JP3710237B2 - Laminated rubber bearing with lead plug - Google Patents

Laminated rubber bearing with lead plug Download PDF

Info

Publication number
JP3710237B2
JP3710237B2 JP32159596A JP32159596A JP3710237B2 JP 3710237 B2 JP3710237 B2 JP 3710237B2 JP 32159596 A JP32159596 A JP 32159596A JP 32159596 A JP32159596 A JP 32159596A JP 3710237 B2 JP3710237 B2 JP 3710237B2
Authority
JP
Japan
Prior art keywords
lead
laminated rubber
enclosure
intermediate steel
lead plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32159596A
Other languages
Japanese (ja)
Other versions
JPH10159897A (en
Inventor
幸夫 中村
元 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP32159596A priority Critical patent/JP3710237B2/en
Publication of JPH10159897A publication Critical patent/JPH10159897A/en
Application granted granted Critical
Publication of JP3710237B2 publication Critical patent/JP3710237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は上下に間隔を隔てた2つの部材間に取付けられ、これらの2つの部材間の相対的な変位による運動エネルギを吸収するエネルギ吸収体、特に橋梁、ビル、家屋等の土木建築物の免振構造であって、外部からの地震動等の振動エネルギを材料の塑性変形エネルギとして吸収させて上部構造体を地震動等の振動から保護する技術に関する。
【0002】
【従来の技術】
従来、免振装置としての「鉛プラグ入積層ゴム支承」が知られているが、これは、エネルギ吸収材である円柱形状の鉛プラグを変形させるのに積層ゴムの剪断変形を利用するものである。鉛プラグは、ゴムと中間鋼板とを交互に積層したゴム積層体の中央部に上下方向に貫く空孔を開け、この空孔の中に鉛プラグを流し込みや圧入で封入したものである。ゴムと中間鋼板の積層体は、土木建築物の基礎部分や中間部分を鉛直方向には比較的硬いが、水平方向についての二次元の移動には自由度があり、剪断力に対して弾性的な変形を許容する作用をする。一方、エネルギ吸収材としての鉛プラグはダンパーとして機能を果たし、剪断方向の振動エネルギを吸収して振動を抑制する作用をする。この種の「鉛プラグ入積層ゴム支承」は、特開昭52−49609号公報に「周期的剪断エネルギー吸収体」として開示されている。
【0003】
ゴム積層体の空孔に鉛プラグを封入する際、空孔の体積より鉛の体積を数%程度大きくしておき、鉛プラグに対して圧力を加えることにより中間鋼板が鉛に食い込むように「インターロック」させることが、鉛の塑性変形による減衰効果を発揮させる上で重要な要素となる。
このようにして構成された「鉛プラグ入積層ゴム支承」は、比較的小さな数10%程度の剪断歪みの範囲内では安定したエネルギ吸収材として機能するが、剪断歪の大きさは+/−100 %程度が限界であり、無理に大きな剪断歪みを与えると繰り返し変形の間に鉛プラグにヒビ割れが入って破壊するに至り、エネルギ吸収能力を喪失するという欠点があった。ゴム自体は400 %以上の剪断歪みまで変形可能であるが、金属の鉛はこのような大きな剪断歪みに耐えきれずに徐々に柔らかいゴム層に入り込んで初期の形とかけ離れた形状になり破断にいたる。これを防ぐために、中間鋼板の枚数を20〜40枚程度に増やすことが行われている。
【0004】
鉛プラグが繰り返し変形を受ける間にヒビ割れが生じたり、エネルギ吸収能力を喪失するという問題に対処するために、特開昭59−62742号公報の「エネルギ吸収装置」、特開昭61−176776号公報の「周期的せん断エネルギー吸収装置」には、鉛プラグの周囲にこの鉛プラグの変形を許容する可撓性の壁で構成された拘束手段を設けることが提案されている。しかしながら、これらの拘束手段は、鉛プラグの周囲に螺旋状に巻かれた帯材からなるもので、剪断歪みが非常に大きい場合には対応困難であった。
【0005】
一方、鉛プラグをゴム積層体に挿入するのではなく、鉛自体の塑性変形によるエネルギ吸収効果を利用して、鉛プラグ単体でダンパーとして使うことも行われている。この場合も、鉛の塑性変形による破壊を防止する為に内部に補強材を埋め込んだり(特開昭61−290245号公報)、表面を螺旋状のワイヤで被覆したり(特開昭61−294230号公報)、外周を径方向の相対移動を規制する鋼製リングで覆ったり(特開昭61−294232号公報)、外周を密接して複数の鋼体リングで積層状態に装着したり(特開昭61−294234号公報)、外周を断面がS字形の帯鋼板を螺旋状に巻き付けたり(特開昭62−274124号公報)することが提案されている。しかしながら、いずれも、長期間にわたって鉛を破断防止するには到っておらず、若干の延命効果を得るレベルに留まっている。
【0006】
【発明が解決しようとする課題】
本発明は、従来の「鉛プラグ入積層ゴム支承」に関する上記の問題を解決することを課題とする。
即ち、本発明は、(1)鉛の剪断変形能力を、ゴム層の剪断歪みにして200 %以上に向上させる為に、(2)鉛のゴム層への食い込みを防止し、これによって、(3)ダンピンク性能を向上させ、且つ(4)鉛の破断を防止する、ことを目的とする鉛プラグ入積層ゴム支承を提供するものである。
【0007】
【課題を解決するための手段】
このような課題を達成するために、本発明では、ゴムと中間鋼板とを上下方向に交互に積層して成る積層ゴム部と、該積層ゴム部を上下方向に貫通して設けられた孔に挿入された、鉛からなる弾塑性材料と、該弾塑性材料の周囲を設けられた拘束部とから成る、上下に間隔を隔てた2つの部材間の運動エネルギを吸収する、鉛プラグ入積層ゴム支承において、前記拘束部は、鉛以上の降伏応力を持つ材料から成り且つ前記孔を規定する開口を有する複数の囲い板を上下方向に積層した構造を有し、該囲い板は隣接する囲い板との間に、所定の剪断変形時にも重なり代を有する摺動部が設けられ、且つ前記囲い板は剪断変形時に前記中間鋼板と機械的に連動するように該中間鋼板との間で位置関係を保って配置され、前記囲い板の少なくとも幾つかは、前記中間鋼板とは一体に形成されていることを特徴とする鉛プラグ入積層ゴム支承が提供される。
【0008】
本発明の鉛プラグ入積層ゴム支承が剪断変形を受けると、積層ゴム部は弾性変形し、一方で鉛の弾塑性部材は塑性変形する。その場合において、囲い板は中間鋼板と機械的に連動するように中間鋼板との間で位置関係を保って配置されているので、鉛の弾塑性部材も積層ゴム部と共に剪断方向に一様な変形を生じる。拘束部を構成している囲い板は、その摺動部が所定の剪断変形時にも重なり代を有するので、剪断歪みが所定値近くの大きな値となった場合においても、鉛の封じ込め作用を十分に維持し、また、拘束部は多数の囲い板の積層構造であるので、鉛の弾塑性部材との接触個所を上下方向に数多くとることができ、後述のようにエネルギ吸収効率(SED)を大きくすることができる。したがって、囲い板と鉛の弾塑性部材の表面との間では滑りが少なく、弾性変形する積層ゴム部の弾性復元力を利用して変形後の鉛の弾塑性部材を元の形状に復帰させることが可能となる。「所定の剪断変形時にも重なり代を有する」とは、剪断歪みが250%に達した時でも、鉛の弾塑性部材を封じ込めておくように、囲い板が隣接する囲い板との間で重なり代を有して互いに接触している状態である。
【0009】
また、本発明では、前記囲い板と前記中間鋼板とは一体又はわずかに間隔を持たせて構成されていることを特徴とする。これにより、囲い板と中間鋼板との間の機械的な連動性を一層確実なものとし、剪断変形時に鉛の弾塑性部材を積層ゴム部と一体的に剪断方向に均一な変形とすることができる。
更に本発明は、前記囲い板の幾つかは、前記中間鋼板と平行で且つ該中間鋼板より短いフィンと一体に形成されたフィン付囲い板であることを特徴とする。この場合において、前記フィン付囲い板と、前記中間鋼板と一体となった囲い板とが交互に積層されていることを特徴とする。これにより、ゴム積層体のゴムと中間鋼板とのピッチと、拘束部における囲い板のピッチとを適宜選定することができる。
【0010】
更に、本発明は、前記囲い板積層部の上下端の少なくとも一方にバネ要素を直列に配置し、上下方向に弾性特性を与えるようにしたことを特徴とする。これにより、水平方向のの変形に対応可能であるばかりでなく、鉛直方向の歪みに対応可能となる。
また、本発明は、前記囲い板の開口は、弾塑性材料との接触部分の角が面取りされていることを特徴とする。鉛の弾塑性部材が囲い板の開口の面取り部分に食い込むことりにより、前記インターロック機構を確実にするとともに剪断変形時に鉛の囲い板と接触する部分が傷つけられることが防止される。
【0011】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態について詳細に説明する。
まず、図1〜図3において、鉛プラグの機械的性質についての実験を行った ので、本発明の原理との関連で説明する。
弾塑性材料として用いる鉛は、常温でn結晶・結晶粒の成長が起き、ポアソン比が0.4 以上のいわゆる非圧縮材料(imcompressible materials)に近い珍しい金属材料である。したがって、適切な圧力で密着させた状態で変形させた後に元の形状に戻してやると幾度も再結晶と結晶粒の成長を起こして破断せずに長寿命を実現することができる。
【0012】
ここで、エネルギ吸収効率を表現する指標として「SED: Specific Energy Dissipation」を使用して説明する。このSEDは、力と変位の履歴曲線の一周あたりの吸収エネルギを「体積:V」と「剪断歪み: γ」を使って規格化したもので、単位体積当りのエネルギ吸収効率を表す。
図1は円柱状の鉛1の両端をカラー2で支持して固定し、この状態で中央部のカラー3を矢印A方向に繰り返し振った(a)後に、鉛プラグ1が変形する状態(b)を示したものである。この場合、鉛の剪断歪みγ=0.25〜0.5 に対し、SED=18.1〜22.1となる。このように、裸の鉛プラグの場合は、局部的な変形にとどまる為にSED=20程度となる。
【0013】
図2は円柱状の鉛1を広幅のカラー4を連続的に7個並べたものの中に鉛プラグを封じ込め、前記と同様に両端を固定し中央部を矢印A方向に繰り返し振った(a)後に、鉛プラグ1が変形する状態(b)を示したものである。この場合、鉛の剪断歪みγ=0.25〜0.5 に対し、SED=39.8〜48.2となり、SEDは最大値が50程度となり、やや不規則な変形が見られる。
【0014】
図3は円柱状の鉛1を薄いワッシャリング5を連続的に8個ずつ計16個並べたものの中に封じ込め、前記と同様に両端を固定し中央部を矢印A方向に繰り返し振った(a)後に、鉛1が変形する状態(b)を示したものである。この場合、鉛の剪断歪みγ=0.25〜0.5 に対し、SED=67.2〜94.5となり、連続的で比較的規則的な変形をしており、SEDは最大値が90以上となる。
【0015】
このように、図1〜3の実験から明らかなように、剪断変形に対応する鉛プラグ内の滑り面を増やすと、SEDが増加する傾向が観察された。またこの実験では、変形後の鉛プラグは塑性変形の為に元の形状には復帰せず、変形し易い個所のみに変形が集中することがわかった。
上記の実験結果を踏まえ、本発明では、弾塑性材料である鉛に対し変形が集中するのを避けて一様な分布で変形を生じさせ、更に元の形状に復帰させるのに、鉛よりも降伏力応力が大きな金属で鉛プラグを囲うだけでなく、ゴムと中間鋼板とを交互に積層した積層ゴムの弾性復元力を有効に利用するために、鉛よりも降伏力応力が大きい金属から成る多数の囲い板を積層状態にして鉛を封じ込めることが有効である、との原理に基づいている。
【0016】
図4(a)は本発明の鉛プラグ入積層ゴム支承の第1実施形態を示す。鉛プラグ入積層ゴム支承10は上下に間隔を隔てた2つの部材間の運動エネルギを吸収する為に使用されるもので、橋梁、ビル等の土木建築物の基礎や中間部分と上物構築物との間に固定して取付けられる。即ち、下フランジ11は構築物の基礎(図示せず)に例えばボルト等で固定され、上フランジ12は上物構築物(図示せず)にボルト等で固定される。
【0017】
下フランジ11と上フランジ12との間には、積層ゴム部13があり、この積層ゴム部13はゴム14と中間鋼板15とを上下方向に交互に積層して成るものである。中間鋼板15としては、鉛よりも降伏力応力が大きな金属、典型的には鉄鋼材の平板で構成され、ゴムと一体的な積層体として構成される。積層ゴム部13は主として水平方向の剪断歪みによる弾性変形を受け持つものである。
【0018】
積層ゴム部13には上下方向に貫通した孔16が設けられ、この孔16の中に周囲が拘束部17によって囲われた鉛プラグ1が挿入される。この実施例では拘束部17は中間鋼板15と一体的に鉄鋼材で構成されている。即ち、図5(a)及び(b)に示すように、正方形の薄い板状の周囲部は中間鋼板15として形成され、中心部の厚肉の円形部分は拘束部となる囲い板17として形成されている。
【0019】
この囲い板17は、中心に鉛プラグ1の入る貫通孔16を規定する開口18を有すると共に、この囲い板17を積層した際、隣接する囲い板との間に、相互に密に接触して鉛プラグを拘束するための平滑面の摺動部19が設けられる。この実施例では、摺動部19は、図8に示すように、囲い板17の所定の厚さtを持った厚肉部分の半径方向の寸法W(図8)の部分の表面で、隣接する囲い板との接触可能領域である。
【0020】
囲い板17の開口18の内壁の上下縁にR形ないし丸形ないしはテーパの面取り部20が形成されている。この面取り部20は、後述のように、鉛プラグ1が囲い板17の面取り部20に食い込んでいることにより、図7に示すような剪断変形を受けた際に鉛プラグ1が囲い板17と接触する部分において90度の角度で接触して鉛プラグの表面が傷つけられること、即ち集中した局部変形を受けるのを防止するためである。
【0021】
囲い板17の半径方向外側の上下縁部21、即ち中間鋼板15との接続部分も滑らかなR形状又は丸形ないしはテーパの形状で中間鋼板15の表面と接続していることが望ましい。この上下の接続部分21は、ゴム14に接触しているため、図7に示すような剪断変形を受けた際に接続部分21に近接するゴム14の部分が局部的に大きな変形を受けることを防止するためである。また、これらの接続部分21には予め離型剤等を塗布した上でゴムと一体化する等の処理により、接続部分21とその近傍のゴムの部分とが機械的な固着接合を絶ち、非接着の状態となっているのが望ましい。
【0022】
そして、中間鋼板15と一体型の囲い板17は積層される。即ち、厚肉の囲い板17の部分は、摺動部19が隣接する囲い板の摺動部と接触するように積層され、一方薄肉の中間鋼板15の部分は隣接する中間鋼板との間にゴム14が積層される間隔を規定する。
このようにした一体化された積層ゴム部13と拘束部17において、囲い板17の開口18によって規定される上下方向の貫通孔16に鉛1が挿入される。囲い板17に面取り部20がない場合は、円筒状の鉛を貫通孔16内に圧入することも可能であるが、囲い板17に面取り部20があって、面取り部20によって形成される内周溝の中にも十分に鉛を行き渡るようにするには、溶融した鉛を貫通孔16に注入し、冷却して固化することが望ましい。この鉛プラグ1は鉛プラグ入積層ゴム支承が剪断変形を受けた場合に、塑性変形をし、その塑性エネルギにより主としてダンパーとして機能する部分である。
【0023】
図6は下フランジ11及び上フランジ12の形状を示すものである。下フランジ11は最下の囲い板17と接触し、上フランジ12は最上の囲い板17と接触し、協働して鉛プラグ1を密閉的に封じ込める作用をする。したがって、下フランジ11及び上フランジ12の囲い板17と接触する部分には、囲い板17の摺動部19と同様な摺動部19aを有するように設計する。即ち、囲い板17の摺動部19に対応する部分を、囲い板17と中間鋼板15の段差に相当する寸法だけ盛り上げ、囲い板17の摺動部19の同じ半径方向の寸法だけ平らな接触部分を形成すると共に、開口部の上下縁を面取りした形状とする。
【0024】
図4(b)は、この第1実施形態において、下フランジ11と上フランジとの間で剪断方向の変位を生じた状態を示す。前述のように、鉛プラグ入積層ゴム支承が剪断変形を受けると、積層ゴム部13は弾性変形をし、図示のように規則的な傾斜状態となる。これは、積層ゴム部13がゴム14と中間鋼板15とを上下方向に交互に略等しいピッチで積層されていて、上下方向の変位に対しては比較的固く、一方で水平方向の変位を許容するような形態に構成されているからである。
【0025】
したがって、中間鋼板15と一体で且つ積層されている囲い板17は弾塑性部材である鉛プラグ1と一緒に図示のように傾斜し、個々の囲い板17はそれらの摺動部19において順次等しい寸法だけずれることとなる。このため、囲い板17によって密閉状態に保持されている鉛プラグ1は上下方向に比較的一様な変形を生じ、裸の鉛プラグに見られる上下端の球頭化も防止できる。
【0026】
図8において、囲い板17の摺動部19は所定の剪断変形時にも半径方向のずれ量dに対して重なり代eを有するので、例えば、剪断歪みが250 %に達した時でも、鉛プラグ1を密閉状態に封じ込めておくように、Wの寸法を設定しておけばよい。したがって、囲い板17と鉛プラグ1との接触表面では、鉛プラグ1の滑りを少なくでき、積層ゴム部13が弾性変形により元の状態に復元した際には、鉛プラグ1は元の円柱の状態に復帰することができる。
【0027】
図8において、所定の剪断変形時にも半径方向のずれ量dに対して重なり代eを得るための条件について説明する。図8において、
W :囲い板の摺動部の半径方向の寸法(滑り代)
d :隣接する2つの囲い板の滑り距離
e :隣接する2つの囲い板が滑り距離dだけ変位した時の重なり代
S :中間鋼板の1 枚の厚さ
r :中間鋼板間のゴム一層の厚さ
t :中間鋼板の1 枚とゴム層1枚の厚さの和(t=tS +tr
γ :鉛の剪断歪み(γ=d/t)
γmax :鉛の剪断歪み限界(例えば、=250 %)
と定義した場合、W=d+eが成立する式で、γ=γmax において、e>0が成立することが必要である。
【0028】
また、γ=d/tで定義される鉛の剪断歪み式で、γmax は30%以上、300 %以下の範囲の設定とし、好ましくは100 〜250 %とする。
更に、t=tS +tr で定義される中間鋼板の1 枚とゴム層1枚の厚さの和の範囲は、2mm以上、100 mm以下と設定し、好ましくは2mm〜30mmとする。
図9(a)は本発明の鉛プラグ入積層ゴム支承の第2実施形態を示す。下フランジ11及び上フランジ12は第1実施例と同じである。第1実施形態では、すべての囲い板17が中間鋼板15と一体型のものであった。この第2実施形態においては、積層ゴム部13がゴム14と、囲い板17と一体の中間鋼板15とを上下方向に交互に積層して成る点では第1実施形態と同じであるが、1つおきに中間鋼板が退化していて、外周方向の長さが短くなったフィン31として形成されている。また、囲い板17’の部分も厚さが、中間鋼板15と一体型の囲い板17と異なる例である。
【0029】
しかし、囲い板17’の中心部に設けてある鉛プラグ1の入る開口は、中間鋼板15と一体型の囲い板17の開口18と同じ内径を有し、摺動部19についても全く同様である。更にまた、開口18の内壁の上下縁の面取り部20及びフィン31との接続部分21における形状も中間鋼板15と一体型の囲い板17と全く同じである。
【0030】
このように、中間鋼板15と一体型の囲い板17とフィン31と一体型の囲い板17’とを交互に積層して鉛プラグ1の拘束部を形成することにより、積層ゴム部13における中間鋼板15の間隔ないしピッチを余り小さくしないで、積層される囲い板17(17’)の上下方向のピッチを小さくし、囲い板をより密に配置することで、図9(b)のように剪断変形した時において、鉛プラグ1の塑性変形をより滑らかな変形とすることができる。その半面、積層ゴム部13における中間鋼板15の間隔ないしピッチを余り小さくしないので、弾性変形を生じさせるゴム層14の上下方向の幅が大幅に小さくなることはないので、剪断方向の十分な弾性変形を許容し得ることとなる。
【0031】
フィン31の大きさは適当な大きさとされるが、囲い板17’と一体に構成されているので、中間鋼板15と一体型の囲い板17と同様、積層ゴム部13の剪断方向の弾性変形を鉛プラグ1に円滑に伝えることができる。他の構造及び作用については、第1実施形態の場合と同様である。
図10(a)は本発明の鉛プラグ入積層ゴム支承の第3実施形態を示す。第1及び第2実施形態では、中間鋼板又はフィンと一体型の囲い板の部分を厚肉にして鉛プラグ1を封じ込めていたが、この第3実施形態では、鉛プラグ1を更に密な積層体により封じ込めるために、厚肉部を設けない形態とした。即ち、一様な厚さを有する囲い板兼用の中間鋼板32を飛び飛びに配置し、この間にリング状の囲い板33を配置した形態である。例えば、図示のように、囲い板兼用の中間鋼板32の間に、この中間鋼板32と同じ厚さのリング状の囲い板33を2枚ずつ配置した構成である。
【0032】
このような構造によると、図10(b)に示すように剪断変形を生じた際、積層ゴム部13における中間鋼板32の水平方向の動きに応じて、これと接触するリング状の囲い板33も中間鋼板32の動きに追随して同様な水平方向の動きを生じ、これにより鉛プラグ1を滑らかに塑性変形させることができる。
中間鋼板32と隣接する中間鋼板32との間に配置されるリング状の囲い板33の数を余り多くすると、中間鋼板32から離れたリング状の囲い板33が中間鋼板32に十分追随して動作できなくなる恐れがあるので、リング状の囲い板33の追随性が良好で、且つ積層ゴム部13におけるゴム層14の厚さが十分な剪断歪みを許容できる程度とする。
【0033】
例えば、中間鋼板32とリング状の囲い板33の厚さを各々1〜10mmの範囲とし、望ましくは2〜5mm程度とし、中間鋼板32の枚数を2〜50枚とし、2枚の隣合う中間鋼板32間に挿入されるリング状の囲い板33の枚数を1〜12枚とするのが適当である。
中間鋼板32とリング状の囲い板33の厚さを等しく(=t)とした場合、隣合う板どうしの相対変位がdの時、鉛プラグの剪断歪み(γ)は、
γ=d/t
で近似され、この値の下限が30%以上、上限が300 %以下になるように設計値をとる。
【0034】
図11(a)は第3実施形態と類似する第4実施形態を剪断歪みを受けた状態で示したものである。第3実施形態と異なる点は、囲い板兼用の中間鋼板32とリング状の囲い板33の開口の内周壁の上下縁をテーパ状とした点である。このテーパ面35の角度は、剪断歪み限界を250 %とした場合には、250 %の歪みを与えて変形させた場合において、中間鋼板32とリング状の囲い板33のテーパ面35が一直線状に並ぶような角度或いはその近傍に設定することが望ましい。また、剪断歪み限界を300 %とする場合には、300 %の歪みを与えて変形させた状態において中間鋼板32とリング状の囲い板33のテーパ面35が一直線状に並ぶような角度又はその近傍に設定すべきであることは言うまでもない。
【0035】
また、図11(a)に示す第4実施形態においては、中間鋼板32とリング状の囲い板33で構成される積層体の開口孔には、円柱状の鉛プラグを打ち込みによって圧入しても、鉛プラグ1の表面がテーパ面35に密着しないので、溶かし込みにより、溶融状態の鉛を注入した後冷却固化することにより、鉛プラグ1をテーパ面35に密着させる。したがって、剪断変形する前の鉛プラグ1は図11(b)に示すような状態となり、外周面にテーパ面35と対応する多数のテーパ状の凹凸面36を有する。
【0036】
図12は本発明の本発明の鉛プラグ入積層ゴム支承の第5実施形態を示す。この実施形態は、図4(a)に示す第1実施形態と同様の形態であるが、囲い板17から成る拘束部の上下端にバネ要素を直列に配し、上下方向の弾性特性を与えるようにしている点で第1実施形態と相違する。
ゴムと中間鋼板とを上下方向に交互に積層した積層ゴム部により鉛直方向の剛性を保つようにしている従来の支承構造では、鉛直方向の剛性は水平方向の剛性に対して1000〜2000倍の剛性を有する。上述した本発明の第1〜第4実施形態のように、ゴム14と中間鋼板15とを交互に積層した積層ゴム部13に加えて、囲い板17の積層部によって、鉛直方向の剛性を保つ構造では、鉛直方向の剛性が水平方向の剛性に対して更に大きくなる。
【0037】
このような場合においても、鉛直方向の剛性を低くしたい状況も考えられる。このため、第5実施形態においては、上下フランジ11、12の囲い板17と接触する部分を独立したリング状部材40として構成すると共に、このリング状部材40と嵌合するリング状溝41を上下フランジ11、12に形成し、このリング状溝41の中にバネ要素42を挿入した後リング状部材40を挿入する。
【0038】
また、リング状部材40はリング状溝41に挿入された状態で、囲い板17と接触する摺動部40aが上下フランジ11、12の対向面から突出して囲い板17の摺動部19に接触するようにする。バネ要素42としては、大荷重を支持する関係上、エラストマ等のゴム状の弾性体が考えられる。
図13は本発明の鉛プラグ入積層ゴム支承において拘束部にバネ要素を直列に配し、上下方向の弾性特性を与えるようにした別態様のものを示す。この実施形態では、上フランジ12を橋梁やビル等の上物の荷重支持を行う積層ゴム部13に対応する周囲部12aと、鉛プラグ1を封じ込める拘束部17に対応する中心部12bの2つに分割する。即ち、周囲部12aには、鉛の拘束部を形成している囲い板17の径に対応する径の貫通孔44を設け、この貫通孔44に中心部12bを挿入した後エラストマー等からなるバネ要素45を挿入する。中心部12bは周囲部12aの下面から下方に突出して囲い板17の摺動部19に接触するリング状の摺動部46を有し、この摺動部46は囲い板17の摺動部19に対応する形状を有する。
【0039】
この実施形態では、バネ要素45を鉛プラグ入積層ゴム支承に対して着脱可能に構成することができる。したがって、建設現場等において、建築物に応じて例えば弾性率の異なる他の種類のバネ要素を挿入したり、交換することにより上下方向の弾性特性を調整することができる。
図14は、本発明の鉛プラグ入積層ゴム支承(図11の実施形態に相当する支承)において、鉛の拘束部にバネ要素を直列に配し、上下方向の弾性特性を与えるようにした更に別態様のものを示す。この実施形態では、前述と同様に、上フランジ12を積層ゴム部13に対応する周囲部12aと、鉛プラグ1を封じ込める拘束部17に対応する中心部12bの2つに分割する。そして周囲部12aに設けた貫通孔44に中心部12bを挿入し、皿バネ46を挿入する。中心部12bは拘束部を構成している最上位の囲い板17に接触する。この実施形態においても、建築物に応じて皿バネ46により鉛直方向の剛性を調整し得ることは言うまでもない。
【0040】
なお、図12及び図13の実施形態では、第1実施形態に相当する鉛プラグ入積層ゴム支承について説明し、また図14の実施形態では、第4実施形態に相当する鉛プラグ入積層ゴム支承について図示したが、これらの実施形態における鉛直方向の弾性変形を得る構成は、本発明の鉛プラグ入積層ゴム支承の各実施形態に対して適用可能であること留意すべきである。
【0041】
以上、添付図面を参照して本発明の実施形態について詳細に説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の精神ないし範囲内において種々の形態、変形、修正等が可能であることに留意すべきである。
例えば、上述の実施形態では、拘束部を構成する囲い板17を中間鋼板15と一体構成とすることにより、剪断変形時に中間鋼板15と囲い板17とが機械的に連動するように構成したが、囲い板17と中間鋼板15とを別体として構成し、囲い板17を中間鋼板15の周囲に近接して配置するだけでも、鉛直方向の剛性が剪断方向の剛性に対し極めて高いことから、機械的に連動させることが可能である。
【0042】
なお、図4(a),(b)、図7、図9(a),(b)、図12及び図13は鉛プラグ1の部分を明瞭に示すために、ゴム14及び中間鋼板15の部分を短く示しているが、実際は横方向に長いことに留意すべきである。
【0043】
【発明の効果】
以上に説明したような、本発明によれば、鉛のポアソン比が0.44前後という殆ど非圧縮性材料に近い性質を有することを利用して、鉛プラグを密閉状態に近い状態に保ちつつ、剪断変形を受ける時は、鉛プラグの塑性エネルギを利用し、その際、剪断歪みが250 %に達した時も鉛プラグを封じ込めるように囲い板の重なり代を設けることにより、極めて大きな剪断歪みを伴う地震動に対しても対応可能となり、また、このような大きな剪断歪みを受ける場合においても、鉛プラグを封じ込めた状態に維持することにより鉛のゴム層への食い込みを防止され、減衰効率が良好で且つ鉛の破断を防止した長寿命の鉛プラグ入積層ゴム支承が得られる。
【図面の簡単な説明】
【図1】鉛プラグを裸の状態で機械的性質の実験を行った状態(a)、及び実験後の鉛プラグの変形(b)を示す。
【図2】鉛プラグを広幅のカラーで支持して機械的性質の実験を行った状態(a)、及び実験後の鉛プラグの変形(b)を示す。
【図3】鉛プラグを多数のリング状のワッシャで支持して機械的性質の実験を行った状態(a)、及び実験後の鉛プラグの変形(b)を示す。
【図4】本発明の第1実施形態に係る鉛プラグ入積層ゴム支承の縦断面図(a)及び剪断歪みを受けた状態の縦断面図(b)である。
【図5】本発明の第1実施形態において用いる中間鋼板と一体型の囲い板の断面図(a)及び平面図(b)である。
【図6】上下フランジの断面図(a)及び囲い板の断面図(b)である。
【図7】本発明の第1実施形態において鉛プラグが剪断歪みを受けた状態の断面図である。
【図8】本発明の第1実施形態において囲い板の寸法を示す断面図(a)、剪断歪みを受けた状態における囲い板の寸法を示す断面図(b)である。
【図9】本発明の第2実施形態に係る鉛プラグ入積層ゴム支承の縦断面図(a)及び剪断歪みを受けた状態の縦断面図(b)である。
【図10】本発明の第3実施形態に係る鉛プラグ入積層ゴム支承の縦断面図(a)及び剪断歪みを受けた状態の縦断面図(b)である。
【図11】本発明の第4実施形態に係る鉛プラグ入積層ゴム支承の剪断歪みを受けた状態の縦断面図(a)及び変形前の鉛プラグの形状を示す図(b)である。
【図12】本発明の鉛プラグ入積層ゴム支承において鉛直方向の弾性変形を許容する形態を示す断面図である。
【図13】本発明の鉛プラグ入積層ゴム支承において鉛直方向の弾性変形を許容する他の形態を示す断面図である。
【図14】本発明の鉛プラグ入積層ゴム支承において鉛直方向の弾性変形を許容する更に他の形態を示す断面図である。
【符号の説明】
1…鉛プラグ(弾塑性材料)
10…鉛プラグ入積層ゴム支承
11…下フランジ
12…上フランジ
13…積層ゴム部
14…ゴム
15…中間鋼板
16…貫通孔
17…拘束部(囲い板)
18…開口
19…摺動部
20…面取り部
21…接続部
31…フィン
32…中間鋼板
33…リング状囲い板
35…テーパ面
40…リング状部材
41…リング状溝
42…バネ要素
44…貫通孔
45…バネ要素
46…皿バネ
[0001]
BACKGROUND OF THE INVENTION
The present invention is an energy absorber that is mounted between two members that are spaced apart from each other in the vertical direction and absorbs kinetic energy due to relative displacement between these two members, particularly for civil engineering buildings such as bridges, buildings, and houses. The present invention relates to a technology for protecting a superstructure from vibrations such as seismic vibrations by absorbing vibration energy such as seismic vibrations from the outside as plastic deformation energy of the material.
[0002]
[Prior art]
Conventionally, “laminated rubber bearings with lead plugs” as a vibration isolator is known, which uses shear deformation of laminated rubber to deform cylindrical lead plugs that are energy absorbers. is there. The lead plug is formed by opening a hole penetrating in the vertical direction in the central portion of a rubber laminate in which rubber and intermediate steel plates are alternately laminated, and enclosing the lead plug into the hole by pouring or press-fitting. The laminated body of rubber and intermediate steel plate is relatively hard in the vertical direction for the foundation and intermediate parts of civil engineering buildings, but has two degrees of freedom in the horizontal direction and is elastic to shear forces. It acts to allow various deformations. On the other hand, the lead plug as the energy absorbing material functions as a damper, and acts to suppress vibration by absorbing vibration energy in the shear direction. This type of “laminated rubber bearing with lead plug” is disclosed as “periodic shear energy absorber” in Japanese Patent Application Laid-Open No. 52-49609.
[0003]
When encapsulating lead plugs in the holes of the rubber laminate, the volume of the lead should be about several percent larger than the volume of the holes, and the intermediate steel sheet will bite into the lead by applying pressure to the lead plugs. Interlocking is an important factor for exhibiting the damping effect due to plastic deformation of lead.
The “lead plug-containing laminated rubber bearing” constructed in this way functions as a stable energy absorbing material within a relatively small range of several tens of percent of shear strain, but the magnitude of shear strain is +/−. About 100% is the limit, and if a large shear strain is applied forcibly, the lead plug cracks during repeated deformation and breaks, resulting in a loss of energy absorption capability. The rubber itself can be deformed to a shear strain of 400% or more, but the metal lead can not withstand such a large shear strain and gradually enters the soft rubber layer to become a shape that is far from the initial shape and breaks. It ’s all over. In order to prevent this, the number of intermediate steel plates is increased to about 20 to 40.
[0004]
In order to deal with the problem of cracking or loss of energy absorption capability while the lead plug is repeatedly deformed, Japanese Patent Application Laid-Open No. 59-62742 discloses an “energy absorption device”, Japanese Patent Application Laid-Open No. 61-176676. In the “periodic shear energy absorbing device” disclosed in Japanese Patent Publication No. Hokukai, it is proposed to provide a restraining means composed of a flexible wall that allows deformation of the lead plug around the lead plug. However, these restraining means are made of a band material spirally wound around the lead plug, and it is difficult to cope with the case where the shear strain is very large.
[0005]
On the other hand, instead of inserting the lead plug into the rubber laminate, the lead plug alone is used as a damper by utilizing the energy absorption effect by plastic deformation of the lead itself. In this case as well, a reinforcing material is embedded inside to prevent breakage due to plastic deformation of lead (Japanese Patent Laid-Open No. 61-290245), or the surface is covered with a spiral wire (Japanese Patent Laid-Open No. 61-294230). No.), the outer circumference is covered with a steel ring that restricts the relative movement in the radial direction (Japanese Patent Laid-Open No. Sho 61-294232), and the outer circumference is closely attached with a plurality of steel body rings (specialized) Japanese Laid-Open Patent Publication No. 61-294234), and it has been proposed to wrap a steel strip having an S-shaped outer periphery in a spiral shape (Japanese Patent Laid-Open No. 62-274124). However, none of them has prevented lead from being broken for a long period of time, and has remained at a level where a slight life-prolonging effect is obtained.
[0006]
[Problems to be solved by the invention]
This invention makes it a subject to solve said problem regarding the conventional "lead plug containing laminated rubber bearing".
That is, the present invention (1) prevents the penetration of lead into the rubber layer in order to improve the shear deformation ability of lead to 200% or more by making the shear deformation of the rubber layer, and thereby ( The present invention provides a laminated rubber bearing with a lead plug for the purpose of 3) improving the Dan Pink performance and (4) preventing the breakage of lead.
[0007]
[Means for Solving the Problems]
In order to achieve such a problem, in the present invention, a laminated rubber portion formed by alternately laminating rubber and an intermediate steel plate in the vertical direction, and a hole provided through the laminated rubber portion in the vertical direction. A lead plug-containing laminated rubber that absorbs the kinetic energy between two vertically spaced members, comprising an inserted elastoplastic material made of lead and a restraining portion provided around the elastoplastic material. In the support, the restraining portion has a structure in which a plurality of enclosure plates made of a material having a yield stress equal to or higher than lead and having openings defining the holes are vertically stacked, and the enclosure plates are adjacent to the enclosure plates. Between the intermediate steel plate and the intermediate steel plate so as to be mechanically interlocked with the intermediate steel plate at the time of the shear deformation. Kept in place And at least some of the surrounding plates are formed integrally with the intermediate steel plate. A laminated rubber bearing with a lead plug is provided.
[0008]
When the laminated rubber bearing with the lead plug of the present invention is subjected to shear deformation, the laminated rubber portion is elastically deformed, while the lead elastic-plastic member is plastically deformed. In that case, since the shroud is disposed in a positional relationship with the intermediate steel plate so as to be mechanically interlocked with the intermediate steel plate, the lead elastic-plastic member is also uniform in the shear direction together with the laminated rubber portion. Causes deformation. The shroud that constitutes the restraining part has an overlap margin even when the sliding part has a predetermined shear deformation, so even if the shear strain becomes a large value close to a predetermined value, the containment effect of lead is sufficient In addition, since the constraining portion is a laminated structure of a large number of surrounding plates, a large number of contact points with the lead elastic-plastic member can be taken in the vertical direction, and energy absorption efficiency (SED) can be obtained as described later. Can be bigger. Therefore, there is little slip between the enclosure plate and the surface of the lead elastic-plastic member, and the deformed lead elastic-plastic member is restored to its original shape by utilizing the elastic restoring force of the elastically deformed laminated rubber part. Is possible. “Having an overlap allowance even at a predetermined shear deformation” means that even when the shear strain reaches 250%, the enclosure is overlapped with the adjacent enclosure so that the lead elastic-plastic member is contained. It is in a state where they are in contact with each other.
[0009]
Further, the present invention is characterized in that the enclosure plate and the intermediate steel plate are formed integrally or with a slight gap therebetween. As a result, mechanical interlocking between the enclosure plate and the intermediate steel plate can be further ensured, and the lead elastic-plastic member can be uniformly deformed in the shear direction integrally with the laminated rubber portion at the time of shear deformation. it can.
Furthermore, the present invention is characterized in that some of the enclosure plates are fin enclosure plates formed integrally with fins that are parallel to the intermediate steel plate and shorter than the intermediate steel plate. In this case, the finned enclosure plate and the enclosure plate integrated with the intermediate steel plate are alternately laminated. Thereby, the pitch of rubber | gum of a rubber laminated body and an intermediate steel plate, and the pitch of the surrounding board in a restraint part can be selected suitably.
[0010]
Furthermore, the present invention is characterized in that spring elements are arranged in series on at least one of the upper and lower ends of the shroud laminate so as to give elastic characteristics in the vertical direction. As a result, it is possible not only to cope with horizontal deformation but also to cope with vertical distortion.
Further, the present invention is characterized in that the opening of the shroud is chamfered at the corner of the contact portion with the elastic-plastic material. The lead elastic-plastic member bites into the chamfered portion of the opening of the enclosure plate, thereby ensuring the interlock mechanism and preventing the portion that contacts the enclosure plate of the lead from being damaged during shear deformation.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
First, in FIG. 1 to FIG. 3, an experiment on the mechanical properties of the lead plug was performed, which will be described in relation to the principle of the present invention.
Lead used as an elastoplastic material is an unusual metal material close to so-called incompressible materials having n-crystal / grain growth at room temperature and a Poisson's ratio of 0.4 or more. Therefore, if the material is deformed in a state of being brought into close contact with an appropriate pressure and then returned to its original shape, a long life can be achieved without causing breakage by causing recrystallization and growth of crystal grains.
[0012]
Here, it demonstrates using "SED: Specific Energy Dissipation" as a parameter | index expressing energy absorption efficiency. This SED is obtained by normalizing the absorbed energy per round of force and displacement history curves using “volume: V” and “shear strain: γ”, and represents the energy absorption efficiency per unit volume.
In FIG. 1, both ends of a cylindrical lead 1 are supported and fixed by a collar 2, and in this state, the lead 3 is deformed after the central collar 3 is repeatedly shaken in the direction of arrow A (a) (b) ). In this case, SED = 18.1 to 22.1 for lead shear strain γ = 0.25 to 0.5. As described above, in the case of the bare lead plug, SED is about 20 in order to remain in the local deformation.
[0013]
FIG. 2 shows that a lead plug is sealed in a cylindrical lead 1 in which seven wide collars 4 are continuously arranged, both ends are fixed in the same manner as described above, and the central portion is repeatedly shaken in the direction of arrow A (a). The state (b) where the lead plug 1 is deformed later is shown. In this case, SED = 39.8 to 48.2 with respect to the shear strain γ = 0.25 to 0.5 of lead, and the maximum value of SED is about 50, and somewhat irregular deformation is observed.
[0014]
In FIG. 3, cylindrical lead 1 is sealed in a total of 16 thin washers 5 arranged in a row of 8 pieces in total, and both ends are fixed in the same manner as described above, and the central portion is repeatedly shaken in the direction of arrow A (a ) Shows a state (b) in which the lead 1 is deformed later. In this case, SED = 67.2-94.5 with respect to the lead shear strain γ = 0.25-0.5, which is a continuous and relatively regular deformation, and the maximum value of SED is 90 or more.
[0015]
Thus, as is clear from the experiments of FIGS. 1 to 3, when the sliding surface in the lead plug corresponding to the shear deformation is increased, a tendency for the SED to increase was observed. In this experiment, it was also found that the deformed lead plug does not return to its original shape due to plastic deformation, and the deformation concentrates only on the easily deformable portion.
Based on the above experimental results, the present invention avoids the concentration of deformation with respect to lead, which is an elastoplastic material, causes deformation with a uniform distribution, and further restores the original shape rather than lead. In order not only to enclose the lead plug with a metal with a large yield force stress, but also to make effective use of the elastic restoring force of laminated rubber in which rubber and intermediate steel sheets are laminated alternately, it is made of a metal with a greater yield force stress than lead. It is based on the principle that it is effective to enclose lead in a state where a large number of shrouds are laminated.
[0016]
Fig.4 (a) shows 1st Embodiment of the laminated rubber bearing with a lead plug of this invention. The laminated rubber bearing 10 with lead plugs is used to absorb the kinetic energy between two members that are spaced apart from each other in the vertical direction, such as the foundations and intermediate parts of civil engineering buildings such as bridges and buildings, and upper structures. Fixedly mounted between. That is, the lower flange 11 is fixed to the foundation (not shown) of the structure with, for example, a bolt, and the upper flange 12 is fixed to the upper structure (not shown) with a bolt or the like.
[0017]
Between the lower flange 11 and the upper flange 12, there is a laminated rubber portion 13. The laminated rubber portion 13 is formed by alternately laminating rubber 14 and intermediate steel plates 15 in the vertical direction. The intermediate steel plate 15 is composed of a metal having a yield stress greater than that of lead, typically a steel plate, and is formed as a laminated body integrated with rubber. The laminated rubber portion 13 is mainly responsible for elastic deformation due to shear strain in the horizontal direction.
[0018]
The laminated rubber portion 13 is provided with a hole 16 penetrating in the vertical direction, and the lead plug 1 whose periphery is surrounded by the restraining portion 17 is inserted into the hole 16. In this embodiment, the restraining portion 17 is made of a steel material integrally with the intermediate steel plate 15. That is, as shown in FIGS. 5A and 5B, a square thin plate-shaped peripheral portion is formed as an intermediate steel plate 15, and a thick circular portion at the center is formed as a surrounding plate 17 serving as a restraining portion. Has been.
[0019]
The surrounding plate 17 has an opening 18 that defines a through hole 16 into which the lead plug 1 is inserted at the center. When the surrounding plate 17 is stacked, the surrounding plate 17 is in close contact with an adjacent surrounding plate. A smooth surface sliding portion 19 for restraining the lead plug is provided. In this embodiment, as shown in FIG. 8, the sliding portion 19 is adjacent to the surface of the portion of the thick portion having a predetermined thickness t of the enclosure plate 17 in the radial direction W (FIG. 8). It is a contactable area | region with the surrounding board.
[0020]
R-shaped, round, or tapered chamfered portions 20 are formed on the upper and lower edges of the inner wall of the opening 18 of the enclosure plate 17. As will be described later, the chamfered portion 20 has the lead plug 1 biting into the chamfered portion 20 of the enclosure plate 17 so that the lead plug 1 and the enclosure plate 17 are subjected to shear deformation as shown in FIG. This is to prevent the surface of the lead plug from being damaged by contact at an angle of 90 degrees at the contact portion, that is, to receive concentrated local deformation.
[0021]
It is desirable that the upper and lower edge portions 21 on the outer side in the radial direction of the enclosure plate 17, that is, the connecting portion with the intermediate steel plate 15, be connected to the surface of the intermediate steel plate 15 in a smooth R shape, round shape or taper shape. Since the upper and lower connecting portions 21 are in contact with the rubber 14, when the shearing deformation as shown in FIG. 7 is applied, the portion of the rubber 14 adjacent to the connecting portion 21 is locally deformed greatly. This is to prevent it. Further, by applying a release agent or the like to the connecting portions 21 in advance and then integrating with the rubber, the connecting portion 21 and the rubber portion in the vicinity thereof are not mechanically bonded and non-bonded. It is desirable to be in an adhesive state.
[0022]
And the intermediate | middle steel plate 15 and the integral type enclosure board 17 are laminated | stacked. That is, the portion of the thick wall plate 17 is laminated so that the sliding portion 19 comes into contact with the sliding portion of the adjacent enclosure plate, while the portion of the thin intermediate steel plate 15 is between the adjacent intermediate steel plates. The interval at which the rubber 14 is laminated is defined.
In the integrated laminated rubber portion 13 and restraint portion 17 thus configured, lead 1 is inserted into the vertical through-hole 16 defined by the opening 18 of the surrounding plate 17. When there is no chamfered portion 20 in the surrounding plate 17, it is possible to press-fit cylindrical lead into the through-hole 16, but there is a chamfered portion 20 in the surrounding plate 17. In order to sufficiently spread the lead also in the circumferential groove, it is desirable to inject molten lead into the through-hole 16 and to cool and solidify. The lead plug 1 is a portion that plastically deforms when the laminated rubber bearing with the lead plug is subjected to shear deformation, and functions mainly as a damper by the plastic energy.
[0023]
FIG. 6 shows the shapes of the lower flange 11 and the upper flange 12. The lower flange 11 is in contact with the lowermost enclosure plate 17 and the upper flange 12 is in contact with the uppermost enclosure plate 17 and cooperates to seal the lead plug 1 in a hermetic manner. Therefore, the lower flange 11 and the upper flange 12 are designed so as to have a sliding portion 19a similar to the sliding portion 19 of the enclosure plate 17 in the portion that contacts the enclosure plate 17. That is, the portion corresponding to the sliding portion 19 of the enclosure plate 17 is raised by a dimension corresponding to the step between the enclosure plate 17 and the intermediate steel plate 15, and the flat contact is made by the same radial dimension of the sliding portion 19 of the enclosure plate 17. A part is formed and the upper and lower edges of the opening are chamfered.
[0024]
FIG. 4B shows a state in which a displacement in the shearing direction is generated between the lower flange 11 and the upper flange in the first embodiment. As described above, when the laminated rubber bearing with the lead plug is subjected to shear deformation, the laminated rubber portion 13 is elastically deformed and is in a regular inclined state as illustrated. This is because the laminated rubber portion 13 is formed by alternately laminating the rubber 14 and the intermediate steel plate 15 at substantially equal pitches in the vertical direction, and is relatively hard against vertical displacement, while allowing horizontal displacement. It is because it is comprised in the form which does.
[0025]
Therefore, the enclosure plates 17 that are integral with and laminated with the intermediate steel plate 15 are inclined together with the lead plug 1 that is an elastic-plastic member as shown in the figure, and the individual enclosure plates 17 are sequentially equal at their sliding portions 19. It will shift by the dimension. For this reason, the lead plug 1 held in a hermetically sealed state by the surrounding plate 17 causes a relatively uniform deformation in the vertical direction, and can prevent the upper and lower ends of the ball head from being seen in the bare lead plug.
[0026]
In FIG. 8, the sliding portion 19 of the shroud 17 has an overlap margin e with respect to the radial shift amount d even during a predetermined shear deformation. For example, even when the shear strain reaches 250%, the lead plug What is necessary is just to set the dimension of W so that 1 may be enclosed in the airtight state. Therefore, the sliding surface of the lead plug 1 can be reduced on the contact surface between the enclosure plate 17 and the lead plug 1, and when the laminated rubber portion 13 is restored to the original state by elastic deformation, the lead plug 1 has the original cylindrical shape. It can return to the state.
[0027]
In FIG. 8, conditions for obtaining an overlap margin e with respect to a radial shift amount d even during a predetermined shear deformation will be described. In FIG.
W: Radial dimension (sliding allowance) of the sliding part of the shroud
d: Sliding distance between two adjacent shrouds
e: Overlap allowance when two adjacent enclosures are displaced by the sliding distance d
t S : Thickness of one sheet of intermediate steel
t r : Rubber layer thickness between intermediate steel plates
t: Sum of thicknesses of one intermediate steel sheet and one rubber layer (t = t S + T r )
γ: Shear strain of lead (γ = d / t)
γ max : Lead shear limit (eg, 250%)
Is defined as W = d + e, where γ = γ max In this case, e> 0 must be satisfied.
[0028]
Also, the lead shear strain equation defined by γ = d / t, where γ max Is set in the range of 30% or more and 300% or less, preferably 100 to 250%.
Furthermore, t = t S + T r The range of the sum of the thickness of one intermediate steel sheet and one rubber layer defined by the above is set to 2 mm or more and 100 mm or less, and preferably 2 mm to 30 mm.
FIG. 9A shows a second embodiment of the laminated rubber bearing with a lead plug of the present invention. The lower flange 11 and the upper flange 12 are the same as in the first embodiment. In the first embodiment, all the enclosure plates 17 are of the integral type with the intermediate steel plate 15. The second embodiment is the same as the first embodiment in that the laminated rubber portion 13 is formed by alternately laminating the rubber 14 and the intermediate steel plate 15 integrated with the enclosure plate 17 in the vertical direction. Every other intermediate steel sheet is degenerated and is formed as a fin 31 whose outer circumferential length is shortened. Further, the thickness of the portion of the surrounding plate 17 ′ is an example different from that of the surrounding plate 17 integrated with the intermediate steel plate 15.
[0029]
However, the opening into which the lead plug 1 provided in the central portion of the surrounding plate 17 ′ has the same inner diameter as the opening 18 of the intermediate steel plate 15 and the integral type surrounding plate 17, and the sliding portion 19 is exactly the same. is there. Furthermore, the shapes of the chamfered portions 20 on the upper and lower edges of the inner wall of the opening 18 and the connecting portions 21 with the fins 31 are exactly the same as those of the intermediate steel plate 15 and the integral enclosure plate 17.
[0030]
In this manner, the intermediate steel plate 15, the integral type enclosure plate 17, the fins 31 and the integral type enclosure plate 17 ′ are alternately laminated to form the restraint portion of the lead plug 1, so that As shown in FIG. 9 (b), the interval or pitch of the steel plates 15 is not so small, the pitch in the vertical direction of the enclosure plates 17 (17 ′) to be stacked is reduced, and the enclosure plates are arranged more densely. When the shear deformation is performed, the plastic deformation of the lead plug 1 can be made smoother. On the other hand, since the interval or pitch of the intermediate steel plates 15 in the laminated rubber portion 13 is not so small, the width in the vertical direction of the rubber layer 14 that causes elastic deformation is not greatly reduced. Deformation can be allowed.
[0031]
Although the size of the fins 31 is set to an appropriate size, since the fins 31 are integrally formed with the surrounding plate 17 ′, the elastic deformation in the shearing direction of the laminated rubber portion 13 is the same as that of the intermediate steel plate 15 and the integrated type surrounding plate 17. Can be smoothly transmitted to the lead plug 1. Other structures and operations are the same as those in the first embodiment.
Fig.10 (a) shows 3rd Embodiment of the laminated rubber bearing with a lead plug of this invention. In the first and second embodiments, the lead plug 1 is encapsulated by thickening the part of the intermediate steel plate or the fin-integrated enclosure, but in this third embodiment, the lead plug 1 is laminated more densely. In order to contain by a body, it was set as the form which does not provide a thick part. That is, it is a form in which the intermediate steel plate 32 having a uniform thickness is also arranged in a jumping manner, and the ring-shaped enclosure plate 33 is arranged therebetween. For example, as shown in the figure, two ring-shaped enclosure plates 33 having the same thickness as the intermediate steel sheet 32 are arranged between the intermediate steel sheets 32 also serving as enclosure plates.
[0032]
According to such a structure, when shear deformation occurs as shown in FIG. 10B, the ring-shaped shroud 33 that comes into contact with the intermediate rubber plate 13 in accordance with the horizontal movement of the intermediate steel plate 32 in the laminated rubber portion 13. In addition, following the movement of the intermediate steel plate 32, the same horizontal movement is caused, whereby the lead plug 1 can be smoothly plastically deformed.
If the number of the ring-shaped enclosures 33 disposed between the intermediate steel sheet 32 and the adjacent intermediate steel sheet 32 is excessively increased, the ring-shaped enclosure 33 separated from the intermediate steel sheet 32 sufficiently follows the intermediate steel sheet 32. Since there is a possibility that the operation cannot be performed, the followability of the ring-shaped surrounding plate 33 is good, and the thickness of the rubber layer 14 in the laminated rubber portion 13 is set to a level that allows a sufficient shear strain.
[0033]
For example, the thickness of the intermediate steel plate 32 and the ring-shaped surrounding plate 33 is in the range of 1 to 10 mm, preferably about 2 to 5 mm, the number of intermediate steel plates 32 is 2 to 50, and two adjacent intermediate plates It is appropriate that the number of ring-shaped surrounding plates 33 inserted between the steel plates 32 is 1 to 12.
When the thickness of the intermediate steel plate 32 and the ring-shaped surrounding plate 33 is equal (= t), when the relative displacement between adjacent plates is d, the shear strain (γ) of the lead plug is
γ = d / t
The design value is set so that the lower limit of this value is 30% or more and the upper limit is 300% or less.
[0034]
FIG. 11A shows a fourth embodiment similar to the third embodiment in a state where it has undergone shear strain. A difference from the third embodiment is that the upper and lower edges of the inner peripheral wall of the opening of the intermediate steel plate 32 serving also as the enclosure plate and the ring-shaped enclosure plate 33 are tapered. When the shear strain limit is set to 250%, the taper surface 35 of the intermediate steel plate 32 and the ring-shaped surrounding plate 33 is straight when the shear strain limit is 250%. It is desirable to set the angle so as to be in the vicinity or in the vicinity thereof. Further, when the shear strain limit is set to 300%, an angle at which the taper surface 35 of the intermediate steel plate 32 and the ring-shaped surrounding plate 33 are aligned in a straight line in a state of being deformed by applying a strain of 300% or its Needless to say, it should be set in the vicinity.
[0035]
Moreover, in 4th Embodiment shown to Fig.11 (a), even if it press-fits by inserting a cylindrical lead plug in the opening hole of the laminated body comprised by the intermediate | middle steel plate 32 and the ring-shaped enclosure board 33. FIG. Since the surface of the lead plug 1 does not adhere to the tapered surface 35, the lead plug 1 is brought into close contact with the tapered surface 35 by injecting molten lead and then solidifying by cooling after being melted. Accordingly, the lead plug 1 before being subjected to shear deformation is in a state as shown in FIG. 11B, and has a large number of tapered uneven surfaces 36 corresponding to the tapered surfaces 35 on the outer peripheral surface.
[0036]
FIG. 12 shows a fifth embodiment of a laminated rubber bearing with a lead plug according to the present invention. This embodiment is the same form as the first embodiment shown in FIG. 4A, but spring elements are arranged in series at the upper and lower ends of the restraining portion made of the surrounding plate 17 to give the elastic characteristics in the vertical direction. This is different from the first embodiment.
In the conventional bearing structure in which the vertical rigidity is maintained by the laminated rubber part in which rubber and intermediate steel plates are alternately laminated in the vertical direction, the vertical rigidity is 1000 to 2000 times the horizontal rigidity. It has rigidity. As in the first to fourth embodiments of the present invention described above, the vertical rigidity is maintained by the laminated portion of the shroud 17 in addition to the laminated rubber portion 13 in which the rubber 14 and the intermediate steel plate 15 are alternately laminated. In the structure, the rigidity in the vertical direction is further increased with respect to the rigidity in the horizontal direction.
[0037]
Even in such a case, there may be a situation where it is desired to reduce the rigidity in the vertical direction. For this reason, in the fifth embodiment, the portions of the upper and lower flanges 11 and 12 that are in contact with the surrounding plate 17 are configured as independent ring-shaped members 40, and the ring-shaped grooves 41 that are fitted to the ring-shaped members 40 are vertically After forming the flanges 11 and 12 and inserting the spring element 42 into the ring-shaped groove 41, the ring-shaped member 40 is inserted.
[0038]
Further, in a state where the ring-shaped member 40 is inserted into the ring-shaped groove 41, the sliding portion 40 a that comes into contact with the enclosure plate 17 protrudes from the opposing surface of the upper and lower flanges 11 and 12 and contacts the sliding portion 19 of the enclosure plate 17. To do. As the spring element 42, a rubber-like elastic body such as an elastomer is conceivable for supporting a large load.
FIG. 13 shows another embodiment in which a spring element is arranged in series with the restraint portion in the laminated rubber bearing with a lead plug of the present invention to give an elastic characteristic in the vertical direction. In this embodiment, the upper flange 12 has two parts, a peripheral part 12a corresponding to the laminated rubber part 13 for supporting load of an upper object such as a bridge or a building, and a central part 12b corresponding to the restraining part 17 for containing the lead plug 1. Divide into That is, the peripheral portion 12a is provided with a through hole 44 having a diameter corresponding to the diameter of the surrounding plate 17 forming the lead restraint portion, and after the central portion 12b is inserted into the through hole 44, a spring made of an elastomer or the like. Element 45 is inserted. The central portion 12 b has a ring-shaped sliding portion 46 that protrudes downward from the lower surface of the peripheral portion 12 a and contacts the sliding portion 19 of the surrounding plate 17, and this sliding portion 46 is the sliding portion 19 of the surrounding plate 17. It has a shape corresponding to.
[0039]
In this embodiment, the spring element 45 can be configured to be detachable from the laminated rubber bearing with a lead plug. Accordingly, in the construction site or the like, the elastic characteristics in the vertical direction can be adjusted by inserting or replacing other types of spring elements having different elastic moduli, for example, depending on the building.
14 shows a laminated rubber bearing with a lead plug according to the present invention (a bearing corresponding to the embodiment of FIG. 11) in which a spring element is arranged in series with a lead restraint portion to give an elastic characteristic in the vertical direction. The thing of another aspect is shown. In this embodiment, as described above, the upper flange 12 is divided into two parts, a peripheral part 12a corresponding to the laminated rubber part 13 and a central part 12b corresponding to the restraining part 17 for containing the lead plug 1. And the center part 12b is inserted in the through-hole 44 provided in the surrounding part 12a, and the disc spring 46 is inserted. The center part 12b contacts the uppermost enclosure board 17 which comprises the restraint part. Also in this embodiment, it goes without saying that the vertical rigidity can be adjusted by the disc spring 46 according to the building.
[0040]
In the embodiment of FIGS. 12 and 13, a laminated rubber bearing with a lead plug corresponding to the first embodiment will be described, and in the embodiment of FIG. 14, a laminated rubber bearing with a lead plug corresponding to the fourth embodiment. However, it should be noted that the configuration for obtaining elastic deformation in the vertical direction in these embodiments is applicable to each embodiment of the laminated rubber bearing with lead plug of the present invention.
[0041]
Although the embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to the above-described embodiments, and various forms, modifications, and modifications are within the spirit and scope of the present invention. It should be noted that etc. are possible.
For example, in the above-described embodiment, the intermediate plate 15 and the enclosure plate 17 are configured to be mechanically interlocked at the time of shear deformation by integrating the enclosure plate 17 constituting the restraining portion with the intermediate steel plate 15. Even if the enclosure plate 17 and the intermediate steel plate 15 are configured as separate bodies, and the enclosure plate 17 is merely arranged close to the periphery of the intermediate steel plate 15, the rigidity in the vertical direction is extremely high relative to the rigidity in the shearing direction, It can be mechanically linked.
[0042]
4 (a), (b), FIG. 7, FIG. 9 (a), (b), FIG. 12 and FIG. 13 show the rubber 14 and the intermediate steel plate 15 in order to clearly show the lead plug 1 portion. It should be noted that although the parts are shown short, they are actually long in the lateral direction.
[0043]
【The invention's effect】
As described above, according to the present invention, the lead plug has a property close to that of a non-compressible material having a Poisson's ratio of around 0.44. When undergoing deformation, the plastic energy of the lead plug is used. At that time, even when the shear strain reaches 250%, an overlap margin of the shroud is provided so that the lead plug can be contained. It is possible to cope with earthquake motion, and even when subjected to such a large shear strain, maintaining the lead plug in a sealed state prevents the lead from biting into the rubber layer and provides good damping efficiency. Moreover, a laminated rubber bearing with a long-life lead plug that prevents breakage of lead can be obtained.
[Brief description of the drawings]
FIG. 1 shows a state (a) in which an experiment of mechanical properties was conducted with a lead plug bare, and a deformation (b) of the lead plug after the experiment.
FIG. 2 shows a state (a) in which an experiment of mechanical properties was performed with a lead plug supported by a wide collar, and a deformation (b) of the lead plug after the experiment.
FIG. 3 shows a state (a) in which an experiment of mechanical properties was conducted with a lead plug supported by a number of ring-shaped washers, and a deformation (b) of the lead plug after the experiment.
FIG. 4 is a longitudinal sectional view (a) of a laminated rubber bearing with a lead plug according to a first embodiment of the present invention and a longitudinal sectional view (b) in a state of being subjected to shear strain.
FIG. 5 is a cross-sectional view (a) and a plan view (b) of an intermediate steel plate integrated with an intermediate steel plate used in the first embodiment of the present invention.
FIG. 6 is a sectional view (a) of the upper and lower flanges and a sectional view (b) of the enclosure plate.
FIG. 7 is a cross-sectional view showing a state in which the lead plug is subjected to shear strain in the first embodiment of the present invention.
FIG. 8 is a cross-sectional view (a) showing the dimensions of the enclosure plate in the first embodiment of the present invention, and a cross-sectional view (b) showing the dimensions of the enclosure plate in a state of being subjected to shear strain.
FIG. 9 is a longitudinal sectional view (a) of a laminated rubber bearing with a lead plug according to a second embodiment of the present invention, and a longitudinal sectional view (b) in a state of being subjected to shear strain.
FIG. 10 is a longitudinal sectional view (a) of a laminated rubber bearing with a lead plug according to a third embodiment of the present invention and a longitudinal sectional view (b) in a state of being subjected to shear strain.
FIG. 11 is a longitudinal sectional view (a) of a laminated rubber bearing with a lead plug according to a fourth embodiment of the present invention in a state of being subjected to shear strain, and a diagram (b) showing the shape of the lead plug before deformation.
FIG. 12 is a cross-sectional view showing a form allowing elastic deformation in the vertical direction in the laminated rubber bearing with lead plug of the present invention.
FIG. 13 is a cross-sectional view showing another embodiment that allows elastic deformation in the vertical direction in the laminated rubber bearing with lead plug of the present invention.
FIG. 14 is a cross-sectional view showing still another embodiment that allows elastic deformation in the vertical direction in the laminated rubber bearing with lead plug of the present invention.
[Explanation of symbols]
1 ... Lead plug (elastic-plastic material)
10 ... Laminated rubber bearing with lead plug
11 ... Lower flange
12 ... Upper flange
13 ... Laminated rubber part
14 ... Rubber
15 ... Intermediate steel plate
16 ... through hole
17 ... Restraint (enclosure)
18 ... Opening
19 ... sliding part
20 ... chamfer
21 ... Connection part
31 ... Fins
32 ... Intermediate steel plate
33 ... Ring-shaped shroud
35 ... Taper surface
40. Ring-shaped member
41 ... Ring groove
42 ... Spring element
44 ... through hole
45 ... Spring element
46 ... Belleville spring

Claims (5)

ゴムと中間鋼板とを上下方向に交互に積層して成る積層ゴム部と、該積層ゴム部を上下方向に貫通して設けられた孔に挿入された、鉛からなる弾塑性材料と、該弾塑性材料の周囲に設けられた拘束部とから成る、上下に間隔を隔てた2つの部材間の運動エネルギを吸収する、鉛プラグ入積層ゴム支承において、
前記拘束部は、鉛以上の降伏応力を持つ材料から成り且つ前記孔を規定する開口を有する複数の囲い板を上下方向に積層した構造を有し、該囲い板は隣接する囲い板との間に、所定の剪断変形時にも重なり代を持つ摺動部を有し、且つ前記囲い板の少なくとも幾つかは、剪断変形時に前記中間鋼板と機械的に連動するように該中間鋼板との間で位置関係を保って配置され、前記囲い板の少なくとも幾つかは、前記中間鋼板とは一体に形成されていることを特徴とする鉛プラグ入積層ゴム支承。
A laminated rubber portion formed by alternately laminating rubber and an intermediate steel plate in the vertical direction; an elastic-plastic material made of lead inserted into a hole provided through the laminated rubber portion in the vertical direction; In a laminated rubber bearing with a lead plug that absorbs kinetic energy between two members spaced apart in the vertical direction, comprising a restraining portion provided around the plastic material,
The constraining portion has a structure in which a plurality of enclosure plates made of a material having a yield stress equal to or higher than lead and having openings that define the holes are stacked in the vertical direction, and the enclosure plates are adjacent to adjacent enclosure plates. Further, a sliding portion having an overlap margin at the time of a predetermined shear deformation is provided, and at least some of the enclosure plates are between the intermediate steel plates so as to mechanically interlock with the intermediate steel plates at the time of shear deformation. A laminated rubber bearing with lead plugs, wherein the laminated rubber bearings are arranged in a positional relationship, and at least some of the surrounding plates are formed integrally with the intermediate steel plate .
前記囲い板の他の少なくとも幾つかは、前記中間鋼板と平行で且つ該中間鋼板より、該囲い板から外周方向へ延びる距離の短いフィンと一体に形成されたフィン付囲い板であることを特徴とする請求項1に記載の鉛プラグ入積層ゴム支承。  At least some of the surrounding plates are finned surrounding plates that are formed integrally with fins that are parallel to the intermediate steel plate and that have a short distance from the intermediate steel plate to the outer circumferential direction. The laminated rubber bearing with a lead plug according to claim 1. 前記フィン付囲い板と、前記中間鋼板と一体となった囲い板とが交互に積層されていることを特徴とする請求項2に記載の鉛プラグ入積層ゴム支承。  The laminated rubber bearing with lead plug according to claim 2, wherein the finned enclosure plate and the enclosure plate integrated with the intermediate steel plate are alternately laminated. 前記囲い板積層部の上下端の少なくとも一方にバネ要素を直列に配置し、上下方向に弾性特性を与えるようにしたことを特徴とする請求項1に記載の鉛プラグ入積層ゴム支承。  The laminated rubber bearing with a lead plug according to claim 1, wherein a spring element is arranged in series on at least one of the upper and lower ends of the enclosure laminated portion so as to give elastic characteristics in the vertical direction. 前記囲い板の開口の内壁は、前記弾塑性材料との接触部分の角が面取りされていることを特徴とする請求項1に記載の鉛プラグ入積層ゴム支承。  The laminated rubber bearing with lead plug according to claim 1, wherein the inner wall of the opening of the shroud is chamfered at the corner of the contact portion with the elastic-plastic material.
JP32159596A 1996-12-02 1996-12-02 Laminated rubber bearing with lead plug Expired - Fee Related JP3710237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32159596A JP3710237B2 (en) 1996-12-02 1996-12-02 Laminated rubber bearing with lead plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32159596A JP3710237B2 (en) 1996-12-02 1996-12-02 Laminated rubber bearing with lead plug

Publications (2)

Publication Number Publication Date
JPH10159897A JPH10159897A (en) 1998-06-16
JP3710237B2 true JP3710237B2 (en) 2005-10-26

Family

ID=18134304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32159596A Expired - Fee Related JP3710237B2 (en) 1996-12-02 1996-12-02 Laminated rubber bearing with lead plug

Country Status (1)

Country Link
JP (1) JP3710237B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373274B2 (en) * 2006-09-22 2013-12-18 株式会社ブリヂストン Anti-vibration structure
JP5536303B2 (en) * 2007-11-06 2014-07-02 オイレス工業株式会社 Laminated rubber bearing
JP5481365B2 (en) * 2010-12-21 2014-04-23 株式会社ブリヂストン Seismic isolation device
CN104018595B (en) * 2014-06-06 2017-01-11 太原理工大学 Lead enclosed type support constrained by loops continuously in layered mode
JP6540114B2 (en) * 2015-03-12 2019-07-10 オイレス工業株式会社 Seismic isolation support device
JP7013116B2 (en) * 2016-04-19 2022-01-31 Nok株式会社 Anti-vibration mount
JP7061904B2 (en) * 2018-03-19 2022-05-02 株式会社免制震ディバイス Structure foundation
KR102129755B1 (en) * 2019-12-19 2020-07-03 (주)이엔에스 엔지니어링 Molds for seismatic isolation devices and their products
CN112324000B (en) * 2020-09-16 2022-10-21 中国铁路设计集团有限公司 Shock absorption and energy dissipation method under earthquake action
CN112814224B (en) * 2020-12-26 2022-05-03 宁波市城展建设工程有限公司 Construction technology of building wall
CN113339437B (en) * 2021-06-09 2022-06-17 西南交通大学 Perforated yielding type energy dissipater

Also Published As

Publication number Publication date
JPH10159897A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
US4499694A (en) Cyclic shear energy absorber
JP3710237B2 (en) Laminated rubber bearing with lead plug
CN85104305A (en) The improvement of acceptor of energy
WO2017183542A1 (en) Seismic isolator apparatus
JP3205393U (en) Seismic isolation device
JP2006275212A (en) Energy absorbing device
JP5536303B2 (en) Laminated rubber bearing
EP3614017A1 (en) Seismic isolation support device
JP3114624B2 (en) Seismic isolation device
KR101007694B1 (en) Lead rubber bearing
JP6579026B2 (en) Seismic isolation bearings for bridges and bridges using them
JP2006275215A (en) Vibrational energy absorbing device and its manufacturing method
JP4023696B2 (en) Lead filled laminated rubber bearing
JP3503712B2 (en) Lead encapsulated laminated rubber
JP3410172B2 (en) Lead encapsulated laminated rubber bearing
JP7427578B2 (en) Seismic isolation device
JP3568586B2 (en) Lead encapsulated laminated rubber bearing
JP3717287B2 (en) Seismic isolation device
WO2018016402A1 (en) Earthquake-proof support device
JP4826977B2 (en) Pile head damping structure
JP2991668B2 (en) Vertical shock absorbing laminated rubber bearing
JP2008232190A (en) Laminated rubber bearing and its manufacturing method
JPH08326814A (en) Layered rubber support body
WO2018016426A1 (en) Layered rubber support
JPS62155343A (en) Vibration energy absorbing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees