【0570】
AMZレジスターはフリップフロップ804,806,808,810,812,814を含む。これらフリップフロップのQ出力は内部母線CZERO[5...0]と接続する。これらフリップフロップの入力にはMUX774,776,778,780,782,784を介してデータ母線DATA[7...0]が印加される。上記フリップフロップはオートゼロ状態マシンからのCZCLKb信号にクロック制御されて電流増幅器90(図41)のオフセット修正値を後述する状態S7(AppendexC参照)においてAXZレジスター中にラッチする。CZCLKb信号はバッファ816を介してこれらフリップフロップの反転D入力に印加される。フリップフロップのリセット入力RにRESb信号が印加されてフリップフロップをリセットする。前記フリップフロップのQ出力はトライステート・デバイス818,820,822,824,826,828を介してデータ母線DATA[5...0]に印加される。ビットAMZ[7,6]は使用されず、常に0である。具体的には、データ母線DATA[7,6]はそれぞれトライステート・デバイス830,832の出力と接続する。トライステーツ装置830,832への入力は接地している。したがって、AMZ[7,6]は常に0である。
【0571】
前記トライステーツ・デバイス818,820,822,824,826,828,830,832はすべてNANDゲート834の制御下にある。NANDゲート834の出力はAMZレジスターの読み取りを表わす信号CZRDbである。RDCLKh信号がNANDゲート834の一方の入力に、AMZh信号が他方の入力にそれぞれ印加される。AMZhはマイクロプロセッサー30がアドレス$0025に書き込んだことを表わす。
【0572】
フリップフロップ804,806,808,810,812,814はマイクロプロセッサー30によってリセットされる。即ち、これらのフリップフロップのリセット入力にRESb信号が印加される。
【0573】
オートゼロ状態マシン
オートゼロ状態マシンは電圧及び電流増幅器80,90をゼロ化するのに必要なシーケンシングを、内部バイアス電流を調節することによって発生させる。オートゼロ・シーケンスに亘って増幅器の入力及び出力が連携の回路から隔離され、入力は接地する。オートゼロ状態マシンは増幅器の出力が状態を変えるまで分流器(図52)を介して不連続ステップでバイアス電流を差動的に変化させる。オートゼロ化可能な増幅器を図91に示す。状態変化に対応するステップ数がオフセット修正値を表わす。ADZ及びAMZレジスターに記憶されるこの修正値についてはすでに述べた通りである。
【0574】
オートゼロ状態マシンをAppendexC、図130に示した。オートゼロ状態変換表、状態ダイヤグラム及び変換表状態方程式もAppendexCに示した。
【0575】
状態マシンは図74に示すように3つの状態レジスター・フリップフロップ836,838,840及びNANDゲート842,844,846,848,850,852,854,856,858,860,862,864,866を含む。さらに、後述のように状態マシンに対する種々の入出力をも含む。状態レジスターのフリップフロップは状態変数R0h,R0b,R1h,R1b,R2h,R2bを出力する。これらの変数はNANDゲート848,856,866の出力において得られる変数R0d,R1d,R2dと共にAppendex Cに示す状態方程式の展開に使用される。
【0576】
状態レジスターの各フリップフロップは上述したSMCLKh信号によってクロック制御される。インバーター892の出力において得られるリセット信号RESETbが上記各フリップフロップのリセット入力Rに印加される。
【0577】
状態レジスター・フリップフロップ836,838,840の出力はAppendexC、表C1にしたがってオートゼロ状態マシンのオートゼロ状態割り当てを画定する。8つの許容状態は下記のように定義される:
SO−アイドル状態。状態マシンがアクチブ状態になるためスタート・オートゼロ信号STAZhを待機しているアイドル状態にある。状態マシンはオートレンジ状態マシンが使用中である間はアイドル状態のままである。この2つの状態マシン間の連動はオートレンジ使用中信号ARBSYhによって行なわれる。STAZh信号がアクチブ、ARBSYh信号がイナクチブなら、状態マシンは状態S1に移行できる。
【0578】
S1−5マイクロセコンド遅延。状態S1及びS2は電圧増幅器出力がその状態を変えるか、またはカウンター868が最終値に達するまで繰り返されるループを形成する。状態S1中、タイムリクエスト信号TIMREQhがアクチブであり、タイムアウト信号TIMOUThがモニターされる。状態S1においてアクチブであるタイムリクエスト信号の作用下に5マイクロセコンド・タイマー(図75)がトリガーされる。タイマーが5マイクロセコンドを計測すると、タイムアウトTIMOUTh信号がアクチブになる。その結果、状態マシンが状態S2またはS3に移行する。もし増幅器出力VAMPh信号が高いままで、バイアス電流が未だ十分高いレベルに達せず、カウンター868がFULLbフラッグによっても指示されるように未だ最終カウントに達していないことを示唆すれば、状態マシンは状態S2に移行する。もし増幅器出力信号が低レベルとなるか、またはカウンターが最終カウントに達すると、状態マシンが状態S3に移行する。5マイクロセコンド遅れて増幅器80は安定出力に達する。
【0579】
S2−クロックカウンター。カウンター868が未だフル・カウントを含まず、増幅器80をゼロ化するための適当なバイアス電流を発生させるに十分なカウントでないと状態S2に入る。クロック・カウンター信号は状態S2においてアクチブであってカウント値を1だけ増分させる。状態マシンは次のクロック・パルスで必ず状態S1に移行する。
【0580】
S3−ラッチADZ値。電圧増幅器出力の状態が切り替わるかカウンター868が最終カウントに達すると、状態S3に入る。カウンターの現カウントが、VZCLKh信号を1状態時間に亘って活性化することによってADZレジスター中にラッチされる。状態マシンは必ず状態S4に移行する。
【0581】
S4−クリアカウンター。状態S4において、状態マシンは電流増幅器90をオートゼロ化を開始する。カウンターがZERRESb信号によって払われ、カウンター出力に現われるMUXes774,776,778,780,782,784から切り替わってカウント値をAMZレジスター及び電流増幅器90に送られる。状態マシンは必ず状態S5に移行する。
【0582】
S5−5マイクロセコンド遅延。カウンターが電流増幅器90と接続することを除けば状態S5,S6は状態S1,S2とそれぞれ同じであり、電流増幅器の出力CAMPhに応答してマシンがS5からS7に移行する。
【0583】
S6−クロックカウンター。この状態は状態S2と全く同じである。状態マシンは必ず状態S5に移行する。
【0584】
S7−AMZ値ラッチ。この状態は状態S3と同様である。カウンター868の現内容がAXZレジスター中にラッチされる。オートゼロ信号EOAZhが終わってオートゼロ動作の完了を示唆する。
【0585】
オートゼロ入力
オートゼロ・マシンへの入力信号を以下に列記する:
ARBSYh−オートレンジ使用中。オートレンジ状態マシンがアイドル状態でなければこの信号がアクチブ高となり、インバーター870を介して状態マシンに印加される。この信号についてはオートレンジ状態マシンとの関連であらためて説明する。
【0586】
STAZh−オートゼロ・スタート。指令レジスターの最初のオートゼロ・ビットが書き込まれるとこの信号がアクチブ高となる。この信号はANDゲート528(図69)の出力において得られる。
【0587】
VAMPb−電圧増幅器出力。電圧増幅器80がオートゼロ化されるとこの信号がアクチブ高となる。VAMPh信号は電圧増幅器80の出力信号であり、フリップフロップ889に印加される。
【0588】
CAMPb−電流増幅器出力。電流増幅器90がオートゼロ化されるとこの信号が低となる。CAMPb信号は電流増幅器90の出力信号であり、フリップフロップ891に印加される。
【0589】
TIMOUTh−タイムアウト。5マイクロセコンド遅延が経過するとこの信号がアクチブ高となる。この信号はNANDゲート870(図75)の出力において得られる。NANDゲート870は2入力ゲートであり、一方の入力はテスト・モード中アクチブであり、他方の入力はフリップフロップ872,874,876,878及びNANDゲート880から成る5マイクロセコンド・タイマーと接続している。前記フリップフロップのQ出力はNANDゲート880の入力と接続する。フリップフロップ842,846はそれぞれの反転Q出力がそれぞれのD入力と接続するように構成されている。フリップフロップ872,874,876のQ出力はフリップフロップ874,876,878のクロック入力CKとそれぞれ接続する。インバーター871(図76)の出力において得られるTIMOUTb信号もオートゼロ状態マシンに印加される。TIMOUTb信号はNANDゲート860に印加される。出力フリップフロップ872のクロック入力CKと接続しているインバーター882にSMCLKh信号が印加される。フリップフロップ872,874,876,878のリセット入力反転RはORゲート884によって制御される。このORゲート884は2入力ORゲートであり、これらの入力に信号AZTIMh及びARTIMhが印加される。
【0590】
FULLb−カウンター・フル。バイアス電流をセットするのに使用されるカウンター868が111111カウントになるとこの信号がアクチブ低となる。111111カウントは最大バイアス・カウント値である。カウンター868は図33に示すように接続されたフリップフロップ872,874,876,878,880,882及びNANDゲート884を含む。フリップフロップ872,874,876,878,882のQ出力はNANDゲート884と接続しており、このQ出力はFULLbフラッグ及び内部ZERO[5...0]母線である。FULLbフラッグはNANDゲート842,854の入力に印加される一方、インバーター888を介してORゲート886にも印加される。ORゲート886への他方の入力はフリップフロップ889の出力と接続している。フリップフロップ889への入力は電圧増幅器80から出力される信号VAMPhである。フリップフロップ889はインバーター890からのSMCLKh信号の補数によってクロック制御される。フリップフロップ889はインバーター892から出力されるRESETb信号によってリセットされる。ORゲート886の出力はNANDゲート858に印加される。
【0591】
RESETh−リセット。システム・リセットの過程でこの信号がアクチブ高となって状態レジスターのフリップフロップ836,838,840をリセットする。
【0592】
オートゼロ出力
ZERRESb−ゼロ・カウンター・リセット。この信号はアクチブ低の状態でバイアス電流カウンター868をリセットする。この信号は状態S0及びS4においてアクチブとなる。この信号はNANDゲート894から出力される。
【0593】
ZERCLKh−ゼロ・カウンター・クロック。この信号はアクチブ高状態でバイアス電流カウンター868を増分する。この信号は状態S2及びS6においてアクチブであり、NANDゲート896から出力される。
【0594】
TIMREQh−タイム・リクエスト。この信号は状態S1及びS5においてアクチブであり、アクチブ高の状態で5マイクロセコンド遅延をリクエストする。この信号は2入力ORゲート898から出力される。ANDゲート900,902からの出力がORゲート898の入力に印加される。これらANDゲートへの入力は状態マシンの出力と接続している。
【0595】
AZBSYh−オートゼロ使用中。この信号はアクチブ高の状態でオートゼロ動作がアクチブであることを指示する。AZBSYh信号はまた、レジスター選択信号AMZh,ADZh及び書き込みクロック信号WRCLKhを復号するNANDゲートの作用を抑止することによってマイクロプロセッサー30がオートゼロ・レジスターに書き込むのを禁止する。この信号は状態S1,S2,S3,S4,S5,S6,S7においてアクチブである。この信号はNANDゲート904の反転出力において得られる。
【0596】
EOAZh−オートゼロ終了。この信号はアクチブ高状態においてADCR状態レジスター中のフリップフロップ492(図69)をセットしてオートゼロ・プロセスの完了を指示させる信号である。この信号はまた、STAZh信号を形成するフリップフロップを払い、状態S7においてアクチブである。この信号はANDゲート906から出力される。
【0597】
CAZh−電流オートゼロ。この信号はアクチブ高状態で、電流増幅器90がオートゼロ化中であることを指示する。この信号は状態S4,S5,S6においてアクチブであり、2入力NORゲート908の反転出力において得られる。NORゲート908への入力は状態マシンと接続するANDゲート910,912と接続する。
【0598】
VAZh−電圧オートゼロ。この信号はアクチブ高状態において、電圧増幅器80がオートゼロ化中であることを指示し、状態S1及びS2においてアクチブである。この信号はNANDゲート914の非反転出力において得られる。
【0599】
CZCLKh−電流ゼロ・レジスター・クロック。この信号は、アクチブ低状態において、電流増幅器バイアス・カウントのため、AMZレジスターをクロック制御する。状態マシンがアイドル状態にある時、レジスター選択信号AMZh及び書き込みクロック信号WRCLKhを復号することによってこの信号が形成される。状態マシンがアクチブになると、S7が復号されてレジスターへのクロックパルスが発生する。この信号は状態7においてアクチブである。この信号は2入力ANDゲート916から出力される。ANDゲート916への一方の入力はNORゲート908からの反転出力であり、他方の入力は3入力NANDゲート918からの出力である。NANDゲート918への第1入力はNANDゲート904の非反転出力であり、第2、第3入力はAMZh及びWRCLKh信号である。
【0600】
VZCLKh−電圧ゼロ・レジスター・クロック。この信号はアクチブ低状態において電圧増幅器バイアス・カウントのためADZレジスターをクロック制御する。状態マシンがアイドル状態にある時、レジスター選択信号ADZh及び書き込みクロック信号WRCLKhを復号することによってこの信号が形成される。状態マシンがアクチブになると、S3が復号されてレジスターへのクロックパルスが発生する。この信号はS3においてアクチブであり、2入力ANDゲート920から出力される。NANDゲート914の反転出力が一方の入力に印加され、他方の入力は3入力NANDゲート922の出力と接続している。ADZh及びWRCLKh信号が2つの入力に印加され、NANDゲート904からの非反転出力が第3の入力に印加される。
【0601】
AZSTバス−オートゼロ状態。この3ビット母線はオートゼロ状態マシンのフリップフロップ836,838,840を含む。この母線はテスト状態において前記フリップフロップの読み取りを可能にする。
【0602】
オートゼロ状態のマシンの動作
オートゼロ状態マシンは電圧及び電流増幅器80,90をオートゼロ化する。オートゼロ化作用はフリップフロップ522,524,526を含む指令レジスターにビットをセットするソフトウェアによって起動される。具体的には、図69から明らかなように、NANDゲート520に指令ビットADCR[2]が書き込まれると、NANDゲート520はANDゲート528がスタート・オートゼロ信号STAZhを出力するようにフリップフロップ522,524,526を制御する。
【0603】
電圧及び電流増幅器80,90は以下に述べる態様でオートゼロ化される。スタート・オートゼロ信号STAZhが発生すると、まず6ビット・カウンター868(図74)が払われる。このカウンター868は状態S0及びS4においてZERRESb信号によって払われる。6ビット・カウンター868が払われると、電圧増幅器80はその非反転入力がMUXes66,86を介して接地することでオートゼロ状態となる。これは状態S1及びS2においてアクチブであるVAZh信号によって行なわれる。この信号に呼応してORゲート924の出力にAGNDh信号が発生し、電圧増幅器80の非反転入力がMUXes66,86を介して接地する。MUX88は電圧増幅器80から内部補償を取り除く。次にオートゼロ化される増幅器に対応するZERO[5...0]母線へカウンター868の出力がゲートされたのち、5マイクロセコンド遅延が計時される。これはすでにのべた図37の回路によって達成される。5マイクロセコンド遅延が終わると、NANDゲート870の出力にTIMOUTh信号が発生する。遅延が終わると、電圧増幅器80の出力信号VAMPhがチェックされる。また、カウンター868のフルカウント信号FULLbもチェックされる。両信号のいずれかがアクチブなら、カウントが状態マシンによってADZレジスター中にラッチされ、さもなければ、カウンター868が増分され、再び5マイクロセコンド遅延が計時される。カウントがラッチされたのち、電流増幅器90について上記シーケンスが繰り返される。
【0604】
AVSF及びACSFオートレンジ・レジスター
電圧スケール・レジスターAVSF(図77)は電圧入力レンジング回路84(図41及び87)の動作を制御するのに使用される読み書きレジスターである。このレジスターに書き込まれる値によって増幅器80の動作モードが決定される。このレジスターに0が書き込まれると、電圧増幅器80はオートレンジ・モードとなり、非0値が書き込まれると、オートレンジングは抑止され、電圧増幅器80は固定利得モードにセットされる。このレジスターは真の読み書きレジスターではなく、読み取られる値が必ずしも書き込まれた値と同じとは限らない。AVSFレジスターに0を書き込めばオートレンジ作用が可能となるが、さりとてこのレジスターから0を読み取ることはできない。想定される値を表9に示した。このレジスターから読み取られる値は8ビットA−D出力を正しくスケーリングする種々の倍率のいずれか1つである。5通りの値が考えられる:即ち、×1,×2,×4,×8及び×16である。
【0605】
AVSFレジスターは6つのフリップフロップ944,946,948,950,952,954を含む。これらフリップフロップのD入力はレンジング動作中データ母線DATA[5...0]と接続する。AVSFレジスターに非0値が書き込まれると、NANDゲート998がこれを検出してオートレンジング動作を抑止する。フリップフロップ944,946,948,950,952,954の反転D入力はバッファ増幅器955の出力と接続する。バッファ増幅器955への入力は信号VRCLKbである。この信号はオートレンジ状態マシンとの関連で定義され、AVSFレジスターの読み書き動作制御に使用される。フリップフロップ944,946,948,850,852のQ出力はMUX956,958,960,962,964のB入力とそれぞれ接続する。フリップフロップ954のD出力は信号VGAIN32hである。この信号VGAIN32hはカウンター1170(図78)を含むオートレンジ回路からのGAIN[4...0]と共に電圧増幅器80のレンジング回路84及びMUXes86に印加されて電圧利得を制御する。詳しくは後述するように、カウンター1180は電圧増幅器80及び電流増幅器90のオートレンジングの結果範囲を定められた値を含んでいる。これをさらに具体的に説明すると、MUX956,958,960,962,964の作用下にフリップフロップ944,946,948,950,952,954のQ出力は利得母線GAIN[4...]またはMUX966,968,970,972,974のA入力と接続することができる。MUX966,968,970,972,974のB入力は接地しているから、フリップフロップ944,946,948,850,852,954は接地するか、または読み取り動作のためトライステート・デバイス976,978,980,982,984を介してデータ母線DATA[5...0]と接続することができる。トライステート・デバイス976,978,980,982,984は信号VRRDb(図78)の制御下にある。
【0606】
MUX966,968,970,972,974は複数のANDゲート986,988,990,992,994の一方の入力とも接続し、他方の入力はインバーター996の出力と接続する。インバーター966への入力は電圧増幅器80がオートレンジング中であることを指示する電圧オートゼロ信号VAZh(図75)である。ANDゲート986,988,990,992,994の出力はオートレンジングMUX86(図87)を制御するVGAIN[4...0]母線と接続する。
【0607】
MUX956,958,960,962,964は信号VRZEROhを形成するNANDゲート998の制御下にある。この信号はマイクロプロセッサー30が電圧オートレンジング開始のためAVSFレジスターに0を書き込んだことを指示する。信号VRZEROhはアクチブ高であり、電圧増幅器80がオートレンジング・モードにあるか固定利得モードにあるかを判断する。NANDゲート998への入力はフリップフロップ944,946,948,950,952のQ出力である。AVSFレジスターに0が書き込まれると、フリップフロップ944,946,948,950,952のQ出力が高または真となる。その結果、信号VRZEROhがアクチブとなり、MUX956,958,960,962,964がフリップフロップ944,946,948,950,952,954からのQ出力信号をVGAIN[4...0]と接続し、回路をオートレンジング・モードにする。AVSFレジスターに非0値が書き込まれると、NANDゲート998によってこれが検出され、回路が固定利得モードとなる。その結果、MUX956,958,960,962,964がフリップフロップ944,946,948,950,952,954からのQ出力信号をMUX966,968,970,972,974と接続する。MUX966,968,970,972,974はフリップフロップ944,946,948,950,952,954のQ出力を接地するか、またはANDゲート986,988,990,992,994と接続し、これらのANDゲートVGAIN[4...0]母線と接続する。MUX966,968,970,972,974は電流モードが選択されてオートレンジされている場合には電圧増幅器80のオートレンジングを抑止するANDゲート1000の制御下にある。ANDゲート1000は3入力ANDゲートである。電圧増幅器オートレンジング信号VRZEROhが第1入力に印加され、オートゼロ信号が使用中であることを示すAZBSYb信号が第2入力に印加される。ANDゲート1002の出力は電流モードが選択されたことを表わす信号CURRENThである。このCURRENTh信号がANDゲート1000の第3入力に印加される。AZBYb信号はオートゼロ・マシンがアクチブである時にオートレンジ状態マシンを抑止する。電流サブシステムが選択されると、ANDゲート1002がオートレンジングを抑止する。
【0608】
フリップフロップ944,946,948,950,952,954のリセット入力RにREGRESb信号が印加される。REGRESb信号はインバーター1004(図78)から出力される。インバーター1004への入力はCPCTL[3...0]母線からの信号RESEThである。
【0609】
電流倍率レジスターACSFは電流入力オートレンジング回路の動作制御に使用される読み書きレジスターである。このレジスターに書き込まれる値が電流サブシステムの動作モードを決定する。0が書き込まれると、電流サブシステムがオートレンジング・モードとなり、非0値が書き込まれると、オートレンジング・モードが抑止され、電流ミラーが固定スケール値にセットされる。このレジスターは真の読み書きレジスターではない。即ち、読み取られる値は必ずしも書き込まれた値と一致しない。ACSFレジスターに0が書き込まれるとオートレンジング・モードとなるが、このレジスターから0が読み取られることはない。
【0610】
ACFRレジスター(図77)はフリップフロップ1006,1008,1010,1012,1014を含む。データ母線DATA[4...0]は固定利得モードでの書き込み動作ではこれらのフリップフロップのD入力に接続する。固定利得モードにセットするためこのレジスターに非0値が書き込まれると、NANDゲート1048がこれを検出する。フリップフロップ1006,1008,1010,1012,1014の反転D入力はバッファ増幅器1016と接続する。バッファ増幅器1016への入力はオートレンジ状態マシンとの関連で後述する信号CRCLKbであり、オートレンジング完了時にこのレジスター中に利得値をラッチする。信号REGERSSbがリセット入力Rに印加される。MUXes1018,1020,1022,1024はフリップフロップ1006,1008,1010,1012のQ出力がCGAIN[4...0]母線と接続してオートレンジ機能が選択されたことを指示するか、またはMUX1026,1028,1030,1032と接続することを可能にする。CGAIN[3...0]母線は電流ミラー92(図88)と接続して電流ミラー92の分割比を制御する。MUX1026,1028,1030,1032はフリップフロップ1006,1008,1010,1012からの出力信号Qが接地するか、利得母線CGAIN[3...0]に印加されるか、またはトライステート・デバイス1034,1036,1038,1040と接続してこれらをデータ母線DATA[3...0]において読み取ることを可能にする。具体的には、フリップフロップ1006のQ出力がMUX1018のB入力に印加される。MUX1018のA入力は利得母線ビットGAIN[3]と接続する。フリップフロップ1006のQ出力はORゲート1042,1044,1046の入力にも印加される。フリップフロップ1008のQ出力はORゲート1042,1044,1046の他の入力にも印加される。また、フリップフロップ1010のQ出力はORゲート1044,1046に印加される。フリップフロップ1012のQ出力はORゲート1046の入力にも印加される。
【0611】
ORゲート1042,1044,1046の出力はMUX1020,1022,1024のB入力に印加される。固定利得母線ビットGAIN[3...0]はMUX1018,1020,1022,1024のA入力に印加される。MUX1018,1020,1022,1024はNANDゲート1048の制御下にある。NANDゲート1048はマイクロプロセッサー30が電流オートレンジング開始のためACSFレジスターに0を書き込んだことを指示するCRZEROh信号を出力する。このレジスターに書き込まれた非0値は電流ミラー92を固定スケール・モードにする。フリップフロップ1006,1008,1010,1012,1014のQ出力は入力としてNANDゲート1048に印加される。ACSFレジスターに0が書き込まれるとMUXes1018,1020,1022,1024がフリップフロップ1006のQ出力及びフリップフロップ1008,1010,1012のQ出力を利得母線GAIN[4...0]と接続する。ACSFレジスターに非0値が書き込まれると、MUX1018,1020,1022,1024がMUX1026,1028,1030,1032のA入力と接続する。MUX1026,1028,1030,1032のB入力は接地する。MUX1026,1028,1030,1032はシステムが電圧モードにある時電流増幅器70のオートレンジングを抑止するANDゲート1049の制御下にある。この状態では、フリップフロップ1006,1008,1010,1012からの出力信号が接地する。ANDゲート1049には2つの入力がある。一方の入力はNANDゲート1048と接続する。NANDゲート1048の出力はオートレンジングが選択されなかったことを指示する。フリップフロップ1006,1008,1010,1012,1014の反転Q出力は入力としてNANDゲート1048に印加される。ANDゲート1049への他方の入力はインバーター1050である。インバーターの出力はMUX66が電圧モードであることを指示するVOLTAGEh信号である。インバーター1050への入力はMUX66が電流モードであることを指示するANDゲート1002の出力である。ANDゲート1002への入力は電流モードが選択されたことを指示するMXOSELh信号(図73)である。MUX1026,1028,1030,1032の出力は1対の直列に接続されたインバーター増幅器1052,1054,1056,1058,1060,1062,1064,1066と接続する。インバーター1054,1058,1062,1066の出力は直接またはANDゲート1068,1070,1072を介して利得母線CGAIN[3...0]及びトライステート・デバイス1034,1036,1038,1040に印加される。具体的にはインバーター増幅器1054の出力がトライステート・デバイス1034に印加され、インバーター増幅器1058の出力がインバーター増幅器1052の出力と共にANDゲート1068に印加され、インバーター増幅器1062の出力がインバーター増幅器1056の出力と共にANDゲート1070に印加され、インバーター増幅器1066の出力がインバーター増幅器1060の出力と共にANDゲート1072の入力に印加される。
【0612】
トライステート・デバイス1034,1036,1038,1040はデータ母線DATA[3...0]とも接続してACSFレジスターの読み取りを可能にする。インバーター増幅器1064の出力はトライステート・デバイス1068に印加される。このトライステート・デバイス1068はDATA[4]ビットと接続する。トライステート・デバイス1034,1036,1038,1040,1068は信号CRRDbの制御下にある。この信号についてはオートレンジ状態マシンとの関連で後述する。
【0613】
オートゼロ状態マシンの状態を表わす信号AZST[2...0]がANDゲート1070,1072,1074(図74)に印加される。この信号はオートゼロ状態にレジスターのフリップフロップ836,838,840(図76)のQ出力信号である。ANDゲート1070,1072,1074にはテスト信号も印加される。TEST信号はフリップフロップ954のリセット入力Rにも印加される。ANDゲート1070,1072,1074の出力はトライステート・デバイス1076,1078,1080に印加される。トライステート・デバイス1076,1078,1080の出力はデータ母線DATA[7...5]に印加されてマイクロプロセッサー30がこれらの信号を読み取るのを可能にする。トライステート・デバイス1076,1078,1080は信号CRRDbの制御下にある。
【0614】
オートレンジ状態マシンの状態信号ARST[2...0]はANDゲート1082,1084,1086の入力に印加される。テスト信号はANDゲート1082,1084,1086の入力にも印加される。ARST[2...0]信号はオートレンジ状態レジスターのフリップフロップの状態を表わす信号であり、オートレンジ状態マシンとの関連で後述する。ANDゲート1082,1084,1086の出力はトライステート・デバイス1088,1090,1092に印加される。これらのトライステート・デバイスの出力はデータ母線DATA[7...5]に印加される。トライステート・デバイス1088,1090,1092はVRRDb信号の制御下にある。この信号はマイクロプロセッサー30によるオートレンジ状態レジスター・フリップフロップの状態の読み取りを制御する信号であり、オートレンジ状態マシンとの関連で後述する。
【0615】
オートレンジ状態マシン
オートレンジ状態マシンは図78に示した。また、状態変換表、状態図及び変換状態方程式はAppendixDに示した。
【0616】
この状態マシンはA/D変換に先立って電圧増幅器80及び電流増幅器90の利得をオートレンジングする。電圧オートレンジングの過程で電圧増幅器80の出力信号がコンパレーター74(図41)によって所定値と比較されて増幅器出力が大きすぎるかA/Dレンジから外れているかが判断される。オートレンジングの開始に当たって、利得シフト・レジスター1180(図78)が初期設定され、所定の時間に亘って増分される。(TIMOUTh)。コンパレーター74が状態を変えるか、または時間が切れると、利得シフト・レジスターの値が利得を表わす。この利得値はAVSFレジスターに記情され、レンジング回路84の制御に利用される。
【0617】
電流オートレンジングの過程でレンジされた電流はMXOピンから外部レジスターに供給される。外部レジスターの電圧が電圧入力に印加される。次いで電圧オートレンジングと同様にレンジングが行なわれる。このモードにおける利得値はACSFレジスターに記憶される。
【0618】
オートレンジ状態マシンは3つの状態レジスター・フリップフロップ1128,1130,1132;NANDゲート1134,1136,1138,1140,1142,1144,1146;ANDゲート1148,1150,1152,1154,1156,1158,1160,1162;ORゲート1164及び図40に示すように接続された種々の出力ゲートを含む。状態レジスター・フリップフロップ1128,1130,1132のQ出力は状態変数R0h,R1h,R2hである。状態レジスター・フリップフロップ1128,1130,1132の反転Q出力は状態変数R0b,R1b,R2bである。状態変数R0dはNANDゲート1138から出力され、状態変数R1dはNANDゲート1146から出力され、状態変数R2DはORゲート1164から出力される。
【0619】
状態レジスター・フリップフロップ1128,1130,1132はいずれもSMCLKh信号によってクロック制御される。インバーター1004から出力されるリセット信号REGRESbはこれら状態レジスター・フリップフロップのリセット入力Rに印加される。
【0620】
状態レジスター・フリップフロップ1128,1130,1132の出力はAppendixD、表D−1に示すようにオートレンジ状態マシンの許容出力状態を定義する。状態レジスター・フリップフロップ1128,1130,1132は8つの状態を許容するが、必要なのは下記の7つだけである。
【0621】
SO−アイドル。状態マシンはスタート・オートレンジ信号(STADCh)がアクチブになるのを待機するアイドル状態にある。状態マシンはオートゼロ状態マシンが使用中であるときもアイドル状態にある。2つの独立した状態マシン間のこの連動はオートレンジ使用中信号(ARBSYh)によって行なわれる。スタート・オートレンジ信号がアクチブ、オートレンジ使用中信号がイナクチブなら、オートゼロ状態マシンは状態S1に移行する。
【0622】
S1−リセット・シフトレジスター。状態S1で変換のタイプに応じてシフト・レジスター1170が初期設定される。電圧変換の場合、シフトレジスター1170は最下位がセットされた2進値0001に初期設定される。これは電圧利得1に相当する。電流変換の場合、シフトレジスター1170は2進値00000にセットされる。これは電流利得1に相当する。電流利得のセットには最下位4ビットだけが使用される。最下位ビットはVOLTAGEh及びCURRENTh信号を復号することでGRESh信号によってセットされるかまたは払われる。
【0623】
S2−5マイクロセコンド遅延。状態S2及びS3はコンパレーター74(図41)の出力が切り替わるかシフトレジスター1170が最終利得に達するまで繰り返されるループを形成する。S2において、タイムリクエスト信号(TIMREQh)はアクチブであり、タイムアウト(TIMOUTh)信号がモニターされる。タイム・リクエスト信号がアクチブになり、状態マシンが状態S1に入ると、5マイクロセコンド遅延がトリガーされる。遅延がタイムアウトすると、タイムアウト信号がアクチブになる。その結果、状態マシンは状態S3またはS4に移行する。もしRANGEh信号がイナクチブで、利得設定値が不足であるかまたはシフトレジスター1170が未だ最終利得設定値に達していないことを示唆すれば状態S3に入る。最終利得設定値はシフトレジスター1170の第4及び第5ビットでVOLTh及びCURRh信号を復号することによって検出される。CURRh信号がアクチブであることで電流チャンネルが示唆されれば、最大利得に達したことを第4ビットによって指示される。電流チャンネルの場合、最大利得はシフトレジスター1170の第5ビット及びアクチブなVOLTh信号によって復号される。
【0624】
オートレンジ機能がアクチブなら、RANGEh信号がアクチブになるのと同時に状態マシンが状態S4に移行する。ATORNGh信号がイナクチブであることからオートレンジ機能の不能が示唆されると、状態マシンは5マイクロセコンド遅延後に状態S4へ移行する。この5マイクロセコンド遅延は増幅器80,90が安定出力値に達することを可能にする。
【0625】
S3−クロックシフトレジスター。シフトレジスター1170が未だ最大利得値を含まず、利得が十分に高い入力信号を形成できるレベルでなければ状態S3に入る。クロック信号は状態S3においてアクチブであり、シフトレジスター1170を1ビットだけシフトさせる。電圧チャンネル信号に呼応して0がシフトレジスター1170を1ビットだけシフトさせる。電圧チャンネル信号に呼応して0がシフトレジスター1170の最下位ビットへシフトする。その結果、シフトレジスターは1をシフトさせることにより次のような値を発生させる:00001,00010,00100,01000,10000。
【0626】
電流チャンネル信号に呼応して1が最下位ビットへシフトされ、次のような値が得られる:00000,00001,00011,00111,01111。電流増幅器90のセットには利得の4ビットだけが利用される。次のクロックパルスで状態マシンは必ず状態S2へ移行する。
【0627】
S4−汎用SOCパルス。状態4はA/Dコンバーターへの変換パルスをスタートさせるのに使用される。状態マシンはSOC3b信号がアクチブになるまで状態S4にとどまり、SOC3b信号がアクチブになると状態マシンが状態S5へ移行する。変換パルスがスタートしてから2状態マシン・クロック周期に亘ってSOC3b信号がアクチブになる。
【0628】
S5−変換待機。状態S5において状態マシンはアナログ変換終了信号を待機する。アナログ・エンド・オブ・コンバーション信号が高レベルとなって変換の終了を指示すると、状態マシンは状態S6へ移行する。
【0629】
S6−EOCパルス。変換終了信号EOAZhは状態S6においてアクチブである。この信号は指令/状態レジスター・セクションに対して変換プロセスが完了したことを指示する。
【0630】
オートレンジ入力
オートレンジ状態マシンへの入力は下記の通り:
AZBSYh−オートゼロ使用中。この信号はオートゼロ状態マシンがアイドル状態でなければアクチブ高となる。この信号はインバーター1171を介して状態マシンに印加される。
【0631】
ATORNGH−オートレンジ・アクチブ。オートレンジ・アクチブ信号ATORNGはマイクロプロセッサー30がシフトレジスター1170に書き込む時すでにオートレンジングが開始されていたことを表わす。具体的には、ATORNGh信号はインバーター1164(図77)から出力され、ATORNGb信号は二重入力NORゲート1166(図77)から出力される。NORゲート1166は2つのANDゲート1168,1002によって制御される。ANDゲート1002の一方の入力VOLTAGEh信号が印加され、他方の入力にVRZEROh信号が印加される。ANDゲート1002の出力はNORゲート1166の他方の入力に印加される。ANDゲート1002の出力は電流モードが選択されたこと、及びマイクロプロセッサーがASCFレジスターに0を書き込んでオートレンジングを起動したことを指示する。
【0632】
ATORNGb及びATORNGh信号はANDゲート1172、インバーター1173、ORゲート1174及びANDゲート1176を含む回路を介して状態マシンに印加される。ORゲート1174は2入力ORゲートであり、一方の入力はANDゲート1172と接続している。ANDゲート1172は3入力ANDゲートである。ATORNGb,TIMOUTh及びRANGEh信号がANDゲート1172に印加される。ORゲート1174への他方の入力は2入力ANDゲート1176と接続している。ANDゲート1176への一方の入力はATORNGb信号である。他方の入力はTIMOUTh信号である。
【0633】
RANGEh−インレンジ信号。この信号はアクチブ高状態においてコンパレーター74の出力信号COMPbが低レベルとなったか、または利得シフトレジスター1170が選択された動作モードのための最大利得値に達したことを指示すある。オートレンジ・シーケンシング回路76は利得レジスター1170、ORゲート1179、ANDゲート1180,1182及びフリップフロップ1184を含む。RANGEh信号はNORゲート1178から出力される。
【0634】
利得シフトレジスター1170はフリップフロップ1188,1190,1192,1194,1196から成る。これらフリップフロップのQ出力は順次隣接のフリップフロップのD入力と接続する。このQ出力は利得母線GAIN[4...0]とも接続する。各フリップフロップのクロック入力CKにGCLKh信号が印加される。GCLKh信号はANDゲート1198から出力される。ANDゲート1198への入力はオートレンジ状態マシンがS3状態にあることを示す状態レジスター信号R0b,R1b,R2bである。ANDゲート1194には信号SMCLKbも印加される。
【0635】
GCLKh信号は電圧チャンネルが選択された場合には0を、電流チャンネルが選択された場合には1を、それぞれフリップフロップ1188にシフトするのに使用される。具体的には、ORゲート1200,1202、ANDゲート1204、及びNANDゲート1206がこの機能を制御する。ORゲート1200の一方の入力にはアクチブ高状態のCURRENTh信号が印加され、他方の入力にはANDゲート1204から出力された信号GRESbが印加される。ORゲート1200の出力がフリップフロップ1188のプリセット入力に印加されてこのフリップフロップへ1をシフトする。この値はGCLKh信号によってシフトレジスター中をシフトさせられる。
【0636】
同様に、ORゲート1202の一方の入力にVOLTAGEh信号が印加され、他方の入力にGRESb信号が印加される。ORゲート1202の出力がフリップフロップ1188のリセット入力Rに印加されて、電圧モードならこのフリップフロップへ0をシフトする。
【0637】
コンパレーター74の出力信号COMPbはフリップフロップ1184によってモニターされる。このフリップフロップのクロック入力CKにはSMCLKb信号が、リセット入力RにはREGRESb信号がそれぞれ印加され、このフリップフロップの出力はコンパレーター74の出力信号が未だ切り替わっていない、即ち、コンパレーター74の出力信号が例えば1.25Vdc以下であって最大値の半分に達していないことを示唆する。この信号はORゲート1178の一方の入力に印加される。他方の入力はANDゲート1180及び1182の出力と接続している。これらのANDゲートは特定の動作モードについてシフトレジスター1170が最大利得値に達したことを示す。具体的には、ANDゲート1180は電流モードと関連する。ANDゲート1188の一方の入力にはCURRENTh信号が印加され、他方の入力には、電流モードの場合、アクチブ状態で最大利得値を指示するシフトレジスター・フリップフロップ1194の出力が印加される。
【0638】
同様に、ANDゲート1182の一方の入力にはVOLTAGEh信号が印加され、他方の入力には、電圧モードの場合、最大利得値を表わすシフトレジスター・フリップフロップ1196の出力が印加される。
【0639】
ANDゲート1180,1182の出力がフリップフロップ1184のQ出力と共にORゲート1178の入力に印加されてRANGEh信号を発生させる。このRANGEh信号はコンパレーター74の出力信号COMPbがすでに低レベルであるか、または利得シフトレジスター1170が特定動作モードと関連の最大利得値に達したことを示す。
【0640】
TIMOUTh−タイムアウト。この信号は5マイクロセコンド遅延が終わるとアクチブ高となる。この信号はNANDゲート870(図75)から出力される。
【0641】
SOC3b−変換スタート3。変換スタート・パルスが3クロック周期に亘ってアクチブ状態を続けたのちアクチブ低となる。
【0642】
ANAEOCh−アナログ・エンド・オブ・コンバーション。この信号はA/D78が変換を終了するとアクチブ高となる。この信号はインバーター1208を介してANDゲート1140,1162に印加される。
【0643】
RESETh−リセット。この信号はシステムがリセット状態にある間アクチブ高となって状態レジスター・フリップフロップをリセットする。
【0644】
STADCh−変換スタート。この信号はAMUXレジスターが書き込まれるとアクチブ高となる。この信号については後述する。
【0645】
オートレンジ出力
オートレンジ状態マシンの出力信号は下記の通り:
GRESh−利得シフトレジスター・リセット。この信号はアクチブ高状態で利得形成用シフトレジスター1170をリセットする。この信号は状態S1においてアクチブである。
【0646】
GCLKh−利得シフトレジスター・クロック。この信号はアクチブ高状態でシフトレジスターをシフトさせ、状態S3においてアクチブである。
【0647】
TIMREQh−タイム・リクエスト。この信号はアクチブ高状態で5マイクロセコンド遅延をリクエストする。この信号は状態S2においてアクチブである。TIMREQh信号はANDゲート1210から出力される。ANDゲート1210の入力に信号R0b,R1b,R2bが印加され、オートレンジ状態マシンが状態S2の時TIMREQh信号を発生させる。
【0648】
ARBSYh−オートレンジ使用中。この信号がアクチブ高なら変換動作が進行中である。この信号はオートゼロ及びオートレンジ状態マシンを互いに連動させる機能をも有する。ARBSYh信号はレジスター選択信号(AVSFh,ACSFh)を復号し、クロック信号WRCLKhを書き込むNANDゲートの割り込みを抑止することによってマイクロプロセッサー30が利得レジスターに書き込むのを抑止する機能をも有する。この信号は状態S1,S2,S3,S4,S5,S6においてアクチブであり、NANDゲート1212の反転出力から得られる。状態変数R0b,R1b,R2bがNANDゲート1212への入力に印加されて状態S1,S2,S3,S4,S5,S6においてARBSYh信号を発生させる。
【0649】
信号ARBSYbはASCF及びAVSFレジスターに対する読み書き動作をコントロールするのに使用される。即ち、ARBSYb信号はオートレンジ状態マシンがアクチブならASCFまたはAVSFレジスターに対するマイクロプロセッサー30の読み書きを抑止する。信号ARBSYbはNANDゲート1212の非反転出力から得られる。このNANDゲートの非反転出力はNANDゲート1214,1216の入力に印加される。マイクロプロセッサー30がアドレス$0026をアドレス母線ADDR[5...0]に送出すると発生するAVSFh信号がNANDゲート1214及びANDゲート1218に印加される。NANDゲート1216及び1220の入力にはACSFh信号が印加される。このACSFh信号はマイクロプロセッサー30がアドレス$0027をアドレス母線[5...0]に送出すると発生する。NANDゲート1218,1220の入力にはRDCLKh信号が印加され、NANDゲート1214,1216の入力にはWRCLKh信号が印加される。NANDゲート1214,1216の出力はAVSFレジスターに対する読み書きの制御に使用されるVRRDb及びVRCLKb信号であり、NANDゲート1216,1220の出力はACFSレジスターに対する読み書きの制御に使用されるCRRDb及びCRCLKb信号である。
【0650】
EOCh−変換完了。この信号はアクチブ高状態で状態レジスターのフリップフロップをセットして、変換プロセスが完了したことを指示する。また、この信号はSTADCh信号を出力するフリップフロップ1246(図69)を払い、状態S6においてアクチブとなる。この信号はANDゲート1222から出力される。信号R0b,R1b,R2bがこのANDゲート1222の入力に印加されて、状態マシンが状態S6であるときにだけEOCh信号を発生させる。
【0651】
ANASOCh−アナログ・スタート・オブ・コンバーション。この信号はアクチブ高状態でA/D変換を起動し、3クロック・サイクルに亘ってアクチブである。この信号は状態S4においてアクチブである。アナログ・スタート・オブ・コンバーション信号ANASOChはフリップフロップ1224,1226,1228、バッファ増幅器1230,1232,1234、及びANDゲート1236を含み回路によって形成される。この信号は3クロック・サイクルに亘ってアクチブ高状態にあり、状態S4においてアクチブとなる。オートレンジ状態マシンが状態S4にあることを表わす信号がANDゲート1156から得られ、フリップフロップ1224のD入力に印加される。状態マシン・クロック信号SMCLKhはフリップフロップ1224のクロック入力に印加される。フリップフロップ1170のQ出力はフリップフロップ1226のD入力に印加される。フリップフロップ1226のQ出力はバッファ増幅器1230の入力に印加される。バッファ増幅器1230の出力はフリップフロップ1228のD入力に印加される。フリップフロップ1228のQ出力はバッファ増幅器1232に印加され、信号ANSOChを表わす。ANDゲート1236はフリップフロップ1228がリセットされたのちのフリップフロップ1224,1226のリセットを制御する。具体的には、REGRESb信号がANDゲート1226の一方の入力及びフリップフロップ1228のリセット入力に印加される。フリップフロップ1228の反転Q出力はANDゲート1236の他方の入力に印加される。ANDゲート1180の出力はフリップフロップ1224,1226のリセット入力Rに印加される。
【0652】
フリップフロップ1226,1228のクロック入力はマイクロプロセッサー割り込み信号INTEhによって制御される。具体的には、アクチブ高状態の割り込み信号INTEhがインバーター1234の入力に印加され、インバーター1234の出力がフリップフロップ1226,1228のクロック入力CKに印加される。
【0653】
オートレンジ状態マシンの動作
オートレンジ機能はソフトウェアがAMUXレジスターに書き込むことによって起動される。具体的には、マイクロプロセッサー30がレジスターAMUXに書き込むとSTADCH信号(図69)がアクチブ高となる。この信号STADCHはANDゲート1238から出力される。ANDゲート1238への一方の入力はテスト回路であり、他方の入力はバッファ増幅器1240,1242,1244;フリップフロップ1246,1248,1250;NANDゲート1252及びANDゲート1254,1256を含む回路と接続する。ANDゲート1254の一方の入力にはWRCLKh信号が印加される。この信号はマイクロプロセッサー30がレジスターの1つに書き込み中であることを示す。ANDゲート1254の他方の入力にはAMUX信号が印加される。このAMUX信号はマイクロプロセッサー30がアドレス$0021をADDR[5...0]母線に送出することでAMUXレジスターに書き込んだことを表わす。ANDゲート1254の出力はAMUXレジスターが書き込まれたことを示す変換開始信号BEGCONhである。このBEGCONh信号はNANDゲート1252の一方の入力に印加される。他方の入力はTEST[4...0]母線と接続する。NANDゲート1254の出力はNANDゲート1252を介してフリップフロップ1250のD入力に印加される。NANDゲート1252への他方の入力はテスト回路と接続する。フリップフロップ1250の出力はフリップフロップ1248の入力に印加される。フリップフロップ1250のR入力はANDゲート1256の出力と接続する。ANDゲート1256は2入力ANDゲートであり、その一方の入力にはインバーター増幅器516から出力されるRESETb信号が印加され、他方の入力にはインバーター増幅器1244を介してARBSYh信号が印加される。オートレンジ状態マシンが使用中であればANDゲート1256がフリップフロップ1250をリセットする。フリップフロップ1250のQ出力はフリップフロップ1248のD入力に印加され、フリップフロップ1248の出力はバッファ増幅器1242の入力に印加され、バッファ増幅器1242の出力はフリップフロップ1246の入力に印加される。フリップフロップ1246,1248のクロック入力はインバーター527の出力と接続し、インバーター527の入力にはSMCLKbが印加される。フリップフロップ1246,1248のリセット入力RはいずれもRESETb信号によって制御される。フリップフロップ1246の出力はバッファ増幅器1240の入力に印加され、バッファ増幅器1240の出力はANDゲート1236の他方の入力に印加されてSTADCh信号を発生させ、マイクロプロセッサー30がAMUXレジスターに書き込んだことを指示する。
【0654】
AMUXレジスターが書き込まれると、制御回路はオートレンジ動作に続いてA/D変換を行なうようリクエストする。具体的には、オートレンジ状態マシンが以下に述べる機能を行なう。まず、シフトレジスター1170を初期設定する。シフトレジスター1170の出力は増幅器利得をセットするGAIN[4...0]母線と接続する。シフトレジスター1170の初期状態は変換のために電圧チャンネルが選択されたか電流チャンネルが選択されたかによって異なる。電圧チャンネルが選択された場合、シフトレジスター1170の初期値は2進00001、電流チャンネルが選択された場合は2進0000である。次に5マイクロセコンド遅延を計時する。5マイクロセコンド遅延がタイムアウトするとTIMOUTh信号がアクチブ高状態となり、ここでコンパレーター74の出力がチェックされる。もしコンパレーター74が切り替わったか、最大利得値に達したであれば、変換開始信号が発生する。さもなければ、利得を増大させ、再び遅延を計時する。
【0655】
変換開始後、オートレンジ状態マシンが変換完了信号ANAEOhを待機し、マイクロプロセッサー30にプロセッサー割り込みを指令する。
【0656】
A/D制御ロジック
A/Dコンバーター78は8ビット逐次近似法A/Dコンバーターである。電圧増幅器80及び電流増幅器90のためのレンジング回路はさらに4ビットのダイナミックレンジを提供する。A/Dコンバーター78については、参考のためその内容を本願明細書に引用したMotorola社刊(1987)“MC68HC11A8 HCMOS SINGLE−CHIP MICROCOMPUTER”の第7章に詳細が記載されている。
【0657】
アナログ制御ロジック
アナログ制御ロジックの機能をフロックダイヤグラムを図3に示した。図79に示したブロックダイヤグラムと共に図3を参照してアナログ制御ロジックを説明する。
【0658】
これらの図は電圧増幅器80及び電流増幅器90のゼロ化、電圧増幅器80及び電流ミラー92のレンジングを行なう電流チャンネルMUXes66及び電圧チャンネルMUX68の制御ロジックを示す。さらにまた、バンドギャップ・レキュレーター・サブシステム1400、分路レギュレーター1402及びサブシステム47の電力モニター部を含むアナログ電源サブシステム48をも示した。カッドコンパレーター・サブシステム58(図81)、バンドギャップ・レギュレーター1400、B+コンパレーター・サブシステム50、電力モニター・サブシステム47、電圧増幅器80及び電流増幅器90のためのバイアス回路1404をも示した。マイクロプロセッサー30による周囲温度読み取りを可能にする温度モニター回路1406をも示した。
【0659】
MUX制御
MUXes66,68を図80に示した。入力チャンネルMUX0,MUX1,MUX2,MUX3は電圧入力にも電流入力にも使用できる。入力チャンネルMUX4,MUX5,MUX6,MUX7は電圧入力としてのみ使用できる。チャンネルMUX8は温度感知用であり、MUX66Kはアナログ・アースと接続する。具体的には、入力チャンネルはMUXes66a−66gによって構成されている。MUXes66a−66dは入力チャンネルMUX1,MUX2,MUX3,MUX4と電流チャンネルIMUXの接続を可能にする。MUXes68e−68hは入力チャンネルとデジタル・アースVSSの接続を可能にする。
【0660】
チャンネルMUX0とMUX1、MUX2とMUX3、MUX4とMUX5、MUX6とMUX7の間にそれぞれサンプリング/保持MUX108,110,112,114を挿入する。
【0661】
アナログ電源
アナログ給電ピンAVDD,AVSSはIC10のアナログ部への給電に利用される。アナログ給電ピンAVDDは電源と接続されるように構成されている。IC10はAVDDピンの電圧を約5.0Vdcに調節するための内部分路レギュレーター(図83)を含む。具体的には、アナログ電源は2.5Vdc基準電源及び分路レギュレーター・サブシステム1402から成る。2.50Vdc基準電源は+2.50Vdc基準電圧:VREFを発生させるための+1.25Vdcバンドギャップ・レギュレーター基準回路1406(図82)及びバッファ増幅器1412を含む。電圧を正確に+2.5Vdc±0.5Vdcにトリミングできるように調整ピンVADJを設けた。基準電圧トリミングのため、抵抗器1414,1416を含む2抵抗分圧器1410をVREF及びAVSSピン間に挿入し、中点をVADJと接続する。バッファ増幅器1412はソースフォロア出力を有し、これにより複数のデバイスを並列させることが可能になる。また、VADJピンをVREFピンに接続することによってIC10のレギュレーターを他に従属させることができる。
【0662】
図82にバンドギャップ・レギュレーター・サブシステム1406を示した。バンドギャップ基準回路は精密電圧基準回路である。一般に、バンドギャップ基準回路は基準電圧として寄生トランジスターのベース・エミッタ電圧を利用する。この寄生トランジスターは正温度係数(+TC)で電圧が発生する抵抗器と直列に接続し、負温度係数(−TC)を有する。抵抗器中に発生する電圧はバンドギャップ・レギュレーター基準回路の内部回路から抵抗器に供給される所定の電流に対応する。寄生トランジスターのベース・エミッタ電圧と直列抵抗器電圧との温度係数差から温度係数がほぼ0に等しい電圧基準信号が得られる。温度上昇に伴なって寄生トランジスターのベース・エミッタ電圧が低下すると、給電される直列抵抗器の電圧はほぼ比例的に増大して比較的安定した基準電圧を出力する。次いで増幅器の非反転入力に基準電圧が印加される。増幅器の反転入力は増幅器出力の外部分割部分と接続する。増幅器の出力は温度にはほとんど影響されない、基準電圧に比例する電圧である。
【0663】
これを具体的に説明すると、バンドギャップ・レギュレーター基準回路1406の出力は公称1.25Vdcである。この出力電圧がバッファ・コンパレーター1412及び外部抵抗器1414,1416によって倍加され、外部ピンVREFに+2.5Vdc基準電圧を発生させる。外部抵抗器1414,1416はバッファ・コンパレーター1412の出力とアナログ・アース・ピンAVSSの間に直列に挿入されている。両抵抗器1414,1416の中間点がバッファ・コンパレーター1412の反転入力と接続して基準電圧VREFの調節を可能にする。バンドギャップ・レギュレーター回路はダイオード接続された寄生トランジスター1426,1428、トランジスター1418、抵抗器1420,1422,1424、及びコンパレーター1441を含む。IC10に初めて給電する際のコンディショニングを行なうため始動回路1432を設けた。この始動回路1432はトランジスター1434,1436,1438を含む。始動時に、電圧は0レベルから最終的にはバンドギャップ基準回路1406によって調整されるレベルにまで上昇し始める。初期段階ではどのデバイスにも電流が存在せず、この状態で詳しくは後述するPBIAS回路1440によってトランジスター1438がバイアスされる。その結果、トランジスター1434がONとなってダイオード接続されている寄生トランジスター1428に電流を供給すると、寄生トランジスター1428に電圧が発生し、これがコンパレーター1441の非反転入力に印加される。コンパレーター144の出力に正信号が発生し、これがトランジスター1418に印加されると、トランジスター1418が導通してトランジスター1426,1428に電流を発生させる。その結果、バンドギャップ基準回路がダイオード接続トランジスター1426,1428の電圧に基づく安定した調整点に近づく。これらの電圧が定常値に達すると、トランジスター1436が導通、トランジスター1434が遮断状態となり、電流はすべてトランジスター1418によって供給されることになる。
【0664】
調整中、トランジスター1426,1428のエミッタに供給される電流はほぼ等しい。抵抗器1420,1424の抵抗値が等く、他の電圧降下に比較して大きいからである。トランジスター1426,1428のベース・エミッタ電圧はこれらのトランジスターにおける電流密度に左右される。この電流密度は電流総量をトランジスターの面積で除算した値である。トランジスター1426,1428の電流密度は11:1の比率で異なるから、それぞれのベース・エミッタ電圧も異なる。ベース・エミッタ電圧の差が抵抗器1422に現われる。温度係数はデバイスの電圧と関数関係にあるから、トランジスター1426,1428のベース・エミッタ電圧が降下するにしたがってそれぞれの負温度係数が増大する。トランジスター1426における電流密度とトランジスター1428における電流密度の相対関係から、抵抗器1422とトランジスター1426から成る直列回路の電圧は正温度係数(+TC)を持つことになり、この電圧はコンパレーター1441の反転入力に印加される。負温度係数(−TC)を有するトランジスター1428のベース・エミッタ電圧はコンパレーター1441の非反転入力に印加される。温度変化がトランジスター1426,1428のベース・エミッタ・ジャンクション電圧を変化させると、抵抗器1422の電圧がこれに比例して変化し、その結果、コンパレーター1441から比較的温度依存性の小さい信号が出力される。
【0665】
分路レギュレーター
分路レギュレーター1400(図83)はVREFにおける基準電圧に基づいてAVDDピンから公称+5.0Vdcの電圧を出力する。分路レギュレーター1400は増幅器1443及び抵抗器1444,1446を含む。具体的には、バッファ・コンパレーター1412からのVREFが増幅器1443の非反転入力に印加される。AVDD母線は調整された5.0Vdc給電線であり、増幅器1443の反転入力は抵抗器1444を介してAVDD母線と接続する。増幅器1443の反転入力は抵抗器1446を介してAVSS母線とも接続する。抵抗器1444,1446の抵抗値は等しいから、増幅器1443の出力はVREFの2倍となる。VREFは公称2.5Vであるから、調整給電母線AVDDは公称5.0Vとなる。AVDDとAVSSの間に分路素子としてのトランジスター1447が挿入されており、分路素子のゲートは増幅器1443の出力によって制御される。調整給電母線AVDDのレベルがやや高くなりすぎると、増幅器1443の負端子がVREFよりもやや高くなる。その結果、増幅器1443の出力が負となり、分路トランジスター1447の導通状態がややまさり、給電母線AVDDから電流を引いて増幅器1443への両入力がほぼ等しくなるまで電圧を降下させる。
【0666】
トランジスター1448,1450,1452を含む回路が始動回路の一部を構成する。始動中、AVDDからの電流が低下し過ぎるのを回避するため、トランジスター1448,1450,1452が分路トランジスターを遮断にする。
【0667】
本発明の重要な特徴のひとつはIC10が電流駆動されるという事実にある。従って、自動車分野で多く見られる電圧スパイクを回避できる。具体的には、IC10は外部抵抗1453、及びAVDD母線に印加される外部電圧VEXTから発生する入力電流によって駆動される。
【0668】
電力モニター・サブシステム
トランジスター1454,1456,1458,1460、及びコンパレーター1462から成る回路(図83)がパワーオンリセット及び+5.0Vdcロス機能を行なう。パワーオンリセットとは外部制御ピンRESNを払うことによってリセットを解除してから8128発振器サイクル+1msの遅延を意味する。
【0669】
直列トランジスター1454,1456,1458,1460が分圧回路を形成し、トランジスター1454のドレンがコンパレーター1462の非反転入力に印加され、増幅器1443の出力がコンパレーター1462の反転入力に印加される。コンパレーター1462の出力は信号SHUNTであり、電力モニター機能のためこの信号がマイクロプロセッサー30のRESNピンに印加され、電圧不足が検出されると同時にマイクロプロセッサー30がリセットされる。
【0670】
コンパレーター1462は分路トランジスター1447の導通状態またはゲート電圧をモニターする。増幅器1442の出力がトランジスター1454のドレンにおける分圧よりも正方向の電圧となり、このことによって分路トランジスター1447が遮断状態にあると判明すると、コンパレーター1462の出力信号が負となり、AVDD母線を5.0Vに維持するには電流不足であることを示唆する。
【0671】
B+コンパレーター・サブシステム50
B+コンパレーター・サブシステム(図83A)は給電用のサブシステムであり、抵抗器1462,1464、コンパレーター1466及びトランジスター1468を含む。VREFがコンパレーター1466の反転入力に印加されて+2.5Vdc基準電圧を発生させる。コンパレーター1466の出力は外部ピンBDRIVEである。コンパレーター1466への入力は外部ピンBSENSEを介して同じコンパレーター1466の非反転端子と接続する。抵抗器1464及びトランジスター1468はすべてのコンパレーターに適用されるビステリシス・マスク・オプションの一例である。抵抗器1464とトランジスター1468が直列に接続してコンパレーター1466の出力を反転端子にフィードバックする。
【0672】
図835B及び83CはIC10のための給電力発生と給電力調整をそれぞれ示した。図83Bはコンディショニング回路19を示す。
【0673】
まず図83Bに関連して説明すると、IC10は変流器(CT)14,16,18を介して回路遮断器12(図39)の状態をモニターする。これらのCTとしては、遮断器12のA,B及びC位相導体の周りに2次巻線を配したドーナツ形CTを使用すればよい。ローディング状態においてCT´sからの出力は100ミリアンペア(mA)程度となる可能性がある。この出力電流をIC10に適したレベル、例えば、20マイクロアンペアにまで低下させるため、信号コンディショニング回路19を設けた。このコンディショニング回路としては種々のタイプのものを利用でき、図83Bに示したのは一例に過ぎない。
【0674】
CT14,16,18をダイオード・ブリッジ1467に接続する態様は多様であり、例えばCT14,16,18を出力端子1464,1471と直列に接続してもよく、或いは単一のCT、例えば、B位相CT16をブリッジ1467と接続するかすべてのCTを並列にしてもよい。
【0675】
コンディショニング回路19は1対の交流端子1469,1471及び1対の直流端子1473,1475を画定する全波ダイオード・ブリッジ1467を含み、1473は正端子、1475は負端子である。コンディショニング回路19は抵抗器1477,1479をも含む。抵抗器1477,1479の値は例えばそれぞれ10オーム及び50キロオームである。
【0676】
抵抗器1477はブリッジ1467の負端子1475とアースの間に挿入される。抵抗器1479の一方の側も負端子1475と接続する。他方の側はMUX入力−MUX0,MUX1,MUX2,MUX3のいずれか1つと接続する。
【0677】
動作について説明すると、変流器14,16,18からの電流が抵抗器1477を通ってアースからブリッジ1469の負端子1475へ流れて抵抗器1477に負電圧を発生させる。もし抵抗器1477の値が例えば10オームなら、CT電流が約10mAとして抵抗器1477に−1.0Vが発生する。その結果、抵抗器1479において−1.0Vの降下が現われる。もし抵抗器1479の値が例えば50キロオームなら、後述するようにIC10の一方の電流入力62(例えば、MUX0,MUX1,MUX2またはMUX3)に20マイクロアンペアの電流が供給される。
【0678】
B+コンパレーター・システム50(図83A)と共に、図83Bの破線ボックス1481内に示す回路が給電に利用される。具体的には、給電回路1481はブリッジ1469の正端子1473とアースの間に挿入されたトランジスター1483を含み、トランジスター1483のゲート端子はBDRIVE(図83A)と接続している。ダイオード1485の陰極は端子B+(図83B)と接続する。B+端子とアースの間に給電コンデンサー1487が挿入されている。B+端子とアースの間には1対の直列抵抗器1489,1491も挿入され、抵抗器1489,1491はジャンクションBSENSEにおいて互いに接続している。
【0679】
動作について説明すると、コンパレーター1466(図83A)はジャンクションBSENSEにおける電圧をモニターし、B+ジャンクションにおける電圧部分、例えば2.5VをVREF端子電圧と比較する。BSENSE電圧がVREF電圧よりも高ければ、コンパレーター1466の出力が高レベルとなり、トランジスター1483を導通させることによって過剰電流をアースへ分流させる。BSENSEジャンクション電圧がVREF以下に降下すると、コンパレーター出力が低下してトランジスター1483を不導通にし、その結果、コンデンサー1487が所要の値、例えば、30Vまで充電される。
【0680】
図83CはVDD及びAVDDピンにおける電圧を調整する回路の一例を示すが、この回路は本発明の範囲外である。
【0681】
演算増幅器オフセット修正用のバイアス回路
コンパレーター1412,1440(図82)及び1442(図83)に対するバイアス信号PBIASを図46に示した。また、カッドコンパレーター200,202,204,206(図81)、B+コンパレーター1466(図83)、電力モニター・コンパレーター1462(図83)、電圧増幅器80(図87)及び電流増幅器(図88)に対するバイアス信号PBIAS及びNBIASを図85に示した。PBIAS及びNBIAS信号は基準電圧であり、これが印加される特定の演算増幅器の作用電流をセットするのに利用される。電圧増幅器80及び電流増幅器90に対するオートゼロ回路と共に上記バイアス回路を参照符号IOUTで図90に示した。
【0682】
図94ではPBIAS回路を機能ブロック1440で示した。PBIAS回路1440はAVDDとAVSSの間に直列に挿入されて分圧器を形成するトランジスター1470及び抵抗器1493を含む。この分圧器はトランジスター1470のゲート・ソース電圧PBIASを発生させる。
【0683】
図95に示す回路は、カッドコンパレーター200,202,204(図81)、電圧増幅器80及び電流増幅器90に対する信号PBIAS及びNBIASを発生させるのに使用される。この回路は、専用のバンドギャップ・レギュレーター基準回路を含み、この基準回路はダイオード接続された寄生トランジスター1472,1474、抵抗器1476,1478、コンパレーター1480、及びコンデンサー1482,1484を含む。これらの信号は回路がバンドギャップ基準回路を含むから温度に影響されないということを表わすため、参照符号PBIAS/I及びNBIAS/Iで示した。回路のバイアス時間を制御するためにコンデンサー1482,1484を補足的に使用することを除けば、前記バンドギャップ基準回路は先に述べたバンドギャップ基準回路1406と同様に作用する。コンパレーター1480の出力は電流ミラーを形成するトランジスター1486,1488,1490のゲートに印加される。電流ミラー1486,1488は回路のバンドギャップ・レギュレーター部への給電に使用される。電流ミラー1490の出力はNBIAS/I信号である。電流ミラー1490はトランジスター1492,1494を導通させ、その結果、PBIAS/I基準電圧であるトランジスター1496のゲート・ソース電圧が発生する。トランジスター1498,1500,1502は回路のバンドギャップ・レギュレーター部の始動回路を形成する。
【0684】
温度感知
図86に示す回路はマイクロプロセッサー30がIC10の周囲温度を感知することを可能にする。この回路はトランジスター1504及びダイオード接続された寄生トランジスター1506を含む。寄生トランジスターの電圧はすでに述べたように温度依存性である。温度依存性に基づく信号TEMPがMUX66jに印加され、デジタル値に変換され、マイクロプロセッサー30によって読み取られる。
【0685】
電圧増幅器レンジング
電圧増幅器80及びレンジング回路を図97に示した。この回路は電圧増幅器80、利得回路84及び複数のMUX86を含み、少なくとも半スケールのA/D変換用電圧信号を出力する。電圧レンジングを自動または手動制御することにより、電圧増幅器80の非反転入力に印加去れる入力電圧信号VMUXの利得1,2,4,8または16を設定することができる。利得回路は抵抗器84a−84h及びMUX86a−86fを含む。利得回路はVGAIN[4...0]母線及び利得信号VGAIN32hによって制御される。抵抗器84i及び1512がテスト回路を形成する。
【0686】
もし利得が1ならば、電圧信号はMUX88aによってA/Dコンバーター78に直接印加される。この状態ではMUX86e,86bが電圧増幅器80をA/Dコンバーター78から遮断しており、信号はMUX88aによってA/D78に直接印加される。レンジング中はMUX86a−86fが利得回路84を電圧増幅器80の反転端子に接続している。利得が1以外ならば、MUX88bが電圧増幅器80の出力をA/D78に接続する。MUX88a,88bがAVSFレジスターによって選択される。
【0687】
コンパレーター74はオートレンジング用であり、VREFとAVSSの間に挿入された1対の直列抵抗器1508,1510からの固定電圧、例えば+1.25Vdcを基準とする。両抵抗器1508,1510の中間点はコンパレーター74の非反転端子と接続する。コンパレーター74の出力はCAMPH信号であり、フリップフロップ1184(図78)によってモニターされ、上記オートレンジ・ロジックの一部を形成する。MUX86fはオートゼロ用である。このMUX86fは電圧増幅器80の反転及び非反転端子を短絡させることによってオフセット値を求める。この状態で電圧増幅器80のオフセット値がフリップフロップ888(図76)にロードされる。MUX86fはバッファ増幅器756(図73)から出力されるVNULL信号によって制御される。
【0688】
電流増幅器のレンジング
電流増幅器90のレンジングはすでに述べた通り電流ミラー92(図88)によって行われる。電流チャンネルIMUX(図80)に電流が供給される。このチャンネルIMUXは電流ミラー92及び電流増幅器90の反転入力と接続している。増幅器90の非反転入力はアナログ・アースと接続して電流チャンネルMUX0,MUX1,MUX2,MUX3を見掛けアースに維持する。例えば(図示しないが)外部抵抗器をMUX0ピンと負電源の間に挿入することにより、レンジングすべき負電流(例えばMXOピンからの電流)を発生させる。これにより、レンジされた電流がMUX0,MUX1,MUX2,またはMUX3ピンから流出する。これらのピンは見掛けアースに維持されているからでる。
【0689】
MUX96a,96bは電流ミラー92からの出力信号IOUT/Iを出力ピンMXOまたはアナログ・アース母線AVSSと接続する。具体的には、MUX96aは電流ミラー92の出力信号IOUT/IをNANDゲート759(図73)から出力される信号IOUTONhの制御下にMXOピンと接続する。信号IOUTONhは積分器がリセット・モードではないことを示唆する。INTRESh信号及びテスト信号がNANDゲート759に印加される。MUX96bは電流ミラー92の出力信号IOUT/Iをバッファ757から出力される信号DISCHhの制御下にアナログ・アース母線と接続する。バッファ757への入力はANDゲート534(図69)から出力される積分器リセット信号INTREShである。
【0690】
MUX111aは電流増幅器90のオートゼロ化に使用される。具体的には、MUX111aはインバーター581(図72)から出力される信号CSHRThの制御下に電流増幅器の反転及び非反転入力をアナログ・アース母線AVSSと接続する。インバーター581はインバーター580の出力と直列である。インバーター580への入力は電流増幅器90がオートゼロ化中であることを示す信号CAZhである。
【0691】
MUX111bは増幅器90がオートゼロ化中でなければ増幅器90の反転入力をMUXes68(図80)のIMUX出力と接続するのに利用される。
【0692】
電流ミラー92からのレンジされた電流を(図示しないが)外部抵抗器に供給することによって信号を電圧に変換し、上述のようにA/Dコンバーター78によって変換する。
【0693】
電流ミラー92を図89に示した。電流ミラー92は分流トランジスター1512,1514,1516,1518,1520、分路トランジスター1522,1524,1526,1528、及び電流ミラー1530,1532,1534,1536を含む。MUX1538,1540,1542,1544は分流を制御し、MUX1546,1548,1550,1552は回路の利得を制御する。これらのMUXは上記CGAIN[3...0]母線によって制御される。
【0694】
負電流がIIN/Iにおいて電流ミラー92に導入される。この入力電流はいずれも並列に接続されている分流トランジスター1512,1514,1516,1518,1520によって5つの部分に分割される。具体的には、トランジスター1512,1514のサイズは互いに等しい値、例えばAに維持されており、トランジスター1516,1518,1520のサイズはそれぞれ2A,4A,8Aである。トランジスター1512,1514,1516,1518,1520は電流ミラーとして接続されているから、各トランジスターを通過する電流はそのトランジスターのサイズによって左右される。即ち、トランジスター1512,1514の出力はそれぞれIIN/Iの1/16、トランジスター1516の出力はIIN/Iの1/8、トランジスター1518の出力はIIN/Iの1/4、トランジスター1520の出力はIIN/Iの1/2となる。入力電流の一部に相当するこれらの出力は合計されて所期の利得を形成し、MUXes1546,1548,1550,1552に制御され、電流ミラー1530,1532,1534,1536を介して出力へ向けられるか、あるいはトランジスター1522,1524,1526,1528及びMUX1538,1540,1542,1544を介してミラー1530,1532,1534,1536で分路される。
【0695】
これは本発明の重要な特徴である。即ち、公知のバイポーラー電流レンジング回路(例えば、米国特許第4,626,831号に開示)にあっては分流器をカスケード接続しているか、作用電圧が比較的低い(例えば、+5.0Vdc)IC10の場合、分流器をカスケード接続することは実用上問題である。
【0696】
電流増幅器及び電圧増幅器のゼロ化
電圧及び電流増幅器80.90の代表的な回路を図91に示した。これらの増幅器は内部バイアス電流ITRIM/Iを発生させる差動入力増幅器である。差動入力をPLUS/I及びMINUS/Iで表わした。この内部バイアス電流は増幅器80,90の出力に現われるオフセットを制御する抵抗器1546,1548を通過する。公知の方法は抵抗器1546,1548の抵抗値を外部調節することによってオフセット電圧を制御するというものであったが、この方法はD/Aコンバーター(DAC)のような精密可変抵抗器を必要とし、このようなDACsは比較的高価である。本発明のオートゼロ回路はDACsを必要とせず、バイアス電流ITRIM/Iを制御することによって抵抗器1546,1548の電圧を制御し、オフセット値を制御する。バイアス電流は図90に示す分流回路によってレンジされる。レンジされたバイアス電流が増幅器80または90に供給されてバイアス電流及びオフセット電圧を制御する。
【0697】
バイアス電流レンジング回路はMUX1600,1602,1604,1606,1608,1610、電流ミラー1612,1614,1616,1618,1620,1622,1624、及びトランジスター1626,1628を含む。MUX1600,1602,1604,1606,1608,1610は上述したように電圧増幅器80のためのVZERO[5...0]母線及び電流増幅器90のためのCZERO[5...0]によって制御される。これらの電流ミラーは並列に接続されてバイアス電流を複合値に分割することを可能にすると共に、任意の部分を合計してレンジ電流を発生させ、電流ミラー92と同様に作用させることを可能にする。
【0698】
ICC29制御ロジック
INCOM通信コントローラー(ICC)29は参考のためその内容を本願明細書に引用した米国特許第4,644,566号に詳細が記載されている双向通信ネットワーク、いわゆるINCOMにマイクロプロセッサー30がアクセスすることを可能にする。このコントローラー29はメッセージの直列化/並列化というモデム機能を有し、所要のネットワーク・プロトコルを実現する。ICC29はマスター・コントローラーとしてもスレーブ・コントローラーとしても作用することができる。構成レジスターCFRに許可フラッグがセットされない限り、マスター動作が禁止される。
【0699】
マイクロプロセッサー30はメモリー・アドレス・スペースに配置された8つのインターフェース・レジスターを介してICC29と通信する。4つのレジスターはICC29とマイクロプロセッサー30の間でINCOMメッセージを伝送するのに使用され、残り4つのレジスターは通信アドレス、速度、変調方法をセットし、送受信動作を制御するのに使用される。
【0700】
ICC29はネットワーク応答時間を短縮する高速状態リクエスト・メッセージを可能にする。ICC29の送受信レジスターは互いに独立であるから、高速状態のようなメッセージを送信レジスターにおいて周期的に更新できる。したがって、ICC29は高速状態リクエストを受信するとマイクロプロセッサー30の干渉なしに応答を送信できる。
【0701】
ICC29の全体的なブロックダイヤグラムを図92に示した。ICC29は図101−108に示すプロセッサー母線インターフェース1690;図109及び110に示すトランシーバー直列シフトレジスター1692;図93−99に示すデジタル復調器1694;及び図111−117に示す制御ロジック回路1696を含む。
【0702】
プロセッサー母線インターフェース
マイクロプロセッサー30は表7に示すようにメモリー・アドレス・スペースに配置されたインターフェース・レジスターICAH,ICAL,ICM3,ICM2,ICM1,ICM0,ICSR,ICCRを介してICC29と通信する。これらのレジスターの構成は図101−108に示した通りである。
【0703】
レジスターICAL,ICAHは参照番号1700で表わしたアドレス;・レジスターであり、レジスターICMO,ICM1,ICM2,ICM3は参照番号1702で表わしたメッセージ・レジスターであり、レジスターICCR,ICSRは参照番号1704で表わした制御及び状態レジスターである。
【0704】
これらのレジスターはいずれも該当のアドレスをアドレス母線ADDR[3...0]に送出することによってマイクロプロセッサー30がアドレスする。アドレスは複合回路1706(図101)によって復号される。アドレス復号回路1706は復号信号DECAH,DEACL,DECM3,DECM2,DECM1,DECM0,DECSR,DECCRを出力し、これがフリップフロップ1708,1710,1712,1714,1716,1718,1720,1722のD入力に印加される。レジスター選択信号SELAH,SELAL,SELM3,SELM1,SELM0,SELSR,SELCRはこれらフリップフロップのQ出力において得られる。
【0705】
読み取り専用レジスターであるICSR状態レジスターを除いて上記レジスターはいずれも読み書きレジスターである。読み書き動作は読み書き制御フリップフロップ1724、NORゲート1726及びインバーター1728を含む回路によって形成されるRDCLK及びWRCLK信号によって制御される。WRCLK信号はNORゲート1726から出力される。RDCLK信号はインバーター1728から出力される。マイクロプロセッサー30から発生するREAD信号は内部制御母線CPUCTL[3...0]を介してフリップフロップ1724のD入力に印加される。フリップフロップ1724からのQ出力が二重入力NORゲート1726に印加されてWRCLK信号を発生させる。NORゲート1726への他方の入力はインバーター1730の非反転出力において得られる位相2クロック信号PH2である。フリップフロップ1724のQ出力はインバーター1728の入力に印加されてRDCLK信号を発生させる。
【0706】
読み書き制御フリップフロップ1724及びアドレス・デコード・フリップフロップ1708,1710,1712,1714,1716,1718,1720,1722のタイミングはインバーター1730から出力されるPH2及び反転PH2によって行なわれる。具体的には、インバーター1730の非反転出力において得られるPH2信号はフリップフロップ1708,1710,1712,1714,1716,1718,1720,1722,1724のE入力に印加され、インバーター1730の反転出力において得られる反転PH2信号はこれらのフリップフロップのEN入力に印加される。
【0707】
これらのフリップフロップはすべてマイクロプロセッサー30によってリセットされる。具体的には、反転RESET信号がこれらフリップフロップのCDN入力に印加される。反転RESET信号はインバーター1732から出力される反転RESET信号は高利得インバーター1734,1736を介してインバーター1732の入力に印加されるRESET信号から得られる。反転RESET信号はアドレス・レジスター1700、メッセージ・レジスター1702及び制御/状態レジスター1704にも印加される。したがって、システムのリセットでこれらのレジスターを0にセットすることができる。
【0708】
上記レジスターのためのアドレス復号回路を図102に示した。この回路はANDゲート1738,1740,1742,1744,1746,1748,1750,17522、及びインバーター1754,1756,1758,1760,1762,1764,1766,1768,1770,1772,1774から成り、ANDゲート1738,1740,1742,1744,1746,1748,1750,1752の出力はそれぞれアドレス・デコード信号DECSR,DECCR,DECM3,DECM2,DECM1,DECM0,DECAL,DECAHである。具体的には、アドレス母線ADDR[3...0]からのアドレス信号ADDR0,ADDR1,ADDR2,ADDR3か高利得インバーター・ペア1754,1756;1758,1760;1762,1724;及び1766,1768に印加される。インバーター1756の出力はANDゲート1738,1742,1746,1750の入力に印加され、インバーター1754の出力はANDゲート1740,1744,1748,1752の入力に印加され、インバーター1760の出力はANDゲート1738,1740,1746,1748の入力に印加され、インバーター1764の出力はANDゲート1738,1740,1742,1744の入力に印加され、インバーター1762の出力はANDゲート1746,1748,1750,1752の入力に印加され、インバーター1768の出力はANDゲート1738,1740,1742,1744,1746,1748,1750,1752の入力に印加される。
【0709】
マイクロプロセッサー30からの制御信号IOOFF及びANABSはアドレス・デコーダー1706を割り込み許可または割り込み禁止するのに使用される。テスト・モード中、I/Oデバイスの割り込みを抑止するのにIOOFF信号が使用される。ANABS信号はマイクロプロセッサー30マスターチップ・アドレス・デコーダーからのレジスター選択信号であり、領域単位のアドレス復号を可能にする。IOOFF信号はインバーター1770から出力され、ANDゲート1738,1740,1742,1744,1746,1748,1750,1752の入力に印加される。ANABS信号は1対の高利得インバーター1772,1774に印加される。インバーター1774の出力はANDゲート1738−1752に印加される。
【0710】
ICAH及びICALアドレス・レジスター1700を図103に示した。これらのレジスターはバイトワイドの読み書きレジスターであり、ICC29の通信ビット伝送速度、変調方法、及び12ビットINCOMアドレスをセットするのに使用される。両レジスターはリセット及びパワーアップと同時に0にセットされる。
【0711】
まず、ICAHレジスターについて説明すると、ビットICAH[7,6]がICC29の通信ビット伝送速度を決定し、ビットICAH[5,4]がICC29によって採用される変調方法を決定し、ビットICAH[3...0]がINCOMアドレスの上位4ビットを決定する。
【0712】
ICAHレジスターはフリップフロップ1776,1778,1780,1782,1784,1786,1788,1790を含む。データ母線DATA[7...0]がこれらフリップフロップのD入力と接続してマイクロプロセッサー30によるこのレジスターへの書き込みを可能にする。これらフリップフロップのQ出力は読み取り動作のためトライステート・デバイス1792,1794,1796,1798,1800,1802,1804,1806を介してデータ母線DATA[7...0]と接続する。これらフリップフロップのQ出力は内部制御母線ICAH[7...0]とも接続する。
【0713】
トライステート・デバイス1792,1794,1796,1798,1800,1802,1804,1806は2入力NANDゲート1808の制御下にある。一方の入力にはアドレス・デコード信号SELAHと共にRDCLK信号が印加されてマイクロプロセッサー30が読み取り動作を開始し、$0028をアドレスすることによってこのレジスターを読み取ることを可能にする。
【0714】
ICAHレジスターへの書き込み動作は2入力NANDゲート1810によって制御される。NANDゲート1810の一方の入力はアドレス・デコード信号SELAHである。NANDゲート1810への他方の入力はWRCLK信号である。NANDゲート1810の出力はインバーター1812に印加され、インバーター1812からの非反転出力はフリップフロップ1792,1794,1796,1798,1800,1802,1804,1806のEN入力に印加される。インバーター1812の反転出力はタイミング入力Eに印加される。
【0715】
ICAHレジスターのフリップフロップ1776−1790はリセットと同時に0にセットされる。具体的には、インバーター1814から出力される反転IRESET信号がCDN入力に印加されてこれらのフリップフロップをリセットと同時に0にセットする。
【0716】
ICALレジスターはバイトワイドのレジスターであり、INCOMアドレスの下位8ビットを決定する。このレジスターはフリップフロップ1816,1818,1820,1822,1824,1826,1828,1830を含む。データ母線DATA[7...0]がこれらフリップフロップのD入力と接続して書き込み動作を可能にする。これらフリップフロップのQ出力は読み取り動作のためトライステート・デバイス1832,1834,1836,1840,1842,1844,1846を介してデータ母線DATA[7...0]に印加される。これらフリップフロップのQ出力は内部制御母線ICAL[7...0]にも印加される。
【0717】
このレジスターの読み取り動作は2入力NANDゲート1848によって制御される。NANDゲート1848への一方の入力はアドレス・デコード信号SELALである。他方の入力には読み取りクロック信号RDCLKが印加される。NANDゲート1848の出力は各トライステート・デバイスの制御端子OENに印加される。
【0718】
このレジスターへの書き込み動作は、2入力NANDゲート1850によって制御される。NANDゲート1850への一方の入力は書き込みクロック信号WRCLKである。レジスター選択信号SELALが他方の入力に印加される。NANDゲート1850の出力はインバーター1852に印加され、インバーター1852の非反転出力はこれらフリップフロップのEN入力に印加され、インバーター1852の反転出力はE入力に印加される。
【0719】
このレジスターはデバイスのリセット及びパワーアップと同時に0にセットされる。即ち、これらフリップフロップのCDN入力に反転IRESET信号が印加される。
【0720】
図104−107に示したレジスターICM3,ICM2,ICM1,ICM0は送信バッファ及び受信バッファを含むバイトワイドの読み書きレジスターである。これらのレジスターはICC29のマイクロプロセッサー30の間でINCOMメッセージを伝送するのに使用される。これらのレジスターは読み取り動作が受信バッファを呼び出し、書き込み動作が送信バッファを呼び出すから、真の読み書きレジスターではない。
【0721】
ICM1レジスターは8ビット・レジスターであり、INCOMメッセージ・ビット10−3を含む。このレジスターのための送信バッファはフリップフロップ1854,1856,1858,1860,1862,1864,1866,1868を含む。このレジスターのための受信バッファはフリップフロップ1870,1872,1874,1876,1878,1880,1882,1884を含む。
【0722】
送信バッファのフリップフロップ1854、1856、1858、1860、1862、1864、1866、1868はマイクロプロセッサー30による書き込みだけが可能である。具体的には、これらフリップフロップのD入力にデータ母線DATA[7...0]が接続し、これらのフリップフロップのQ出力はINCOMメッセージ・ビットTDATA[10...3]を含む。
【0723】
送信バッファへの書き込み動作は2入力NANDゲート1866によって制御される。一方の入力に書き込みクロック信号WRCLKが印加され、他方の入力にアドレス・デコード信号SELM1が印加される。NANDゲート1866の出力はインバーター1888に印加され、インバーター1866の非反転出力はこれらフリップフロップのEN入力に、反転出力はE入力にそれぞれ印加される。
【0724】
ICM1レジスターの受信バッファはフリップフロップ1870,1872,1874,186,1878,1880,1882,1884を含む。受信データ母線RDATA[10...3]で受信されたINCOMメッセージはこれらフリップフロップのD入力に印加される。マイクロプロセッサー30はトライステート・デバイス1892,1894,1896,1898,1900,1902,1904,1906を介してデータ母線DATA[7...0]でこれらフリップフロップの内容を読み取ることができる。これらトライステート・デバイスは2入力NANDゲート1908の制御下にある。一方の入力には読み取りクロック信号RDCLKが、他方の入力にはアドレス・デコード信号SELM1がそれぞれ印加される。
【0725】
受信バッファ及び送信バッファのフリップフロップのタイミング制御は後述する信号SRTOMR(図116)によって行なわれる。この信号SRTOMRはインバーター1910に印加される。インバーター1910の非反転出力はこれらフリップフロップのE入力に印加され、反転出力はEN入力に印加される。
【0726】
受信及び送信バッファはリセット及びパワーアップと同時に0にセットされる。即ち、インバーター1890から出力される反転IRESET信号がこれらフリップフロップのCDN入力に印加される。反転IRESET信号はインバーター1889にも印加されて、後述するようにレジスターICM2,ICM3,ICM0レジスターをリセットするのに使用されるMRCLR信号を発生させる。
【0727】
ICM2レジスターは8ビット・レジスターであり、INCOMメッセージ・ビット18−11を含む。ICM2レジスターの送信バッファはフリップフロップ1912,1914,1916,1918,1920,1922,1924,1926を含む。ICM2レジスターの受信バッファはフリップフロップ1928,1930,1932,1934,1936,1938,1940,1942を含む。
【0728】
送信バッファはマイクロプロセッサー30による書き込みだけが可能である。具体的には、データ母線DATA[7...0]がフリップフロップ1912,1914,1916,1918,1920,1922,1924,1926のD入力と接続する。これらフリップフロップのQ出力は送信データ母線TDATA[18...11]と接続する。
【0729】
送信バッファへの書き込み動作は2入力NANDゲート1944の制御下にある。一方の入力には書き込みクロック信号WRCLKが、他方の入力にはアドレス・デコード信号SELM2がそれぞれ印加される。NANDゲート1944の出力はインバーター1946に印加される。インバーター1946の非反転出力はフリップフロップ1912,1914,1916,1918,1920,1922,1924,1926に、反転出力はE入力にそれぞれ印加される。
【0730】
ICM2レジスターの受信バッファはフリップフロップ1928,1930,1932,1934,1936,1938,1940,1942を含む。内部母線RDATA[18...11]で受信されたINCOMメッセージがこれらフリップフロップのD入力に印加される。これらフリップフロップに含まれているメッセージ・ビットはマイクロプロセッサー30がトライステート・デバイス1950,1952,1954,1956,1958,1960,1962,1964を介してデータ母線DATA[7...0]で読み取ることができる。これらのトライステート・デバイスは2入力NANDゲート1966の制御下にある。一方の入力にはレジスター・デコード信号SELM2が印加され、他方の入力には読み取りクロック信号RDCLKが印加されて、マイクロプロセッサー30が読み取り動作を開始し、アドレス$002Cをアドレス母線ADDR[3...0]に送出することによってこのバッファの内容を読み取ることを可能にする。
【0731】
受信バッファのフリップフロップに対するタイミングはSRTOMR信号及びインバーター1968によって行なわれる。具体的には、インバーター1968の入力にSRTOMR信号が印加される。これらフリップフロップのE入力にはインバーター1966の非反転出力が印加され、EN入力には反転出力が印加される。
【0732】
送信及び受信バッファのフリップフロップはインバーター1969から出力される反転MRCLRによって0にセットされる。この信号反転MRCLRは各フリップフロップのCDNに印加される。
【0733】
ICM3メッセージ・レジスターはINCOMメッセージ・ビット26−19を含む。レジスターICM3の送信バッファはフリップフロップ1970,1972,1974,1976,1978,1980,1982,1984を含む。このレジスターの受信バッファはフリップフロップ1986,1988,1990,1992,1994,1996,1998,2000を含む。
【0734】
マイクロプロセッサー30はフリップフロップ1970,1972,1974,1976,1978,1980,1982,1984のD入力に接続するデータ母線DATA[7...0]を介して送信バッファに書き込む。これらフリップフロップのQ出力は送信データ母線TDATA[26...19]に印加される。
【0735】
送信バッファへの書き込み動作は2入力NANDゲート2002の制御下にある。一方の入力には書き込みクロック信号WRCLKが、他方の入力にはレジスター選択信号SELM3がそれぞれ印加される。NANDゲート2002の出力はインバーター2004に印加される。インバーター2004の非反転出力はこれらフリップフロップの2つのEN入力に、反転出力はE入力にそれぞれ印加される。
【0736】
受信バッファはフリップフロップ1986,1988,1990,1992,1994,1996,1998,2000を含む。INCOMネットワークから受信されたINCOMメッセージ・ビットは受信データ母線RDATA[26...19]から送信され、これらフリップフロップのD入力に印加される。マイクロプロセッサー30はトライステート・デバイス2008,2010,2012,2014,2016,2018,2020,2022を介してデータ母線DATA[7...0]でこれらフリップフロップの内容を読み取ることができる。これらのトライステート・デバイスは2入力NANDゲート2024の制御下にある。一方の入力には読み取りクロック信号RDCLKが印加され、他方の入力にはレジスター選択信号SELM3が印加されて、マイクロプロセッサー30が読み取り動作を開始し、アドレス$002Dをアドレス母線ADDR[3...0]に送出しさえすればこのバッファの内容を読み取ることができる。
【0737】
ICM3受信バッファのタイミングはSRTOMR信号及びインバーター2026によって行なわれる。具体的には、インバーター2026の入力にSTROMR信号が印加され、これらフリップフロップのE入力にインバーター2026の非反転出力が印加され、EN入力に反転出力が印加される。
【0738】
ICM3送信及び受信バッファは反転MRCLR信号によって0にセットされる。この反転MRCLRはインバーター2006から出力され、これらフリップフロップのCDN入力に印加される。
【0739】
ICM0レジスターはINCOMメッセージの制御/状態ビットを送受信するためのレジスターである。このレジスターのための送信バッファはフリップフロップ2028,2030,2032、及びトライステート・デバイス2034,2038,2040,2042,2044,2046,2048を含む。受信バッファは1つのフリップフロップ2029を含む。
【0740】
ビットICM0[7]はINCOMメッセージのビット2に対応する。送信動作ではこのビットがマイクロプロセッサー30によってデータ母線DATA[7]を介して書き込まれ、フリップフロップ2028のD入力に印加される。このフリップフロップ2028への書き込み動作は2入力NANDゲート2050の制御下にある。一方の入力に書き込みクロック信号WRCLKが印加され、他方の入力にレジスター選択信号SELMOが印加される。NANDゲート2050の出力はインバーター2052に印加され、インバーター2052の非反転出力はフリップフロップ2028のEN入力に、反転出力はE入力にそれぞれ印加される。フリップフロップ2028のQ出力は送信データ母線TDATA[2]に印加される。
【0741】
入りINCOMメッセージのビット2は内部受信データ母線RDATA[2]を介して受信され、フリップフロップ2029のD入力に印加される。このフリップフロップ2029のタイミング制御はSRTOMR信号によって行なわれる。SRTOMR信号はインバーター2031に印加され、インバーター2031の非反転出力はフリップフロップ2029のE入力に、反転出力はEN入力にそれぞれ印加される。マイクロプロセッサー30によるこのフリップフロップの内容読み取りを可能にするため、フリップフロップ2029のQ出力がトライステート・デバイス2033を介してデータ母線DATA[7]に印加される。トライステート・デバイス2034はNANDゲート2054の制御下にある。
【0742】
ICOMビット[6...2]はテスト用である。これらのビットはデータ母線DATA[6...2]を介してマイクロプロセッサー30によって読み取られる。具体的には、読み取りテスト母線RTB[6...2]がトライステート・デバイス2036,2038,2040,2042,2044を介してデータ母線DATA[6...2]と接続する。これらのトライステート・デバイスはNANDゲート2054の制御下にある。NANDゲート2054への一方の入力は読み取りクロック信号RDCLKであり、他方の入力はレジスター選択信号SELMOである。
【0743】
2つのANDゲート2055,2056もテスト回路の一部を構成する。具体的には、ANDゲート2055は3入力ANDゲートであり、第1の入力には書き込みクロック信号WRCLKが、第2の入力にはレジスター選択信号SELMOが、第3の入力にはテスト信号TESTがそれぞれ印加される。ANDゲート2055の出力はDATA[2]と共にANDゲート2056に印加される。ANDゲート2056の出力は書き込みテスト母線WTB[2...0]に印加される。
【0744】
ビットICM0[1,0]は状態ビットであり、いずれも真の読み書きビットである。マイクロプロセッサー30はフリップフロップ2030,2032のD入力と接続するデータ母線DATA[1,0]を介してこれらのビットを書き込むことができる。これらフリップフロップへの書き込み動作はNANDゲート2050及びインバーター2052によって制御される。具体的には、インバーター2052の非反転出力がフリップフロップ2030,2032のEN入力に、反転出力がE入力にそれぞれ印加される。これらフリップフロップのQ出力は内部状態ビット読み取り母線RSB[26,25]と接続する一方、トライステート・デバイス2046,2048を介してデータ母線DATA[1,0]とも接続して、マイクロプロセッサー30によるこれらフリップフロップの内容読み取りを可能にする。トライステート・デバイス2046,2048は読み取り制御NANDゲート2054の制御下にある。
【0745】
フリップフロップ2028,2029,2030,2032はいずれもシステムのリセットと同時に0にセットされる。具体的には、インバーター2057から出力される反転MRCLR信号がこれらフリップフロップのCDN入力に印加される。
【0746】
ICCRレジスターはバイトワイドの読み書き制御レジスターであり、ICC29の動作制御に使用される。図70に示したこのレジスターはフリップフロップ2058,2060,2062,2064及びANDゲート2066,2068,2070,2072を含む。具体的には、フリップフロップ2058,2060,2062,2064のD入力にデータ母線DATA[7...4]が印加される。これらフリップフロップ2058,2060,2062,2064のタイミング制御は書き込み制御NANDゲート2074及びインバーター2076によって行なわれる。具体的には、ICCRレジスター・デコード信号SELCRがNANDゲート2074の一方の入力に印加され、NANDゲート2074の出力がインバーター2076の入力に印加される。インバーター2076の反転出力がこれらフリップフロップのE入力に、非反転出力がEN入力にそれぞれ印加される。
【0747】
フリップフロップ2058,2060,2062,2064のQ出力は後述する制御ビットICCR[7...4]と連携する内部制御母線CR[7...4]に印加される。このQ出力はトライステート・デバイス2078,2080,2082,2084を介してデータ母線DATA[7...4]とも接続して、マイクロプロセッサー30によるフリップフロップ2058,2060,2062,2064の内容読み取りを可能にする。トライステート・デバイス2078,2080,2082,2084は2入力NANDゲート2086の制御下にある。NANDゲート2086への一方の入力はICCRレジスター・デコード信号SELCRであり、他方の入力は書き込みクロック信号WRCLKである。
【0748】
フリップフロップ2058,2060,2062,2064はシステムのリセットと同時にゼロにセットされる。具体的には、これらフリップフロップのCDN入力に反転IRESET信号が印加され、この信号はインバーター2088から出力される。
【0749】
ビットICCR[7...4]は制御ビットである。ビットICCR[7]はICC29の割り込み動作を許可する。ビットICCR[6]は高速状態リクエスト・メッセージに対する自動的な応答を可能にする。制御ビットICCR[4]使用されない。
【0750】
ビットICCR[5]はINCOM通信コントローラーのマスター・モードへの切り換えを可能にする許可ビットで有る。このビットが0ならば、ICC29はマスター・モードに入れず、1ならばマスター・モードに入ることができる。このビットもシステムのリセットに伴なって0にセットされる。これは2入力ANDゲート2089によって行なわれる。ANDゲート2089への一方の入力はCFR状態レジスター・ビットCFR[7]からの許可ビットであり、他方の入力は反転IRESET信号である。ANDゲート2089の出力はフリップフロップ2062のCDN入力に印加される。
【0751】
ビットICCR[3...0]は指令ビットである。指令ビットはマイクロプロセッサー30によってデータ母線DATA[3...0]を介して書き込まれ、ANDゲート2066,2068,2070,2072の入力に印加される。インバーター2086から出力される書き込み制御信号はデータ母線DATA[3...0]を介してANDゲート2066,2068,2070,2072の入力に印加される。インバーター2086の入力は書き込み制御NANDゲート2074の出力と接続する。ANDゲート2066,2068,2070,2072の出力は内部ICCRレジスター母線CR[3...0]に印加される。
【0752】
ビットICCR[3...0]は真の読み書きビットではなく、マイクロプロセッサー30によって読み取られる時は常に0である。即ち、ビットICCR[3...0]はトライステート・デバイス2090,2092,2094,2096を介してデータ母線DATA[3...0]と接続し、これらのトライステート・デバイスへの入力は接地されている。これらのトライステート・デバイスはNANDゲート2086の制御下にある。
【0753】
ICSRはバイトワイドの読み取り専用状態レジスターであり、マイクロプロセッサー30がINCOM通信コントローラー29と通信中であることを示すICC29状態フラッグを含む。このレジスターはトライステート・デバイス2098,2100,2102,2104,2106,2108,2110,2112から成り、これらトライステート・デバイスの入力に内部ICSR制御レジスター母線SR[7...0]が接続する。これらのトライステート・デバイスは2入力NANDゲート2114の制御下にある。一方の入力にはICSRレジスター選択デコード信号が、他方の入力には読み取りクロック信号RDCLKがそれぞれ印加される。
【0754】
デジタル復調器
デジタル復調器1694は入りINCOMメッセージを復調して復調出力ビットDEMODATを形成する。この復調器1694を図93−100に示した。また、そのブロックダイヤグラムを図93に示した。デジタル復調器1694はタイミング発生器2116、レシーバー相関器2118、復調器制御回路2120及びビット・カウンタ−2122を含む。
【0755】
タイミング発生器を図94,95に示し、タイミング発生器の種々の出力について、そのタイミングダイヤグラムを図118,119に示した。タイミング発生器2116は図94に示すマスター・クロック発生器2117及び図95に示すビット位相タイミング発生器2119を含む。
【0756】
ICC29は選択された送信モードに応じて多様なビット伝送速度で動作するように構成することができる。ビット伝送速度を表19に例示した。任意のビット伝送速度に合わせてマスター・クロック発生器2117からクロック信号が出力される。ICAHレジスター・ビットICAH[7,6]がビット伝送速度を決定し、ビットICAH[5]が変調方法を決定する。すでに述べたように、ASK及びFSK変調方式はコンパチブルであるから、ベースバンドとFSK/ASKのいずれかを選択するのに必要なビットはICAH[5]だけである。選択されたビット伝送速動はMUX2124から出力される。MUX2124のZ出力は表19の中から選択されたビット伝送速度及び変調方法に対応するビット位相クロック信号BITPHCKである。MUX2124の選択入力Sに指令ビットICAH[5]が印加される。MUX2124への入力はベースバンドMUX2126及びASK/FSK MUX2128と接続する。
【0757】
表19に示す種々のベースバンド・ビット伝送速度がMUX2126の入力に印加される。同じく表19に示す種々のASK/FSKビット伝送速度がFSKMUX2128の入力に印加される。MUX2126,2128の選択入力に印加される指令ビットICAH[7,6]によって種々のビット伝送速度が選択され、IC10の水晶発振器、及びカウンター2130,2132を含むタイミング発生器2116から種々のビット伝送速度が得られる。
【0758】
カウンター2130はベースバンド・ビット伝送速度を発生させるのに利用され、フリップフロップ2132,2134,2136、MUX2138、インバーター2140、及び排他的ORゲート2142を含む。もしICC29がアクチブならば、7.3728MHzまたは3.6864MHz水晶発振器を使用しなければならない。使用する水晶発振器に応じて、排他的ORゲート2142の入力に印加される位相2クロック信号PH2及びEO2信号に基づき排他的ORゲート2142の出力にいずれか一方の周波数が得られる。EO2はPH2とは90°だけ位相のずれた信号である。
【0759】
フリップフロップ2132,2134,2136は2分割リプルカウンターとして接続されている。即ち、これらのフリップフロップの反転Q出力はD入力に印加される。また、選考フリップフロップの反転Q出力は後続フリップフロップのクロック入力CPに印加される。フリップフロップ2132,2134,2136の出力は2つの入力によって分割される。水晶発振器の選択に応じて、排他的ORゲート2142はMUX2138の一方の入力に印加され、フリップフロップ2132の反転Q出力はMUX2138の他方の入力に印加される。7.3728MHz水晶発振器が使用される場合、フリップフロップ2132はこの周波数を2等分してMUX2138のZ出力において3.6864MHzの信号を形成する。3.6864MHz水晶発振器を使用する場合には、この信号はMUX2138の他方の入力に直接印加されて、ボー速度が153.6Kbpsとなる。MUX2138はMUX2138のS入力に印加される構成レジスター・ビットACFR[6]によって制御される。ビットACFR[6]は分周比を選択する。MUX2138のZ出力は3.6864MHz信号である。この信号はベースバンドMUX2126の一方の入力に印加されるだけでなく、他方の2等分カウンター2134のクロック入力CPにも印加されてその反転Q出力において1.8232MHz信号を形成する。1.8232MHz信号はベースバンドMUX2126の他方の入力に印加され、ボー速度が76.8Kbpsとなる。カウンター2134の反転Q出力は別の2分割カウンター2136のクロック入力にも印加される。このカウンターの出力はインバーター2140に印加され、インバーター2140の出力は921.6kHz信号である。この信号はベースバンドMUX2126の他方の入力に印加され、ボー速度は38.4Kbpsとなる。
【0760】
19.2Kbpsベースバンド速度信号を形成するのは排他的ORゲート2142、及びフリップフロップ2144,2146を含む回路である。具体的には、インバーター2140から出力される921.6kHz信号がフリップフロップ2144,2146を含むジョンソン・カウンターに印加される。即ち、インバーター2140の出力がフリップフロップ2144,2146のクロック入力CPに印加され、フリップフロップ2144のQ出力がフリップフロップ2146のD入力に、フリップフロップ2146の反転Q出力がフリップフロップ2144のD入力にそれぞれ印加される。フリップフロップ2146のQ出力は230.4kHz信号である。この信号は排他的ORゲート2142の一方の入力に印加される。排他的ORゲート2142への他方の入力はフリップフロップ2144からのQ出力信号である。排他的ORゲート2142の出力はビット伝送速度19.2Kbpsと等価の460.8kHz信号である。
【0761】
カウンター2132及びORゲート2148によってASK/FSKビット伝送速度信号が形成される。具体的には、フリップフロップ2144のQ出力がORゲート2148の一方の入力に印加される。この信号は230.4kHz信号である。フリップフロップ2146のQ出力はORゲート2148の他方の入力に印加される。インバーター2140の出力はORゲート2148の第3の入力に印加される。ORゲート2148の出力はカウンター2132に印加され、カウンター2132はいずれも2分割カウンターとして接続されたフリップフロップ2150,2152,2156,2158を含み、各フリップフロップの反転Q出力がD入力と接続している。ORゲート2148の出力は230.4kHz信号であり、フリップフロップ2150のクロック入力CPに印加される。このフリップフロップ2150は入力周波数を2等分してそのQ出力に115.2kHz信号を形成し、この信号がASK/FSK MUX2128の一方の入力に印加されてビット伝送速度9600bpsの信号を発生させる。カウンター2150の反転Q出力がカウンター2152のクロック入力に印加されてその反転Q出力に57.6kHz信号を発生させ、この信号がカウンター2154のクロック入力CPに印加されてそのQ出力に28.8kHz信号を発生させる。この28.8kHz信号がカウンター2156のクロック入力CPに印加されてそのQ出力に14.4kHz信号を発生させ、14.4kHz信号がカウンター2158のクロック入力に印加されてそのQ出力に7.2kHz信号を発生させ、この7.2kHz信号がASK/FSK MUX2128に印加されて300bps信号を発生させる。
【0762】
カウンター2130,2132、及びフリップフロップ2144,2146を含むジョンソン・カウンターはシステムのリセットに伴なって、且つテスト中、0にセットされる。具体的には、2入力ORゲート2160の一方の入力にリセット信号反転IRESETが印加され、他方の入力に書き込みテスト母線WTB2からの信号が印加される。ORゲートの出力がインバーター2162の入力に印加され、インバーター2162の出力がフリップフロップ2132,2134,2136,2144,2146,2150,2152,2154,2156,2158のCDN入力に印加される。
【0763】
FSK変調方式では2つの搬送周波数;115.2kHz及び92.16kHzが使用される。92.16kHz信号は10進カウンター2164から出力される。この10進カウンターはフリップフロップ2166,2168,2170,2172、NORゲート2174及びANDゲート2176を含む。92.16kHz信号は信号FCAとしてフリップフロップ2172のQ出力に形成される。921.6kHz信号がフリップフロップ2166,2170のクロック入力に印加される。フリップフロップ2166の反転Q出力はフリップフロップ2168のクロック入力CPに印加される。フリップフロップ2166のQ出力が2入力NORゲート2174の一方の入力に、フリップフロップ2170のQ出力が他方の入力にそれぞれ印加される。NORゲート2174の出力はフリップフロップ2166のD入力に印加される。フリップフロップ2168の反転Q出力はこのフリップフロップのD入力に印加される。フリップフロップ2168のQ出力が2入力ANDゲート2176の一方の入力に、フリップフロップ2166のQ出力が他方の入力にそれぞれ印加される。ANDゲート2176の出力はフリップフロップ2170のD入力に印加される。フリップフロップ2170の反転Q出力はフリップフロップ2172のクロック入力に印加され、フリップフロップ2172の反転Q出力はそのD入力に印加される。したがって、フリップフロップ2172のQ出力は入力信号921.6kHzの1/10である。
【0764】
リセット時にもテスト中にも10進カウンターのフリップフロップ2166,2168,2170,2172は0にセットされる。具体的には、インバーター2162の出力がこれらフリップフロップのCDN入力に印加される。
【0765】
92.16kHz FSK信号FCAも115.2kHz搬送波信号FCもFSK変調に使用される。FC信号はカウンター2150から出力される。115.2kHzベースバンド信号CARRはNORゲート2174から出力される。NORゲート2174への一方の入力はORゲート2148の出力であり、他方の入力はカウンター2150の出力である。NORゲート2174の出力は115.2kHz信号である。
【0766】
信号FDC及びCK10は復調制御に使用される。信号FDCはインバーター2176から出力される230.4kHz信号である。カウンター2146の出力から得られる230.4kHz信号がインバーター2176の入力に印加される。この周波数は搬送周波数115.2kHzの2倍に相当するサンプリング周波数として選択される。
【0767】
CK10信号は図57に示すビット位相タイミング発生器2119をリセットするのに使用される。このCK10信号はORゲート2178から出力される。ORゲート2178には3つの入力があり、第1の入力にはカウンター2146のQ出力が、第2の入力にはインバーター2140の出力が、第3の入力にはフリップフロップ2144の反転Q出力がそれぞれ印加される。従って、ORゲート2178の入力は搬送周波数の2倍(230.4kHz)、搬送周波数の4倍(460.8kHz)及び搬送周波数の8倍(921.6kHz)に相当する信号である。図81に示すように、ORゲート2178から出力されるCK10信号はサンプリング周波数230.42kHzの半サイクルごとに、即ち、115.2kHzで1−0−1パターンを形成する。
【0768】
ビット位相タイミング発生器2119は搬送周波数の位相コヒーレンスをカウントするのに使用される。ビット位相タイミング発生器2119はタイミング制御信号PHCKAD,PHCKB,PHCKBD,PHCKCD,PHCKDD,PHCKD,PHCK,PHRSTを出力する。これらの信号を図118,119にタイミングダイヤグラムの形で示した。これらのタイミング信号はフリップフロップ2182,2184,2186;NORゲート2188,2190,2192,2194,2196,2198,2200;及びインバーター2202,2204,2206,2208,2210,2212,2214,2216によって形成される。
【0769】
ビット位相クロック信号BITPHCKはビット位相タイミング発生器2119に印加される。BITPHCK信号はMUX2124(図94)のZ出力において得られ、選択されたベースバンドまたはASK/FSKボー速度に対応する。このBITPHCK信号は高利得インバーター2202,2204を介してビット位相タイミング発生器2119に印加される。インバーター2204の出力はジョンソン・カウンター2185として構成されたフリップフロップ2182,2184のクロック入力CPに印加される。具体的には、フリップフロップ2182のQ出力がフリップフロップ2184のD入力に、フリップフロップ2184の反転Q出力がフリップフロップ2182のD入力にそれぞれ印加される。フリップフロップ2182,2184のQ出力はタイミング信号を発生させるのに使用される。即ち、フリップフロップ2182のQ出力がインバーター2206に、フリップフロップ2182の反転Q出力がインバーター2208に、フリップフロップ2184のQ出力がインバーター2210に、フリップフロップ2184の反転Q出力がインバーター2212に、インバーター2206の出力がNORゲート2190,2192,2194の入力にそれぞれ印加される。インバーター2208の出力はORゲート2188,2196,2198の入力に、インバーター2210の出力はインバーター2194,2196,2198の入力に、インバーター2212の出力はNORゲート2188,2190,2192の入力にそれぞれ印加される。インバーター2212の出力はインバーター2214の入力にも印加されてPHCK信号を発生させる。インバーター2204から出力されるBITPHCK信号はNORゲート2188,2192,2194,2196の入力に印加される。NORゲート2188,2190,2192,2194,2196,2198の出力はビット位相タイミング信号PHCKAD,PHCKB,PHCKBD,PHCKCD,PHCKDD,PHCKD,PHCKである。
【0770】
ビット位相リセット信号PHRSTは1/6ビットごとにNORゲート2200から発生する。この信号のタイミングダイヤグラムを図119に示した。NORゲート2200は2入力NORゲートである。一方の入力はインバーター2216の出力と接続する。インバーター2216の入力にリセット信号反転IRESETが印加される。フリップフロップ2186のD入力は常態では接地している。このフリップフロップ2186はジョンソン・カウンター2185から出力される反転Q信号によってクロック制御される。CK10信号がフリップフロップ2186のCDN入力に印加されて1/2搬送波サイクルごとにこのフリップフロップを払う。フリップフロップ2186のQ出力がNORゲート2200の入力に印加されて、1/6ビットごとに、または300ボー速度で64搬送波サイクルごとにパルス信号PHRSTを発生させる。
【0771】
搬送波入力信号はバッファ増幅器2218(図92)を介してIC10のRXIN端子に印加される。次いでこの信号はレシーバー相関器2118の一部を形成する1対の搬送波確認回路2220,2222に印加される。搬送波確認回路は互いに90°だけ位相がずれて動作し、搬送波を中心とする許容周波数帯域内にあるかどうかを検討するため入力搬送波信号をチェックする。このチェックはサイクルごとに行なわれる。それぞれの搬送波確認回路2220,2222は2つの出力を有し、一方の出力はもし信号が通活帯域以内であって入力信号のサンプル位相が論理1ならばパルスを形成し、他方の出力はもし信号が通活帯域以内であって入力信号のサンプル位相が論理0ならばパルスを形成する。1/6ビットごとにPHRST信号によってリセットされる一連の位相カウンター2224,2226,2228,2230(図97)への入力として4つの出力ONEA,ZEROA,ONEB,ZEROBが使用される。
【0772】
デジタル復調器1694は周波数検出のため短時間、即ち、1 1/2サイクルに亘って位相コヒーレンスを必要とし、もっと長い時間、即ち、1/6ビットまたは300ボーで64搬送波サイクルに亘って連続的な位相コヒーレンスをチェックすることによってノイズとの弁別を行なうことができる。このように、デジタル復調器1694は1/6ビットの時間に亘って入り信号の周波数及び位相を関知し、もし入力周波数が正しく、且つ少なくとも1/6ビット時間の3/4に亘って位相コヒーレンスを維持すればカウンター2338が増分される。1ビット時間が経過した後、内容が検討され、もしカウンターが4以上をカウントすれば、復調出力ビットDEMODATが出力される。
【0773】
キャリヤ確認回路2220,2222のそれぞれは2つのステージ・シフトレジスター2224(ステージ2223,2225を有する)及び2226(ステージ2227,2229を有する)を介して入りキャリヤの3つの最新サンプルを記憶する。入りキャリヤ周波数がこれらのシフトレジスター2224,2226のD入力に供給される。シフト・レジスター2224は信号FDCによりキャリヤ周波数の2倍の周波数でクロック制御される。シフトレジスター2226はまた信号反転FDCによりキャリヤ周波数の2倍の周波数でクロック制御される。信号FDCはインバーター2243から出力される。シフトレジスター2224,2226の各ステージの出力は排他的ORゲート2228,2230,2232,2234を介してその入力と排他的論理和演算される。排他的ORゲート2228,2230,2232,2234の出力はANDゲート2236,2238によって論理積演算される。ANDゲート2236,2238の出力は第3ステージ・シフト・レジスター2240,2242のD入力に印加される。
【0774】
シフトレジスター2224,2226の第1ステージ2223,2227へのD入力に1−0−1パターンが存在すると仮定すれば、シフトレジスター2224,2226の第1ステージ2223,2227のQ出力及び第2ステージ2225,2229のQ出力、即ち、過去のサンプル0は第1ステージ2223,2227に記憶され、その前のサンプル1は第2ステージ2225,2229に記憶され、第1ステージ2227の入力における現在サンプルは次のクロックパルスで記憶される。
【0775】
シフトレジスターの第1ステージ2223,2227及び第3ステージ2240,2242の出力がNANDゲート2244,2246,2248,2250に印加されて確認信号反転ONEA,反転ZEROA,反転ONEB,反転ZEROBを発生させる。ONEAまたはZEROA出力におけるパルスは1 1/2キャリヤ・サイクルという比較的短い時間に亘って入力キャリヤが水晶発信器からのタイミング信号とほぼ同相であることを意味する。具体的には、シフトレジスター2224の第1ステージ2223のQ出力はNANDゲート2244の一方の入力に印加され、他方の入力には第3ステージ2240のQ出力が印加される。第3ステージ2240のQ出力が第1ステージ2223の反転Q出力と共にNANDゲート2246の入力に印加される。NANDゲート2244,2246の出力は信号反転ONEA及び反転ZEROAである。これらのNANDゲート2244,2246は3つの記憶サンプルが1−0−1パターンを形成すると1つ置きのサンプルに対応してパルスを形成する。もし最新サンプルが論理1ならNANDゲート2244の出力は論理1となる。もし最新サンプルが0なら、NANDゲート2246の出力が1となる。キャリヤ確認回路2222のNANDゲート2248,2250も同様に動作して反転ONEB及び反転ZEROB信号を形成する。
【0776】
シフトレジスター2224,2226,2240,2242はリセットに伴なって0にセットされる。具体的には、インバーター2252から出力される反転IRESET信号がこれらシフトレジスターのCDN入力に印加される。
【0777】
位相カウンター2224,2226,2228,2230は1/6ビットに相当する時間に亘って確認回路2220,2222の4つの出力(例えば、NANDゲート2244,2246,2248,2250)に現われるパルス数を別々にカウントするのに使用される。これらのカウンターのいずれかが1/6ビットの時間に亘って300ボーの速度で64キャリヤ・サイクルの間にカウント48に達するか、または1200ボーの速度で16キャリヤ・サイクルの間にカウント48に達すると、1/6ビットに亘って有孔なキャリヤ信号が存在したと考えられる。
【0778】
キャリヤ確認回路2220,2222からの出力信号反転ONEA,反転ZEROA,反転ONEB,反転ZEROB信号は位相カウンター2224,2226,2228,2230の入力に印加される。図59及び60に示すこれらの位相カウンターは300ボー,1200ボー及び4800ボーという種々のボー速度で1/6ビットごとに位相確認回路2220,2222の出力に現われるパルス数を別々にカウントするのに使用される。9600ボー速度なら、カウンターは1/3ビットごとに現われる確認回路2220,2222からのパルス数をカウントする。カウンター2224,2226,2228,2230のそれぞれは次のような6つのステージを含む:2254a−2254d,2256a−2256d,2258a−2258d,2260a−2260d,2262a−2262d,2264a−2264d。出力信号反転ONEA,反転ZEROA,反転ONEB,反転ZEROBは排他的ORゲート2266,2268,2270,2272の入力に印加される。これらのキャリヤ確認回路出力信号はインバーター2274,2276,2278,2280にも印加される。インバーター2274,2276,2278,2280の出力は最初の2つのステージ2254,2256からの出力信号と共に3入力ANDゲート2282,2284,2286,2288に印加される。これらANDゲート2282,2284,2286,2288の出力はMUX2290,2292,2294,2296に印加される。これらのANDゲートはMUX2290,2292,2294,2296において1200ボー信号を発生させるのに使用される。各カウンター2224,2226,2228,2230の第3及び第4ステージ2258,2260はANDゲート2282,2284,2286,2288の出力と共にANDゲート2298,2300,2302,2304に印加されてMUX2290,2292,2294,2296から300ボー信号を発生させる。インバーター2274,2276,2278,2280の出力はMUX2290,2292,2294,2296に直接印加されて4800ボー及び9600ボー信号を発生させる。
【0779】
すでに述べたように、ボー速度はビットICAH[7,6]によって選択される。これらの信号の補数がインバーター2306,2308から出力される。この相反形信号はMUX2290,2292,2294,2296の選択入力に印加されて適正なボー速度を選択し、MUX2290,2292,2294,2296のZ出力において信号ONEACRY,ZEROACRY,ONEBCRY,ZEROBCRYを発生させる。これらの出力信号はNANDゲート2310,2312,2314,2316及び排他的ORゲート2318,2320,2322,2324を介して位相カウンター2224,2226,2228,2230の第5ステージ2262a−2262dに印加される。第5及び第6ステージ2262,2264の出力はANDゲート2326,2328,2330,2332に印加される。これらNANDゲート2326,2328,2330,2332はボー速度300,1200,4800で1/6ビットごとに、ボー速度9600で1/3ビットごとにパルスを発生させる。これらNANDゲートの出力はNANDゲート2334に印加され、NANDゲート2334の出力はIC10のRXピンから出力されるベースバンド信号と共にMUX2336の入力に印加される。
【0780】
ICAH5ビットはASK/FSKとベースバンドのいずれかを選択する。NORゲート2174から出力されるベースバンド・キャリヤ信号CARRは各位相カウンター2224,2226,2228,2230の第1ステージ2254のクロック入力CPに印加される。
【0781】
各カウンター・ステージ2254,2256,2258,2260,2262,2264はインバーター2338,2340,2342,2344,2346を介して位相リセット信号PHRSTによってリセットされる。インバーター2340,2342,2344,2346の出力は信号ONEACLR,ZEROACLR,ONEBCLR,ZEROBCLRである。これらの信号は第5及び第6ステージ2262,2264のリセット入力に印加される。
【0782】
位相カウンター2224,2226,2228,2230の出力はMUX2336から出力されるキャリア信号の相関を示す信号DPHである。この信号DPHはフリップフロップ2340を介して復調器カウンター2338に印加される。フリップフロップ2340にはストローブ信号PHCKも印加される。ストローブ信号PHCKはビット伝送速度の6倍であるが、9600ボーの場合に限ってビット伝送速度の3倍である。フリップフロップ2340の出力は復調器カウンター2338及びフリップフロップ2340に印加されて復調器リセット信号DEMODRSTを発生させる。復調器カウンター2338は位相カウンター2224,2226,2228,2230からの出力数をカウントする。復調器カウンター2338は3つのフリップフロップ2346,2348,2350を含む。復調器カウンター2338からの復調出力信号DEMODATはORゲート2352に印加され、ORゲート2352の出力は後述するメッセージ・シフトレジスター及びBCHコンピューターに印加される。
【0783】
種々の選択自在なボー速度を考慮するため、排他的ORゲート2354、フリップフロップ2356、ORゲート2358及びMUX2360を含む回路を利用する。この回路の出力はフリップフロップ2346の第1ステージからの出力信号と共に排他的ORゲート2362を介して復調器カウンター2338に印加される。MUX2360はビット伝送速度の3倍または6倍のストローブ信号を出力する。具体的には、フリップフロップ2340のQ出力が排他的ORゲート2354の一方の入力に印加され、フリップフロップ2356の反転Q出力が他方の入力に印加される。排他的ORゲート2354の出力はフリップフロップ2356の入力に印加される。このフリップフロップ2356はストローブ信号PHCHADによりビット伝送速度の6倍でクロック制御される。フリップフロップ2356の出力はフリップフロップ2340の出力と共にORゲート2358の入力に印加される。ORゲート2358の出力はMUX2360の一方の入力に印加されて、9600ボーが選択された場合にはビット伝送速度の3倍の信号を発生させる。フリップフロップ2340の出力はMUX2360の他方の入力に直接印加されてビット伝送速度の6倍の信号を発生させる。
【0784】
ビット伝送速度は指令ビットICAH[7,6,5]と、NANDゲート2364及びインバーター2366を含む回路とによって選択される。NANDゲート2364及びインバーター2366がボー速度及び変調方法指令ビットICAH[7,6,5]を復号する。NANDゲート2364の出力はMUX2360の選択入力Sに印加される。
【0785】
ビット・フレーミング・カウンター2344は12個の1/6ビット・インターバルをカウントして基準フレームを作成することにより、入り信号がいずれも論理1である2個のスタートビットを含むかどうかを判定するのに使用される。もし位相カウンター2224,2226,2228,2230が2ビット・インターバルの間に8までカウントすれば、有効なスタート・ビットが想定され、信号BRCKが発生する。ビット・フレーミング・カウンター2344は4段カウンターであり、フリップフロップ2368,2370,2372,2374及びANDゲート2376,2378,2380を含む。このカウンター2344はストローブ信号PHCKADによって制御される。第1、第2、第3及び第4段の出力はANDゲート2376に印加されて12分割信号DIV12を形成する。第1、第2及び第3段の出力はANDゲート2378に印加されて6分割信号DIV6を形成する。第1及び第2段の出力はANDゲート2380に印加されて3分割信号DIV3を形成する。DIV12,DIV6及びDIV3信号はMUX2382に印加される。これらの信号はMUX2382のS0及びS1入力に印加される入力によって選択される。
【0786】
NANDゲート2364からの指令ビット・デコード信号はS0入力に印加される。他方の入力S1はNANDゲート2384の制御下にある。NANDゲート2384は2入力NANDゲートであり、有効スタート・ビット検出後のビット・フレーミング・カウンター2344の調整を可能にする。具体的には、反転RCVDET及び反転TXON信号がNANDゲート2384の入力に印加される。反転RCVDET信号は受信検出ラッチ2379と直列に接続されたインバーター2377から出力される。第1の2ビット・インターバルにおいて復調器カウンターが8までカウントし、受信メッセージの2個のスタート・ビットに対応する12個の1/6ビット・インターバルのうちの8個が受信されたことを示唆すれば、反転RCVDETラッチ2379がセットされる。このラッチ2379がセットされると、メッセージの残りの部分では信号反転RCVDETが低レベルとなる。ビット・フレーミング・カウンター2344はメッセージ送信にも利用されるから、NANDゲート2384への他方の入力は反転TXONである。この信号はICC29がメッセージ送信中アクチブ低状態となる。
【0787】
NANDゲート2384の出力がMUX2382の選択入力S1に印加されてビット・カウンター2344からMUXへの4つの入力のうちの1つを選択する。MUX2382の出力はフリップフロップ2386のD入力に印加される。フリップフロップ2386はストローブ信号PHCKADによってクロック制御される。フリップフロップ2386の出力はインバーター2388の入力に印加され、インバーター2388の出力は各ビットが検出されるごとにパルスを形成するフレーム信号FRAMEである。
【0788】
復調器カウンター2338が2スタート・インターバルの間に8までカウントするごとにシステムをリセットする回路をも設けた。この回路はNANDゲート2397,2398及びANDゲート2400,2402を含む。ANDゲート2402の出力はリセット・ワード信号RSTWORDであり、フリップフロップ2340のCDN入力に印加される。RETWORD信号は詳しくは後述するようにメッセージの終わりにアクチブとなる。このRETWORD信号はフリップフロップ2342のCDN入力にも印加され、復調器のカウンター2338をリセットする復調器カウンター・リセット信号DEMODRSTを発生させる。このDEMODRST信号はインバーター2381,2385、ORゲート2383、及びANDゲート2387を含む回路によって形成され、ANDゲート2387は反転DEMODRSTの発生に利用される。この信号はインバーター2381から出力される。ORゲート2383の出力はインバーター2381の入力と接続する。ORゲート2383は3入力ORゲートである。高利得インバーター2385,2405から出力されるIRESET信号が第1の入力に印加され、システムのリセットと同時に回路がリセットされることを可能にする。ANDゲート2400からの出力が第2の入力に印加される。各ビットのスタートにおいてFRAME信号がストローブ信号PHCKDとAND演算されてパルスを形成する。ANDゲート2387の出力が第3の入力に印加される。ANDゲート2387は3入力ANDゲートである。送信機がOFFであることを示す反転TXON信号が第1の入力に印加され、スタート・ビットが検出されたことを示す反転RCVDET信号が第2の入力に印加され、フリップフロップ2342の反転Q出力が第3の入力に印加される。フリップフロップ2342は各1/6ビット・インターバルの終わり近くに復調器カウンター2338のリセットを解除するのに使用される。
【0789】
ANDゲート2402は3入力ANDゲートである。反転IRESET信号が第1の入力に印加される。この信号はインバーター2404から出力される。第2、第3の入力はNANDゲート2396,2398と接続する。NANDゲート2398の出力はメッセージの終了を表わす。即ち、NORゲート2406,2408を含むメッセージ終了ラッチ2404にENDMSG信号が印加される。メッセージ終了ラッチ2404への他方の入力はストローブ信号PHCKDDである。NANDゲート2398への他方の入力はストローブ信号PHCKDである。
【0790】
NANDゲート2396は2入力NANDゲートである。一方の入力は上述のようにICC29が信号を受信中ならばアクチブとなる受信検出信号RCVDETである。他方の入力はANDゲート2400と接続する。ANDゲート2400は2入力ANDゲートであり、一方の入力はストローブ信号PHCKCD,他方の入力はインバーター2388から出力されるフレーム信号FRAMEである。
【0791】
NANDゲート2410及びインバーター2412を含む回路を利用してビット・クロック信号BRCKを発生させる。この信号はビット・カウンター2414のクロック制御に使用される。NANDゲート2410は3入力NANDゲートであり、第1の入力にはストローブ信号PHCKBDが、第2の入力にはビット・フレーム信号FRAMEが、第3の入力にはNANDゲート2384の出力がそれぞれ印加される。NANDゲート2384はメッセージが受信中であることを表わす。NANDゲート2410の出力はインバーター2412の入力に印加される。インバーター2412の出力は信号BRCKである。
【0792】
ANDゲート2416からDRCK信号が出力される。この信号は後述するようにICC29送信機と併用される。ANDゲート2416は2入力ANDゲートであり、一方の入力はストローブ信号PHCKCD、他方の入力はFRAME信号である。
【0793】
ビット・カウンター2414を図100に示した。このビット・カウンターは6段カウンターであり、フリップフロップ2430,2432,2434,2436,2438,2440を含む。第1段2430の入力にビット伝送速度クロック信号BRCKが印加され、最終段の出力はメッセージ終了信号ENDMSGである。
【0794】
最初の5段2430,2432,2434,2436,2438の出力がインバーター2444から出力される反転BRCK信号と共に6入力NANDゲート2442に印加される。NANDゲート2442の出力はNANDゲート2448,2450を含むラッチ2446に印加され、ラッチ2446の他方の入力にはインバーター2452の出力が印加される。ラッチ2446の出力は信号026であり、後述するBCHコンピューターに印加される。026信号はビット・カウンターが26までカウントするとラッチする。
【0795】
このカウンター2414はワード・エンド検出のためメッセージを送受信するのに使用されるから、ワードがカウントされたのち、インバーター2452,2454及びNANDゲート2456,2458を含む回路によってカウンター2414もラッチ2446もリセットされる。ICC29によるメッセージの受信中、NANDゲート2456,2458の入力に印加される受信検出信号RCVDET及び反転TXONはアクチブである。NANDゲート2456はICC29がメッセージを受信中出あることを指示する。ICC29がメッセージを送信している状態では、NANDゲート2458の第2の入力に印加されるINITXがアクチブである。INITX信号はメッセージ送信開始を指示する。第3の入力にはインバーター2054から出力されるリセット信号反転IRESETが印加される。NANDゲート2458の出力はICC29がメッセージを受信中であるか、または送信中であることを指示する。NANDゲート2458の出力はインバーター2452の入力に印加される。インバーター2452の出力はビット・カウンター2414及びラッチ2446をリセットするのに使用される。具体的には、インバーター2452の出力がビット・カウンター2414の6段すべてのCDN入力に印加される。カウンター2414の出力は026信号ラッチ2446の一方の入力にも印加される。NANDゲート2458の出力は後述するBCHコンピューターのリセットにも利用される。
【0796】
フリップフロップ2460及びNORゲート2463を含む回路を使用して送信機信号反転TXOFFを発生させる。この信号は後述する送信機制御回路と併用される。即ち、ビット・カウンター2414の第6段2440の反転Q出力が2入力NORゲート2462の一方の入力に印加され、他方の入力に反転TXON信号が印加される。反転TXON信号はアクチブ低状態で送信機がONであることを示す。NORゲート2462の出力はフリップフロップ2460のD入力に印加される。フリップフロップ2460はフレーム信号FRAMEによってクロック制御される。反転TXOFF信号はフリップフロップ2460のQN出力において得られる。このフリップフロップ2460はそのCDN入力に印加されるINITX信号によってリセットされる。
【0797】
INCOMシフトレジスター
INCOMメッセージの送受信には32段直列シフトレジスター2462が使用される。このシフトレジスター2462は図1091,110に示すようにフリップフロップ2464−2514を含む。シフトレジスター2462の各段はメッセージ・ローディング用のLOAD信号によって選択される2つの入力を受信する。即ち、すでに述べたように、マイクロプロセッサー30とICC29との通信を可能にする送信データ母線TDATA[26...0]がシフトレジスター2462各段のDA入力と接続する。受信メッセージ復調出力ビットDEMODATがシフトレジスター2462の第1段2464のDB入力に印加され、次いで受信メッセージがシフトレジスター2462中をシフトする。受信データ母線RDATA[26...0]が各段のQ出力と接続する。RDATA[26...0]母線により、復調された入りメッセージをマイクロプロセッサー30へ伝送することができる。
【0798】
各段の選択入力SAに反転LOAD信号が印加されて、シフトレジスター2462による受信メッセージまたは送信メッセージの選択を可能にする。LOAD信号は並列インバーター2516,2518から出力され、インバーター2520の出力が前記並列インバーター2516,2518の入力と接続する。図116に関連して後述するLOAD信号がインバーター2520の入力に印加される。反転LOAD信号は並列インバーター2516,2518から出力される。
【0799】
図117に関連して後述するシフトレジスター・クロック信号SRCKがシフトレジスター2462の各段のクロック入力に印加される。SRCK信号は並列インバーター2520,2522から出力される。並列インバーター2520,2522への入力は反転SRCK信号である。
【0800】
応答メッセージの状態ビットである第1段2464及び第2段2466を除く残りの段2468−2514はシステムのリセットと同時に0にセットされる。具体的には、並列インバーター2524,2526から出力される反転IRESET信号が第3−32段のCDNリセット入力に印加される。インバーター2524,2526への入力は一括してインバーター2528の出力と接続する。インバーター2528の入力はインバーター2530の出力と接続し、インバーター2530の入力に反転IRESET信号が印加される。
【0801】
応答メッセージ状態ビットは内部応答状態ビットRSB[26,25]母線から得られる。この状態ビットはICMOメッセージ・レジスターの一部を形成するフリップフロップ2030,2032のQ出力において形成され、それぞれのビット定義は表21に示した通りである。状態ビットRSB[26,25]は第1及び第2段フリップフロップ2464,2466のセット入力SDNまたはリセット入力CDNに印加される。具体的には、ビットRSB[26,25]は応答メッセージが作成中であることを示すSTSLD信号と共に2入力NANDゲート2532,2534の入力に印加される。NANDゲート2532,2534の出力はシフトレジスターの第1段及び第2段フリップフロップ2464,2466の選択入力SDNに印加されてこれらのフリップフロップへ1をシフトする。これらの応答状態ビットRSB[26,25]はインバーター2536,2538の入力にも印加される。これらインバーターの出力はSTSLD信号と共に2入力NANDゲート2540,2542に印加される。NANDゲート2540,2542の出力がフリップフロップ2464,2466のリセット入力CDNに印加されてこれらのフリップフロップを0にセットする。
【0802】
ICC制御ロジック
ICC29の制御ロジックを図111にブロックダイヤグラムで示した。この制御ロジックは図112に示す送信機制御論理回路2516、図55に示すBCHコンピューター2518、図114,115に示すアドレス/指令デコーダー・ロジック2520、及び図116,117に示す制御/状態ロジック2522を含む。
【0803】
まず送信機制御ロジック2516を説明すると、ICC29送信機出力は信号TXOUTである。この信号は出力が外部ピンTXと接続しているトライステート・デバイス2524(図92)に印加される。TXOUT信号はNORゲート2526(図112)から出力される。ICC29がマスター・モードで動作している時はいつでも送信できる。スレーブ・モードで動作している時は始動コントローラーが応答をリクエストした場合にだけ送信できる。スレーブ・モードではICC29はANDゲート2528(図117)の制御下にある。ANDゲート2528は2入力ANDゲートである。一方の入力はインターフェース割り込み許可信号反転ENAINTである。この信号は後述するアドレス/指令デコーダー2520から出力される。他方の入力はインバーター2530から出力されるスレーブ・モード信号である。インバーター2530への入力は指令ビットICCR[5]である。この指令ビットが論理0ならば、ICC29はスレーブ・モードとなる。ANDゲート2528の出力はNANDゲート2534,2536を含むインターフェース割り込み許可ラッチ2532の入力に印加される。ラッチ2532の出力は制御ビットICSR[6]であり、通信コントローラー29インターフェースが割り込み許可されたことを示す。ラッチ2532はフリップフロップ2533からENAB信号を出力されるためにも利用される。即ち、ラッチ2532の出力がフリップフロップ2533のD入力に印加される。信号ENABはこのフリップフロップのQ出力に形成される。インバーター2590から出力されるストローブ信号PHCKADがこのフリップフロップのクロック入力CPに印加される。
【0804】
インターフェース割り込み許可ラッチ2532は2入力ANDゲート2538によって割り込み禁止される。ANDゲート2538への一方の入力はリセット信号反転RESETであり、他方の入力はアドレス/指令デコーダー2520から出力されるインターフェース割り込み禁止信号DISINTである。応答不要の場合、DISINT信号はインターフェース割り込み許可ラッチ2532の作用を抑止する。
【0805】
マスター・モードにおいて、ICC29はいつでも送信できる。送信の開始は3入力NANDゲート2540(図116)によって制御される。送信指令を表わす指令ビットICCR[0]が第1の入力に、制御ビットICSR[6,5]が第2、第3の入力にそれぞれ印加される。制御ビットICSR[6]はインターフェースが割り込み許可されていることを示す。送信機がメッセージのスタート・ビット(例えば、2個の1)発生を可能にするためイナクチブ状態であれば制御ビットICSR[5]はアクチブ低状態である。具体的には、NANDゲート2540の出力がNANDゲート2544,2546を含むスタート・ビット・ラッチ2542に印加され、スタート・ビット・ラッチ2542の出力が1対のフリップフロップ2548,2550に印加されてスタート・ビットを発生させる。フリップフロップ2550の反転Q出力がメッセージ送信ANDゲート2552の一方の入力に印加される。他方の入力は後述するFAST STATUS ANDゲート2572と接続する。ANDゲート2552の出力はメッセージ送信信号反転TXMSGである。反転TXMSG信号はフリップフロップ2574(図112)のSDN入力に印加されてこのフリップフロップをスタート・ビット・インターバルの間1にセットする。フリップフロップ2574のD入力は接地されている。フリップフロップ2574はANDゲート2416(図99)から出力される送信機制御ストローブ信号DRCKによってストローブされる。
【0806】
2個のスタート・ビットが発生すると、ANDゲート2554はフリップフロップ2548,2550及びスタート・ビット・ラッチ2542をリセットする。ANDゲート2554は2入力ANDゲートである。一方の入力はフリップフロップ2550の出力と接続し、他方の入力には反転IRESET信号が印加されて、フリップフロップがシステムのリセットと同時に0にセットされることを可能にする。反転IRESET信号はインバーター2556から出力される。フリップフロップ2548,2550はビットごとにPHCK信号によってストローブされる。
【0807】
マスター・モードにおいてもスレーブ・モードにおいても、NANDゲート2560,2562を含む応答ラッチ2558がセットされる。応答ラッチ2558は2入力NORゲート2526の制御下にある。NORゲート2526への一方の入力には応答がリクエストされていることを示す反転REPLY信号が印加され、他方の入力には指令ビットISCR[5]が印加される。ラッチ2558の出力が2入力NANDゲート2564の一方の入力に印加され、NANDゲート2564への他方の入力はNANDゲート2568,2570を含む高速状態ラッチ2566である。NANDゲート2564の出力はストローブ信号PHCKDDと共に2入力NANDゲート2572の一方の入力に印加される。NANDゲート2572の出力はフリップフロップ2550の出力と共にNANDゲート2552に印加されてメッセージ送信信号反転TXMSGを発生させる。
【0808】
送信機制御論理回路2516は信号反転INITX及び反転TXONをも発生させる。具体的には、フリップフロップ2574のQ出力がインバーター2576に印加される。インバーター2576の出力は送信開始信号反転INITXである。この信号反転INITXは後述するBCHコンピューター2518と連携する。
【0809】
フリップフロップ2574の反転Q出力がNANDゲート2580,2582を含む送信機ラッチ2578に印加されて反転TXON信号を発生させる。送信機ラッチ2578は反転TXOFF信号によってリセットされる。この信号はフリップフロップ2460(図100)の反転Q出力において形成され、メッセージ・カウンターが32ビットをカウントしたことを指示する。送信機ラッチ2578の出力はインバーター2584の入力に印加される。インバーター2584の出力は反転TXON信号であり、アクチブ低状態で送信機がONであることを示す。この信号反転TXONは送信機がアクチブであることを示す制御ビットICSR[5]を発生させるのに使用される。具体的には、反転TXON信号はインバーター2586(図117)に印加され、インバーター2586の出力はフリップフロップ2588のD入力に印加される。フリップフロップ2588のQ出力は制御ビットICSR[5]である。フリップフロップ2588はインバーター2590から出力されるPHCKAD信号によってストローブされる。インバーター2590への入力はストローブ信号反転PHCKADである。
【0810】
フリップフロップ2588の反転Q出力はBUSY信号及びアクチブ低状態反転SR5信号の発生にも利用される。即ち、フリップフロップ2588の反転Q出力は2入力NANDゲートの一方の入力に印加され、他方の入力にはメッセージが受信中であることを示すRCVDET信号が印加される。NANDゲート2591の出力はBUSY信号である。
【0811】
送信機制御
種々の変調方法、即ち、ASK,FSK及びベースバンド変調方式を利用できる。フリップフロップ2574の反転Q出力を上述のフリップフロップ2592のSDN入力と接続することによりスタート・ビットがフリップフロップ2592へシフトされる。BCHコンピューター2518から出力される信号MODINがフリップフロップ2592のD入力に印加される。フリップフロップ2592はインバーター2412(図99)から出力されるBRCK信号によってストローブされる。フリップフロップ2592の反転Q出力で得られるベースバンド信号はMUX2594の入力に印加され、FSK変調器MUX2596にも印加される。具体的には、115.2kHz(FC)及び92.16kHz(FCA)信号がMUX2596の入力に印加される。FSK変調方式ではフリップフロップ2592の反転Q出力がMUX2596の選択入力Sに印加されて115.2kHzと92.16kHzの間でシフトさせる。MUX2596の出力がインバーター2598に印加され、インバーター2598の出力がMUX2594のFSK入力となる。フリップフロップ2592のQ出力が2入力NANDゲート2600の一方の入力に印加され、搬送波信号FCと共にASK変調に使用される。ASK変調器2600の出力はMUX2594の他方の入力に印加される。制御ビットICAH[5,4]がMUX2594の選択入力S1及びS0に印加されてASK,FSKまたはベースバンドを選択する。MUX2594の出力はメッセージ間隔発生器ラッチ2602出力と共にORゲート2526に印加される。メッセージ間隔ラッチ2602はNANDゲート2604,2606を含み、メッセージ間にゼロを挿入する。メッセージ間隔ラッチ2602の出力はORゲート2526の他方の入力に印加される。ORゲート2526の出力はTXOUT信号である。
【0812】
メッセージ間隔ラッチ2602は2入力NANDゲート2604の制御下にある。NANDゲート2604の一方の入力にはカウント信号BRCKが印加される。他方の入力はフリップフロップ2574のQ出力である。従って、送信が開始されると、BRCK信号が送信を計時し、メッセージのあとにゼロを発生させる。
【0813】
制御/状態ロジック
制御/状態論理回路2522によって種々の制御/状態信号が形成される。制御ビットICSR[7...5]についてはすでに述べた。状態ビットICSR[4...0]は図78に示す回路から得られる。
【0814】
状態ビットICSR[0]は受信機(RX)がオーバラン状態であることを示す。この状態ビットはフリップフロップ2620、NANDゲート2622,2624、及びインバーター2626,2628,2630,2632を含む回路から発生する。命令デコーダー2520から出力される受信信号反転RCVがインバーター2626,2628を介してフリップフロップ2620のクロック入力CPに印加され、フリップフロップ2620の反転Q出力がNANDゲート2622を介して状態ビットICSR[2]とNAND演算され、フリップフロップ2620のD入力に印加される。新しいメッセージがメッセージ・レジスターにロードされようとしている時にメッセージ・レジスターが解除されていなければ(ICSR[2]=1)、ビットICSR[0]がセットされる。この状態ビットはシステムのリセットまたはICCR[1]への書き込み=1によって払われる。具体的には、リセットはNANDゲート2624の制御下にある。NANDゲート2624は2入力NANDゲートであり、一方の入力はインバーター2630を介して印加されるビットICCR[1]、他方の入力はインバーター2636から出力される反転IRESET信号である。NANDゲート2624の出力はインバーター2632を介してフリップフロップ2620のリセット入力CDNに印加される。
【0815】
反転RCV信号はメッセージ・レジスター受信バッファ・ストローブ信号SRTOMRの発生にも利用される。この信号はフリップフロップ2634の反転Q出力と共にANDゲート2638に印加され、受信動作が未完了であることを指示する。
【0816】
ビットICSR[1]はエラーを含むメッセージが受信されるとセットされるBCHエラーを示す。このビットはフリップフロップ2640、ORゲート2642及びインバーター2644を含む回路によって形成される。エラーを示す反転BCHOK信号はインバーター2644から出力される。この信号はフリップフロップ2640のQ出力と共にORゲート2642の一方の入力に印加される。フリップフロップ2640は反転RCV信号によってクロック制御される。フリップフロップ2640はフリップフロップ2620と同様にリセットされる。
【0817】
ビットICSR[2]は受信メッセージが受信メッセージ・バッファにロードされたことを示す。このビットはフリップフロップ2634から出力される。このフリップフロップのD入力は接地されている。フリップフロップ2634は反転RCV信号によってクロック制御され、フリップフロップ2620,2640と同様にリセットされる。
【0818】
ビットICSR[3]はメッセージ送信完了を指示する。このビットを発生させるための回路はフリップフロップ2644、送信機ラッチ2646を含み、送信機ラッチ2646はNANDゲート2648,2650及びANDゲート2652を含む。送信機ラッチ2646の出力はフリップフロップ2644のD入力に印加される。このラッチ2646は送信機がアクチブ状態である間ラッチされる。具体的には、インバーター2654から出力されるTXOFF信号がフリップフロップ2644のクロック入力に印加される。TXOFF信号はアクチブ高状態にあり、送信機がOFFであることを指示する。メッセージ・スタート・ビットが発生するとフリップフロップ2660の反転Q出力は低状態となる。即ち、TXOFF信号が高状態になるとメッセージ終了と共にビットがセットされ、送信機がOFFであることを示す。
【0819】
リセットと同時にビットICSR[3]はANDゲート2652によって払われる。このゲートの一方の入力に反転IRESET信号が印加される。ビットはICCR[2]に1を書き込むことによってもリセットすることができる。ICCR[2]信号はインバーター2654から出力される。NANDゲート2540からの出力は他方の入力にも印加されて、新しい送信が始まるとフリップフロップ2644をリセットする。
【0820】
高速状態メッセージ送信が完了するとビットICSR[4]がセットされる。このビットを発生させる回路はフリップフロップ2656及びラッチ2658を含み、ラッチ2658はNANDゲート2660,2662、及びANDゲート2566を含む。ラッチ2658は高速状態割り込み許可ラッチ2566によってセットされる。高速状態割り込み許可ラッチ2566は3入力ORゲート2665の制御下にある。マスター・モードを示す指令ビットICCR[5]が第1の入力に印加され、インバーター2567から出力され、高速状態割り込み許可を示すビットICCR[6]が第2の入力に印加され、信号反転FASTが第3の入力に印加される。反転FAST信号は入りメッセージで高速状態応答メッセージがリクエストされたことを示す。高速状態割り込み許可ラッチはインバーター2669から出力されるストローブ信号反転PCKADによってストローブされる。
【0821】
ラッチ2658の出力はフリップフロップ2656のD入力に印加される。高速状態割り込み許可ラッチ2566がセットされて送信機がOFFになると、TXOFF信号がクロック入力CPに印加されてこのビットをセットする。状態ビットICSR[4]がセットされたのち、フリップフロップ2656の反転Q出力がラッチ2658の入力にフリップフロップ2656の反転Q出力が印加されてこれをリセットする。
【0822】
このビットのリセットは2入力ANDゲート2664の制御下にある。ANDゲート2664の一方の入力に反転IRESET信号が印加される。このビットはICCR[3]に書き込むことによってもリセットできる。ビットICCR[3]はインバーター2666から出力される。
【0823】
ANDゲート2670から割り込み信号INTが出力される。セットされると、このビットは送受信動作中の割り込みを許可する。具体的には、ANDゲート2670の一方の入力に割り込み許可を示すビットICCR[7]が印加され、他方の入力にNANDゲート2672の出力が印加される。NANDゲート2672は3入力NANDゲートであり、それぞれの入力にフリップフロップ2634,2644,2656からの反転Q出力が印加されて送受信動作中の割り込みを許可する。
【0824】
シフトレジスター2462にメッセージをロードするのに使用されるLOAD信号はNANDゲート2574から出力される。NANDゲート2574は2入力NANDゲートであり、一方の入力は高速状態割り込み許可ラッチ2566と、他方の入力はメッセージ・スタート・ビットが発生したことを示すフリップフロップ2550とそれぞれ接続する。
【0825】
信号STSLDはANDゲート2532,2534(図109)の割り込みを許可する信号である。この信号は状態ビット・ロード信号であり、シフトレジスター2462の最初の2段2464,2466への状態ビットのローディングを可能にする。この信号はインバーター2572から出力される。前に述べたNORゲート2526の出力がインバーター2672の入力に印加される。
【0826】
シフトレジスター2462をストローブするための反転SRCK信号はANDゲート2674、NANDゲート2676,2678、及びインバーター2680(図117)を含む回路によって形成される。NANDゲート2676,2678の出力はANDゲート2674の入力に印加される。インバーター2680から出力される信号反転026はビット・カウンター2414が未だ26ビットをカウントしていないことを示し、この信号はビット伝送速度クロック信号BRCK及び反転INITX信号と共にNANDゲート2676の一方の入力に印加される。ストローブ信号PHCKCD及びLOAD信号がNANDゲート2678の入力に印加される。
【0827】
BCHコンピューター
BCHコンピューター2518は図113に示した通りであり、最初の27メッセージ・ビットに基づいて5ビット・エラー・コードを計算する。BCHコンピューター2518はフリップフロップ2676,2678,2680,2682,2684、及び排他的ORゲート2686を含む5段シフトレジスター2674として構成されている。
【0828】
メッセージ受信モードにおいては、復調ビットDEMODATはシフトレジスター2462にロードされるのと同時に受信/送信MUX2686に印加される。MUX2686への入力信号はMUX2686の選択入力Sに印加される反転TXON信号によって選択される。
【0829】
26番目のメッセージ・ビットが受信される前に、ANDゲート2690、インバーター2692及びORゲート2694を含む回路が排他的ORゲート2688に復調メッセージ・ビットDEMODATを印加する。具体的には、026信号がインバーター2692に印加され、インバーター2692の出力がANDゲート2690の一方の入力に印加され、復調メッセージ・ビットDEMODATが他方の入力に印加される。ANDゲート2690の出力がNORゲート2694の出力と共に排他的ORゲート2688の入力に印加されて、最初の26メッセージ・ビットがシフトレジスター2674にシフトされてエラー・コードの形成を可能にする。最初26メッセージ・ビットが受信されたら、シフトレジスターに記憶されているエラー・コードがNORゲート2694の制御下にシフトアウトされる。NORゲート2694は2入力NORゲートであり、一方の入力に026信号が印加され、他方の入力にシフトレジスター2674の最終段2684からの反転Q信号が印加される。
【0830】
排他的ORゲート2696を介してエラー・コードが受信メッセージ中のエラー・コードと比較される。排他的ORゲート2696の出力は2入力NANDゲート2698に印加される。NANDゲート2698の出力は26メッセージ・ビットの受信後DA入力を選択するフリップフロップ2700のDA入力に印加され、エラー・コードが一致すればBCHOK信号を発生させる。BCHOK信号はANDゲート2698への入力としてフィードバックされる。エラー・コードが計算されている間、フリップフロップ2700のQ出力をDB入力に接続することによって選考のBCKOK信号がラッチされる。
【0831】
BCHシフト・レジスター2674はNANDゲート2702及びインバーター2704を含む回路から出力されるBCHクロック信号BCHCLKによってクロック制御される。具体的には、ビット伝送速度クロック信号BRCKが反転INITXと共にNANDゲート2702の入力に印加される。NANDゲート2702の出力はインバーター2704の入力に印加される。BCHCLK信号はインバーター2704から出力される。
【0832】
BCHシフトレジスター2674はインバーター2706から出力される反転BCHCLR信号によって払われる。このインバーター2706への入力はNANDゲート2458(図100)から出力されるBCHCLR信号であり、メッセージが受信されたことを示す。フリップフロップ2700は2入力ANDゲート2708の制御下に払われる。ANDゲート2708への一方の入力は送信機がOFFであることを示す反転TXON信号であり、他方の入力はBCHCLR信号である。
【0833】
応答メッセージのBCHエラー・コードを計算する必要もある。そこで、メッセージ・シフトレジスター2462のTXD出力がMUX2686に印加される。この入力はメッセージの送信中、反転TXON信号によって選択される。メッセージ・ビットがシフトレジスター2674にシフトされてBCHエラー・コードを発生させる。メッセージ・ビットはMUX2708にも印加されて、送信機(図112)に印加されるMODIN信号を発生させる。26メッセージ・ビット後、信号026がMUX2708の他方の入力を選択してエラー・コードがメッセージの末尾に加えられることを可能にする。
【0834】
アドレス指令デコーダー
図114にアドレス指令デコーダー2520を示した。ICAH[3...0]及びICAL[7...0]レジスターに記憶されているINCOMアドレスが排他的ORゲート2710,2712,2714,2716,2718,2720,2722,2724,2726,2728,2730,2732;NORゲート2734,2736,2738;及びNANDゲート2740,2742,2744を介して受信データ母線RDATA[22...11]で受信されたアドレスと比較され、もし受信アドレスがICAH及びICALレジスター中のアドレスと一致するとADDROK信号を発生させる。
【0835】
ビットB22−B19のアドレス・ビット比較がNORゲート2734に印加され、ビットB18−B15のアドレス・ビット比較がNORゲート2736に印加され、ビットB14−B11のアドレス・ビット比較がNORゲート2738に印加される。
【0836】
ビット比較のためNORゲート2734,2736の出力がインバーターから出力されるBLOCK信号と共にNANDゲート2240に印加される。BLOCK命令が使用される場合、下位4ビットB11−B14は無視される。NANDゲート2740の出力はNANDゲート2744の一方の入力に印加される。
【0837】
BLOCK命令が使用されない場合、NANDゲート2742はNORゲート2734,2736,2738から入力を受信し、アドレス・ビットB22−B11すべてについてアドレス比較を出力する。NANDゲート2744はUNIVアドレス信号によっても制御される。この信号はネットワークのすべてのデバイスがメッセージを受信することを可能にする。
【0838】
指令フィールドB10−B7はインターフェース割り込み許可制御メッセージ中の指令を定義するのに使用される。このビットB10−B7は4入力NORゲート2748によって復号される。サブコマンド・フィールドIはインターフェース割り込み制御メッセージ中のサブコマンドを定義する。これらのビットはNORゲート2750によって復号される。NORゲート2748,2750の出力はANDゲート2767に印加され、ANDゲート2762の出力は指令信号CMNDである。
【0839】
メッセージ受信信号RCVの発生に使用されるメッセージ受信ストローブ信号RCVMSGSTBはフリップフロップ2754、ANDゲート2756、NORゲート2758、インバーター2760を含む回路によって形成される。反転TXON信号とメッセージ終了信号ENDMSGがANDゲートによってAND演算され、フリップフロップのD入力に印加されて、メッセージが受信され、送信機がONでないことを指示する。インバーター270から出力される反転BRCK信号で前記信号がフリップフロップへシフトされる。
【0840】
フリップフロップ2754はNORゲート2758によってリセットされる。ストローブ信号PHCKCDがNORゲート2758の一方の入力に印加され、RESET信号が他方の入力に印加されて、システムのリセットと同時に、且つストローブ信号PHCKCDによってRCVMSGSTBをリセットする。
【0841】
命令デコーダー
図115に命令デコーダー回路2760を示した。命令フィールドはメッセージ・ビットB6−B3から成る。メッセージ・ビットB2はメッセージ・ビットの意味を定義する。これらのビットはインバーター2762−2780;NANDゲート2782−2810;ANDゲート2812,2814,2816;及び排他的ORゲート2818,2820を含むデコーダー回路に印加される。
【0842】
命令フィールドB6−B2の定義を制御ビットと共に表20に示した。これらのビットは直列インバーター2764,2768,2772,2776とそれぞれ接続するインバーター2762,2766,2770,2774に印加される。インバーター2762−2780からの出力信号は種々のNANDゲート、ANDゲート及び排他的ORゲートに印加され、ANDゲート2812、NANDゲート2782,2783,2786,2788,2804,2810からそれぞれ出力される信号反転RCV,反転FAST,反転DISINT,反転ENAINT,反転REPLY,反転BLOCK,反転UNIVを発生させる。これらの信号はすべてアクチブ低レベルである。
【0843】
さらに具体的に説明すると、4入力NANDゲート2810から反転UNIVアドレス型命令が出力される。ビットB6,B5,B2が排他的ORゲート2820の出力と共にNANDゲート2810に印加される。ビットB3及びB4が排他的ORゲート2820によって比較される。B2は制御ビットであり、命令の復号には論理1となる。ビットB5及びB6はいずれも命令$C,$D,$E,$F(表20)では論理1となる。命令$1,$2,$5,$6,$9,$A,$D,$Eでは排他的ORゲート2820が論理1を出力する。したがって、NANDゲート2810の出力が命令$6,$D,$Eでは低レベルとなる。
【0844】
NANDゲート2804から反転BLOCKアドレス型命令が出力される。ビットB5,反転B4及びB2はNANDゲート2804の入力に印加される。NANDゲート2804の出力にアクチブ低信号を形成するにはこれらのビットが論理1でなければならないから、回路のこの部分はNANDゲート2808の出力が論理1である限り、命令$4,$5,$C及び$Dを復号する。ビットB3はNANDゲート2808の一方の入力に印加される。他方の入力にはNANDゲート2806の出力が印加される。命令$4,$5,$B,$Cではビット反転B6及びB3がNANDゲート2806の入力に印加されてNANDゲート2806から論理1を、NANDゲート2808から論理1をそれぞれ出力させることによって反転BLOCK信号を発生させる。
【0845】
REPLY,反転ENAINT,反転DISINT,反転FAST及び反転RCF信号はすべて3入力ANDゲート2814によって割り込み許可される。RCVMSGTB,BCHOK及び制御ビットB2信号がAND演算されて許可信号DECODEを形成し、正しいメッセージが受信されたことを指示する。ANDゲート2814の出力はNANDゲート2782,2874,2786,2788,2792の入力に印加される。
【0846】
NANDゲート2788から反転REPLY信号が出力される。NANDゲート2788にはインバーター2828から出力される制御ビット反転CR5も印加されてICC29がマスター・モードかどうかを指示すると共に、ADDROK信号、ビット6、NANDゲート2802の出力も印加される。もし正しいアドレスが復号され、ICC29がスレーブ・モードであれば、ビットB6=1の場合、反転REPLY信号が発生する。ビットB6=1となるのは命令$8,$9,$A,$B,$C,$D,$E,$F、NANDゲート2802の出力=1の場合である。NANDゲート2802への入力はNANDゲート2709,2800からの出力である。NANDゲート2798,2800,2802及び排他的ORゲート2818を含む回路は命令$8,$9,$A,$FではNANDゲート2788に1を入力する。
【0847】
NANDゲート2786から反転ENAINT信号が出力される。DECODE信号のほか、ADDROK,ビットB3,B4,反転B5,反転B6がその入力に印加されて命令$3のための反転ENAINT信号を発生させる。
【0848】
反転DISINT信号はNANDゲート2784から出力され、命令$2を復号する。NANDゲート2784への一方の入力はDECODE信号であり、他方の入力はNANDゲート2794の出力である。NANDゲート2794は2入力NANDゲートであり、一方の入力にはADDROK信号が、他方の入力にはNANDゲート2796の出力がそれぞれ印加される。NANDゲート2796の入力には反転CR5、ADDROK及びビットB5,B4,B3が印加される。
【0849】
NANDゲート2782から反転FAST信号が出力される。制御ビットB2がセットされ、$3の命令フィールドが復号され、0の共通フィールドCMDOが存在すれば、反転FAST信号が発生する。CMDO及びDECODE信号とビットB2,B3,反転B5,反転B6がNANDゲート2782の入力に印加されて反転FAST信号を発生させる。
【0850】
ANDゲート2812から反転RCV信号が出力され、このANDゲート2812にはNANDゲート2790,2792の出力が入力される。NANDゲート2790は2入力NANDゲートである。インターフェース割り込み許可命令を含むメッセージが受信されると、その入力に信号RCVMSGTB及びENABが印加されてこのアクチブ低信号を発生させる。その他の状態では、信号反転RCVは2入力NANDゲート2792の制御下にある。このような状態下でアクチブ低反転RCV信号を発生させるためには、CMD,DECODE,B2,B3,反転B5,反転B6をNANDゲート2782の入力に印加して反転FAST信号を発生させる。
【0851】
反転RCV信号はANDゲート2812から出力される。ANDゲート2812の入力にはNANDゲート2790,2792の出力が印加される。NANDゲート2790は2入力NANDゲートである。インターフェース割り込み許可命令を含むメッセージが受信されるとその入力に信号RCVMSGTB及びENABが印加されてこのアクチブ低信号を発生させる。その他の状態では、信号反転RCVは2入力NANDゲート2792の制御下にある。このような状態下でアクチブ低反転RCVを発生させるためにはNANDゲート2792の出力が低レベルでなければならず、そのためには入力が共に高レベルでなければならない。NANDゲート2792への入力はそれぞれANDゲート2814,2816からの出力である。ANDゲート2814の出力は正しいメッセージが受信され、制御ビットB2がセットされていることを示すDECODE信号である。ANDゲート2816は2入力ANDゲートであり、その入力にはENAB及びADDROK信号が印加される。ICC29がアドレスされ、メッセージがインターフェース割り込み許可命令と共に受信されるとANDゲート2792は高出力を形成する。
【0852】
IC10概説
図示の実施例ではIC10が80ピン・カッド・プラスチック・フラット・パッケージ(QPFP)、即ち、ガルウィング形の表面取り付け式パッケージに収納されている。IC10はCMOS技術を利用して製造され、アナログ機能にCMOSを利用した場合の欠点を克服するように構成されたハイブリッド・デバイスである。種々の定格、作用条件及びdc特性をAppendix Aに記載した。
【0853】
IC10の詳細なピン割り当てを図82に示した。二重機能を有するピンがあり、例えば、詳しくは後述するように構成に応じて同一のピンが異なる機能を果たす。
【0854】
図120に示した各ピンについて信号定義を以下に要約する。ピンの一覧は表22に示した。
【0855】
【表22】
Figure 0003710831
PA7...PA0:ポートA−KORERA8つの双向ポートピンは入力または出力としてソフトウェアによって個別にプログラムすることができる。
【0856】
PB7...PB0:ポートB−これら8つの双向性ポートピンはIC10の動作モードに応じて多様な機能を持つ。シングルチップ・モードでは、ソフトウェアによって入力または出力として個別にプログラムすることができる。拡張、エミュレーションまたはテスト・モードでは、これらのポートピンは上位アドレス母線を含む。
【0857】
PC7...PC0:ポートC−これら8つの双向性ポートピンはソフトウェアによって入力または出力として個別にプログラムすることができる。下位4ピンは4つのコンパレーター出力の論理ORとなるように構成することもできる。
【0858】
PD7...PD0:ポートD−これら8つの双向性ポートピンはIC10の動作モードに応じて多様な機能を持つ。シングルチップ・モードでは、ソフトウェアによって入力または出力として個別にプログラムすることができる。拡張、エミュレーションまたはテスト・モードでは、この8つの双向性ポートピンが多重データ/アドレス母線と形成する。PH2が肯定されたとき、これらのピンは出力であり、アドレスの最下位8ビットを含む。PH2が否定された時、これらのピンは双向性であり、読み取りまたは書き込みデータを含む。
【0859】
EXPN−この低−真信号は抗張動作モードを可能にする。シングルチップ・モードはEXPNをVDDと接続することが可能になる。この入力はRESNが電気的低レベルから電気的高レベルに変化するとサンプリングされる。IC10の動作モードはデバイスがリセット状態を脱する時に決定される。表1に種々の動作モードに対応するピン入力レベルを示す。
【0860】
PH2−この出力ピンの機能はIC10の動作モードに応じて異なる。シングルチップ及びセルフテスト・モードでは低レベルのままであり、その他のモードではプロセッサーの位相2クロックである。位相2は発振器の1/2出力であり、OSC2の立ち下がりエッジにおいて変化する。表2は種々の動作モードに対応するPH2の出力を示す。
【0861】
REN−この出力ピンの機能はIC10の動作モードに応じて異なる。
【0862】
□シングルチップ及びセルフテスト・モードは診断ピンとして使用される。$4000−$7FFFの内部読み取り動作中を除いて高レベルのままとなる。
【0863】
□拡張モードではアドレス範囲$4000−$7FFFにマップされた外部メモリー・デバイスのための書き込みストローブとして使用される。低レベル時には、メモリー・デバイスはポートDピンからデータをストローブすることができる。
【0864】
□エミュレーション及びテスト・モードでは、プロセッサーの内部Eクロック信号となる。EクロックはPH2から90°遅延する。
【0865】
表2は種々の動作モードに対応するRENの出力を示している。
【0866】
WEN−この出力ピンの機能はIC10の動作モードに応じて異なる。
【0867】
□シングルチップ及びセルフテスト・モードでは診断ピンとして使用される。$4000−$7FFFの内部読み取り動作中を除いて高レベルのままとなる。
【0868】
□拡張モードではアドレス範囲$4000−$7FFFにマップされた外部メモリー・デバイスのための書き込みストローブとして使用される。
【0869】
低レベル時には、メモリー・デバイスがポートDからデータをストローブできる。
【0870】
□エミュレーション及びテスト・モードでは、プロセッサーの内部Eクロック信号となる。EクロックはPH2から90°遅延する。
【0871】
表2は種々の動作モードに対応するWENの出力を示す。
【0872】
PSEN−この出力ピンの機能はIC10の動作モードに応じて異なる。
【0873】
□シングルチップ及びセルフテスト・モードでは診断ピンとして使用される。$8000−$EEFFの内部読み取り動作中を除いて高レベルのままとなる。
【0874】
□拡張モードではアドレス範囲$8000−$EEFFにマップされた外部読み取り専用メモリー・デバイスのための読み取りストローブとして使用される。低レベル時にメモリー・デバイスは読み取りデータをポートDピンに送出しなければならない。
【0875】
□エミュレーション及びテスト・モードでは、プロセッサーの内部LIR信号となる。このピンはプロセッサーが外部データ母線から命令を読み取り中であることを指示する。高レベルなら、命令レジスターがロード中であることを指示する。
【0876】
表2は種々の動作モードに対応するPSENの出力を示す。
【0877】
ALE−この出力ピンの機能はIC10の動作モードに応じて異なる。
【0878】
□シングルチップ及びセルフテスト・モードでは低レベルのままでる。
【0879】
□その他のモードではポートAに存在するアドレスの最下位8ビットをラッチするのに使用される。表2は種々の動作モードに対応するALEの出力を示す。
【0880】
TX−このデジタル出力はICCサブシステムからの送信機出力である。
【0881】
RX−このデジタル・シュミット入力はICCサブシステムへの受信機入力である。
【0882】
BUSYN−この低−真デジタル出力はICCサブシステムからの使用中出力である。
【0883】
SCK−この双向ピンはSPIサブシステムのための直列クロックである。
【0884】
MISO−この双向ピンはSPIサブシステムのための“マスター・イン,シリアル・アウト”である。
【0885】
MOSI−この双向ピンはSPIサブシステムのための“マスター・アウト,シリアル・イン”である。
【0886】
SSN−この低−真入力ピンはSPIサブシステムのための“スレーブ選択”入力である。
【0887】
PWM−このデジタル出力はPWMサブシステムからのパルス幅変調出力である。
【0888】
TCMP−このデジタル出力はタイマー・プライマリー出力コンペアである。
【0889】
TCAP−このデジタル入力はタイマー入力捕捉信号である。
【0890】
IRQN−この低−真デジタル入力はマイクロコントローラーの非同期外部入力である。マスク・プログラマブル・オプションにより2つのトリガー方式を選択することができる。即ち、1)負エッジ感知トリガーのみ、または2)負エッジ感知トリガー及び低レベル感知トリガー。後者の場合、IRQNへのいずれか一方の型の入力が割り込みを発生させる。エッジトリガー・モードでは少なくとも125nsに亘って割り込みリクエストが存在しなければならない。
【0891】
もしレベル感知マスク・オプションが選択されると、IRQNピンは“ワイヤーOR”動作のためVDDの前に外部抵抗器を必要とする。
【0892】
IRQNピンはリセット中に+9Vを給電されるとIC10をテスト・モードにする。このモードはテスト専用であり、正規動作中は使用されない。
【0893】
RESN−この低−真入力はIC10を外部から初期設定することを可能にする。外部リセットを利用する場合、RESNは少なくとも1.5プロセッサー位相2サイクルに亘って低レベルのままでなければならない。RESNはシュミット受信回路によって受信される。
【0894】
BSENSE−このアナログ入力はB+コンパレーターへの非反転入力である。
【0895】
SDRIVE−このアナログ出力はB+コンパレーターの出力である。
【0896】
APOS,ANEG−これらのアナログ入力はコンパレーターの反転及び非反転入力である。
【0897】
AOUT−このアナログ出力はコンパレーター出力ピンである。多くの場合、このコンパレーターはICCサブシステムの入力受信回路として使用され、RXと接続する。
【0898】
MUX3...MUX0−これら4つのアナログ入力ピンはA/Dサブシステム入力の半分であり、電圧または電流モードで動作するように個別にプログラムできる。電圧モードでは高インピーダンス入力である。
【0899】
電流モードでは、アクチブ電源がデバイス・ピンからの電流を見掛けアース・レベルに維持する。電流モードにおいて選択されなかったピンはすべてデジタル・アースと接続する。
【0900】
MUX7...MUX4−この4つのアナログ入力ピンはA/Dサブシステム入力の残り半分である。電圧入力モードにおいてのみ動作できる。常に高インピーダンスの入力である。
【0901】
MXO−このアナログ出力は電流動作モードにおいてA/Dサブシステムによって使用される。このピンとアナログ・アースの間に挿入された外部抵抗器またはコンデンサーが選択された入力からの増倍されたミラー電流を電圧にA/D変換する。外部コンデンサーを採用する場合、内部増幅器を積分器として構成し、電流オートレンジングを抑止しなければならない。
【0902】
CP3...CP0−この4つの高インピーダンス・アナログ入力は4つのコンパレーターの反転入力である。
【0903】
これらのピンはテスト中種々のテスト・モードを選択する目的にも使用される。
【0904】
VADJ−このアナログ入力はアナログ基準電圧:VREFの調整に使用される。
【0905】
VREF−このアナログ出力は内部+2.5V基準である。基準バッファ増幅器の出力であり、外部基準トリム抵抗回路と接続しなければならない。
【0906】
AVDD−このピンは+5Vアナログ供給電圧である。外部抵抗器を使用して分路調整された電源を形成する。AVDDは約2V REFに調定される。
【0907】
AVSS−このピンはアナログ・アース基準である。
【0908】
OSC1−これは発振回路の入力である。
【0909】
OS2−このピンは水晶発振回路の出力であり、OS1入力の反転に相当する。
【0910】
VDD−これはデジタル+5V DC給電ピンである。
【0911】
VSS−これはデジタル負給電ピンであり、外部からAVSSピンと接続する。
【0912】
SHUNT−この出力ピンは、AVDDからの分流が給電される場合に高レベルとなる。
【0913】
【付録A】
下記仕様はVDD−5.0Vdc±10%、周囲温度TAが−40℃乃至+85℃という条件でEEPROM40メモリーに適用される。表A1に仕様を示す。
【0914】
【表23】
Figure 0003710831
【0915】
【付録B】
【0916】
【表24】
Figure 0003710831
【0917】
【表25】
Figure 0003710831
【0918】
【表26】
Figure 0003710831
【0919】
【付録C】
オートゼロ状態マシン
状態ダイヤグラム
図92はオートゼロ機能の状態ダイヤグラム図である。それぞれの円は動作状態を表わす。状態間の矢印は可能な転移及びこの転移に必要な条件を示す。表C−1は状態から状態への転移を表の形で示すものである。
【0920】
【表27】
Figure 0003710831
状態転移表
図93は許容し得る状態転移と共に状態割り当てを3ビットカルナー図で示す。
【0921】
転移表状態方程式
R0,R1,R2の論理方程式を以下の項で述べる。結果として得られる状態が論理1である状態について方程式を転移表に書き込む。たとえば、転移表の最初の行に書き込まねばならないのは状態S0から状態S1への転移によるR1の方程式だけである。
【0922】
下記記号が使用される:
! not演算子
* and演算子
+ or演算子
接尾h 高−真信号
接尾b 低−真信号
接尾d フリップフロップD入力信号
なお、*演算子は+演算子よりも優位である。
【0923】
R0dの状態方程式
状態S0 この状態にはいかなる項も不要。
【0924】
状態S1 R0d=!R0h*R1h*!R2h*TIMOUTh*VAMPb*FULLb
状態S2 この状態にはいかなる項も不要。
【0925】
状態S3 この状態にはいかなる項も不要。
【0926】
状態S4 R0d=!R0h*!R1h*R2h
状態S5 R0d=!R0h*!R1h*R2h
状態S6 R0d=R0h*R1h*R2h
状態S7 この状態にはいかなる項も不要。
【0927】
R0の簡約状態方程式
カルノー図技術を利用してR0h,R1h,R2hだけを含む項を簡約し、簡約不能な項と組み合わせると下記のR0d方程式が得られる。
【0928】
R0d=!R0h*R1h*!R2h*TIMOUTh*VAMPb&FULLb+R0h*R2h
R1の状態方程式
状態S0 R1d=!R0h*!R1h*!R2h*STAZh*!ARBSYh
状態S1 R1d=!R0h*R1h*!R2h
状態S2 R1d=R0h*R1h*!R2h
状態S3 この状態にはいかなる項も不要。
【0929】
状態S4 この状態にはいかなる項も不要。
【0930】
状態S5 R1d=R0h&/!R1h*R2h*TIMOUTh*CAMPb*FULLb
状態S6 この状態にはいかなる項も不要。
【0931】
状態S7 この状態にはいかなる項も不要。
【0932】
R1の簡約状態方程式
Figure 0003710831
R2の状態方程式
状態S0 この状態にはいかなる項も不要。
【0933】
状態S1 R2d=!R0h*R1h*!R2h*TIMOUTh*(!VAMPb+!FULLb)
状態S2 この状態にはいかなる項も不要。
【0934】
状態S3 R2d=!R0h*R1h*R2h
状態S4 R2d=!R0h*!R1h*R2h
状態S5 R1d=R0h*!R1h*R2h(!TIMOUTh+TIMOUT*CAMPb*FULLb)
状態S6 R2d=R0h&R1h*R2h
状態S7 この状態にはいかなる項も不要。
【0935】
R2の簡約状態方程式
Figure 0003710831
出力方程式
!ZERRESb=!R0h*!R1h
SERCLKh=R0h*R1h
TIMREQh=!R0h*R1h*!R2h+R0h*!R1h*R2h
AZBSYh=!(!R0h*!R1h*!R2h)
EOAZh=R0h*!R1h*!R2h
CAZh=R0h*R2h+!R1h*R2h
VAZh=R1h*!R2h
CZCLKh=!CAZh
VZCLKh=!VAZh
【0936】
【付録D】
オートレンジ状態マシン
状態ダイヤグラム
図133はオートレンジ機能の状態ダイヤグラムである。それぞれの円は作用状態を表わす。状態間の矢印は許容される転移とこれに必要な条件を示す。表28は状態から状態への転移を表型式で示す。
【0937】
【表28】
Figure 0003710831
状態転移表
図134は状態割り当てを許容し得る状態転移と共に3ビットカルナー図で示す。
【0938】
転移表状態方程式
R0,R1,R2の論理方程式を下記の項に示す。
【0939】
R0の状態方程式
状態S0 この状態にはいかなる項も不要。
【0940】
状態S1 この状態にはいかなる項も不要。
【0941】
状態S2 R0d=!R0h*R1h*R2h*(TIMOUTh*ATORNGh*RANGEh+TIMOUTh*!ATORNGh)
状態S3 この状態にはいかなる項も不要。
【0942】
状態S4 R0d=R0h*R1h*R2h
状態S5 R0d=R0h*!R1h*R2h
状態S6 この状態にはいかなる項も不要。
【0943】
R0の簡約状態方程式
カルナー図技術を利用してR0h,R1h,R2hだけを含む項を簡約し、簡約できない項と組み合わせる下記のR0h方程式が得られる。
【0944】
Figure 0003710831
R1の状態方程式
状態S0 この状態にはいかなる項も不要。
【0945】
状態S1 R1d=!R0h*!R1h*R2h
状態S2 R1d=!R0h*R1h*!R2h
状態S3 R1d=!R0h*R1h*!R2h
状態S4 R1d=R0h*R1h*R2h*SOC3b
状態S5 この状態にはいかなる項も不要。
【0946】
状態S6 この状態にはいかなる項も不要。
【0947】
R1の簡約状態方程式
R1d=R0h*R1h*R2h*SOC3b+!R0h*R1h+R0h*R2
R2の状態方程式
状態S0 R2d=!R0h*!R1h*!R2h*!AZBSYh*STADCh
状態S1 R2d=!R0h*!R1h*R2h
状態S2 R2d=!R0h*R1h*R2h*(!TIMOUTh+TIMOUTh*ATORNGh*RANGEh)
状態S3 R2d=!R0h*R1h*!R2h
状態S4 R2d=R0h*R1h*R2h
状態S5 R2d=R0h*!R1h*R2h*!ANAEOCh
状態S6 この状態にはいかなる項も不要。
【0948】
R2の簡約状態方程式
R0h,R1h,R2hだけを含む項を簡約し、簡約不能の項と組み合わせると下記R2d方程式が得られる。
【0949】
Figure 0003710831
出力方程式
GRESh=!R0h*!R1h*R2h*!SMCLKh
GCLKh=!R0h*R1h*!R2h*!SMCLKh
TIMREQh=!R0h*R1h*R2h
ARBSYh=!(!R0h*!R1h*!R2h)
EOCh=R0h*!R1h*!R2h
ANASOCh=R0h*R1h*R2h
【0950】
【付録E】
IC10の応力定格を表E1に示す。表29の定格を超える応力はデバイスに恒久的な損傷を与える恐れがある。
【0951】
【表29】
Figure 0003710831
IC10の正規動作条件を表E2に示す。これはIC10の正規動作に適用される限界値である。
【0952】
【表30】
Figure 0003710831
IC10のDC特性を表31に示す。表31に示す特性は特に記載しない限り表23に示した作用温度及び電圧範囲に亘って有効である。
【0953】
【表31】
Figure 0003710831
【0954】
【付録F】
【0955】
【表32】
Figure 0003710831
【0956】
【表33】
Figure 0003710831

【図面の簡単な説明】
【図1】図1は、4.16kVラジアル配電系統の単線接続図である。
【図2】図2は、図1に示した配電系統に属する種々の過電流保護装置の整合を例示するグラフである。
【図3】図3は、過電流保護曲線を示す。
【図4】図4は、本発明の過電流引きはずし装置の保護曲線長遅延部分のI・t特性を示すグラフである。
【図5】図5は、図4と同様の、ただしI2・t特性を示すグラフである。
【図6】図6は、図4と同様の、ただしI4・t特性を示すグラフである。
【図7】図7は、オーバーラップを考慮した修正を加えられていない比較的広い長遅延及び短遅延調整範囲を有する本発明の過電流引きはずし装置の長遅延及び短遅延特性を示すグラフである。
【図8】図8は、図7と同様の、ただしオーバーラップを考慮した修正を加えられた長遅延及び短遅延部分を示すグラフである。
【図9】図9は、飽和状態にある変流器の出力電流波形を例示するグラフである。
【図10】図10は、過電流引きはずし装置の簡略図である。
【図11】図11は、過電流引きはずし装置の簡略図である。
【図12】図12は、過電流引きはずし装置の簡略図である。
【図13】図13は、過電流引きはずし装置の簡略図である。
【図14】図14は、過電流引きはずし装置の簡略図である。
【図15】図15は、過電流引きはずし装置の簡略図である。
【図16】図16は、過電流引きはずし装置の簡略図である。
【図17】図17は、過電流引きはずし装置の簡略図である。
【図18】図18は、過電流引きはずし装置の簡略図である。
【図19】図19は、過電流引きはずし装置の簡略図である。
【図20】図20は、過電流引きはずし装置の簡略図である。
【図21】図21は、過電流引きはずし装置の簡略図である。
【図22】図22は、過電流引きはずし装置の簡略図である。
【図23】図23は、過電流引きはずし装置の簡略図である。
【図24】図24は、過電流引きはずし装置に関するフローチャートである。
【図25】図25は、過電流引きはずし装置に関するフローチャートである。
【図26】図26は、過電流引きはずし装置に関するフローチャートである。
【図27】図27は、過電流引きはずし装置に関するフローチャートである。
【図28】図28は、過電流引きはずし装置に関するフローチャートである。
【図29】図29は、過電流引きはずし装置に関するフローチャートである。
【図30】図30は、過電流引きはずし装置に関するフローチャートである。
【図31】図31は、過電流引きはずし装置に関するフローチャートである。
【図32】図32は、過電流引きはずし装置に関するフローチャートである。
【図33】図33は、過電流引きはずし装置に関するフローチャートである。
【図34】図34は、過電流引きはずし装置に関するフローチャートである。
【図35】図35は、過電流引きはずし装置に関するフローチャートである。
【図36】図36は、過電流引きはずし装置に関するフローチャートである。
【図37】図37は、過電流引きはずし装置に関するフローチャートである。
【図38】図38は、過電流引きはずし装置に関するフローチャートである。
【図39】図39は、ICの機能図である。
【図40】図40は、ICの機能グロックダイヤグラムである。
【図41】図41は、ICにおけるアナログ部分の一部の機能ブロックダイヤグラムである。
【図42】図42(a)−図42(d)は、ICのための交番クロック発生回路を示す回路図である。
【図43】図43は、ICのメモリー・アドレス・マップである。
【図44】図44、ICの一部を形成する計算状態レジスターCFR及びACFRのフォーマットダイヤグラムである。
【図45】図45は、ICの一部を形成するEEPROM制御レジスターNVCRのフォーマットダイヤグラムである。
【図46】図46は、ICの一部を形成するデッドマン制御レジスターDMCのフォーマットダイヤグラムである。
【図47】図47は、ICの一部を形成するA/D変換インターフェース・レジスターADZ,AMZ,ADCR,AMUX,ACSF,AVSF及びADCのフォーマット・ダイヤグラムである。
【図48】図48は、ICの一部を形成するコンパレーター・モード制御レジスターCMPI及びCMPST、及びパルス幅変調出力制御レジスターPWMのフォーマットダイヤグラムである。
【図49】図49は、ICの一部を形成するプログラマブル・タイマーのブロックダイヤグラムである。
【図50】図50(a)−図50(d)は、図49に示したタイマーのタイミングダイヤグラムである。
【図51】図51は、ICの一部を形成するプログラマブル・タイマー・レジスターTCRH,TCRL,TARH,TARL,TICH,TICL,TOCH,TOCL,TCR及びTSRのフォーマットダイヤグラムである。
【図52】図52は、単一マスター式直列周辺インターフェース(SPI)の回路図である。
【図53】図53は、多重マスターを有する典型的SPIの回路図である。
【図54】図54は、図53に示したSPIのためのクロック及びデータ・タイミングダイヤグラムである。
【図55】図55は、ICの一部を形成するSPCIインターフェース・レジスターSPD,SPSR及びSPCRのフォーマットダイヤグラムである。
【図56】図56は、ICの一部を形成するPortDインターフェース・レジスターPDC及びPDDのフォーマットダイヤグラムである。
【図57】図57は、ICの一部を形成するパラレルポートのブロックダイヤグラムである。
【図58】図58は、ICの一部を形成するPortBインターフェース・レジスターPBC及びPBDのフォーマットダイヤグラムである。
【図59】図59は、ICの一部を形成するPortCインターフェース・レジスターPCC及びPCDのフォーマットダイヤグラムである。
【図60】図60は、ICの一部を形成するPortAインターフェース・レジスターPAC及びPADのフォーマットダイヤグラムである。
【図61】図61は、ICの一部を形成する通信コントローラー・インターフェース・レジスターICAH,ICAL,ICM3,ICM2,ICM1,ICM0、ICSR及びICCRのフォーマットダイヤグラムである。
【図62】図62は、ICの一部を形成する通信コントローラーの制御メッセージ及びデータ・メッセージ・フォーマットダイヤグラムである。
【図63】図63は、ICのコンパレーター・サブシステム及びA/D入力サブシステムの総合ブロックダイヤグラムである。
【図64】図64は、カッドコンパレーター・サブシステムの概略図である。
【図65】図65は、コンパレーター制御レジスターCMPST及びCMPI、及び構成レジスターCFR用アドレス・デコード・ロジックの概略図である。
【図66】図66は、アナログ・サブシステムのブロックダイヤグラムである。
【図67】図67は、マイクロプロセッサー母線インターフェース・ロジックの概略図である。
【図68】図68は、マイクロプロセッサー母線インターフェース・レジスター用アドレス・デコード・ロジックの概略図である。
【図69】図69は、制御レジスター及び状態レジスターの概略図である。
【図70】図70は、ICのアナログ・デジタル制御ロジック部分のブロックダイヤグラムである。
【図71】図71は、アナログ制御ロジックのブロックダイヤグラムである。
【図72】図72は、電流マルチプレクサー(MUX)制御ロジックの概略図である。
【図73】図73は、電圧MUX制御ロジックの概略図である。
【図74】図74は、オートゼロ・レジスターの概略図である。
【図75】図75は、5マイクロセコンド・タイマーの概略図である。
【図76】図76は、オートゼロ制御ロジックの概略図である。
【図77】図77は、オートレンジ制御ロジックの概略図である。
【図78】図78は、オートレンジ・ステート・マシーンの概略図である。
【図79】図79は、アナログ回路の総合的ブロックダイヤグラムである。
【図80】図80は、入力MUXシステムの概略図である。
【図81】図81は、カッド・コンパレーター・システムのブロックダイヤグラムである。
【図82】図82は、バンドギャップ調整手段の概略図である。
【図83】図83Aは、分路調整手段、B+コンパレーター及び電力モニターの概略図である。図83Bは、ICと併用される外部コンディショニング回路及び電源回路を例示する概略図である。図83Cは、ICと併用される外部調整回路を例示する概略図である。
【図84】図84は、バイアス回路の概略図である。
【図85】図85は、他のバイアス回路の概略図である。
【図86】図86は、アナログ温度感知回路の概略図である。
【図87】図87は、電圧増幅器の範囲調整回路の概略図である。
【図88】図88は、電力ミラー及び増幅器の概略図である。
【図89】図89は、電流ミラーの概略図である。
【図90】図90は、オフセット修正回路の概略図である。
【図91】図91は、オートゼロ可能な電圧及び電流増幅器の概略図である。
【図92】図92は、ICの一部を形成する通信コントローラーのブロックダイヤグラムである。
【図93】図93は、通信コントローラーの一部を形成するデジタル復調器のブロックダイヤグラムである。
【図94】図94は、通信コントローラーの一部を形成するマスタークロック発生器の概略図である。
【図95】図95は、通信コントローラーの一部を形成するビット位相タイミング発生器の概略図である。
【図96】図96は、通信コントローラーの一部を形成する受信回路相関器の概略図である。
【図97】図97は、通信コントローラーの一部を形成する相関器カウンターの部分概略図である。
【図98】図98は、通信コントローラーの一部を形成する相関器カウンターの概略図の残り部分である。
【図99】図99は、通信コントローラーの一部を形成する復調器制御ロジックの概略図である。
【図100】図100は、通信コントローラーの一部を形成するビットカウンターの概略図である。
【図101】図101は、通信コントローラーの一部を形成する通信コントローラー用母線インターフェース論理回路の概略図である。
【図102】図102は、通信コントローラー母線インターフェース・レジスターのためのアドレス・デコード・ロジック回路の概略図である。
【図103】図103は、通信コントローラーの一部を形成するアドレス・レジスターの概略図である。
【図104】図104は、通信コントローラーの一部を形成するメッセージ・レジスターICM1の概略図である。
【図105】図105は、通信コントローラーの一部を形成するメッセージ・レジスターICM2の概略図である。
【図106】図106は、通信コントローラーの一部を形成するメッセージ・レジスターICM3の概略図である。
【図107】図107は、通信コントローラーの一部を形成するメッセージ・レジスターICMOの概略図である。
【図108】図108は、通信コントローラーの一部を形成する制御及び状態レジスターの概略図である。
【図109】図109は、通信コントローラーの一部を形成するシフトレジスターのビット26−19の概略図である。
【図110】図110は、図109に示したシフトレジスターのビット18−2の概略図である。
【図111】図111は、ICの一部を形成する通信コントローラー制御ロジックのブロックダイヤグラムである。
【図112】図112は、通信コントローラーの一部を形成する送信機制御論理回路の概略図である。
【図113】図113は、通信コントローラーの一部を形成するBCHコンピューターの概略図である。
【図114】図114は、通信コントローラーの一部を形成するアドレス・コンパレーター回路の概略図である。
【図115】図115は、通信コントローラーの一部を形成する命令デコーダー回路の概略図である。
【図116】図116は、通信コントローラーの一部を形成する制御及び状態論理回路の概略図である。
【図117】図117は、図116の継続図である。
【図118】図118は、通信コントローラーに利用される種々のストローブ信号のタイミングダイヤグラムである。
【図119】図119は、通信コントローラーに使用されるリセット信号のタイミングダイヤグラムである。
【図120】図120は、ICのピンアウトダイヤグラムである。
【図121】図121は、低温導線状態における電流/時間曲線を例示するグラフである。
【図122】図122は、高温導線状態における電流/時間曲線を例示するグラフである。
【図123】図123Aは、全動作サイクルに相当する時間に対してシミュレートされる導線温度曲線を、デジタル・モードを破線アナログ・モードを実践でそれぞれ表わして例示したグラフである。図123Bは、図123Aに示した動作サイクルに相当する時間に対して負荷電流曲線を例示するグラフである。図123Cは、導線冷却状態及び導線加熱状態の熱モデルを例示するグラフである。
【図124】図124は、過電流回路の回路図である。
【図125】図125Aは、経時的な温度上昇計算値に重ねてコンデンサーC1における電圧を単純化した曲線で示すグラフである。図125Bは、図125Aに示した曲線の拡大部分である。
【図126】図126は、過電流回路の一部を形成するコンデンサーC1の充電を示すフローチャートである。
【図127】図127は、コンデンサー電圧の詳細な曲線を示す図125Aと同様のグラフである。
【図128】図128は、SURE CHIP集積回路に給電されない状態における回路を示す概略図である。
【図129】図129は、図124に示した回路に関するフローチャートである。
【図130】図130は、オートゼロ機能の状態ダイヤグラム図である。
【図131】図131は、許容し得る状態転移と共に状態割り当てを3ビットカルナー図で示す。
【図132】図132は、オート・ゼロ状態遷移表である。
【図133】図133は、オートレンジ機能の状態ダイヤグラムである。
【図134】図134は、状態割り当てを許容し得る状態転移と共に3ビットカルナー図で示す。
【符号の説明】
10 IC
12 回路遮断器
14,16,18 変流器
19 コンディショニング回路
29 オンボード通信コントローラー
30 マイクロプロセッサー
31 パネルメーター
33 撚り2線式伝送線
35 ネットワーク・リンク
64 A/Dサブシステム

Claims (3)

  1. 配電系統に組み込む過電流引きはずし装置であって、
    遮断器を流れる電流の大きさを感知する感知手段と、
    感知手段に応答して、遮断器電流の大きさ及び流れる時間の選択可能な所定関数により決定される特性に従って引きはずし信号を出力する引きはずし信号出力手段とから成り、
    引きはずし信号出力手段は、配電系統に組み込まれる他の過電流引きはずし装置との協調性を高めるように、引きはずしが起こるまでの時間が長い長遅延部分の特性を、電流と時間の積(It)及び電流のn乗と時間の積(Int)を含むプログラムされた複数の関数のうちの任意のものから選択して形成するようになっており、
    引きはずし信号出力手段はさらに、遮断器電流が長遅延ピックアップ値を超えると起動され長遅延引きはずし時間値を有する長遅延タイマーと、遮断器電流が引きはずしが起こるまでの時間が短い短遅延ピックアップ値を超えると起動され短遅延引きはずし時間値を有する短遅延タイマーと、遮断器電流の大きさが短遅延ピックアップ値より小さい時は長遅延タイマーと短遅延タイマーとをモニターすることにより短遅延引きはずし時間値に到達する前に長遅延部分の特性に従って遮断器が引きはずされないようにする手段とを有することを特徴とする過電流引きはずし装置。
  2. プログラムされた複数の関数は、電流の2乗と時間の積(I2t)及び電流の4乗と時間の積(I4t)を含むことを特徴とする請求項1に記載の過電流引きはずし装置。
  3. プログラムされた複数の関数は、一定の勾配を有する対数目盛上で線形の関数を含み、引きはずし信号出力手段は前記一定の勾配を変化させる手段を含むことを特徴とする請求項1又は請求項2に記載の過電流引きはずし装置。
JP18903393A 1992-06-30 1993-06-30 過電流保護装置 Expired - Fee Related JP3710831B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90713192A 1992-06-30 1992-06-30
US907131 1992-06-30

Publications (2)

Publication Number Publication Date
JPH06296322A JPH06296322A (ja) 1994-10-21
JP3710831B2 true JP3710831B2 (ja) 2005-10-26

Family

ID=25423576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18903393A Expired - Fee Related JP3710831B2 (ja) 1992-06-30 1993-06-30 過電流保護装置

Country Status (4)

Country Link
EP (1) EP0577339B1 (ja)
JP (1) JP3710831B2 (ja)
CA (1) CA2099733C (ja)
DE (1) DE69326639T2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130100567A1 (en) * 2011-10-23 2013-04-25 Cyber Switching, Inc. Power distribution apparatus for separate electrical over current and short circuit protection
US8649147B2 (en) * 2011-12-13 2014-02-11 Eaton Corporation Trip unit communication adapter module employing communication protocol to communicate with different trip unit styles, and electrical switching apparatus and communication method employing the same
DE102014224173B4 (de) 2014-11-26 2023-08-10 Siemens Aktiengesellschaft Leistungsschalter
US10559952B2 (en) * 2017-08-11 2020-02-11 Infineon Technologies Ag Digital line protection
CN109534167B (zh) * 2018-12-08 2024-01-30 安徽柳工起重机有限公司 一种汽车起重机上装电气化控制系统
DE202019106325U1 (de) * 2019-11-13 2021-02-17 Wago Verwaltungsgesellschaft Mbh Reihenklemmenelement
CN112260224B (zh) * 2020-08-14 2024-01-12 浙江华云信息科技有限公司 一种适用于保测一体ct的过流保护装置及方法
CN114336498B (zh) * 2020-09-29 2024-03-19 中国移动通信集团设计院有限公司 直流断路器及直流断路系统
CN112255524B (zh) * 2020-12-06 2024-02-06 中车永济电机有限公司 一种电传动牵引系统的保护方法及检测装置
CN113346785B (zh) * 2021-04-30 2022-05-31 云南电网有限责任公司楚雄供电局 一种逆变器自适应误差补偿控制系统及方法
CN113555844B (zh) * 2021-07-09 2024-09-20 南方电网数字电网研究院有限公司 差动保护处理方法、装置、设备和存储介质
CN113742124B (zh) * 2021-08-25 2024-02-13 河南源网荷储电气研究院有限公司 一种基于can总线的智能io出口自检方法及其系统
CN114301028B (zh) * 2021-12-29 2023-09-29 视涯科技股份有限公司 一种过流保护电路及显示装置
CN114421447B (zh) * 2022-01-11 2024-05-10 深圳怡化电脑股份有限公司 负载保护方法、装置、计算机设备和存储介质
KR102687863B1 (ko) * 2022-05-30 2024-07-25 에이치디현대일렉트릭 주식회사 선박의 전력 분배 시스템의 보호 시스템 및 보호 방법
CN117895420B (zh) * 2024-03-14 2024-06-07 电子科技大学 一种用于回旋行波管功率模块的脉宽检测保护电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351013A (en) * 1980-04-15 1982-09-21 Westinghouse Electric Corp. Circuit interrupter with multiple display and parameter entry means
DE3247439A1 (de) * 1982-12-22 1984-07-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Digitalelektronischer ueberstromausloeser
US4685024A (en) * 1985-11-19 1987-08-04 General Electric Company Overcurrent circuit interrupter using RMS sampling
US4866557A (en) * 1987-01-28 1989-09-12 James Fitts Low level voltage programmable logic control

Also Published As

Publication number Publication date
CA2099733C (en) 2003-04-08
DE69326639T2 (de) 2000-06-08
DE69326639D1 (de) 1999-11-11
JPH06296322A (ja) 1994-10-21
EP0577339B1 (en) 1999-10-06
EP0577339A1 (en) 1994-01-05
CA2099733A1 (en) 1993-12-31

Similar Documents

Publication Publication Date Title
JP3811194B2 (ja) 引きはずし及びプログラミング機能の可視インディケーターを備えた過電流保護装置
US5627716A (en) Overcurrent protection device
JP3710831B2 (ja) 過電流保護装置
US5270898A (en) Sure chip plus
CA2268235C (en) Accessory network for an electronic trip unit
AU753319B2 (en) Dual microprocessor electronic trip unit for a circuit interrupter
US7203040B2 (en) Method and circuit breaker for reducing arc flash during maintenance in a low voltage power circuit
AU2014268903B2 (en) Automatically configurable intelligent electronic device
US20160020601A1 (en) Power bay protection device and a method for portecting power bays
CA2376911C (en) One or all phases recloser control
EP2188824B1 (en) Method and apparatus for executing secondary functions on an electrical switchgear device
AU643105B2 (en) Improvements in or relating to integrated circuit with analog and digital portions and including thermal modeling
JPH06217449A (ja) プログラム可能な通信及び作用停止機能を有する過電流保護装置
IE84455B1 (en) Integrated circuit with analog and digital portions and including thermal modelling
US11784483B2 (en) Recloser lockout methods and related devices
CA2449309C (en) Cmos circuit with analog and digital portions for transmitting over a communication network
CA2577561A1 (en) Electrical switching apparatus, power distribution system, and method employing breakpoint trip
KR101033125B1 (ko) 전력계통 보호 계전기기의 차단 시간 오차 보정방법
NZ240766A (en) Cmos monolithic circuit with analog and digital portions and including
JPS6027259B2 (ja) 負荷選択遮断装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees