JP3709792B2 - Solenoid valve device - Google Patents

Solenoid valve device Download PDF

Info

Publication number
JP3709792B2
JP3709792B2 JP2001004890A JP2001004890A JP3709792B2 JP 3709792 B2 JP3709792 B2 JP 3709792B2 JP 2001004890 A JP2001004890 A JP 2001004890A JP 2001004890 A JP2001004890 A JP 2001004890A JP 3709792 B2 JP3709792 B2 JP 3709792B2
Authority
JP
Japan
Prior art keywords
core
movable core
movable
fixed core
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001004890A
Other languages
Japanese (ja)
Other versions
JP2002206658A (en
Inventor
英樹 奥田
史佳 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001004890A priority Critical patent/JP3709792B2/en
Priority to US09/891,397 priority patent/US6546945B2/en
Publication of JP2002206658A publication Critical patent/JP2002206658A/en
Application granted granted Critical
Publication of JP3709792B2 publication Critical patent/JP3709792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体流路を開閉する電磁弁装置に関するものである。
【0002】
【従来の技術】
流体流路を開閉する電磁弁装置として、可動コアと、可動コアの往復移動方向で可動コアと向き合う固定コアと、可動コアの外周側に配置されるコアプレートとにより磁気回路を構成し、コイルに通電することにより固定コア側に可動コアを吸引するものが知られている。コイルへの通電をオンまたはオフすることにより可動コアとともに可動部材を構成する弁部材が弁座から離座または弁座に着座するので、流体流路が開閉される。
そして、固定コアおよびコアプレートをインサート成形する樹脂材でコアプレートの内周側に樹脂膜を形成し、この樹脂膜で可動コアの外周壁を往復移動可能に案内することがある。
【0003】
【発明が解決しようとする謀題】
しかしながら、コアプレートの内周側に形成した樹脂膜により可動コアの外周壁を往復移動可能に案内する構成では、可動コアとコアプレートとの間に径方向に少なくとも樹脂膜の厚み分のギャップが形成されるので、固定コアに可動コアを吸引する磁気吸引力が低下する。所望の磁気吸引力を発生するためにコイルの巻数を増やすと、コイルが大型化するという問題がある。
【0004】
また、可動コアを吸引する磁気吸引力は、可動コアと固定コアとの間に軸方向に形成される軸ギャップが小さくなると大きくなる。したがって、可動コアと固定コアとの軸ギャップが最大になるコイルへの非通電時において所望の磁気吸引力を得るためには、可動コアを吸引する力が小さい場合、可動コアと固定コアとの間に形成される軸方向の最大ギャップを小さくし磁気吸引力を増加させなければならない。しかし、最大ギャップを小さくすると、可動コアが固定コアに吸引されストッパに衝突するときの軸方向の最小ギャップが小さくなる。可動コアが固定コアに接近し軸ギャップが小さくなるにつれ磁気吸引力は急激に増加するので、最小ギャップが小さくなると可動コアがストッパに衝突するときの速度が上昇し、可動コアが大きくバウンドする。開弁時間が短い場合、可動コアが大きくバウンドすると、流体流量がばらつくとともに、開弁時間と流体流量とが線形関係を満たさなくなるという問題がある。
本発明の目的は、流体流量が少ない場合の流体流量のばらつきを防止し、小型化可能な電磁弁装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明の請求項1記載の電磁弁装置によると、第1固定コアの可動コアと向き合う側に配設され、非磁性材で形成されている案内部材が可動コアの内周壁を往復移動可能に案内している。したがって、可動コアの外周側に配置されている第2固定コアと可動コアの外周壁との間に非磁性の案内部材を配置する必要がない。可動コアと第2固定コアとの間に径方向に形成されるギャップを極力小さくし、第1固定コアに可動コアを吸引する磁気吸引力を増加できるので、コイルの巻数を減少し、電磁弁を小型化できる。
【0006】
また、コイルの巻数を減少しない場合、可動コアを吸引する磁気吸引力が増加するので、コイルへの非通電における第1固定コアと可動コアとの最大ギャップと、可動部材がストッパに衝突するときの第1固定コアと可動コアとの最小ギャップとを大きくすることができる。したがって、可動コアを軸方向に吸引する磁気吸引力が大きくなり過ぎない位置を最小ギャップにすることができる。したがって、可動コアがストッパに衝突するときの速度を低下させ、ストッパに衝突するときの可動コアのバウンドを小さくすることができる。これにより、開弁時間が短く流体流量が少ないときにおいても流体流量のばらつきが小さくなる。さらに、可動コアのバウンドが小さくなると流路の開口面積の減少を防止できるので、流体流量が少ないときにおいても開弁時間と流体流量との線形関係を保持できる。
さらに、第1固定コアの端部は、大径部と、大径部の可動コア側に配置されている小径部とを有している。そして、小径部の外径をr1、案内部材の外径をr2、可動コアの内径をr3とすると、r3>r2>r1である。r2>r1を保持しつつr1とr2とを極力近づけることにより、可動コアが第1固定コアに吸引され小径部に近づくにつれ、可動コアの内周壁と小径部の外周壁との間で可動コアを径方向に吸引する力が大きくなる。可動コアと第1固定コアとの軸ギャップが小さくなっても可動コアを軸方向に吸引する磁気吸引力の増加を低減できるので、可動部材がストッパに衝突する速度が低下し、可動部材がストッパに衝突するときのバウンドが小さくなる。したがって、開弁時間が短く流体流量が少ないときの流体流量のばらつきを低減できる。さらに、可動コアのバウンドが小さくなると流路の開口面積の減少を防止できるので、流体流量が少ないときにおいても開弁時間と流体流量との線形関係を保持できる。
【0007】
本発明の請求項2記載の電磁弁装置によると、可動コアが第1固定コア側に吸引され小径部の先端部を通過すると、可動コアと先端部との間に第1固定コア側に可動コアを吸引する磁気吸引力と反対方向に磁気吸引力が働く。可動部材がストッパに衝突する速度が減速し、可動部材がストッパに衝突するときのバウンドが小さくなる。したがって、開弁時間が短く流体流量が少ないときの流体流量のばらつきを低減できる。さらに、可動コアのバウンドが小さくなると流路の開口面積の減少を防止できるので、流体流量が少ないときにおいても開弁時間と流体流量との線形関係を保持できる。
本発明の請求項3記載の電磁弁装置によると、可動コアと向き合う第1固定コアの端部は、可動コアが侵入可能な空間を形成している収容部を有している。収容部の内径をr1、案内部材の外径をr2、可動コアの内径をr3、可動コアの外径をr4とすると、r1>r4>r3>r2である。r1>r4を保持しつつr1とr4とを極力近づけることにより、可動コアが第1固定コアに近づくにつれ、可動コアの外周壁と収容部の内周壁との間で可動コアを径方向に吸引する磁気吸引力が大きくなる。可動コアと第1固定コアとの軸ギャップが小さくなっても可動コアを軸方向に吸引する磁気吸引力の増加を低減できるので、可動部材がストッパに衝突する速度が減速し、可動部材がストッパに衝突するときのバウンドが小さくなる。したがって、開弁時間が短く流体流量が少ないときの流体流量のばらつきを低減できる。さらに、可動コアのバウンドが小さくなると流路の開口面積の減少を防止できるので、流体流量が少ないときにおいても開弁時間と流体流量との線形関係を保持できる。
本発明の請求項4記載の電磁弁装置によると、可動コアの内周壁を案内する案内部材が可動部材のストッパを兼ねているので、部品点数が減少し、組付け工数が低減する。
本発明の請求項5記載の電磁弁装置によると、第1固定コア、第2固定コアおよびコイル部をインサート成形する樹脂材で案内部材を成形するので、部品点数が減少し、組付け工数が低減する。
【0012】
本発明の請求項6記載の電磁弁装置の製造方法によると、第1固定コア、第2固定コア、コイル部および可動コアの型材をインサート成形する樹脂材で案内部材を成形するので、部品点数が減少し、組付工数が低減する。
本発明の請求項7記載の電磁弁装置の製造方法によると、第1固定コア、第2固定コア、コイル部および可動コアの型材をインサート成形する樹脂材で案内部材および可動部材のストッパを成形するので、部品点数が減少し、組付工数が低減する。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を示す複数の実施例を図に基づいて説明する。
(第1実施例)
本発明の第1実施例による電磁弁装置を図1および図2に示す。電磁弁装置10は、例えば自動車の燃料タンクで発生する蒸発燃料をエンジンへ送り出すシステムに用いられ、蒸発燃料の流路を開閉する弁装置である。
【0014】
図1に示す電磁弁装置10の第1固定コアとしての固定コア11は円筒状に形成されており、固定コア11の一端にヨーク12がかしめ固定されている。第2固定コアとしてのコアプレート13は固定コア11の他端側でヨーク12と接続している。固定コア11、ヨーク12およびコアプレート13は磁性材で形成されている。コイル21を巻回したボビン20は固定コア11の外周にヨーク12とコアプレート13とで挟持するように配設されている。ボビン20およびコイル21はコイル部を構成している。
【0015】
充填樹脂30は、固定コア11、ヨーク12、コアプレート13、ボビン20およびコイル21をインサート成形している。充填樹脂30は、コネクタ31および案内部材35を成形している。ターミナル32は、コネクタ31内に埋設されており、コイル21と電気的に接続している。案内部材35は、固定コア11の内側を充填するとともに、後述する弁部材41側に突出するように成形されている。案内部材35は可動コア40の内周壁を往復移動可能に案内している。
【0016】
可動コア40、弁部材41および板ばね42は可動部材を構成し、一体になって往復移動する。可動コア40は磁性材で円筒状に形成されており、コアプレート13の内周側に配設されている。可動コア40は円板状の板ばね42に溶接等で固定されている。ゴム製の弁部材41は板ばね42に嵌合している。板ばね42の外周部は充填樹脂30と流路部材50とに挟持されている。コイルスプリング43は一端を板ばね42に当接し、他端を案内部材35に当接している。コイルスプリング43は流路部材50に形成されている弁座53に向けて板ばね42を付勢している。
【0017】
流路部材50は充填樹脂30と結合している。流路部材50には吸入口51および排出口52が一体に形成されている。弁部材41が弁座53から離座すると、吸入口51の吸入流路100から流入した流体が排出口52の排出流路101から排出される。吸入流路100および排出流路101は特許請求の範囲に記載した「流体流路」を構成している。
【0018】
次に、固定コア11および案内部材35の構造を詳細に説明する。
図2に示すように、固定コア11の弁部材41側端部は、大径部11aと、大径部11aよりも弁部材41側に配置され大径部11aよりも小径の小径部11bとを有している。大径部11aと小径部11bとの間に段差11cが形成されている。案内部材35は、大径部11aよりも小径で小径部11bよりも大径の案内部36と、案内部36から弁部材41側に向けて突出し案内部36よりも小径のストッパ37とを有している。案内部36は小径部11bの外周を覆っている。ストッパ37は、可動コア40が第1固定コア11に吸引されるとき、弁部材41を係止し、可動コア40および弁部材41の移動量を規定する。小径部11bの外径をr1、案内部36の外径をr2、可動コア40の内径をr3とすると、r3>r2>r1に設定されている。
【0019】
次に、電磁弁装置10の製造手順について説明する。
(1) 固定コア11の一端にヨーク12をかしめ固定する。
(2) 固定コア11の外周かつヨーク12の内周側にコイル21を巻回したボビン20を挿入する。
(3) 固定コア11の他端側のヨーク12にコアプレート13を接続する。
(4) 樹脂充填後に可動コア40を組み付けるために、可動コア40の型材を位置決めする。
(5) 固定コア11、ヨーク12、コアプレート13、コイル21を巻回したボビン20および型材を樹脂でインサート成形する。このとき、案内部材35が樹脂で成形される。
(6) 型材を抜き、可動コア40を組み付ける。
このように組み付けた構造体に流路部材50および他の部材を組み付けて電磁弁装置10を製造する。
【0020】
次に電磁弁装置10の作動について説明する。
(1) コイル21への通電オフ時、弁部材41はコイルスプリング43の付勢力により弁座53に着座している。したがって、吸入流路100と排出流路101との連通は遮断され、排出流路101から流体は排出されない。
【0021】
(2) コイル21に通電すると、コイル21が発生する磁力により可動コア40は固定コア11側に吸着される。可動コア40が固定コア11側に吸引されると、弁部材41が弁座53から離座する。これにより、吸入流路100と排出流路101とが連通し、排出流路101から流体が排出される。可動コア40および弁部材41の移動は弁部材41が案内部材35のストッパ37に係止されることにより停止する。
【0022】
可動コア40が固定コア11に向けて移動し、可動コア40の内周壁が小径部11bの外周壁と重なると、可動コア40と小径部11bとの間で径方向に磁気吸引力が働く。可動コア40と固定コア11との間に軸方向に働く磁気吸引力は、通常固定コア11と可動コア40との間で軸方向に形成される軸ギャップが小さくなるにしたがい大きくなる。ここで軸ギャップとは、可動コア40と、可動コア40と軸方向で向き合う固定コア11の対向部との距離を表しており、第1実施例において可動コア40と軸方向に向き合う固定コア11の対向部は段差11cである。
【0023】
可動コア40が固定コア11に近づき軸ギャップが小さくなるにしたがい、可動コア40の内周壁と小径部11bの外周壁とが径方向に向き合う対向面積が増加し、可動コア40と小径部11bとの間で径方向に働く磁気吸引力は大きくなる。したがって、図3に示すように、軸ギャップがある程度小さくなるまでの間、軸方向に働く磁気吸引力の上昇を抑え軸ギャップと磁気吸引力との特性を平坦にすることができる。
【0024】
さらに、案内部材35の案内部36が可動コア40の内周壁を往復移動可能に案内するので、充填樹脂30を充填するとき、可動コア40の外周側に配置されているコアプレート13の内周壁を樹脂で覆い可動コア40の外周壁を案内する必要がない。したがって、可動コア40の外周壁とコアプレート13の内周壁との間に形成されるサイドギャップdを極力小さくすることができる。サイドギャップdが小さくなることにより、固定コア11が可動コア40を吸引する磁気吸引力が大きくなる。
【0025】
コアプレート13の内周側を樹脂で覆い、可動コア40の外周壁を樹脂で案内する従来の構成に比べ、図3に示すように、軸ギャップが大きいときの磁気吸引力が大きくなっているので、可動コア40を吸引するために必要な最低磁気吸引力を満たす軸ギャップの大きさが従来例に比べ大きくなっている。コイル21への非通電時における軸ギャップ(最大ギャップ)、ならびに弁部材41がストッパ37に衝突するときの軸ギャップ(最小ギャップ)を大きくし、図3に示す特性曲線において、比較的特性が平坦な範囲を可動コア40の可動範囲にすることができる。これにより、弁部材41がストッパ37に衝突するときの速度が低下し、弁部材41がストッパ37に衝突するときのバウンドが小さくなる。したがって、開弁時間が短く、吸入流路100から排出流路101へ排出される流体流量が小さい場合に、流体流量のばらつきを低減できる。さらに、弁部材41のバウンドが小さくなると流路の開口面積の減少を防止できるので、流体流量が少ないときにおいても開弁時間と流体流量との線形関係を保持できる。
【0026】
また、軸ギャップを従来例と同じにするなら、コイルの巻数を減らしても同等の磁気吸引力が発生する。したがって、可能な限りコイルの巻数を減らせば、電磁弁装置を小型化できる。
【0027】
(第2実施例)
本発明の第2実施例を図4および図5に示す。第1実施例と実質的に同一構成部分には同一符号を付す。
第2実施例の第1固定コアとしての固定コア60の弁部材41側端部は、大径部61と、大径部61よりも弁部材41側に配置され大径部61よりも小径の小径部62とを有している。大径部61と小径部62との間に段差63が形成されている。小径部62は、可動コア40側の先端部62aよりも反可動コア側に配置され先端部62aよりも小径の凹部62bを有している。
【0028】
可動コア40が固定コア60に向けて移動し、可動コア40の内周壁が小径部62の先端部62aの外周壁と重なると、可動コア40と先端部62aとの間で径方向に磁気吸引力が働く。可動コア40がさらに第1固定コア60側に吸引され、可動コア40の大径部側先端部が先端部62aを通り過ぎると、可動コア40の先端部と固定コア60の先端部62aとの間に、可動コア40が固定コア60側に吸引される方向とは反対方向に磁気吸引力が働く。したがって、図3に示すように、弁部材41がストッパ37に衝突するときに固定コア60と可動コア40との間で軸方向に働く磁気吸引力が低下し、弁部材41がストッパ37に衝突するときの速度が低下する。したがって、ストッパ37に衝突するときの弁部材41のバウンドが小さくなる。第2実施例の軸ギャップは、段差63と可動コア40との間に形成される軸ギャップを表している。
【0029】
(第3実施例)
本発明の第3実施例を図6に示す。第1実施例と実質的に同一構成部分には同一符号を付す。
第1固定コアとしての固定コア70は、弁部材41側端部に、可動コア40が進入可能な空間71aを形成する収容部71を有している。案内部材80は、固定コア70の内周側を充填するとともに、可動コア40の内周壁を往復移動可能に案内する案内部81と、案内部81よりも弁部材41側に突出したストッパ82とを有している。ストッパ82は案内部81よりも小径である。収容部71の内径をr1、案内部81の外径をr2、可動コア40の内径をr3、可動コア40の外径をr4とすると、r1>r4>r3>r2に設定されている。
【0030】
可動コア40が固定コア70に向けて移動し、可動コア40の外周壁が収容部71の内周壁と重なると、可動コア40と収容部71との間で径方向に磁気吸引力が働く。可動コア40がさらに固定コア70側に吸引されると、可動コア40と収容部71との間で径方向に働く磁気吸引力が大きくなる。したがって、軸ギャップがある程度小さくなるまでの間、軸方向に働く磁気吸引力の上昇を抑え軸ギャップと磁気吸引力との特性を平坦にすることができる。第3実施例における軸ギャップは、収容部71の底面72と可動コア40との間に形成される軸ギャップを表している。
【0031】
第3実施例の構成に加え、収容部71の弁部材41側の先端部よりも内径が大きい凹部を収容部71の反可動コア側に形成してもよい。可動コア40が固定コア70側に吸引され、可動コア40の固定コア70側の先端が収容部71の先端部を通り過ぎると、可動コア40の先端部と収容部71の先端部との間に、可動コア40が固定コア70に軸方向に吸引される方向とは反対方向に磁気吸引力が働く。したがって、弁部材41がストッパ82に衝突するときに固定コア70と可動コア40との間で軸方向に働く磁気吸引力が低下し、弁部材41がストッパ82に衝突するときの速度が低下する。したがって、ストッパ82に衝突するときの弁部材41のバウンドが小さくなる。
【0032】
以上説明した本発明の上記複数の実施例では、固定コア、コアプレートおよびコイル部をインサート成形するときに樹脂で一体成形した案内部材により、往復移動可能に可動コアの内周壁を案内している。したがって、可動コアの外周に配設されているコアプレートの内周側に可動コアを往復移動可能に案内する案内部材を配設する必要がない。可動コアとコアプレートとの間に径方向に形成されるサイドギャップを極力小さくできるので、可動コアと軸方向で向き合う固定コアに可動コアを吸引する磁気吸引力が大きくなる。したがって、コイルの巻数を低減し電磁弁装置を小型化できる。
【0033】
磁気吸引力が増加することにより、コイル21への非通電時において固定コアと可動コアとの間に軸方向に形成される軸ギャップを大きくしても、固定コアに可動コアを吸引するために必要な磁気吸引力を得ることができる。軸ギャップと固定コアと可動コアとの間に軸方向に働く磁気吸引力は、可動コアが固定コアに近づくにつれ、急激に増加する。そこで上記複数の実施例では、使用する軸ギャップの範囲を大きくなる方にずらすことにより、軸ギャップと固定コアと可動コアとの間に軸方向に働く磁気吸引力との特性が比較的平坦な部分を使用できる。さらに、可動コアが固定コアに近づくにしたがい、可動コアと固定コアとの間に、可動コアを径方向に吸引する力が働くので、可動コアが固定コアに近づくにしたがい可動コアを軸方向に吸引する磁気吸引力の増加が抑制される。
【0034】
したがって、可動部材がストッパに衝突するときの速度が低下し、可動部材のバウンドが小さくなる。これにより、開弁時間が短く、吸入流路100から排出流路101を通り排出される流体流量が少ないときでも、流体流量のばらつきを低減できる。さらに、弁部材41のバウンドが小さくなると流路の開口面積の減少を防止できるので、流体流量が少ないときにおいても開弁時間と流体流量との線形関係を保持できる。
【0035】
上記複数の実施例では、案内部材がストッパを有していたが、案内部材とストッパとを別部材にしてもよい。また、コネクタ31を有する充填樹脂30と案内部材とを一体に成形したが、案内部材をコネクタ31と別体にすることも可能である。
【図面の簡単な説明】
【図1】本発明の第1実施例による電磁弁装置を示す断面図である。
【図2】図1のII線部分の拡大図である。
【図3】第1実施例、第2実施例および従来例による軸ギャップと磁気吸引力との関係を示す特性図である。
【図4】本発明の第2実施例による電磁弁装置を示す断面図である。
【図5】図4のV線部分の拡大図である。
【図6】本発明の第3実施例による電磁弁装置を示す断面図である。
【符号の説明】
10 電磁弁装置
11、60、70 固定コア(第1固定コア)
13 コアプレート(第2固定コア)
20 ボビン(コイル部)
21 コイル(コイル部)
35、80 案内部材
36、81 案内部
37、82 ストッパ
40 可動コア
41 弁部材
53 弁座
61 大径部
62 小径部
62a 先端部
62b 凹部
71 収容部
71a 空間
100 吸入流路(流体流路)
101 排出流路(流体流路)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic valve device that opens and closes a fluid flow path.
[0002]
[Prior art]
As an electromagnetic valve device that opens and closes a fluid flow path, a magnetic circuit is configured by a movable core, a fixed core that faces the movable core in the reciprocating direction of the movable core, and a core plate disposed on the outer peripheral side of the movable core, and a coil It is known that the movable core is attracted to the fixed core side by energizing the coil. When the energization to the coil is turned on or off, the valve member constituting the movable member together with the movable core is separated from the valve seat or seated on the valve seat, so that the fluid flow path is opened and closed.
In some cases, a resin film is formed on the inner peripheral side of the core plate by a resin material in which the fixed core and the core plate are insert-molded, and the outer peripheral wall of the movable core is guided by the resin film so as to be reciprocally movable.
[0003]
[Conspiracy to be solved by the invention]
However, in the configuration in which the outer peripheral wall of the movable core is guided by the resin film formed on the inner peripheral side of the core plate so as to be able to reciprocate, there is at least a gap corresponding to the thickness of the resin film in the radial direction between the movable core and the core plate. As a result, the magnetic attractive force for attracting the movable core to the fixed core is reduced. When the number of turns of the coil is increased in order to generate a desired magnetic attraction force, there is a problem that the coil becomes large.
[0004]
Further, the magnetic attractive force for attracting the movable core increases as the axial gap formed in the axial direction between the movable core and the fixed core decreases. Therefore, in order to obtain a desired magnetic attraction force when the coil that maximizes the axial gap between the movable core and the fixed core is not energized, if the force for attracting the movable core is small, the movable core and the fixed core The maximum axial gap formed between them must be reduced to increase the magnetic attractive force. However, if the maximum gap is reduced, the axial minimum gap when the movable core is attracted to the fixed core and collides with the stopper is reduced. As the movable core approaches the fixed core and the axial gap decreases, the magnetic attractive force increases rapidly. Therefore, when the minimum gap decreases, the speed at which the movable core collides with the stopper increases, and the movable core greatly bounces. When the valve opening time is short, there is a problem that if the movable core bounces greatly, the fluid flow rate varies and the valve opening time and the fluid flow rate do not satisfy the linear relationship.
An object of the present invention is to provide a solenoid valve device that can prevent a variation in fluid flow rate when the fluid flow rate is small and can be miniaturized.
[0005]
[Means for Solving the Problems]
According to the electromagnetic valve device of the first aspect of the present invention, the guide member that is disposed on the side of the first fixed core that faces the movable core and is formed of a nonmagnetic material is capable of reciprocating along the inner peripheral wall of the movable core. I am guiding you. Therefore, it is not necessary to dispose a nonmagnetic guide member between the second fixed core disposed on the outer peripheral side of the movable core and the outer peripheral wall of the movable core. The gap formed in the radial direction between the movable core and the second fixed core can be made as small as possible, and the magnetic attractive force for attracting the movable core to the first fixed core can be increased. Can be miniaturized.
[0006]
Further, when the number of turns of the coil is not reduced, the magnetic attractive force for attracting the movable core increases, so that the maximum gap between the first fixed core and the movable core when the coil is not energized and the movable member collides with the stopper. The minimum gap between the first fixed core and the movable core can be increased. Therefore, the position where the magnetic attractive force for attracting the movable core in the axial direction does not become too large can be set as the minimum gap. Therefore, the speed when the movable core collides with the stopper can be reduced, and the bound of the movable core when colliding with the stopper can be reduced. Thereby, even when the valve opening time is short and the fluid flow rate is small, the variation in the fluid flow rate is reduced. Further, since the decrease in the opening area of the flow path can be prevented when the bound of the movable core is reduced, the linear relationship between the valve opening time and the fluid flow rate can be maintained even when the fluid flow rate is small.
Furthermore, the end portion of the first fixed core has a large diameter portion and a small diameter portion arranged on the movable core side of the large diameter portion. When the outer diameter of the small diameter portion is r1, the outer diameter of the guide member is r2, and the inner diameter of the movable core is r3, r3>r2> r1. By moving r1 and r2 as close as possible while holding r2> r1, the movable core is drawn between the inner peripheral wall of the movable core and the outer peripheral wall of the small diameter portion as the movable core is attracted by the first fixed core and approaches the small diameter portion. The force for sucking in the radial direction increases. Even if the axial gap between the movable core and the first fixed core is reduced, the increase in the magnetic attractive force for attracting the movable core in the axial direction can be reduced, so that the speed at which the movable member collides with the stopper decreases, and the movable member becomes the stopper. The bounce when colliding with the Therefore, variation in fluid flow rate when the valve opening time is short and the fluid flow rate is small can be reduced. Further, since the decrease in the opening area of the flow path can be prevented when the bound of the movable core is reduced, the linear relationship between the valve opening time and the fluid flow rate can be maintained even when the fluid flow rate is small.
[0007]
According to the electromagnetic valve device according to claim 2 of the present invention, when the movable core is attracted to the first fixed core side and passes through the distal end portion of the small diameter portion, the movable core moves to the first fixed core side between the movable core and the distal end portion. A magnetic attractive force acts in the opposite direction to the magnetic attractive force that attracts the core. The speed at which the movable member collides with the stopper is reduced, and the bounce when the movable member collides with the stopper is reduced. Therefore, variation in fluid flow rate when the valve opening time is short and the fluid flow rate is small can be reduced. Further, since the decrease in the opening area of the flow path can be prevented when the bound of the movable core is reduced, the linear relationship between the valve opening time and the fluid flow rate can be maintained even when the fluid flow rate is small.
According to the electromagnetic valve device of the third aspect of the present invention, the end portion of the first fixed core facing the movable core has the accommodating portion forming the space into which the movable core can enter. When the inner diameter of the housing portion is r1, the outer diameter of the guide member is r2, the inner diameter of the movable core is r3, and the outer diameter of the movable core is r4, r1>r4>r3> r2. By holding r1> r4 while bringing r1 and r4 as close as possible, as the movable core approaches the first fixed core, the movable core is sucked in the radial direction between the outer peripheral wall of the movable core and the inner peripheral wall of the housing portion. The magnetic attractive force to be increased. Even if the axial gap between the movable core and the first fixed core is reduced, the increase in magnetic attractive force for attracting the movable core in the axial direction can be reduced, so that the speed at which the movable member collides with the stopper is reduced, and the movable member becomes the stopper. The bounce when colliding with the Therefore, variation in fluid flow rate when the valve opening time is short and the fluid flow rate is small can be reduced. Further, since the decrease in the opening area of the flow path can be prevented when the bound of the movable core is reduced, the linear relationship between the valve opening time and the fluid flow rate can be maintained even when the fluid flow rate is small.
According to the electromagnetic valve device of the fourth aspect of the present invention, since the guide member for guiding the inner peripheral wall of the movable core also serves as a stopper for the movable member, the number of parts is reduced, and the assembly man-hour is reduced.
According to the solenoid valve device of the fifth aspect of the present invention, since the guide member is formed by the resin material that insert-molds the first fixed core, the second fixed core, and the coil portion, the number of parts is reduced and the assembly man-hour is reduced. To reduce.
[0012]
According to the method for manufacturing a solenoid valve device according to claim 6 of the present invention, the guide member is formed by the resin material that insert-molds the mold material of the first fixed core, the second fixed core, the coil portion, and the movable core. Decreases and assembly man-hours are reduced.
According to the method for manufacturing a solenoid valve device according to claim 7 of the present invention, the guide member and the stopper of the movable member are molded with a resin material that insert-molds the mold material of the first fixed core, the second fixed core, the coil portion, and the movable core. As a result, the number of parts is reduced and the number of assembly steps is reduced.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a plurality of examples showing embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
A solenoid valve device according to a first embodiment of the present invention is shown in FIGS. The electromagnetic valve device 10 is a valve device that opens and closes the flow path of evaporative fuel, for example, in a system that sends evaporative fuel generated in a fuel tank of an automobile to an engine.
[0014]
A fixed core 11 as a first fixed core of the electromagnetic valve device 10 shown in FIG. 1 is formed in a cylindrical shape, and a yoke 12 is caulked and fixed to one end of the fixed core 11. The core plate 13 as the second fixed core is connected to the yoke 12 on the other end side of the fixed core 11. The fixed core 11, the yoke 12, and the core plate 13 are made of a magnetic material. The bobbin 20 around which the coil 21 is wound is disposed on the outer periphery of the fixed core 11 so as to be sandwiched between the yoke 12 and the core plate 13. The bobbin 20 and the coil 21 constitute a coil part.
[0015]
The filling resin 30 insert-molds the fixed core 11, the yoke 12, the core plate 13, the bobbin 20 and the coil 21. The filling resin 30 forms the connector 31 and the guide member 35. The terminal 32 is embedded in the connector 31 and is electrically connected to the coil 21. The guide member 35 is formed so as to fill the inside of the fixed core 11 and to protrude toward the valve member 41 described later. The guide member 35 guides the inner peripheral wall of the movable core 40 so as to reciprocate.
[0016]
The movable core 40, the valve member 41, and the leaf spring 42 constitute a movable member and reciprocate together. The movable core 40 is formed of a magnetic material in a cylindrical shape, and is disposed on the inner peripheral side of the core plate 13. The movable core 40 is fixed to a disc-shaped plate spring 42 by welding or the like. The rubber valve member 41 is fitted to the leaf spring 42. The outer periphery of the leaf spring 42 is sandwiched between the filling resin 30 and the flow path member 50. One end of the coil spring 43 is in contact with the leaf spring 42 and the other end is in contact with the guide member 35. The coil spring 43 urges the leaf spring 42 toward the valve seat 53 formed in the flow path member 50.
[0017]
The flow path member 50 is coupled to the filling resin 30. A suction port 51 and a discharge port 52 are integrally formed in the flow path member 50. When the valve member 41 is separated from the valve seat 53, the fluid that has flowed from the suction channel 100 of the suction port 51 is discharged from the discharge channel 101 of the discharge port 52. The suction flow path 100 and the discharge flow path 101 constitute a “fluid flow path” recited in the claims.
[0018]
Next, the structure of the fixed core 11 and the guide member 35 will be described in detail.
As shown in FIG. 2, the valve member 41 side end of the fixed core 11 has a large-diameter portion 11a and a small-diameter portion 11b that is disposed closer to the valve member 41 than the large-diameter portion 11a and has a smaller diameter than the large-diameter portion 11a. have. A step 11c is formed between the large diameter portion 11a and the small diameter portion 11b. The guide member 35 has a guide portion 36 having a smaller diameter than the large diameter portion 11a and a larger diameter than the small diameter portion 11b, and a stopper 37 protruding from the guide portion 36 toward the valve member 41 and having a smaller diameter than the guide portion 36. are doing. The guide part 36 covers the outer periphery of the small diameter part 11b. When the movable core 40 is attracted to the first fixed core 11, the stopper 37 locks the valve member 41 and defines the amount of movement of the movable core 40 and the valve member 41. When the outer diameter of the small diameter portion 11b is r1, the outer diameter of the guide portion 36 is r2, and the inner diameter of the movable core 40 is r3, r3>r2> r1 is set.
[0019]
Next, the manufacturing procedure of the electromagnetic valve device 10 will be described.
(1) The yoke 12 is caulked and fixed to one end of the fixed core 11.
(2) Insert the bobbin 20 around which the coil 21 is wound on the outer periphery of the fixed core 11 and the inner periphery of the yoke 12.
(3) The core plate 13 is connected to the yoke 12 on the other end side of the fixed core 11.
(4) In order to assemble the movable core 40 after filling the resin, the mold material of the movable core 40 is positioned.
(5) The fixed core 11, the yoke 12, the core plate 13, the bobbin 20 around which the coil 21 is wound, and the mold material are insert-molded with resin. At this time, the guide member 35 is formed of resin.
(6) Remove the mold material and assemble the movable core 40.
The electromagnetic valve device 10 is manufactured by assembling the flow path member 50 and other members to the structure thus assembled.
[0020]
Next, the operation of the electromagnetic valve device 10 will be described.
(1) When the coil 21 is turned off, the valve member 41 is seated on the valve seat 53 by the biasing force of the coil spring 43. Therefore, the communication between the suction flow path 100 and the discharge flow path 101 is blocked, and the fluid is not discharged from the discharge flow path 101.
[0021]
(2) When the coil 21 is energized, the movable core 40 is attracted to the fixed core 11 side by the magnetic force generated by the coil 21. When the movable core 40 is sucked toward the fixed core 11, the valve member 41 is separated from the valve seat 53. As a result, the suction flow channel 100 and the discharge flow channel 101 communicate with each other, and the fluid is discharged from the discharge flow channel 101. The movement of the movable core 40 and the valve member 41 stops when the valve member 41 is locked to the stopper 37 of the guide member 35.
[0022]
When the movable core 40 moves toward the fixed core 11 and the inner peripheral wall of the movable core 40 overlaps with the outer peripheral wall of the small diameter portion 11b, a magnetic attractive force acts in the radial direction between the movable core 40 and the small diameter portion 11b. The magnetic attraction force acting in the axial direction between the movable core 40 and the fixed core 11 increases as the axial gap formed between the fixed core 11 and the movable core 40 in the axial direction decreases. Here, the axial gap represents the distance between the movable core 40 and the facing portion of the fixed core 11 facing the movable core 40 in the axial direction. In the first embodiment, the fixed core 11 facing the movable core 40 in the axial direction. The facing portion is a step 11c.
[0023]
As the movable core 40 approaches the fixed core 11 and the axial gap becomes smaller, the facing area in which the inner peripheral wall of the movable core 40 and the outer peripheral wall of the small diameter portion 11b face in the radial direction increases, and the movable core 40 and the small diameter portion 11b The magnetic attraction force acting in the radial direction in between increases. Therefore, as shown in FIG. 3, it is possible to suppress the increase of the magnetic attractive force acting in the axial direction until the axial gap is reduced to some extent, and to flatten the characteristics of the axial gap and the magnetic attractive force.
[0024]
Further, since the guide portion 36 of the guide member 35 guides the inner peripheral wall of the movable core 40 so as to reciprocate, the inner peripheral wall of the core plate 13 disposed on the outer peripheral side of the movable core 40 when the filling resin 30 is filled. It is not necessary to cover the outer peripheral wall of the movable core 40 with resin. Therefore, the side gap d formed between the outer peripheral wall of the movable core 40 and the inner peripheral wall of the core plate 13 can be made as small as possible. By reducing the side gap d, the magnetic attractive force by which the fixed core 11 attracts the movable core 40 increases.
[0025]
Compared to the conventional configuration in which the inner peripheral side of the core plate 13 is covered with resin and the outer peripheral wall of the movable core 40 is guided with resin, as shown in FIG. 3, the magnetic attractive force when the shaft gap is large is increased. Therefore, the size of the shaft gap that satisfies the minimum magnetic attraction force necessary for attracting the movable core 40 is larger than that of the conventional example. The shaft gap (maximum gap) when the coil 21 is not energized and the shaft gap (minimum gap) when the valve member 41 collides with the stopper 37 are increased, and the characteristic curve shown in FIG. This range can be the movable range of the movable core 40. Thereby, the speed when the valve member 41 collides with the stopper 37 decreases, and the bounce when the valve member 41 collides with the stopper 37 becomes small. Therefore, when the valve opening time is short and the fluid flow rate discharged from the suction flow channel 100 to the discharge flow channel 101 is small, the variation in the fluid flow rate can be reduced. Furthermore, since the reduction of the opening area of the flow path can be prevented when the bounce of the valve member 41 becomes small, the linear relationship between the valve opening time and the fluid flow rate can be maintained even when the fluid flow rate is small.
[0026]
If the shaft gap is the same as that of the conventional example, the same magnetic attractive force is generated even if the number of turns of the coil is reduced. Therefore, if the number of turns of the coil is reduced as much as possible, the electromagnetic valve device can be reduced in size.
[0027]
(Second embodiment)
A second embodiment of the present invention is shown in FIGS. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals.
The end portion on the valve member 41 side of the fixed core 60 as the first fixed core of the second embodiment is disposed on the valve member 41 side with respect to the large diameter portion 61 and the large diameter portion 61 and has a smaller diameter than the large diameter portion 61. And a small diameter portion 62. A step 63 is formed between the large diameter portion 61 and the small diameter portion 62. The small-diameter portion 62 has a concave portion 62b that is disposed closer to the movable core 40 than the distal end portion 62a on the side of the movable core 40 and has a smaller diameter than the distal end portion 62a.
[0028]
When the movable core 40 moves toward the fixed core 60 and the inner peripheral wall of the movable core 40 overlaps with the outer peripheral wall of the distal end portion 62a of the small diameter portion 62, magnetic attraction is performed in the radial direction between the movable core 40 and the distal end portion 62a. Power works. When the movable core 40 is further sucked toward the first fixed core 60 and the large-diameter-side tip of the movable core 40 passes through the tip 62a, the gap between the tip of the movable core 40 and the tip 62a of the fixed core 60 is reached. In addition, a magnetic attractive force acts in a direction opposite to the direction in which the movable core 40 is attracted to the fixed core 60 side. Therefore, as shown in FIG. 3, when the valve member 41 collides with the stopper 37, the magnetic attractive force acting in the axial direction between the fixed core 60 and the movable core 40 decreases, and the valve member 41 collides with the stopper 37. The speed when you do. Therefore, the bounce of the valve member 41 when colliding with the stopper 37 is reduced. The shaft gap in the second embodiment represents the shaft gap formed between the step 63 and the movable core 40.
[0029]
(Third embodiment)
A third embodiment of the present invention is shown in FIG. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals.
The fixed core 70 as the first fixed core has an accommodating portion 71 that forms a space 71 a into which the movable core 40 can enter at the end of the valve member 41. The guide member 80 fills the inner peripheral side of the fixed core 70 and guides the inner peripheral wall of the movable core 40 so as to reciprocate, and a stopper 82 that protrudes further toward the valve member 41 than the guide portion 81. have. The stopper 82 has a smaller diameter than the guide portion 81. When the inner diameter of the accommodating portion 71 is r1, the outer diameter of the guide portion 81 is r2, the inner diameter of the movable core 40 is r3, and the outer diameter of the movable core 40 is r4, r1>r4>r3> r2.
[0030]
When the movable core 40 moves toward the fixed core 70 and the outer peripheral wall of the movable core 40 overlaps with the inner peripheral wall of the accommodating portion 71, a magnetic attractive force acts in the radial direction between the movable core 40 and the accommodating portion 71. When the movable core 40 is further attracted to the fixed core 70 side, the magnetic attraction force acting in the radial direction between the movable core 40 and the accommodating portion 71 increases. Therefore, it is possible to suppress the increase of the magnetic attractive force acting in the axial direction until the axial gap is reduced to some extent, and to flatten the characteristics of the axial gap and the magnetic attractive force. The shaft gap in the third embodiment represents the shaft gap formed between the bottom surface 72 of the accommodating portion 71 and the movable core 40.
[0031]
In addition to the configuration of the third embodiment, a recess having an inner diameter larger than that of the distal end portion of the accommodating portion 71 on the valve member 41 side may be formed on the counter movable core side of the accommodating portion 71. When the movable core 40 is sucked toward the fixed core 70 and the distal end of the movable core 40 on the stationary core 70 side passes through the distal end portion of the accommodating portion 71, the movable core 40 is interposed between the distal end portion of the movable core 40 and the distal end portion of the accommodating portion 71. The magnetic attraction force acts in a direction opposite to the direction in which the movable core 40 is attracted to the fixed core 70 in the axial direction. Therefore, when the valve member 41 collides with the stopper 82, the magnetic attractive force acting in the axial direction between the fixed core 70 and the movable core 40 decreases, and the speed when the valve member 41 collides with the stopper 82 decreases. . Therefore, the bounce of the valve member 41 when colliding with the stopper 82 is reduced.
[0032]
In the plurality of embodiments of the present invention described above, the inner peripheral wall of the movable core is guided so as to be reciprocally movable by the guide member integrally formed of resin when the fixed core, the core plate, and the coil portion are insert-molded. . Therefore, there is no need to provide a guide member for guiding the movable core so as to reciprocate on the inner peripheral side of the core plate provided on the outer periphery of the movable core. Since the side gap formed in the radial direction between the movable core and the core plate can be made as small as possible, the magnetic attractive force for attracting the movable core to the fixed core facing the movable core in the axial direction is increased. Therefore, the number of turns of the coil can be reduced and the electromagnetic valve device can be downsized.
[0033]
In order to attract the movable core to the fixed core even if the axial gap formed in the axial direction between the fixed core and the movable core is increased when the coil 21 is de-energized by increasing the magnetic attractive force Necessary magnetic attractive force can be obtained. The magnetic attractive force acting in the axial direction between the axial gap, the fixed core, and the movable core increases rapidly as the movable core approaches the fixed core. Therefore, in the above embodiments, the characteristics of the magnetic gap acting in the axial direction between the shaft gap and the fixed core and the movable core are relatively flat by shifting the range of the shaft gap to be used in the larger direction. Can use part. Furthermore, as the movable core approaches the fixed core, a force acts to attract the movable core in the radial direction between the movable core and the fixed core, so that the movable core moves in the axial direction as the movable core approaches the fixed core. An increase in the magnetic attractive force to be attracted is suppressed.
[0034]
Therefore, the speed when the movable member collides with the stopper is reduced, and the bound of the movable member is reduced. Thereby, even when the valve opening time is short and the fluid flow rate discharged from the suction flow channel 100 through the discharge flow channel 101 is small, the variation in the fluid flow rate can be reduced. Furthermore, since the reduction of the opening area of the flow path can be prevented when the bounce of the valve member 41 becomes small, the linear relationship between the valve opening time and the fluid flow rate can be maintained even when the fluid flow rate is small.
[0035]
In the above embodiments, the guide member has a stopper, but the guide member and the stopper may be separate members. Further, although the filling resin 30 having the connector 31 and the guide member are integrally formed, the guide member can be separated from the connector 31.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a solenoid valve device according to a first embodiment of the present invention.
FIG. 2 is an enlarged view of a II line portion of FIG.
FIG. 3 is a characteristic diagram showing a relationship between an axial gap and a magnetic attractive force according to the first embodiment, the second embodiment, and the conventional example.
FIG. 4 is a cross-sectional view showing a solenoid valve device according to a second embodiment of the present invention.
FIG. 5 is an enlarged view of a V line portion in FIG. 4;
FIG. 6 is a sectional view showing a solenoid valve device according to a third embodiment of the present invention.
[Explanation of symbols]
10 Solenoid valve device 11, 60, 70 Fixed core (first fixed core)
13 Core plate (second fixed core)
20 Bobbin (Coil part)
21 Coil (Coil part)
35, 80 Guide members 36, 81 Guide portions 37, 82 Stopper 40 Movable core 41 Valve member 53 Valve seat 61 Large diameter portion 62 Small diameter portion 62a Tip portion 62b Recess 71 Housing portion 71a Space 100 Suction channel (fluid channel)
101 Discharge channel (fluid channel)

Claims (7)

ボビンおよび前記ボビンに巻回したコイルを有するコイル部と、
筒状に形成されている可動コアを有し、往復移動することにより流体流路を開閉する可動部材と、
前記可動コアの往復移動方向で前記可動コアと向き合い、前記コイルに通電することにより発生する磁力により前記可動コアを吸引する第1固定コアと、
前記可動コアの外周壁と向き合い、前記可動コアおよび前記第1固定コアと磁気回路を形成している第2固定コアと、
前記第1固定コアの前記可動コアと向き合う側に配設され、非磁性材で形成されており、前記可動コアの内周壁を往復移動可能に案内する案内部材とを備え、
前記第1固定コアの前記可動コアと向き合う端部は、大径部と、前記大径部の前記可動コア側に配置され前記大径部よりも外径が小さい小径部とを有し、前記小径部の外径をr1、前記案内部材の外径をr2、前記可動コアの内径をr3とすると、r3>r2>r1であることを特徴とする電磁弁装置。
A coil part having a bobbin and a coil wound around the bobbin;
A movable member having a movable core formed in a cylindrical shape and opening and closing a fluid flow path by reciprocating;
A first fixed core that faces the movable core in a reciprocating direction of the movable core and attracts the movable core by a magnetic force generated by energizing the coil;
A second fixed core facing the outer peripheral wall of the movable core and forming a magnetic circuit with the movable core and the first fixed core;
A guide member that is disposed on a side of the first fixed core facing the movable core, is formed of a nonmagnetic material, and guides an inner peripheral wall of the movable core so as to be reciprocally movable ;
The end portion of the first fixed core that faces the movable core has a large diameter portion, and a small diameter portion that is disposed on the movable core side of the large diameter portion and has an outer diameter smaller than the large diameter portion, An electromagnetic valve device , wherein r3>r2> r1, where r1 is an outer diameter of the small diameter portion, r2 is an outer diameter of the guide member, and r3 is an inner diameter of the movable core .
前記小径部は、先端部と、前記先端部の反可動コア側に形成され前記先端部よりも小径の凹部とを有していることを特徴とする請求項1記載の電磁弁装置。The solenoid valve device according to claim 1, wherein the small diameter portion includes a tip portion and a concave portion that is formed on the side opposite to the movable core of the tip portion and has a smaller diameter than the tip portion. ボビンおよび前記ボビンに巻回したコイルを有するコイル部と、A coil part having a bobbin and a coil wound around the bobbin;
筒状に形成されている可動コアを有し、往復移動することにより流体流路を開閉する可動部材と、  A movable member having a movable core formed in a cylindrical shape and opening and closing a fluid flow path by reciprocating;
前記可動コアの往復移動方向で前記可動コアと向き合い、前記コイルに通電することにより発生する磁力により前記可動コアを吸引する第1固定コアと、  A first fixed core that faces the movable core in a reciprocating direction of the movable core and attracts the movable core by a magnetic force generated by energizing the coil;
前記可動コアの外周壁と向き合い、前記可動コアおよび前記第1固定コアと磁気回路を形成している第2固定コアと、  A second fixed core facing the outer peripheral wall of the movable core and forming a magnetic circuit with the movable core and the first fixed core;
前記第1固定コアの前記可動コアと向き合う側に配設され、非磁性材で形成されており、前記可動コアの内周壁を往復移動可能に案内する案内部材とを備え、  A guide member that is disposed on a side of the first fixed core facing the movable core, is formed of a nonmagnetic material, and guides an inner peripheral wall of the movable core so as to be reciprocally movable;
前記第1固定コアの前記可動コアと向き合う端部は、前記可動コアが侵入可能な空間を形成している収容部を有し、前記収容部の内径をr1、前記案内部材の外径をr2、前記可動コアの内径をr3、前記可動コアの外径をr4とすると、r1>r4>r3>r2であることを特徴とする電磁弁装置。  The end portion of the first fixed core that faces the movable core has a housing portion that forms a space in which the movable core can enter, and the inner diameter of the housing portion is r1, and the outer diameter of the guide member is r2. An electromagnetic valve device, wherein r1> r4> r3> r2, where r3 is an inner diameter of the movable core and r4 is an outer diameter of the movable core.
前記案内部材は前記第1固定コア側に移動する前記可動部材を所定の移動量で係止することを特徴とする請求項1、2または3記載の電磁弁装置。4. The electromagnetic valve device according to claim 1, wherein the guide member locks the movable member moving toward the first fixed core with a predetermined movement amount. 5. 前記第1固定コア、前記第2固定コアおよび前記コイル部をインサート成形している樹脂材で前記案内部材を成形していることを特徴とする請求項1〜4のいずれか一項記載の電磁弁装置。The electromagnetic wave according to any one of claims 1 to 4, wherein the guide member is formed of a resin material in which the first fixed core, the second fixed core, and the coil portion are insert-molded. Valve device. 請求項1から5のいずれか一項記載の電磁弁装置の製造方法であって、It is a manufacturing method of the solenoid valve device according to any one of claims 1 to 5,
前記第1固定コアの外周に前記コイル部を挿入する工程と、  Inserting the coil portion on the outer periphery of the first fixed core;
前記第2固定コアを前記コイル部の前記可動コア側に配置する工程と、  Disposing the second fixed core on the movable core side of the coil portion;
前記可動コアの型材を位置決めする工程と、  Positioning the mold of the movable core;
前記第1固定コア、前記第2固定コア、前記コイル部および前記型材をインサート成形する樹脂材で前記案内部材を成形する工程と、  Molding the guide member with a resin material that insert-molds the first fixed core, the second fixed core, the coil portion, and the mold material;
前記型材を除去し、前記可動コアを組み付ける工程と、  Removing the mold material and assembling the movable core;
を有することを特徴とする電磁弁装置の製造方法。  The manufacturing method of the solenoid valve apparatus characterized by having.
前記案内部材は前記可動部材の前記第1固定コア側への移動量を規制するストッパを兼ねていることを特徴とする請求項6記載の電磁弁装置の製造方法。The method of manufacturing an electromagnetic valve device according to claim 6, wherein the guide member also serves as a stopper that regulates a moving amount of the movable member toward the first fixed core.
JP2001004890A 2000-06-29 2001-01-12 Solenoid valve device Expired - Fee Related JP3709792B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001004890A JP3709792B2 (en) 2001-01-12 2001-01-12 Solenoid valve device
US09/891,397 US6546945B2 (en) 2000-06-29 2001-06-27 Electromagnetic valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004890A JP3709792B2 (en) 2001-01-12 2001-01-12 Solenoid valve device

Publications (2)

Publication Number Publication Date
JP2002206658A JP2002206658A (en) 2002-07-26
JP3709792B2 true JP3709792B2 (en) 2005-10-26

Family

ID=18873015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004890A Expired - Fee Related JP3709792B2 (en) 2000-06-29 2001-01-12 Solenoid valve device

Country Status (1)

Country Link
JP (1) JP3709792B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072806A1 (en) * 2006-12-14 2008-06-19 Inzi Controls Co., Ltd. Solenoid valve
JP4744459B2 (en) * 2007-02-14 2011-08-10 日信工業株式会社 Normally open solenoid valve
DE102010010187B4 (en) * 2010-03-03 2012-07-26 Pierburg Gmbh Solenoid valve
CN101907179B (en) * 2010-05-14 2013-01-02 厦门坤锦电子科技有限公司 Highly corrosion-resistant diaphragm valve
JP5127879B2 (en) * 2010-05-21 2013-01-23 株式会社東芝 Damper for washing machine
JP5812656B2 (en) * 2011-04-13 2015-11-17 株式会社東芝 Drum washing machine
CN108735419B (en) * 2018-08-28 2024-03-26 星宇电子(宁波)有限公司 Electromagnetic coil with double magnetic force guiding structure
CN115585304A (en) * 2022-09-21 2023-01-10 江苏恩迪汽车系统股份有限公司 Integrated air passage pump valve integrated system and working principle thereof

Also Published As

Publication number Publication date
JP2002206658A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
US6546945B2 (en) Electromagnetic valve
US5918818A (en) Electromagnetically actuated injection valve
JP4529134B2 (en) High pressure fuel pump
US7661654B2 (en) Valve unit
JP3709792B2 (en) Solenoid valve device
JP4275307B2 (en) Proportional solenoid valve
US20210278007A1 (en) Solenoid
JP2015094415A (en) Solenoid valve
US20150129785A1 (en) Electromagnetic valve
JP2003130246A (en) Solenoid valve device
JP3822667B2 (en) Pressure switching valve
US5746412A (en) Electromagnetic valve device and manufacturing method for the same
JP3497514B2 (en) solenoid valve
JP2006307831A (en) Fuel injection valve
JP2008098404A (en) Solenoid device
JP2002243057A (en) Solenoid valve device
JP2011144731A (en) Fuel injection valve
JP3671524B2 (en) solenoid valve
JP4022855B2 (en) Solenoid valve device
CN113423985B (en) Fuel pump
JP2000097361A (en) Solenoid valve
JPH09310650A (en) Fuel injection valve
JPH08247325A (en) Solenoid controlled valve
JP4122681B2 (en) solenoid valve
JPH06137454A (en) Solenoid valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3709792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees