JP3709588B2 - Pump discharge amount calculation method and apparatus - Google Patents

Pump discharge amount calculation method and apparatus Download PDF

Info

Publication number
JP3709588B2
JP3709588B2 JP27332295A JP27332295A JP3709588B2 JP 3709588 B2 JP3709588 B2 JP 3709588B2 JP 27332295 A JP27332295 A JP 27332295A JP 27332295 A JP27332295 A JP 27332295A JP 3709588 B2 JP3709588 B2 JP 3709588B2
Authority
JP
Japan
Prior art keywords
discharge amount
pump
flow rate
target system
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27332295A
Other languages
Japanese (ja)
Other versions
JPH08189472A (en
Inventor
信夫 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP27332295A priority Critical patent/JP3709588B2/en
Publication of JPH08189472A publication Critical patent/JPH08189472A/en
Application granted granted Critical
Publication of JP3709588B2 publication Critical patent/JP3709588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Flow Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水処理場及びポンプ場及び送水・配水場などの施設において、流量センサ等を用いず、ポンプの揚水量を早く正確に演算する方法および装置に関するものである。
【0002】
【従来の技術】
下水処理場及び、ポンプ場のポンプの揚水量を知ることは、そのプラントを運営するのにあたってとても重要なことである。
【0003】
現在、超音波流量計,電磁流量計,オリフィス流量計,ベンチュリー流量計などの流量計で計測が行われている。
【0004】
また、流量センサを用いないで、ポンプのQH(流量対揚程)カーブを何本かの折れ線で近似し、管ロスも何本かの折れ線で近似し、吐出量を求める方法が行われている。ポンプ1台の例を図19に示す。図19の例では、ポンプQHカーブの折れ線と管ロスカーブの折れ線との交点から、吐出量が108m3/minと解る。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の技術による流量計での測定は、特に大流量の時などセンサが高額で、流量の誤差が大きく、適用の範囲に関しての問題がある。また、分岐がある場合など複数の設置の必要があるなど、経済性,精度の両面で問題があった。
【0006】
ポンプのQHカーブを何本かの折れ線で近似し、管ロスも何本かの折れ線で近似し、吐出量を求める方法は、経済性の問題は解決できるが、折れ線近似の精度の問題,計算式の場合分けの多さによるプログラミングの複雑化の問題がおこる。さらに、ポンプが並列に運転されたときは吐出量が共通の管の抵抗等により、単純な吐出量の足し算にはならないため、概算の流量しか求められないという問題があった。
【0007】
ところで、通常のポンプの起動方法は、ポンプの羽根が液中にある状態で、モータを回転させ十分な回転数に到達した状態で吐出弁を徐々に開けることにより行う。また、流量制御の目的などで、吐出弁を中間開度で運転する事が行われる。これらの吐出弁が中間開度であるときにおける正確な流量の計算は、弁の特性が非線形性が強いため近似が難しく、条件分け等の方法を用いてもこれまでの折れ線近似などの方法では組み合わせの爆発等の問題がおこりやすい。
【0008】
このような理由で、折れ線の近似によりポンプ吐出量を正確に知ることは難しかった。
【0009】
本発明は、上記問題点を解決するためになされたものであり、その目的は、高額なセンサを用いず、並列結合されたポンプの吐出量を簡便にかつ早く正確に求めることのできるポンプ吐出量演算方法および装置を提供することにある。
【0010】
【課題を解決するための手段】
上記の目的を達成するため、本発明のポンプ吐出量演算方法は、まず、ポンプ特性を示す流量対揚程カーブを3次関数で近似し、吐出弁の特性を指数関数またはべき乗の関数で近似し、これらの近似した関数を合成して複数台の並列運転のポンプの吐出弁開度を考慮した対象システムの特性を示す流量対揚程カーブを求め、次に、実揚程と管ロスを2次関数で近似し、次に、前記システムの流量対揚程カーブと前記2次関数から前記対象システムにおける吐出量の演算式を求め、次に、前記演算式に前記対象システムのパラメータを与えて近似計算法を用いて吐出量演算を行うことを特徴とする。
【0011】
また、本発明の他のポンプ吐出量演算方法は、まず、ポンプ特性を示す流量対揚程カーブを3次関数で近似し、複数台の並列運転のポンプの特性を合成して対象システムの特性を考慮した流量対揚程カーブを求め、次に、実揚程と管ロスを2次関数で近似し、次に、前記システムの流量対揚程カーブと前記2次関数から前記対象システムにおける吐出量の演算式を求め、次に、前記演算式に前記対象システムのパラメータを与えて近似計算法を用いて吐出量演算を行うことを特徴とする。
【0012】
また、本発明の他のポンプ吐出量演算方法は、まず、ポンプ単体の特性を示す流量対揚程カーブを3次関数で近似し、前記3次関数の係数を変化させて同一特性の複数台のポンプを並列運転するときの合成流量揚程カーブを対象システムの特性を考慮して求め、次に、実揚程と管ロスを2次関数で近似し、次に、前記合成流量対揚程カーブと前記2次関数から前記対象システムにおける吐出量の演算式を求め、次に、前記演算式に前記対象システムのパラメータを与えて近似計算法を用いて吐出量演算を行うことを特徴とする。
【0013】
また、上記の目的を達成するため、本発明のポンプ吐出量演算装置は、予め作成した上記の演算式を記憶する手段と、対象システムのパラメータを入力する手段と、近似計算ルーチンを記憶する手段と、前記記憶した演算式に前記入力したパラメータを与えて前記記憶した近似計算ルーチンを用いて前記対象システムの吐出量を演算する手段と、を具備することを特徴とする。
【0014】
以上のように、本発明のポンプ吐出量演算方法および装置では、3次関数で近似したポンプ特性を示す流量対揚程カーブと、指数関数またはべき乗の関数で近似した吐出弁の特性を合成して、複数台の並列運転のポンプの吐出弁開度を考慮した対象システムの特性を示す流量対揚程カーブを求め、このカーブと、2次関数で近似した実揚程と管ロスから、予め、当該システム構成における吐出量の演算式を求めておく。このように、並列結合されたポンプの吐出弁の開度を考慮に入れ、かつ、折れ線ではなく連続な関数近似による演算式を用いて、当該システム構成のパラメータを与え、近似計算法で吐出量演算を行うことにより、高額なセンサを用いず、並列結合されたポンプの吐出量を簡便にかつ早く正確に求める。
【0015】
なお、吐出弁を全開と全閉との2通りで運転するシステムの場合には吐出弁の特性を省略した簡易な演算で済むようにする。
【0016】
また、同じ特性のポンプを複数台並列運転するシステムの場合には、1台のポンプの近似特性の係数を変えることで複数台のポンプの合成流量対揚程カーブを求めることができ、簡易な演算で済むようにする。
【0017】
【発明の実施の形態】
以下、本発明の実施形態を、図面を参照して詳細に説明する。
【0018】
図1は本発明の一実施形態の構成を示すブロック図であり、図2は本実施形態における流量測定を実施した対象システムであるプラントの模式図である。
【0019】
図1において、1は近似した特性とシステム構成から予め作成した関係式(演算式)を記憶する第1の記憶部、2はシステムのパラメータ入力部、3は第1の記憶部1の関係式にシステムのパラメータ入力部2から入力したパラメータを与えて当該システムのポンプの吐出量を実際に演算する演算部、4はその演算の際に用いるガウス・ニュートン法非線形連立方程式の近似計算による解法ルーチンを記憶する第2の記憶部である。
【0020】
図2において、11は吸水槽、12は吐水槽、P1,P2は並列運転され吸水槽11から吐出槽12へ揚水するように配置した2台のポンプ、13は第1のポンプP1の管路に介設されたバタフライ弁、14は第2のポンプP2の管路に介設されたスルース弁である。
【0021】
以下、上記構成により実現する本実施形態のポンプ吐出量の演算方法を説明する。
【0022】
まず、準備段階において、並列運転される2つのポンプの特性であるQHカーブの各点のデータを3次式に代入して係数a,b,c,dを最小二乗法により求め、揚程を吐出量の3次の式で表した関数で近似する(以降、3次近似という)。3次近似の例を以下に示す。
【0023】
図3はポンプP1の場合の例である。
【0024】
y=ax3+bx2+cx+d …(1)
a:−0.000008085
b:0.001704
c:−0.1610
d:24.99
図4はポンプP2の場合の例である。
【0025】
y=a’x3+b’x2+c’x+d’
a’:−0.00001413
b’:0.002303
c’:−0.1971
d’:22.14
上式において、a,b,c,d,a’,b’,c’,d’は多項式の計数であり、d,d’は本例ではたまたま、QHカーブのy切片を表わしており、揚程を表わしている。
【0026】
次に、管ロスと実揚程を2次の式で表した関数で近似する(以降、2次近似という)。以下にその例を示す。
【0027】
y=b”x2+d” …(2)
b”:0.0001389
d”:実揚程
次に、吐出弁などの弁の摩擦損失係数λ,λ’(fv)を指数あるいはべき乗で近似する。以下にその例を示す。
【0028】
図5は、ポンプP1の吐出弁(バタフライ弁13)を指数近似した例である。
【0029】
λ=A・eKB(全開からの角度をK(°)で表示)
結果を図5に実線で示す。
【0030】
図6は、ポンプP2の吐出弁(スルース弁14)をべき乗近似した例である。
【0031】
λ’=A・ZB(Z:S/D(開度(図6(b)参照)))
結果を図6(a)に実線で示す。
【0032】
次に、並列運転された2台のポンプP1,P2の吐出弁開度を考慮したQHカーブを求める。
【0033】
損失水頭hを流速vに対する抵抗の式に表すと、水理公式集より、
h=λ・v2/2g
流速vの項を流量Qで置き換えると、
h=λ・Q2/((πr22・2g) …(3)
(ただし:rは管の半径)
(1)−(2)を連立し、吐出弁の開度に応じたポンプP1のQHカーブを求めると、
y=ax3+(b−λ/((πr22・2g))x2+cx+d …(4)
(ただしλ=A・eKB:Kは角度)
結果を図7に実線で示す。
【0034】
ポンプP2に関しても、同様にQHカーブを求めと、
y=a’x3+(b’−λ’/((πr22・2g))x2+c’x+d’…(5)
(ただしλ’=A・ZB:Zは開度)
結果を図8に実線で示す。
【0035】
各ポンプP1,P2について得られた2つの3次式をX軸(吐出量)の方向に足すことにより、合成QHカーブを求める。 …(6)
例として、ポンプP1のバタフライ弁(V)13の開度30%(変形を図9に示す)、ポンプP2のスルース弁(S)14の開度20%(変形を図10に示す)とした場合の合成QHカーブを求めた例を図11に示す。
【0036】
次に、(2)−(6)を連立し、近似計算によって運転点を求めることにより、吐出量を正確に計算することができる。(図12)
この演算は、コンピュータにより、ニュートン法あるいはガウス・ニュートン法等の近似計算法を用いた収束演算で行う。実際の演算手順例を図13のフローチャートに示す。まずパラメータ入力部2からポンプ起動台数、可変速速度、吐出弁開度、実揚程等のパラメータを入力する。次に、演算部3がこれらのパラメータを第1の記憶部の関係式に与え、第2の記憶部4のガウス・ニュートン法非線形連立方程式の解法ルーチンを用いて、(2)−(6)の非線形連立方程式の解を求める。以上の結果(ポンプ吐出量等)を出力して終了する。
【0037】
図12の例の場合において、揚程5mの場合は、図からも明らかなように、上記したコンピュータの近似計算により129.830m3/minという解が得られる。吐出部の圧力は揚程換算で7.341mであった。
【0038】
図14に、これまでの課程におけるすべての要素を示す。
【0039】
別の吐出弁開度の例として、ポンプ1のバタフライ弁の開度50%,ポンプ2のスルース弁の開度40%、実揚程7mの例を図15に示す。186.460m3/minという解が得られる。吐出部の圧力は揚程換算で11.829mであった。
【0040】
なお、上記実施形態では2つのポンプの並列運転の例を示したが、3台以上の並列運転の場合でも、また、どのようなバルブの組合わせでも同様に求めることができる。このように本発明は、その主旨に沿って種々に応用され、種々の実施態様を取り得るものである。
【0041】
例えば、図2のシステム構成として、3台のポンプと吐出弁とする場合の各ポンプの流量対揚程カーブによる特性と管ロスから吐出量を求める例を図16に示す。
【0042】
他の例として、図2の構成においてバタフライ弁13とスルース弁14の利用方法として、ポンプとシステムを保護するために、ポンプの定常運転時は弁を全開し、停止時は全閉する場合には、これら弁13、14の特性を考慮した計算が不要になる。この場合には、吐出弁が無い(開度100%)ものとして演算することができ、図1の準備段階における吐出弁の特性を省略し、また、システムのパラメータ入力部2から吐出弁開度のパラメータ入力(図13のパラメータ入力)不要にして揚程と吐出量演算ができる。
【0043】
すなわち、ポンプ吐出量演算方法は、最小二乗法によりポンプ特性を示す流量対揚程カーブを3次関数で近似し、複数台の並列運転のポンプの特性を合成して対象システムの特性を考慮した流量対揚程カーブを求め、次に、実揚程と管ロスを2次関数で近似し、次に、前記システムの流量対揚程カーブと前記2次関数から前記対象システムにおける吐出量の演算式を求め、次に、前記演算式に前記対象システムのパラメータを与えて近似計算法を用いて吐出量演算を行うことができる。
【0044】
さらに、他の例として、同じ特性を持つ複数台のポンプの吐出量を解析するには、1台のポンプについて解析した特性を利用することで演算を一層簡易にすることができる。
【0045】
すなわち、ポンプを用いる施設では、保守性の良さ、運用のし易さなどから、最大流量を越える吐出量を持つ1台のポンプのみを導入することは行われず、小さい吐出量の同じ特性の複数台のポンプを並列結合することが多い。この場合に、同じ特性のn台のポンプの合成特性は、ポンプ1台のポンプの流量対揚程カーブを最小二乗法により3次関数で近似し、この関数から流量方向にn台分合成した3次関数の近似式を係数を変えることで求め、これを管ロスと実揚程の関数との式から吐出量演算が可能となる。
【0046】
例えば、同じ特性の2台のポンプを並列結合する場合、1台のポンプの3次関数近似式が、前記の(1)式であるときに、2台目のポンプを合成したカーブは、(1)式のxをx'(=2x)とした次の式、
y=a(1/2)3x’3+b(1/2)2x’2+c(1/2)x’+d
として求められる。また、管ロスの近似式が
y=b'x2+c'x+d
とすると、両式の差分から実揚程換算のQHカーブを求めると、

Figure 0003709588
となる。そして、吐出量は、上記式のyが0になるxを求めることになる。
【0047】
同様に同じ特性のn台のポンプの並列結合には、次の一般式、
y=a(1/n)3x'3+b(1/n)2x'2+c(1/n)x'+d
から求めることができる。
【0048】
これらの演算を実現する装置構成を図17に示し、また演算フローを図18に示す。図17では、吐出弁が全開と全閉とのみで運転される場合を示し、図1との対比ではポンプ稼働台数に対応する式の変形を行うこと、及びシステムのパラメータ入力にポンプ可変速速度と吐出弁開度が省略されることが異なる。また、図18が図13と異なる部分は、パラメータ入力に吐出弁開度と可変速速度が省略される。
【0049】
したがって、本実施形態では、1台のポンプ特性式の係数を変形するのみで同一特性ポンプの並列運転時のQHカーブを導くことができ、変数1つだけで解析計算を行うことができ計算の安定性と速度及びソフトウエアの保守性に優れる。
【0050】
【発明の効果】
以上の説明で明らかなように、本発明のポンプ吐出量演算方法および装置によれば、下水処理場およびポンプ場および送水・配水場などの施設において、並列結合のされたポンプ運転時の吐出量に関して、吐出弁等の弁の中間開度などの動的な条件も考慮し、早く簡便に正確なポンプ流量の演算を行う吐出量演算を実現できる。
【0051】
これにより、複雑な配管系や刻々変化する状況の流量を正確に知ることができる。
【0052】
また、正確な流量を知ることができるので、システムの動的なシミュレーションを正確に知ることが可能になる。
【0053】
また、ポンプの定常運転時は弁を全開し、停止時は全閉するシステム構成の場合には簡易な計算にしながら吐出量を求めることができる。
【0054】
また、同じ特性のポンプを並列運転するシステム構成の場合には1台のポンプ特性を求めてポンプ運転台数に応じてその係数を変えることでポンプ特性を得ることができ、計算を一層簡易にすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す機能ブロック図
【図2】上記実施形態で流量測定を実施した代表的なプラントの模式図
【図3】上記実施形態における第1のポンプの3次近似例を示す図
【図4】上記実施形態における第2のポンプの3次元近似例を示す図
【図5】上記実施形態におけるバタフライ弁の指数近似例を示す図
【図6】(a),(b)は上記実施形態におけるスルース弁のべき乗近似例を示す図
【図7】上記実施形態におけるバタフライ弁の開度に応じた第1のポンプのQHカーブの例を示す図
【図8】上記実施形態におけるスルース弁の開度に応じた第2のポンプのQHカーブの例を示す図
【図9】バタフライ弁の開度を30%としたときの図7の変形図
【図10】スルース弁の開度を20%としたときの図8の変形図
【図11】上記実施形態において2台のポンプを並列運転したときの合成QHカーブ例を示す図
【図12】上記図11の場合のポンプ吐出量演算を説明する図
【図13】上記実施形態におけるポンプ吐出量演算の手順を示すフローチャート
【図14】上記実施形態のポンプ吐出量演算例の過程におけるすべての要素を示した図
【図15】上記実施形態において別の弁開度でのポンプ吐出量の演算結果を示す図
【図16】3台のポンプを並列運転する場合の流量演算を示す図
【図17】本発明の他の実施形態を示す機能ブロック図
【図18】他の実施形態におけるポンプ吐出量演算の手順を示すフローチャート
【図19】従来のポンプ吐出量演算方法を説明する図
【符号の説明】
1…第1の記憶部
2…パラメータ入力部
3…演算部
4…第2の記憶部
11…吸水槽
12…吐水槽
13…バタフライ弁
14…スルース弁
1…第1のポンプ
2…第2のポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for quickly and accurately calculating the pumped amount of pump without using a flow sensor or the like in facilities such as a sewage treatment plant, a pumping station, and a water supply / distribution station.
[0002]
[Prior art]
Knowing the amount of pumped water at the sewage treatment plant and pumping station is very important in operating the plant.
[0003]
Currently, measurement is performed with flowmeters such as ultrasonic flowmeters, electromagnetic flowmeters, orifice flowmeters, and venturi flowmeters.
[0004]
Further, without using a flow rate sensor, a method of approximating a pump QH (flow rate vs. head) curve with several broken lines and approximating a pipe loss with several broken lines is used to obtain a discharge amount. . An example of one pump is shown in FIG. In the example of FIG. 19, the discharge amount is understood as 108 m 3 / min from the intersection of the broken line of the pump QH curve and the broken line of the pipe loss curve.
[0005]
[Problems to be solved by the invention]
However, the measurement with the flowmeter according to the above-described conventional technique has a problem with respect to the application range because the sensor is expensive, especially when the flow rate is large, the flow rate error is large. In addition, there are problems in both economic efficiency and accuracy, such as the need for multiple installations, such as when there are branches.
[0006]
The method of approximating the pump QH curve with several broken lines and approximating the pipe loss with several broken lines to find the discharge amount can solve the economic problem, but the accuracy of the broken line approximation, calculation The problem of complication of programming due to the large number of cases of expressions occurs. Further, when the pumps are operated in parallel, there is a problem that only an approximate flow rate can be obtained because the discharge amount cannot be simply added due to the resistance of a common pipe.
[0007]
By the way, the normal starting method of the pump is performed by gradually opening the discharge valve while rotating the motor and reaching a sufficient number of rotations with the pump blades in the liquid. In addition, the discharge valve is operated at an intermediate opening for the purpose of flow control. Accurate calculation of the flow rate when these discharge valves are at intermediate opening is difficult to approximate due to the strong nonlinearity of the valve characteristics. Even if methods such as condition division are used, conventional methods such as broken line approximation are not available. Problems such as combination explosions are likely to occur.
[0008]
For this reason, it is difficult to accurately know the pump discharge amount by approximation of the broken line.
[0009]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a pump discharge capable of easily and quickly obtaining the discharge amount of pumps coupled in parallel without using an expensive sensor. It is an object to provide a quantity calculation method and apparatus.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the pump discharge amount calculation method of the present invention first approximates the flow rate vs. head curve indicating the pump characteristics with a cubic function, and approximates the characteristics of the discharge valve with an exponential function or a power function. By combining these approximate functions, a flow rate vs. head curve showing the characteristics of the target system in consideration of the discharge valve opening of multiple parallel-operated pumps is obtained, and then the actual head and pipe loss are quadratic functions. Next, an arithmetic expression of the discharge amount in the target system is obtained from the flow rate versus head curve of the system and the quadratic function, and then an approximate calculation method is performed by giving parameters of the target system to the arithmetic expression. The discharge amount calculation is performed using
[0011]
Further, according to another pump discharge amount calculation method of the present invention, first, a flow rate vs. head curve indicating pump characteristics is approximated by a cubic function, and characteristics of a target system are obtained by synthesizing characteristics of a plurality of pumps operated in parallel. The flow rate vs. head curve is taken into account, then the actual head and pipe loss are approximated by a quadratic function, and then the calculation formula of the discharge amount in the target system from the flow rate vs. head curve of the system and the quadratic function Next, the parameters of the target system are given to the arithmetic expression, and the discharge amount is calculated using an approximate calculation method.
[0012]
According to another pump discharge amount calculation method of the present invention, first, a flow rate vs. head curve indicating characteristics of a single pump is approximated by a cubic function, and a coefficient of the cubic function is changed to change a plurality of units having the same characteristics. The combined flow rate lift curve when the pumps are operated in parallel is determined in consideration of the characteristics of the target system, then the actual lift and pipe loss are approximated by a quadratic function, and then the combined flow vs. lift curve and the 2 An arithmetic expression for the discharge amount in the target system is obtained from a next function, and then the discharge amount is calculated using an approximate calculation method by giving parameters of the target system to the arithmetic expression.
[0013]
In order to achieve the above object, the pump discharge amount computing device of the present invention includes means for storing the above-described arithmetic expression, means for inputting the parameters of the target system, and means for storing an approximate calculation routine. And a means for calculating the discharge amount of the target system using the stored approximate calculation routine by giving the input parameter to the stored arithmetic expression.
[0014]
As described above, in the pump discharge amount calculation method and apparatus according to the present invention, the flow rate versus head curve indicating the pump characteristics approximated by a cubic function and the characteristics of the discharge valve approximated by an exponential function or a power function are synthesized. , A flow rate vs. head curve indicating the characteristics of the target system in consideration of the discharge valve opening of a plurality of pumps in parallel operation is obtained, and from this curve and the actual head and pipe loss approximated by a quadratic function, the system An expression for calculating the discharge amount in the configuration is obtained in advance. In this way, taking into account the opening of the discharge valves of the pumps connected in parallel, and using a calculation formula based on continuous function approximation instead of a polygonal line, the parameters of the system configuration are given, and the discharge amount is calculated by the approximate calculation method. By performing the calculation, the discharge amount of the pumps connected in parallel can be easily and accurately obtained without using an expensive sensor.
[0015]
In the case of a system in which the discharge valve is operated in two ways, fully open and fully closed, a simple calculation that omits the characteristics of the discharge valve is sufficient.
[0016]
In addition, in the case of a system in which multiple pumps with the same characteristics are operated in parallel, the combined flow rate vs. head curve of multiple pumps can be obtained by changing the coefficient of approximate characteristics of one pump, and simple calculations Make it easy.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0018]
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention, and FIG. 2 is a schematic diagram of a plant that is a target system that performs flow rate measurement in the present embodiment.
[0019]
In FIG. 1, 1 is a first storage unit that stores a relational expression (arithmetic expression) created in advance from approximate characteristics and a system configuration, 2 is a system parameter input unit, and 3 is a relational expression of the first storage unit 1. Is a calculation unit that gives the parameters input from the parameter input unit 2 of the system to actually calculate the discharge amount of the pump of the system, and 4 is a solution routine by approximate calculation of the Gauss-Newton nonlinear simultaneous equations used in the calculation Is a second storage unit.
[0020]
In FIG. 2, 11 is a water absorption tank, 12 is a water discharge tank, P 1 and P 2 are two pumps arranged in parallel to pump water from the water absorption tank 11 to the discharge tank 12, and 13 is a first pump P 1. conduit to interposed by butterfly valve, 14 is a sluice valve which is interposed in the second conduit of the pump P 2 of.
[0021]
Hereinafter, the calculation method of the pump discharge amount of the present embodiment realized by the above configuration will be described.
[0022]
First, in the preparatory stage, the data of each point of the QH curve, which is the characteristic of two pumps operated in parallel, are substituted into the cubic equation, and the coefficients a, b, c, d are obtained by the least square method, and the lift is discharged. Approximation is performed using a function expressed by a cubic expression of quantity (hereinafter referred to as cubic approximation). An example of cubic approximation is shown below.
[0023]
FIG. 3 shows an example of the pump P 1 .
[0024]
y = ax 3 + bx 2 + cx + d (1)
a: -0.0000008085
b: 0.001704
c: -0.1610
d: 24.99
Figure 4 shows an example of a case of the pump P 2.
[0025]
y = a′x 3 + b′x 2 + c′x + d ′
a ′: −0.00001413
b ': 0.002303
c ′: −0.1971
d ': 22.14
In the above equation, a, b, c, d, a ′, b ′, c ′, d ′ are the polynomial counts, and d, d ′ happen to represent the y-intercept of the QH curve in this example, Represents the head.
[0026]
Next, the pipe loss and the actual head are approximated by a function expressed by a quadratic expression (hereinafter referred to as secondary approximation). An example is shown below.
[0027]
y = b ″ x 2 + d ″ (2)
b ″: 0.0001389
d ″: Actual lifting height Next, the friction loss coefficients λ and λ ′ (fv) of a valve such as a discharge valve are approximated by an exponent or a power. Examples thereof are shown below.
[0028]
Figure 5 is an example of exponential approximation discharge valve of the pump P 1 (the butterfly valve 13).
[0029]
λ = A · e KB (An angle from the fully open position is displayed in K (°))
The result is shown by a solid line in FIG.
[0030]
Figure 6 is an example in which the discharge valve of the pump P 2 (the sluice valve 14) and exponential approximation.
[0031]
λ ′ = A · Z B (Z: S / D (opening (see FIG. 6B)))
The result is shown by a solid line in FIG.
[0032]
Next, a QH curve is obtained in consideration of the discharge valve openings of the two pumps P 1 and P 2 operated in parallel.
[0033]
Expressing the loss head h in the equation of resistance to flow velocity v, from the hydraulic formula collection,
h = λ · v 2 / 2g
Replacing the term of flow velocity v with flow rate Q,
h = λ · Q 2 / ((πr 2 ) 2 · 2 g) (3)
(Where r is the radius of the tube)
When (1)-(2) are combined and the QH curve of the pump P 1 corresponding to the opening of the discharge valve is obtained,
y = ax 3 + (b−λ / ((πr 2 ) 2 · 2 g)) x 2 + cx + d (4)
(However, λ = A · e KB : K is an angle)
The result is shown by a solid line in FIG.
[0034]
Similarly for the pump P 2 , the QH curve is obtained,
y = a′x 3 + (b′−λ ′ / ((πr 2 ) 2 · 2 g)) x 2 + c′x + d ′ (5)
(However, λ '= A · Z B : Z is the opening)
The result is shown by a solid line in FIG.
[0035]
A composite QH curve is obtained by adding two cubic equations obtained for each of the pumps P 1 and P 2 in the direction of the X-axis (discharge amount). (6)
As an example, the opening degree of the butterfly valve (V) 13 of the pump P 1 is 30% (deformation is shown in FIG. 9), and the opening degree of the sluice valve (S) 14 of the pump P 2 is 20% (deformation is shown in FIG. 10). FIG. 11 shows an example in which a combined QH curve is obtained when
[0036]
Next, (2)-(6) are provided simultaneously, and the discharge amount can be accurately calculated by obtaining the operating point by approximate calculation. (Fig. 12)
This calculation is performed by a computer by a convergence calculation using an approximate calculation method such as Newton method or Gauss-Newton method. An example of an actual calculation procedure is shown in the flowchart of FIG. First, parameters such as the number of pumps started, variable speed, discharge valve opening, and actual head are input from the parameter input unit 2. Next, the calculation unit 3 gives these parameters to the relational expression of the first storage unit, and uses the Gauss-Newton method nonlinear simultaneous equation solving routine of the second storage unit 4 to (2)-(6) Find the solution of the system of nonlinear equations. The above result (pump discharge amount or the like) is output and the process ends.
[0037]
In the case of the example of FIG. 12, when the head is 5 m, as is apparent from the figure, a solution of 129.830 m 3 / min is obtained by the above approximate calculation of the computer. The pressure in the discharge part was 7.341 m in terms of head.
[0038]
FIG. 14 shows all the elements in the course so far.
[0039]
As another example of the opening of the discharge valve, FIG. 15 shows an example of the opening of the butterfly valve of the pump 1, the opening of the sluice valve of the pump 2 of 40%, and the actual lift 7 m. A solution of 186.460 m 3 / min is obtained. The pressure in the discharge part was 11.829 m in terms of head.
[0040]
In addition, although the example of the parallel operation of two pumps was shown in the said embodiment, even in the case of a parallel operation of 3 or more units | sets, it can obtain | require similarly in any combination of valves. As described above, the present invention can be applied in various ways along the gist and can take various embodiments.
[0041]
For example, FIG. 16 shows an example in which the discharge amount is obtained from the characteristics of the flow rate versus head curve of each pump and the pipe loss in the system configuration of FIG. 2 when three pumps and discharge valves are used.
[0042]
As another example, in the configuration of FIG. 2, as a method of using the butterfly valve 13 and the sluice valve 14, in order to protect the pump and the system, the valve is fully opened during steady operation of the pump and fully closed when stopped. Does not require calculation in consideration of the characteristics of these valves 13 and 14. In this case, it can be calculated that there is no discharge valve (opening degree 100%), the characteristic of the discharge valve in the preparation stage of FIG. 1 is omitted, and the discharge valve opening degree is set from the parameter input unit 2 of the system. This makes it possible to calculate the head and discharge amount without the need for parameter input (parameter input in FIG. 13).
[0043]
In other words, the pump discharge amount calculation method uses a least square method to approximate the flow rate vs. head curve indicating pump characteristics with a cubic function, and combines the characteristics of a plurality of parallel-operated pumps to consider the characteristics of the target system. Obtain the head-to-head curve, then approximate the actual head and pipe loss with a quadratic function, and then obtain the calculation formula for the discharge amount in the target system from the flow-rate to head curve of the system and the quadratic function, Next, the discharge amount calculation can be performed using an approximate calculation method by giving the parameters of the target system to the calculation formula.
[0044]
Furthermore, as another example, in order to analyze the discharge amounts of a plurality of pumps having the same characteristics, the calculation can be further simplified by using the characteristics analyzed for one pump.
[0045]
In other words, in facilities using pumps, due to good maintainability and ease of operation, it is not possible to introduce only one pump having a discharge rate exceeding the maximum flow rate. In many cases, two pumps are connected in parallel. In this case, the combined characteristics of n pumps having the same characteristics are obtained by approximating a flow rate vs. head curve of a pump of one pump by a cubic function by the least square method, and combining n units in the flow direction from this function 3 The approximate expression of the next function is obtained by changing the coefficient, and the discharge amount can be calculated from the expression of the pipe loss and the actual head function.
[0046]
For example, when two pumps having the same characteristics are connected in parallel, when the cubic function approximation expression of one pump is the above-mentioned expression (1), the curve obtained by combining the second pump is ( 1) The following formula where x in the formula is x ′ (= 2x):
y = a (1/2) 3 x ' 3 + b (1/2) 2 x' 2 + c (1/2) x '+ d
As required. Further, the approximate expression of the tube loss is y = b′x 2 + c′x + d
Then, when calculating the QH curve in terms of the actual head from the difference between the two formulas,
Figure 0003709588
It becomes. The discharge amount is obtained as x where y in the above equation becomes 0.
[0047]
Similarly, the parallel connection of n pumps with the same characteristics has the following general formula:
y = a (1 / n) 3 x ′ 3 + b (1 / n) 2 x ′ 2 + c (1 / n) x ′ + d
Can be obtained from
[0048]
FIG. 17 shows an apparatus configuration for realizing these calculations, and FIG. 18 shows a calculation flow. FIG. 17 shows a case where the discharge valve is operated only fully opened and fully closed. Compared with FIG. 1, the equation corresponding to the number of operating pumps is modified, and the pump variable speed is input to the system parameter input. And the discharge valve opening is omitted. 18 differs from FIG. 13 in that the discharge valve opening and the variable speed are omitted for parameter input.
[0049]
Therefore, in this embodiment, the QH curve at the time of parallel operation of the same characteristic pump can be derived only by modifying the coefficient of one pump characteristic equation, and the analysis calculation can be performed with only one variable. Excellent stability, speed and software maintainability.
[0050]
【The invention's effect】
As is apparent from the above description, according to the pump discharge amount calculation method and apparatus of the present invention, the discharge amount at the time of operating a pump coupled in parallel in a facility such as a sewage treatment plant, a pump station, and a water supply / distribution station. In consideration of dynamic conditions such as an intermediate opening of a valve such as a discharge valve, a discharge amount calculation that calculates a pump flow rate accurately and quickly can be realized.
[0051]
Thereby, it is possible to accurately know the flow rate of the complicated piping system and the constantly changing situation.
[0052]
In addition, since the accurate flow rate can be known, it is possible to accurately know the dynamic simulation of the system.
[0053]
Further, in the case of a system configuration in which the valve is fully opened during steady operation of the pump and fully closed when stopped, the discharge amount can be obtained while performing simple calculations.
[0054]
In the case of a system configuration in which pumps having the same characteristics are operated in parallel, the pump characteristics can be obtained by obtaining the characteristics of one pump and changing the coefficient according to the number of pumps operated, further simplifying the calculation. be able to.
[Brief description of the drawings]
FIG. 1 is a functional block diagram illustrating an embodiment of the present invention. FIG. 2 is a schematic diagram of a representative plant that has performed flow measurement in the embodiment. FIG. 3 is a third order of a first pump in the embodiment. FIG. 4 is a diagram showing a three-dimensional approximation example of the second pump in the embodiment. FIG. 5 is a diagram showing an exponential approximation example of the butterfly valve in the embodiment. FIG. 7B is a diagram showing an example of power approximation of the sluice valve in the embodiment. FIG. 7 is a diagram showing an example of the QH curve of the first pump according to the opening degree of the butterfly valve in the embodiment. The figure which shows the example of the QH curve of the 2nd pump according to the opening degree of the sluice valve in embodiment. FIG. 9 is a modified view of FIG. 7 when the opening degree of the butterfly valve is 30%. Fig. 8 is a modified diagram with the opening degree of 20%. 1 is a diagram showing an example of a combined QH curve when two pumps are operated in parallel in the embodiment. FIG. 12 is a diagram for explaining a pump discharge amount calculation in the case of FIG. 11. FIG. FIG. 14 is a flowchart showing a procedure for calculating the discharge amount. FIG. 14 is a diagram showing all the elements in the process of the pump discharge amount calculation example of the embodiment. FIG. 15 is a flowchart showing the pump discharge amount at another valve opening in the embodiment. FIG. 16 is a diagram showing the flow rate calculation when three pumps are operated in parallel. FIG. 17 is a functional block diagram showing another embodiment of the present invention. FIG. FIG. 19 is a flowchart illustrating a procedure for calculating a discharge amount. FIG. 19 is a diagram illustrating a conventional pump discharge amount calculation method.
1 ... first memory unit 2 ... parameter input unit 3 ... arithmetic unit 4 ... second storage unit 11 ... water tank 12 ... water discharge tank 13 ... butterfly valve 14 ... sluice valves P 1 ... first pump P 2 ... first 2 pumps

Claims (4)

まず、ポンプ特性を示す流量対揚程カーブを3次関数で近似し、吐出弁の特性を指数関数またはべき乗の関数で近似し、これらの近似した関数を合成して複数台の並列運転のポンプの吐出弁開度を考慮した対象システムの特性を示す流量対揚程カーブを求め、次に、実揚程と管ロスを2次関数で近似し、次に、前記システムの流量対揚程カーブと前記2次関数から前記対象システムにおける吐出量の演算式を求め、次に、前記演算式に前記対象システムのパラメータを与えて近似計算法を用いて吐出量演算を行うことを特徴とするポンプ吐出量演算方法。First, the flow rate vs. head curve indicating the pump characteristics is approximated by a cubic function, the characteristics of the discharge valve are approximated by an exponential function or a power function, and these approximate functions are synthesized to combine the pumps of a plurality of parallel operation pumps. A flow rate vs. head curve showing the characteristics of the target system in consideration of the opening of the discharge valve is obtained, then the actual head and pipe loss are approximated by a quadratic function, and then the flow rate vs. head curve of the system and the second order are calculated. A pump discharge amount calculation method characterized in that a calculation formula for a discharge amount in the target system is obtained from a function, and then a discharge amount calculation is performed using an approximate calculation method by giving a parameter of the target system to the calculation formula . まず、ポンプ特性を示す流量対揚程カーブを3次関数で近似し、複数台の並列運転のポンプの特性を合成して対象システムの特性を考慮した流量対揚程カーブを求め、次に、実揚程と管ロスを2次関数で近似し、次に、前記システムの流量対揚程カーブと前記2次関数から前記対象システムにおける吐出量の演算式を求め、次に、前記演算式に前記対象システムのパラメータを与えて近似計算法を用いて吐出量演算を行うことを特徴とするポンプ吐出量演算方法。First, approximate the flow rate vs. head curve showing the pump characteristics with a cubic function, synthesize the characteristics of multiple pumps in parallel operation, obtain the flow vs. head curve considering the characteristics of the target system, and then the actual head And the pipe loss are approximated by a quadratic function, and then an equation for calculating the discharge amount in the target system is obtained from the flow rate versus head curve of the system and the quadratic function. A pump discharge amount calculation method, characterized in that a discharge amount calculation is performed using an approximate calculation method by giving a parameter. まず、ポンプ単体の特性を示す流量対揚程カーブを3次関数で近似し、前記3次関数の係数を変化させて同一特性の複数台のポンプを並列運転するときの合成流量揚程カーブを対象システムの特性を考慮して求め、次に、実揚程と管ロスを2次関数で近似し、次に、前記合成流量対揚程カーブと前記2次関数から前記対象システムにおける吐出量の演算式を求め、次に、前記演算式に前記対象システムのパラメータを与えて近似計算法を用いて吐出量演算を行うことを特徴とするポンプ吐出量演算方法。First, approximate the flow rate vs. head curve indicating the characteristics of a single pump with a cubic function, and change the coefficient of the cubic function to determine the combined flow rate head curve when operating multiple pumps with the same characteristics in parallel. Next, the actual head and pipe loss are approximated by a quadratic function, and then an equation for calculating the discharge amount in the target system is obtained from the combined flow rate versus head curve and the quadratic function. Next, the pump discharge amount calculation method is characterized in that the discharge amount calculation is performed using an approximate calculation method by giving the parameters of the target system to the calculation formula. 予め作成した前記演算式を記憶する手段と、対象システムのパラメータを入力する手段と、近似計算ルーチンを記憶する手段と、前記記憶した演算式に前記入力したパラメータを与えて前記記憶した近似計算ルーチンを用いて前記対象システムの吐出量を演算する手段と、を具備することを特徴とする請求項1〜3のいずれか1項に記載のポンプ吐出量演算装置。Means for storing the arithmetic expression created in advance; means for inputting a parameter of the target system; means for storing an approximate calculation routine; and storing the approximate calculation routine by giving the input parameter to the stored arithmetic expression The pump discharge amount calculating device according to any one of claims 1 to 3, further comprising: means for calculating a discharge amount of the target system using a gas.
JP27332295A 1994-10-31 1995-10-23 Pump discharge amount calculation method and apparatus Expired - Fee Related JP3709588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27332295A JP3709588B2 (en) 1994-10-31 1995-10-23 Pump discharge amount calculation method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-266691 1994-10-31
JP26669194 1994-10-31
JP27332295A JP3709588B2 (en) 1994-10-31 1995-10-23 Pump discharge amount calculation method and apparatus

Publications (2)

Publication Number Publication Date
JPH08189472A JPH08189472A (en) 1996-07-23
JP3709588B2 true JP3709588B2 (en) 2005-10-26

Family

ID=26547552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27332295A Expired - Fee Related JP3709588B2 (en) 1994-10-31 1995-10-23 Pump discharge amount calculation method and apparatus

Country Status (1)

Country Link
JP (1) JP3709588B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647288C1 (en) * 2017-03-21 2018-03-15 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Method for automatic control of technological process for supply of gas condensate into main condensate line
RU2736136C1 (en) * 2020-03-24 2020-11-11 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Method of automatic control of gas condensate supply process into main condensate line

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014230A (en) * 2006-07-06 2008-01-24 Sayama Seisakusho:Kk Method and system for flow rate estimation of parallel pump provided in water supply system
JP5105854B2 (en) * 2006-12-19 2012-12-26 北越工業株式会社 Operation control method for inverter-driven compressor and inverter-driven compressor
CN104141603B (en) * 2014-06-24 2016-06-29 赛莱默(中国)有限公司 There is the control system of water pump of energy-conserving action
CN104976139B (en) * 2015-06-08 2017-04-05 北京化工大学 A kind of mechanical equipment state diagnostic method based on Gauss model
CN112560361B (en) * 2020-12-14 2022-04-26 湘潭大学 Centrifugal pump head value prediction method based on simulation result correction
KR102557167B1 (en) * 2021-05-31 2023-07-19 (주)한국펌프앤시스템즈 Method for predicting discharge flow rate of inverter booster pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647288C1 (en) * 2017-03-21 2018-03-15 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Method for automatic control of technological process for supply of gas condensate into main condensate line
RU2736136C1 (en) * 2020-03-24 2020-11-11 Общество с ограниченной ответственностью "Газпром добыча Ямбург" Method of automatic control of gas condensate supply process into main condensate line

Also Published As

Publication number Publication date
JPH08189472A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
CN109918787B (en) Finite volume method based simulation method for gas-liquid two-phase homogeneous mass flow in water delivery pipeline
CN105181040B (en) A kind of digitalized calibration and optimization method of differential pressure flowmeter
JP3709588B2 (en) Pump discharge amount calculation method and apparatus
Jameson A vertex based multigrid algorithm for three-dimensional compressible flow calculations
CN111199118B (en) Non-flush dual-culvert spout jet noise calculation method, calculation device and storage medium
EP0769624A1 (en) Method and apparatus for load balancing among multiple compressors
CN107633141B (en) A kind of discrimination method of one-dimension mathematical model pumping station performance curve coefficients
Woods et al. Paper 3: An experimental study of flow through poppet valves
Soares et al. Damping analysis of hydraulic transients in pump-rising main systems
JP2009288231A (en) Pump flow measuring device
Baldin et al. AdvWarp: A Transformation Algorithm for Advanced Modeling of Gas Compressors and Drives.
Adamkowski et al. The comparative analysis of the current-meter method and the pressure-time method used for discharge measurements in the Kaplan turbine penstocks
JPH11305646A (en) Method for generating initial value and device therefor
JP4361302B2 (en) Cooling water piping design equipment
KR102065535B1 (en) Minimum power consumption for multiple pump systems for safe operation under wicking conditions
US6494672B1 (en) Method and apparatus for antisurge control of turbocompressors having complex and changing surge limit lines
JP4229551B2 (en) Design method and design apparatus for fluid transfer system and recording medium recording program for executing design method
CN115659689B (en) Pump device inflow and performance numerical value iterative calculation method reflecting actual boundary conditions
JP6908758B1 (en) Gas flow rate analysis method
Grapsas et al. Experimental and numerical study of a radial flow pump impeller with 2D-curved blades
Sridhara et al. Error analysis for the four‐load method used to measure the source impedance in ducts
Dalgıç Development of a computer code to analyse fluid transients in pressurized pipe systems
Quail et al. Design study of a novel regenerative pump using experimental and numerical techniques
CN106917741A (en) A kind of characteristic determination method of parallel water pump
Schweiger Flow in centrifugal pumps working at part capacity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees