JP3709600B2 - Carbon steel wire rod with excellent drawability - Google Patents

Carbon steel wire rod with excellent drawability Download PDF

Info

Publication number
JP3709600B2
JP3709600B2 JP03833396A JP3833396A JP3709600B2 JP 3709600 B2 JP3709600 B2 JP 3709600B2 JP 03833396 A JP03833396 A JP 03833396A JP 3833396 A JP3833396 A JP 3833396A JP 3709600 B2 JP3709600 B2 JP 3709600B2
Authority
JP
Japan
Prior art keywords
ppm
steel
solid solution
amount
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03833396A
Other languages
Japanese (ja)
Other versions
JPH09227994A (en
Inventor
活智 冨岡
兼広 小川
洋 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP03833396A priority Critical patent/JP3709600B2/en
Publication of JPH09227994A publication Critical patent/JPH09227994A/en
Application granted granted Critical
Publication of JP3709600B2 publication Critical patent/JP3709600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高強度,強靭性,高疲労強度を有し、ベルトコード,タイヤコード,ピアノ線,釣り糸,ゴルフシャフト補強用ワイヤ等の極細鋼線に用いられる炭素鋼線材であって、特に伸線性に優れた炭素鋼線材に関するものである。
【0002】
【従来の技術】
各種製品の補強材として用いられる極細鋼線の製造方法は、所定の成分組成に調整した鋼を線径約4〜5.5mmφに熱間圧延して得られる鋼線材に対して、1次伸線加工,パテンティング処理,2次伸線加工を行い、必要に応じて再度パテンティング処理およびブラスメッキ処理を行い、最後に、湿式伸線加工を施して極細鋼線とする方法が一般的に採用されている。例えばタイヤコードは上記極細鋼線を撚り合わせて製造されるが、伸線および撚線工程時において断線が発生するという問題があった。素材として極細鋼線に起因する断線原因の一つに、線材中に存在する非延性介在物が挙げられる。しかも、この非延性介在物が存在するとダイス寿命の低下を招いたり、タイヤコードの疲労破断の原因ともなることが指摘されている。
【0003】
従来はこの問題を解決するために、延性を有する介在物となる様に組成を調整することを目的として、介在物の組成とその組合わせを規定した炭素鋼線材(例えば特開昭62−130258号等)が提案されている。
【0004】
しかしながら、これまでに提案されている技術によれば、例えば1トン当りの炭素鋼を用いて極細線材に伸線すると、どうしても断線が発生することが指摘されており、必ずしも断線を防止できる技術は開示されていなかった。
【0005】
【発明が解決しようとする課題】
本発明は上記の事情に着目してなされたものであって、伸線性に優れ、断線の発生に対する信頼性の高い炭素鋼線材の提供を目的とするものである。
【0006】
【課題を解決するための手段】
上記課題を解決した本発明の炭素鋼線材とは、C :0.3〜1.0%、Si:0.1〜0.5%、Mn:0.1〜0.7%、残部Feおよび不可避的不純物からなる炭素鋼線材であって、Al,Ca,Mg,Ti,Zrの鋼中固溶量が、Al:0.1ppm 以上3.0ppm 未満、Ca:0.01ppm 以上0.5ppm 以下、Mg:0.15ppm 以上3.0ppm 未満、Ti:5.0ppm 未満(0ppm を含む)、Zr:0.5ppm 未満(0ppm を含む)であることを要旨とするものであり、さらにCr:0.1〜0.6%を含有させれば、強度向上に有効であり、またCu:0.1〜1.0%を含有させれば、スケール剥離性を向上させることができる。
尚、前記鋼中固溶量は、2次イオン質量分析装置(以下、SIMSという)を用いることにより精度良く分析することが可能である。
【0007】
【発明の実施の形態】
本発明者らは、鋼中における微量元素の固溶量と断線指数には、非常に高い相関があることを突き止めた。これまでは、介在物組成に範囲を設けることにより高い延性を有する介在物となる様に配慮されていたが、どうしても結晶質な介在物を有することから、伸線時の断線を防止できなかった。本発明によれば、鋼中固溶量を制御することによって、伸線および撚線時の断線を大幅に改善することが可能である。
【0008】
また従来の技術における微量元素の定量分析は、供試材を酸により溶解して、例えばICP発光分光分析により測定されることが一般的であり、上記微量成分の含有量は、介在物の構成成分と鋼中の固溶成分との合計値であった。図1は、従来の一般的な分析方法である酸溶解とICP発光分光分析の組み合わせによるAl含有量の分析値と、SIMSにより分析した鋼中Al固溶量の値を比較して示すグラフである。両分析値の差は、介在物の成分量に相当する。
【0009】
本発明者らは鋭意研究を重ねた結果、従来の方法で分析された成分値では、確実な断線の制御は困難であり、Al,Ca,Mg,Ti,Zrという微量元素の鋼中固溶量を制御してはじめて確実な断線防止が可能となることを見出し、本発明に想到したものである。従って本発明では、各微量元素の鋼中固溶量を以下の様に限定することが重要である。尚、図2〜図6における鋼中のAl,Ca,Mg,Ti,Zrの固溶量と、図7,8におけるCr,Cuの含有量は、後述する実施例で測定した分析値を断線指数との関係で整理したグラフである。
【0010】
Al:0.1 ppm 以上3.0 ppm 未満
鋼中に固溶するAl量と断線指数との関係を示す図2の結果から明らかな様に、鋼中のAl固溶量が0.1ppm 未満または3.0ppm 以上の場合には断線指数が高くなった。Al固溶量が0.1ppm 未満の場合には介在物としてCaO−SiO2 およびMnO−SiO2 系の結晶が存在し、また3.0ppm 以上の場合にはAl23 含有量が40%以上の非延性な介在物が存在しており、これらの非延性介在物により断線指数が高くなったものと考えられる。
従って、鋼中のAl固溶量は、0.1ppm 以上3.0ppm 未満に規定した。
【0011】
Ca:0.01 ppm 以上0.5 ppm 以下
図3より明らかな様に、鋼中のCa固溶量が0.01ppm 未満であるか、或いは0.5ppm を超える場合には断線指数が高くなった。鋼中Ca固溶量が0.01ppm 未満の場合には、MnO−SiO2 −Al23 系介在物を主体として、介在物組成がばらついており、非延性介在物が多く発生していた。鋼中Ca固溶量が0.5ppm を超える場合には2CaO・SiO2 や2CaO・SiO2 ・Al23 等の結晶質な介在物が存在していた。これらの非延性介在物の存在により断線指数が高くなったものと考えられる。Ca固溶量が0.01〜0.5ppm の範囲内では結晶質な介在物は見られなかった。
【0012】
Mg:0.15 ppm 以上3 ppm 未満
図4に示されている通り、鋼中のMg固溶量が0.15ppm 未満3ppm 以上の場合には断線指数が高くなった。Mg固溶量が0.15ppm 未満の場合には鋼中のMnO−SiO2 −Al23 系介在物を主体として介在物組成がばらついており、非延性介在物が多く発生していた。またMg固溶量が3ppm 以上の場合には、Alが2.5ppm 未満であるとMgO・SiO2 結晶が生成しており、Alが2.5ppm 以上の場合にはMgO・Al23 結晶が観察された。従って鋼中のMg固溶量を0.15ppm 以上3ppm 未満とすることが必要である。
【0013】
Ti:5 ppm 未満(0 ppm を含む)
図5から明らかな様に、鋼中のTi固溶量が5ppm 以上の場合には断線指数が高くなった。鋼中Ti固溶量が5ppm 以上ではTi系の結晶質な非金属介在物が多く存在したことから、鋼中Ti固溶量は5ppm 未満とすることが必要である。
【0014】
Zr:0.5 ppm 未満(0 ppm を含む)
図6に示されている通り、鋼中のZr固溶量が0.5ppm 以上の場合には断線指数が高くなった。鋼中のZr固溶量が0.5ppm 以上ではZrO2 ・SiO2 やCaO−SiO2 −ZrO2 系介在物が多く存在しており、この様な非延性な結晶系介在物の存在により断線回数が高くなったと考えられる。
尚、本発明では必要に応じて、炭素鋼線材にCr及び/又はCuを含有させても良い。
【0015】
Cr:0.1〜0.6%
図7に示すように、Cr含有量が0.1%から0.6%までは、含有量が増えるに従い、引張強さが増加する。但し、0.6%を超えると硬度が高くなり過ぎ、断線が発生し易くなるので0.6%を上限とした。また0.1%未満では十分な強度上昇効果が得られない。従って、Cr含有量は0.1〜0.6%とすることが望ましい。
【0016】
Cu:0.1〜1.0%
Cuを添加すれば、炭素鋼の耐食性向上に有効であるが、図8から明らかな様に、Cu含有量を0.1%以上にすると耐食性が良くなるばかりでなく、スケールの剥離性も向上する。但し、Cu含有量が1.0%を超えると割れが発生し易くなるので、Cu含有量は0.1〜1.0%とすることが望ましい。
【0017】
ところで本発明は、Al,Ca,Mg,Ti,Zrの各元素の鋼中固溶量を制御する方法により限定されるものではなく、例えば鋼中固溶量が多過ぎる元素は、溶銑処理時にスラグ中に捕捉し、一方少な過ぎる場合には添加して補充すればよい。
【0018】
尚、本発明が対象とする炭素鋼は、強度及び靭性の点からCを0.3〜1.0%、Siを0.1〜0.5%、Mnを0.1〜0.7%含有し、残部鉄および不可避的不純物からなる炭素鋼であり、夫々の成分限定理由は以下の通りである。
【0019】
Cは、鋼線に十分な強度を与えるのに不可欠な元素であり、少なくとも0.3%以上含有していることが必要である。C含有量を多くするほど線材の強度は向上するが、多過ぎると初析セメンタイトが析出し、伸線加工時やより線加工時に断線を引き起こす。従って、C量の上限は1.0%とした。
【0020】
Siは、フェライトを固溶強化して引張強さを高めると共に、脱酸に有効な元素であるので0.1%以上含有させるが、多過ぎるとフェライトの靭性及び延性が低下し、極細鋼線としての強度特性を満足できなくなるので、0.5%を上限とした。
【0021】
Mnは、加工硬化率を高めて引張強さを高めるのに有効な元素であるので0.1%以上含有させるが、多過ぎると偏析が大きくなり、それを起点とするマイクロクラックが発生して断線の原因となるので、0.7%を上限とした。
【0022】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0023】
【実施例】
実施例1
240トンの溶鋼を取鍋で、表1に示す所定の成分に調整し、ブルーム連鋳機で鋳片として線材にし、その後0.230mmまで伸線したときの極細鋼線の断線指数(1トン当りの断線回数)を調べた。
【0024】
上記SIMSとしてはCAMECA製のims5fを用い、分析条件は以下の通りである。
[分析条件]
1次イオン条件: O2 −8keV−0.1μA
照射および分析領域:80×80μm−φ14μm
試料室真空度: 6×10-10 Torr
結果は、表1に示す。
【0025】
【表1】

Figure 0003709600
【0026】
No.1〜6は本発明例であり、鋼中固溶量が本発明範囲を満足しているので、トン当りの断線回数が平均で0〜0.2であり、非常に優れた伸線性を示した。
一方No.7〜25は、Al,Ca,Mg,Ti,Zrの1種以上の鋼中固溶量が本発明範囲を満足しない比較例であり、断線指数が高いことが分かる。
【0031】
【0034】
【発明の効果】
本発明は以上の様に構成されているので、結晶質で非延性な介在物の量を著しく低減でき、冷間加工時の断線の発生を非常に少なくすることが可能となり、伸線性に優れ、断線の発生することのない信頼性の高い炭素鋼線材が提供できることとなった。
【図面の簡単な説明】
【図1】Al含有量に関して、酸溶解−ICP法による分析値とSIMS法による鋼中固溶量の分析値を対比するグラフである。
【図2】断線指数と鋼中Al固溶量の関係を示すグラフである。
【図3】断線指数と鋼中Ca固溶量の関係を示すグラフである。
【図4】断線指数と鋼中Mg固溶量の関係を示すグラフである。
【図5】断線指数と鋼中Ti固溶量の関係を示すグラフである。
【図6】断線指数と鋼中Zr固溶量の関係を示すグラフである。
【図7】引張強さとCr含有量の関係を示すグラフである。
【図8】スケール剥離率とCu含有量の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is a carbon steel wire having high strength, toughness, and high fatigue strength, and used for ultra fine steel wires such as belt cords, tire cords, piano wires, fishing lines, golf shaft reinforcing wires, etc. It is related with the carbon steel wire excellent in.
[0002]
[Prior art]
The production method of ultra fine steel wire used as a reinforcing material for various products is based on the first elongation for steel wire obtained by hot rolling steel adjusted to a predetermined composition to a wire diameter of about 4 to 5.5 mmφ. Wire drawing, patenting and secondary wire drawing are performed, and patenting and brass plating are performed again if necessary. Finally, wet wire drawing is used to make ultra-fine steel wire. It has been adopted. For example, tire cords are manufactured by twisting the above-mentioned ultrafine steel wires, but there is a problem that disconnection occurs during the wire drawing and twisting steps. One of the causes of disconnection resulting from the ultrafine steel wire as a material is non-ductile inclusions present in the wire. Moreover, it has been pointed out that the presence of this non-ductile inclusion may cause a reduction in the die life and cause fatigue fracture of the tire cord.
[0003]
Conventionally, in order to solve this problem, for the purpose of adjusting the composition so as to become a ductile inclusion, a carbon steel wire rod (for example, Japanese Patent Laid-open No. Sho 62-130258) in which the composition of the inclusion and the combination thereof are defined. Etc.) have been proposed.
[0004]
However, according to the techniques proposed so far, it has been pointed out that, for example, if wire is drawn to an ultrafine wire using carbon steel per ton, disconnection is inevitably generated. It was not disclosed.
[0005]
[Problems to be solved by the invention]
The present invention has been made by paying attention to the above circumstances, and an object of the present invention is to provide a carbon steel wire that is excellent in wire drawability and highly reliable against occurrence of wire breakage.
[0006]
[Means for Solving the Problems]
The carbon steel wire of the present invention that has solved the above problems is C: 0.3-1.0%, Si: 0.1-0.5%, Mn: 0.1-0.7%, the balance Fe and A carbon steel wire made of inevitable impurities, and the solid solution amount of Al, Ca, Mg, Ti, and Zr in the steel is Al: 0.1 ppm or more and less than 3.0 ppm, Ca: 0.01 ppm or more and 0.5 ppm or less Mg: 0.15 ppm or more and less than 3.0 ppm, Ti: less than 5.0 ppm (including 0 ppm), Zr: less than 0.5 ppm (including 0 ppm), and Cr: 0 0.1 to 0.6% is effective for improving the strength, and Cu: 0.1 to 1.0% can improve the scale peelability.
The amount of solid solution in the steel can be analyzed with high accuracy by using a secondary ion mass spectrometer (hereinafter referred to as SIMS).
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have found that there is a very high correlation between the amount of trace elements dissolved in steel and the disconnection index. Previously, consideration was given to providing inclusions with high ductility by providing a range in the inclusion composition, but because of the inclusion of crystalline inclusions, disconnection during wire drawing could not be prevented. . According to the present invention, by controlling the amount of solid solution in steel, it is possible to greatly improve the disconnection at the time of wire drawing and twisting.
[0008]
In addition, the quantitative analysis of trace elements in the prior art is generally measured by dissolving a test material with an acid and, for example, by ICP emission spectroscopic analysis, and the content of the trace component is the composition of inclusions. It was the total value of the component and the solid solution component in steel. FIG. 1 is a graph showing a comparison between an analytical value of Al content by a combination of acid dissolution and ICP emission spectroscopic analysis, which is a conventional general analysis method, and a value of Al solid solution in steel analyzed by SIMS. is there. The difference between the two analysis values corresponds to the amount of inclusions.
[0009]
As a result of intensive studies, the present inventors have found that it is difficult to reliably control disconnection with the component values analyzed by the conventional method, and the solid elements of trace elements such as Al, Ca, Mg, Ti, and Zr are dissolved in steel. The inventors have found that it is possible to surely prevent disconnection only after controlling the amount, and have arrived at the present invention. Therefore, in the present invention, it is important to limit the solid solution amount of each trace element in the steel as follows. The solid solution amounts of Al, Ca, Mg, Ti, and Zr in the steels in FIGS. 2 to 6 and the Cr and Cu contents in FIGS. 7 and 8 are disconnected from the analytical values measured in Examples described later. It is a graph arranged in relation to the index.
[0010]
Al: 0.1 ppm or more and less than 3.0 ppm As is apparent from the results of Fig. 2 showing the relationship between the amount of Al dissolved in steel and the disconnection index, the amount of Al solid solution in steel is When it was less than 0.1 ppm or more than 3.0 ppm, the disconnection index increased. When the Al solid solution amount is less than 0.1 ppm, CaO—SiO 2 and MnO—SiO 2 based crystals exist as inclusions. When the Al solution amount is 3.0 ppm or more, the Al 2 O 3 content is 40%. The above non-ductile inclusions are present, and it is considered that these non-ductile inclusions increased the disconnection index.
Therefore, the amount of Al solid solution in the steel is specified to be not less than 0.1 ppm and less than 3.0 ppm.
[0011]
Ca: 0.01 ppm or more and 0.5 ppm or less As is apparent from FIG. 3, disconnection occurs when the amount of Ca solid solution in the steel is less than 0.01 ppm or more than 0.5 ppm . The index has increased. When the amount of Ca solid solution in the steel is less than 0.01 ppm, the inclusion composition varies mainly from MnO—SiO 2 —Al 2 O 3 inclusions, and many non-ductile inclusions are generated. . When the Ca dissolved amount in the steel exceeds 0.5ppm is crystalline inclusions such as 2CaO · SiO 2 and 2CaO · SiO 2 · Al 2 O 3 was present. It is considered that the disconnection index was increased due to the presence of these non-ductile inclusions. Crystalline inclusions were not observed when the Ca solid solution amount was in the range of 0.01 to 0.5 ppm.
[0012]
Mg: 0.15 ppm or more and less than 3 ppm As shown in FIG. 4, the disconnection index increased when the Mg solid solution amount in the steel was less than 0.15 ppm and 3 ppm or more . When the Mg solid solution amount is less than 0.15 ppm, the inclusion composition varies mainly from MnO—SiO 2 —Al 2 O 3 inclusions in the steel, and many non-ductile inclusions are generated. Further, when the Mg solid solution amount is 3 ppm or more, MgO · SiO 2 crystals are formed when Al is less than 2.5 ppm, and when Al is 2.5 ppm or more, MgO · Al 2 O 3 crystals are formed. Was observed. Therefore, it is necessary that the Mg solid solution amount in the steel is 0.15 ppm or more and less than 3 ppm.
[0013]
Ti: Less than 5 ppm ( including 0 ppm )
As is apparent from FIG. 5, the disconnection index increased when the Ti solid solution amount in the steel was 5 ppm or more. When the Ti solid solution amount in steel is 5 ppm or more, there are many Ti-based crystalline non-metallic inclusions, so the Ti solid solution amount in steel must be less than 5 ppm.
[0014]
Zr: less than 0.5 ppm ( including 0 ppm )
As shown in FIG. 6, the disconnection index increased when the Zr solid solution amount in the steel was 0.5 ppm or more. When the Zr solid solution amount in steel is 0.5 ppm or more, there are many ZrO 2 · SiO 2 and CaO-SiO 2 -ZrO 2 type inclusions, and disconnection is caused by the presence of such non-ductile crystalline inclusions. It is thought that the number of times has increased.
In the present invention, if necessary, the carbon steel wire may contain Cr and / or Cu.
[0015]
Cr: 0.1 to 0.6%
As shown in FIG. 7, when the Cr content is from 0.1% to 0.6%, the tensile strength increases as the content increases. However, if it exceeds 0.6%, the hardness becomes too high and disconnection tends to occur, so 0.6% was made the upper limit. If it is less than 0.1%, a sufficient strength increasing effect cannot be obtained. Therefore, the Cr content is desirably 0.1 to 0.6%.
[0016]
Cu: 0.1 to 1.0%
Addition of Cu is effective for improving the corrosion resistance of carbon steel, but as is clear from FIG. 8, when the Cu content is 0.1% or more, not only the corrosion resistance is improved, but also the peelability of the scale is improved. To do. However, if the Cu content exceeds 1.0%, cracks are likely to occur, so the Cu content is preferably 0.1 to 1.0%.
[0017]
By the way, this invention is not limited by the method of controlling the solid solution amount of each element of Al, Ca, Mg, Ti, and Zr, for example, an element with too much solid solution amount in steel is used at the time of hot metal processing. If it is trapped in the slag, but too little, it may be added and replenished.
[0018]
In addition, the carbon steel which this invention makes object is 0.3 to 1.0% of C, 0.1 to 0.5% of Si, and 0.1 to 0.7% of Mn from the point of intensity | strength and toughness. It is a carbon steel containing the balance iron and unavoidable impurities, and the reasons for limiting the respective components are as follows.
[0019]
C is an element indispensable for giving sufficient strength to the steel wire, and it is necessary to contain at least 0.3% or more. As the C content is increased, the strength of the wire is improved. However, if it is too much, pro-eutectoid cementite is precipitated, causing breakage during wire drawing or wire drawing. Therefore, the upper limit of the C amount is set to 1.0%.
[0020]
Si enhances the tensile strength by solid solution strengthening of ferrite and is contained in an amount of 0.1% or more because it is an element effective for deoxidation, but if it is too much, the toughness and ductility of ferrite will decrease, and the ultrafine steel wire Therefore, the upper limit is set to 0.5%.
[0021]
Mn is an element effective for increasing the work hardening rate and increasing the tensile strength, so it is contained in an amount of 0.1% or more. However, if it is too much, segregation increases and microcracks originating from it occur. Since it causes disconnection, the upper limit is set to 0.7%.
[0022]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.
[0023]
【Example】
Example 1
240 tons of molten steel is adjusted to the prescribed components shown in Table 1 with a ladle, and is made into a wire rod as a slab with a bloom continuous caster and then drawn to 0.230 mm (1 ton). The number of hits per break) was investigated.
[0024]
As SIMS, ims5f manufactured by CAMECA is used, and the analysis conditions are as follows.
[Analysis conditions]
Primary ion condition: O 2 -8 keV-0.1 μA
Irradiation and analysis area: 80 × 80 μm-φ14 μm
Sample chamber vacuum: 6 × 10 −10 Torr
The results are shown in Table 1.
[0025]
[Table 1]
Figure 0003709600
[0026]
No. 1 to 6 are examples of the present invention, and the amount of solid solution in the steel satisfies the scope of the present invention. Therefore, the average number of disconnections per ton is 0 to 0.2, indicating excellent wire drawing. It was.
On the other hand, no. 7 to 25 are comparative examples in which the amount of solid solution in one or more of Al, Ca, Mg, Ti, and Zr does not satisfy the scope of the present invention, and it can be seen that the disconnection index is high.
[0031]
[0034]
【The invention's effect】
Since the present invention is configured as described above, it is possible to remarkably reduce the amount of crystalline and non-ductile inclusions, it is possible to greatly reduce the occurrence of disconnection during cold working, and excellent wire drawability. Thus, it is possible to provide a highly reliable carbon steel wire without wire breakage.
[Brief description of the drawings]
FIG. 1 is a graph comparing the analysis value of acid dissolution-ICP method and the analysis value of solid solution amount in steel by SIMS method for Al content.
FIG. 2 is a graph showing the relationship between the disconnection index and the amount of Al solid solution in steel.
FIG. 3 is a graph showing the relationship between the disconnection index and the amount of Ca solid solution in steel.
FIG. 4 is a graph showing the relationship between the disconnection index and the amount of Mg solid solution in steel.
FIG. 5 is a graph showing the relationship between the disconnection index and the amount of Ti solid solution in steel.
FIG. 6 is a graph showing the relationship between the disconnection index and the Zr solid solution amount in steel.
FIG. 7 is a graph showing the relationship between tensile strength and Cr content.
FIG. 8 is a graph showing the relationship between the scale peeling rate and the Cu content.

Claims (2)

C:0.3〜1.0%(質量%、以下同じ)
Si:0.1〜0.5%
Mn:0.1〜0.7%
であると共に、Al,Ca,Mgについては鋼中の固溶量が以下の通りであり、
Al:0.1 ppm (質量 ppm 、以下同じ)以上3.0 ppm 未満
Ca:0.01 ppm 以上0.5 ppm 以下
Mg:0.15 ppm 以上3.0 ppm 未満
且つ、鋼中にはTiとZrの固溶量が夫々
Ti:5.0 ppm 未満(0 ppm を含む)
Zr:0.5 ppm 未満(0 ppm を含む)
に抑制され、
残部Feおよび不可避的不純物からなることを特徴とする伸線性に優れた炭素鋼線材。
C: 0.3 to 1.0% (mass%, the same applies hereinafter)
Si: 0.1 to 0.5%
Mn: 0.1 to 0.7%
In addition, for Al, Ca, Mg, the amount of solid solution in the steel is as follows,
Al: 0.1 ppm (mass ppm , the same applies hereinafter) or more and less than 3.0 ppm
Ca: 0.01 ppm or 0.5 ppm or less
Mg: 0.15 ppm or more and less than 3.0 ppm
And the amount of solid solution of Ti and Zr in steel is
Ti: less than 5.0 ppm ( including 0 ppm )
Zr: less than 0.5 ppm ( including 0 ppm )
Restrained by
Excellent carbon steel wire rod drawability characterized by the Turkey a balance of Fe and unavoidable impurities.
前記鋼中固溶量が2次イオン質量分析装置を用いて分析した値である請求項1に記載の炭素鋼線材。The carbon steel wire according to claim 1, wherein the solid solution amount in the steel is a value analyzed using a secondary ion mass spectrometer.
JP03833396A 1996-02-26 1996-02-26 Carbon steel wire rod with excellent drawability Expired - Lifetime JP3709600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03833396A JP3709600B2 (en) 1996-02-26 1996-02-26 Carbon steel wire rod with excellent drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03833396A JP3709600B2 (en) 1996-02-26 1996-02-26 Carbon steel wire rod with excellent drawability

Publications (2)

Publication Number Publication Date
JPH09227994A JPH09227994A (en) 1997-09-02
JP3709600B2 true JP3709600B2 (en) 2005-10-26

Family

ID=12522364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03833396A Expired - Lifetime JP3709600B2 (en) 1996-02-26 1996-02-26 Carbon steel wire rod with excellent drawability

Country Status (1)

Country Link
JP (1) JP3709600B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384629B1 (en) * 1998-10-16 2003-08-19 주식회사 포스코 A high strength wire-rod having superior wire drawability and a method therefor

Also Published As

Publication number Publication date
JPH09227994A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
KR100792128B1 (en) Steel wire rod having excellent drawability and fatigue properties, and manufacturing method of the same
JP3440937B2 (en) Method of manufacturing steel wire and steel for steel wire
CA2163894C (en) Steel wire rod of high strength and steel wire of high strength excellent in fatigue characteristics
JP3294245B2 (en) High carbon steel wire with excellent drawability and fatigue resistance after drawing
US20090038439A1 (en) Process for producing steel for high-carbon steel wire material with excellent drawability and fatique characteristics
KR20080091019A (en) Forging steel, forging and crankshaft
JP3601388B2 (en) Method of manufacturing steel wire and steel for steel wire
JP2618151B2 (en) High strength non-magnetic stainless steel wire rod
JP4083828B2 (en) Spring steel with excellent fatigue characteristics
JP3709600B2 (en) Carbon steel wire rod with excellent drawability
JP3237305B2 (en) High carbon steel wire for high strength and high ductility steel wire
JP3499341B2 (en) Manufacturing method of steel wire for rubber reinforcement
CN110987612B (en) Method for evaluating anti-spalling performance of refractory material for silicon deoxidized steel in use process
JPH06145895A (en) High sterength and high toughness steel wire rod, extra fine steel wire using the same steel wire rod, production therefor and straded steel wire
JP3388012B2 (en) Method of manufacturing steel wire for steel cord with reduced delamination
JP4069150B2 (en) Manufacturing method of high carbon steel wire rod steel with excellent drawability and fatigue properties
JP3428502B2 (en) Steel wire, extra fine steel wire and twisted steel wire
JPH06312209A (en) Ultra-fine steel wire excellent in wire-drawability and fatigue strength and its manufacture
JP2888727B2 (en) Steel wire for steel cord having excellent fatigue strength and method for producing the same
WO2023191027A1 (en) Plated steel wire
JPH09125200A (en) High clarity steel excellent in cold workability
JPH0284237A (en) Production of hot rolling stock for high carbon steel wire rod having high workability
JP3236338B2 (en) High strength non-magnetic stainless steel wire
JP3427740B2 (en) Discrimination method for wires with excellent drawability
JP3091793B2 (en) Method of manufacturing steel wire with excellent fatigue fracture resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

EXPY Cancellation because of completion of term